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CHAPTER 5
APPLICATION TRANSFORMATION

In the previous chapter, we have presented different methods for fast performance

evaluation of applications modeled as a PPN. In this chapter, we present how the re-

sults of such evaluations can be used to obtain alternative application instances. These

alternative application instances are functionally equivalent, but differ in performance

and resource cost characteristics. In Section 5.1, we discuss four transformations that

we consider to automatically obtain alternative application instances from a given

application specification. In Section 5.2, we present heuristics to select when and

with which parameters the four transformations should be applied. In Section 5.3,

we summarize this chapter.

5.1 Transformations

In the Daedalus design flow, the application is specified as a sequential program. By

default, a single PPN process is constructed for each function call in the sequential

program. The PPN obtained can easily be transformed in another PPN by transform-

ing the sequential program such that a functionally equivalent PPN with different per-

formance and resource cost characteristics is obtained. In this section, we consider

the following four transformations: splitting (Section 5.1.1), merging (Section 5.1.2),

stream multiplexing (Section 5.1.3), and scheduling (Section 5.1.4).

5.1.1 Splitting

To increase the amount of potential parallelism in an application modeled as a PPN,

a designer can increase the number of processes. An established way to achieve this

is by applying a process splitting transformation [SKD02, MNS09].
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Definition 5.1 (Process Splitting Transformation).

A splitting transformation with factor N on a PPN process p generates N copies of p
that are identified as p0, p1, . . . , pN−1. These copies are referred to as the partitions

of p. The original process iteration domain Dp is split into disjoint subdomains Dp0
,

Dp1
, . . . , DpN−1

. The original process p is removed from the PPN.

Each partition executes the same function as the original process p, but for dif-

ferent iterations. The splitting transformation resembles a loop unrolling transfor-

mation in which a loop body is duplicated a number of times, or a loop splitting

transformation in which a loop is split into multiple loops that each iterate over a

subset of the iteration points of the original loop [Muc97, Chapter 17]. The original

purpose of these loop transformations in a compiler is to increase instruction-level

parallelism, whereas the purpose of process splitting in this dissertation is to in-

crease the amount of coarser-grained task-level parallelism in an application. The

process iteration domain of a process can be split using different systematic ap-

proaches to obtain different distributions of the points in the original process iter-

ation domain [Ste04, SKD02]. In this chapter, we consider two different systematic

approaches: modulo unfolding and plane cutting.

Definition 5.2 (Modulo Unfolding).

A modulo unfolding splitting transformation, specified as unfold(p, d, N), splits a

process p into N partitions on dimension d. The process iteration domain of each

instance pi becomes

Dpi
= {x | x ∈ Dp ∧ xd mod N = i}.

Our unfold transformation is defined for a single dimension d, whereas the UNFOLD

procedure of Stefanov et al. is defined for multiple dimensions [Ste04, Chapter 3.3].

This merely serves to simplify our definition of unfold , motivated by our observation

that unfolding transformations are often applied on a single dimension only. The

behavior of Stefanov’s UNFOLD procedure can always be obtained by applying unfold

on the partitions created by a previous unfold transformation.

Definition 5.3 (Plane Cutting).

A plane cutting splitting transformation, specified as planecut(p, H), splits a pro-

cess p using a set of hyperplanes H = h0, h1, . . . , h|H|−1. The hyperplanes divide

process domain Dp into N subdomains, where N depends on the actual hyperplanes

specified. For each subdomain x, a partition px with domain Dpx = x is created.

Process domains and dependence relations exhibit a regular structure when they

are derived from static affine nested loop programs that have repetitive and regular

behavior. As a result, the hyperplanes cutting such domains are closely related to
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1 for (i = 0; i < 4; i++)

2 P1(&x[i));

3

4 for (i = 0; i < 3; i++)

5 P2(&(y[i]) );

6

7 for (i = 0; i < 4; i++)

8 for (j = 0; j < 3; j++)

9 F(x[i], y[j], &x[i], &y[j]);

10

11 for (i = 0; i < 4; i++)

12 C(x[i]);

Figure 5.1: Sequential C code on which we demonstrate transformations.

each other. Therefore, we present an alternative way of specifying a plane cutting

transformation, by specifying a single hyperplane h and a factor N instead of a set of

hyperplanes H:

Definition 5.4 (Plane Cutting (alternative)).

Alternatively, a plane cutting transformation specified as planecut(p, h, N) splits a

process p into N instances using hyperplanes parallel to hyperplane h. A set of par-

allel hyperplanes H that divide Dp into N subdomains with comparable cardinalities

are obtained by searching as explained by de Zwijger [Zwi12, Algorithm 1]. The

process iteration domain of each instance pi becomes

Dpi
= {x | x ∈ Dp ∧ hi ≤ x < hi+1}.

Examples

In Figure 5.2a, we show the PPN derived from the C program shown in Figure 5.1.

In Figure 5.2b and 5.2c, we show the PPNs after applying modulo unfolding and

plane cutting transformations on process F. We assume splitting factor N = 2 for

both transformations, such that two partitions F1 and F2 are obtained.

The original domain of process F is shown in Figure 5.3a. It consists of twelve

points, corresponding to the twelve iterations of the for-loops at lines 7–8 in Fig-

ure 5.1. In Figure 5.3b, we show the two subdomains obtained after applying a mod-

ulo unfolding transformation unfold(F, i, 2). The subdomain of F1 consists of the six

points in the original domain DF for which i mod 2 = 0. The subdomain of F2 con-

sists of the remaining six points in the original domain DF for which i mod 2 = 1.

In Figure 5.3c, we show the two subdomains obtained after applying a plane cutting

transformation planecut(F, {i = 2}, 2). The subdomain of F1 consists of the six
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P1

a) Original.
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b) After modulo unfolding. c) After plane cutting.
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Figure 5.2: A PPN and two transformed instances of the same PPN, obtained by

splitting process F by a factor of two on its outermost dimension.

a) Original. b) Modulo unfolding.
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Figure 5.3: Process domains obtained after splitting by a factor of two.

points in the original domain DF for which i < 2. The subdomain of F2 consists of

the remaining six points in the original domain DF for which i ≥ 2.

Position in Tool Flow

Splitting transformations not only affect the process being split, but also processes

and channels adjacent to this process. For example, in the transformed PPNs shown in

Figure 5.2b and 5.2c, process P1 has two outgoing channels, whereas it has only one

outgoing channel in the original PPN shown in Figure 5.2a. The precise implications

for the adjacent processes and channels depend on the applied transformations. In the

example shown in Figure 5.2, modulo unfolding results in one selfloop on process F1,

whereas plane cutting results in two selfloops on process F1.

If we would apply the unfold and planecut operations on the PPN, then we should

also update the adjacent processes and channels accordingly. Instead, we apply the

unfold and planecut operations on the intermediate PDG that does not yet contain

dependence information in the PNGEN tool flow [Zwi12]. Different from the ap-
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PDG

+dep
PDGC pn2adg PPNpnc2pdg

trans

Figure 5.4: Application of splitting transformations in the PNGEN tool flow of Fig-

ure 2.9.

proach of Stefanov et al. [SKD02] that operates on the sequential code, we operate

directly on polytopes. This is depicted by the trans block in Figure 5.4. Thus,

we effectively apply transformations on an intermediate representation of the input

program. The advantage of this approach is that the transformation only needs to

operate on the process being split and its partitions. Adjacent processes and channels

that result from the transformation are updated naturally by the PN tool, without any

additional development effort needed for the trans block or the PN tool.

5.1.2 Merging

The splitting transformations discussed above increase the number of processes in

a PPN. Assuming a separate processing resource is instantiated for each process,

splitting transformations increase resource costs of PPN implementations. Comple-

mentary to splitting, the merging transformation combines processes into a single

process, thereby decreasing resource costs.

Definition 5.5 (Process Merging Transformation).

Application of a merging transformation on a set of PPN processes P results in a new

compound process pc which executes all firings originally executed by the processes

in P . The original processes in P are removed from the PPN.

The domain cardinalities of the different processes in P are not necessarily equal.

Thus, some processes in P should fire more often than others. Moreover, data depen-

dence relations may exist between processes in P . The firings of these processes in

the compound process should be scheduled such that these data dependence relations

are not violated. We use the schedule computed by PNGEN to schedule the firings

of the merged processes in the compound process, because this schedule includes all

firings of all processes and respects data dependence relations. We refer to the work

of Stefanov for further details on the merging transformation [Ste04, Chapter 3.6].

The merging transformation has been implemented in the ESPAM tool, where it can

be applied by assigning multiple processes to the same processing resource in the
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mapping specification. However, ESPAM only supports merging for programmable

processing resources such as MicroBlaze processors. Merging LAURA processors

is not supported in the current version of ESPAM. A workaround is possible if the

compound process domain can be expressed as a convex polyhedral set. In such a

case, the merged processes should be replaced by a compound process at the source

code level. This form of merging is applied in Chapter 6.

5.1.3 Stream Multiplexing

For acyclic PPNs, the splitting transformations discussed above enable a designer to

increase the throughput of a PPN. However, these splitting transformations may not

yield any throughput increase for PPNs containing one or more cycles. This happens

when the processes involved in a cycle depend on the output of a previous firing of

its predecessor process, also known as a recurrence or feedback. As a result, the

processes in a cycle may fire entirely sequentially, thereby preventing overlapped ex-

ecution among the processes. Since the processes spend most of their time waiting

for data in a blocking read state, their processing resources are idle for a considerable

amount of time. A common solution to make use of these idle times is to process

independent data streams. This can be done using a stream multiplexing transforma-

tion:

Definition 5.6 (Stream Multiplexing Transformation).

Applying a stream multiplexing transformation with a factor N to a process p extends

process domain Dp with an innermost dimension containing N points. For each value

of N , process p operates on data that is not accessed for other values of N . This

transformation is applied on all processes involved in a cycle of a PPN.

A stream multiplexing transformation neither increases nor decreases the latency or

throughput of a single execution of the PPN. Only when multiple executions of the

PPN are considered, the average period at which PPN executions finish is decreased,

yielding an increase in throughput.

The stream multiplexing transformation resembles the software pipelining tech-

nique for programmable processors in which instructions from subsequent iterations

of a loop are executed in an overlapping fashion [PD76, Lam88]. However, software

pipelining works at the level of individual instructions, whereas our stream multiplex-

ing transformation works at the level of coarser-grained tasks. Another difference

is that software pipelining operates on the iterations of a given loop, whereas the

stream multiplexing transformation introduces a new loop. Generation of a software

pipelined loop for a programmable processor requires a sophisticated scheduling al-

gorithm such as modulo scheduling. In contrast, applying the stream multiplexing
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1 src(&v);

2 for (i = 0; i < 3; i++) {

3 P1(v, &v);

4 P2(v, &v);

5 P3(v, &v);

6 }

Figure 5.5: Sequential C code resulting in a PPN containing a feedback loop.

transformation on a PPN does not require any scheduling algorithm because of the

self-scheduling semantics of the PPN model.

A technique closely related to stream multiplexing is C-slowing The C-slowing

technique is often used in conjunction with register retiming to improve through-

put of synchronous digital circuits [LRS93]. C-slowing replaces each register in a

circuit with a sequence of C registers, such that C independent data streams can be

in processed in an overlapped fashion. Retiming then tries to balance combinational

path lengths by moving these registers through the combinational logic. As a result,

the clock frequency and throughput may increase, at the expense of a higher latency

caused by the additional registers. The C-slowing technique is closely related to the

stream multiplexing transformation, as both add independent streams to overcome

feedback in a design. However, the main purpose of C-slowing is to increase the

clock frequency of a circuit, whereas the main purpose of stream multiplexing is to

increase throughput of multiple executions of a PPN.

Zissules et al. conducted a case study on a QR decomposition algorithm for which

they increased the number of independent streams [ZKD04]. This was done in an ad-

hoc fashion, whereas our stream multiplexing provides a more systematic approach

to accomplish the same goal.

Example

In Figure 5.5, we show a C program for which the corresponding PPN, shown in

Figure 5.7a, contains a feedback loop involving P1, P2, and P3. In each execution of

the PPN, processes P1, P2, and P3 fire in sequence three times. Because each firing

of these processes requires the output of the previous process through variable v, no

overlapped execution occurs. This is depicted in Figure 5.8a.

In Figure 5.8b, we depict the firings of P1, P2, and P3 after applying stream mul-

tiplexing with a second independent data set. That is, process P1 starts operating on

the first data “set” v1 at time t = 0, and process P1 starts operating on the second

data set v2 at time t = 2. As a result, two executions of the PPN complete in only
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1 for (t = 0; t < F; t++)

2 src(&v[t]);

3 for (i = 0; i < 3; i++) {

4 for (t = 0; t < F; t++)

5 P1(v[t], &v[t]);

6 for (t = 0; t < F; t++)

7 P2(v[t], &v[t]);

8 for (t = 0; t < F; t++)

9 P3(v[t], &v[t]);

10 }

Figure 5.6: Applying stream multiplexing by a factor F to the program of Figure 5.5.

P1 P2 P3

a) Original PPN. b) Corresponding PPN modeling graph.

src P1 P2 P3src

Figure 5.7: PPN and PPN modeling graph derived from the C code in Figure 5.5.

slightly more time than needed for a single execution of the PPN. In Figure 5.6, we

show the equivalent C program implementing a stream multiplexing transformation

by a factor F. The transformation consists of applying a scalar expansion on all vari-

ables and adding a loop of F iterations. The scalar expanded variables are indexed

using the iterator of the newly added loop.

After applying a stream multiplexing transformation of a factor two, each process

is still idle for one third of the time, as shown by the gaps between the filled boxes

in Figure 5.8b. This means applying a stream multiplexing transformation of a factor

three would still not increase the latency of a single execution of the PPN but increase

throughput of multiple executions. After stream multiplexing by a factor three, no

processes are idle, which means three is the maximum stream multiplexing factor that

does not increase latency for the given PPN. A stream multiplexing factor of four or

higher would increase the latency of a single execution, because at time t = 6 process

P1 would start processing the fourth data set v4, while output from P3 belonging to

the first data set is also available for processing by P1. In such a case, the splitting

transformations can be considered to further increase throughput, because the cycle

no longer limits throughput.
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a) Without stream multiplexing. b) With stream multiplexing by a factor 2.

0 5 10 15
t

P1
P2
P3

0 5 10 15
t

v v1 v2

Figure 5.8: Flat execution profiles for the C code of Figure 5.5 and Figure 5.6.

5.1.4 Scheduling

In the previous chapters, we have assumed that each process in a PPN traverses its

process iteration domain in the lexicographical order. Depending on the presence

of data dependence relations between iterations, alternative execution orders of the

points in the process iteration domain may exist that preserve all data dependence

relations. Some of these alternative execution orders may yield a higher throughput

when the iterations are executed in a pipeline fashion on for example a LAURA pro-

cessor, which we show in an example below. We change the order in which the points

of a process iteration domain are executed by applying a scheduling transformation.

Definition 5.7 (Process Scheduling).

A process scheduling transformation on a process p, specified as schedule(p), mod-

ifies the execution order of iterations such that independent iterations are grouped

together and executed in sequence.

We distinguish between two types of schedules in a PPN: local schedules and global

schedules. A local schedule defines the execution order of different iterations of

an individual process. A global schedule defines the firing order of the different

processes in a PPN. The scheduling transformation solely affects the local schedules

of processes.

Motivating Example

We illustrate the process scheduling transformation using the PPN shown in Fig-

ure 5.2a, which was derived from the C code shown in Figure 5.1. Data dependences

require that iteration (0, 0) executes before iterations (0, 1) and (1, 0). Similarly,

(0, 1) should execute before (0, 2).
When executing the iterations according to the original lexicographical order, we

do not achieve the highest degree of overlapped execution. When implementing F

using a P -stage pipeline and following the lexicographical order, execution of the

first four iterations takes 3P + 1 clock cycles, as depicted in Figure 5.9. However,
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Time (clock cycles)

(0, 0)A

(0, 1)B

(1, 0)D

(0, 2)C

(0, 0)A

(0, 1)B

(0, 2)C

(1, 0)D

3P

3P+1

P

Original

schedule:

New

schedule:

Figure 5.9: Pipeline behavior for two different schedules of the PPN shown in Fig-

ure 5.2a.

if we execute the first four iterations in the order (0, 0), (0, 1), (1, 0), (0, 2), we

still respect data dependences but execution takes only 3P cycles. Although in this

simplified scenario the gain is only one clock cycle, we have observed that changing

the iteration execution order may increase throughput up to 2.7× for applications

such as QR decomposition [HK12].

Previous works have found that applying a skewing transformation to source code

and then converting the transformed source code to a PPN may increase throughput

of the PPN [SKD02, ZKD04, HK09]. A skewing transformation on the appropriate

loop results in the same throughput increase for our motivating example. Thus, skew-

ing is an effective way to increase overlapped execution, and consequently, improve

pipeline utilization. However, identifying the skewing transformation parameters,

such as the loop to skew, requires thorough studying of the application. Therefore,

we present an automated approach to find an alternative execution order of process

iterations that yields better pipeline utilization.

Scheduling PPN Processes

When applying a scheduling transformation, we use affine schedules to compactly

define an execution order on the points of a process iteration domain:
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Definition 5.8 (Affine Schedule).

An affine schedule is a polyhedral map that assigns a positive time stamp to each

point i of a process iteration domain. In this chapter, we denote an s-dimensional

affine schedule as 1

θ =
{

i → i′ | i′ = H · i + h
}

,

where i is an n-dimensional iteration vector, i′ is an s-dimensional time stamp vector,

H is an n × s matrix, and h is a vector of size s.

For a given iteration i ∈ Dp, computing θ(i) yields a time stamp at which iteration i

can execute. These time stamps should not be interpreted as absolute time, but rather

as a partial order on the iterations in Dp. We assume that execution of an iteration

takes one time unit and that sufficient processing resources are available to execute

all iterations with the same time stamp simultaneously. Two affine schedules θp and

θq for two dependent processes p and q are valid if for all pairs of dependent write

and read operations (w, r), the schedules enforce that the write operation is executed

before the read operation. That is, when a write operation w of p produces data for

a read operation r of q, then θp(w) ≺ θq(r) should hold. In the remainder of this

chapter, we only consider valid schedules.

As an example, consider the affine schedule

θ = {(i, j) → i + j}. (5.1)

For iteration (1, 2), the schedule yields 3 which means the iteration can execute at

time 3. For iteration (2, 1), the schedule also yields 3. This means that both itera-

tions can execute at the same time and, assuming that the schedule is valid, that both

iterations can execute in parallel.

If a schedule is multidimensional, that is, s > 1, then execution times are ordered

according to the lexicographical order. For example, a schedule

θ = {(i, j) → (i + j, j)} (5.2)

yields θ(1, 2) = (3, 2) and θ(2, 1) = (3, 1). Because (3, 1) ≺ (3, 2), iteration (2, 1)
should execute before iteration (1, 2).

A PPN process traverses its process domain in a sequential fashion according to the

lexicographical order, which is a total order. That is, for any two iterations i1 and i2,

the lexicographical order defines which iteration is executed first. To comply with the

1In literature, e.g., [Fea92a], an affine schedule is often denoted alternatively as

θ(i) = H · i + h,

where i, H , and h follow those of Definition 5.8.
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PPN process semantics, we should consider only those affine schedules that define a

total order on the iterations of a process domain. The one-dimensional schedule of

Equation (5.1) yields the same time stamp for different iterations, which implies it

does not define a total order. Extending this schedule to the two-dimensional schedule

of Equation (5.2) results in a schedule that yields a unique time stamp for each possi-

ble pair of positive values (i, j). This property allows us to use the two-dimensional

schedule of Equation (5.2) in a process scheduling transformation. A schedule is said

to be bijective if it assigns a unique time stamp to each distinct iteration vector.

To apply a scheduling transformation on a process p, we modify the process domain

Dp to reflect the order given by an affine schedule θp. That is, we transform the

process domain Dp into a new domain D′
p. For bijective schedules, each point in

Dp has exactly one corresponding point in D′
p. The new domain D′

p is obtained by

polyhedral map application of the schedule to the process domain:

D′
p = θp(Dp). (5.3)

The resulting domain D′
p is again traversed according to the lexicographical order.

Example Application of a Schedule

We illustrate application of a schedule using the PPN shown in Figure 5.2a. We apply

a new schedule on process F of this PPN. The domain of this process is extracted from

the for-loops in the sequential code of Figure 5.1 as

DF =

{

(i, j) ∈ Z2

∣

∣

∣

∣

∣

0 ≤ i ≤ 3 ∧

0 ≤ j ≤ 2

}

.

By applying the two-dimensional schedule of Equation (5.2), we obtain a new domain

D′

F
=

{

(i′, j′) ∈ Z2

∣

∣

∣

∣

∣

j′ ≤ i′ ≤ j′ + 3 ∧

0 ≤ j′ ≤ 2

}

.

In Figure 5.10, we show the original and the transformed process domains. Both

domains have the same cardinality because each point shown in Figure 5.10a has

a counterpart in Figure 5.10b that can be obtained by applying the schedule to the

point. To indicate the correspondence between points in the original and transformed

domains, we have labeled seven points with a letter. For example, the counterpart of

point (1, 1) labeled ‘E’ is (2, 1). The same labels are used in Figure 5.9. Traversal

of the original domain according to the lexicographical order results in the execution

order A, B, C, D, . . . . Traversal of the transformed domain according to the lexico-

graphical order results in the execution order A, D, B, . . . , C, . . . . This corresponds
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a) Original. b) After scheduling.
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Figure 5.10: Process domains of F of Figure 5.2a before and after application of

the schedule in Equation (5.2). A data dependence from one iteration point of F to

another is indicated by an arrow.

to the new schedule depicted in the bottom part of Figure 5.9 in which ‘D’ is moved

forwards to execute in a pipeline fashion with ‘B’. Thus, by applying the schedule of

Equation (5.2), we achieve the desired overlapped execution. Below, we discuss how

to obtain a schedule for a given PPN.

Determining a Schedule

The chosen schedule affects the degree of overlapped execution between process it-

erations that is achievable by a scheduling transformation. Finding a schedule that

maximizes overlapped execution is a non-trivial optimization problem. A natural

way to overlap execution of process iterations is to perform loop parallelization. This

is a well-studied field in compiler technology, in which various loop parallelization

algorithms have been proposed. Existing algorithms differ in the way they repre-

sent the data dependence relations of nested loop programs. For example, Allen and

Kennedy’s algorithm [AK87], Wolf and Lam’s algorithm [WL91], and Darte and

Vivien’s algorithm [DV97] take as input an approximation of the dependence graph.

Such an approximation restricts the ability of the algorithms to reveal all available

parallelism [DRV01]. On the other hand, Feautrier’s algorithm [Fea92a, Fea92b]

takes the exact dependence graph as input and is therefore more powerful than the

other algorithms. Also, Feautrier’s algorithm will find the optimal schedule if it can

be expressed as an affine mapping of the iteration space. Lim and Lam’s algorithm

takes a similar input representation as Feautrier’s algorithm, but maximizes paral-

lelism while minimizing the number of synchronizations [LL98].

Feautrier’s algorithm is employed by e.g. the MMAlpha tool [GQR03] to gener-

ate hardware from algorithms specified in the Alpha language. Feautrier’s algorithm

has a high computational complexity, which motivated Feautrier to apply the algo-
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rithm to sets of communicating regular processes [Fea06]. Unfortunately, Feautrier

does not elaborate on the implications of the new schedule for the communication

channels between processes. Later in this section, we show that these implications

cannot always be ignored. Another way to address the computational complexity of

Feautrier’s algorithm and control flow overhead of the resulting schedules is by lim-

iting the possible schedule coefficients [PBCC08]. This results in simpler schedules,

at the expense of more scheduling dimensions, which may counteract the benefits of

simpler schedules.

Applying Feautrier’s Scheduling Algorithm to PPNs

Feautrier’s multidimensional scheduling algorithm takes as input a Generalized De-

pendence Graph (GDG) represented as G = (V, E,D,R), where

• V is a set of vertexes representing statements,

• E is a set of edges representing data dependences,

• D is a set containing a polyhedral set for each vertex, and

• R is a set containing a polyhedral map for each edge.

Given a GDG, the algorithm constructs a multidimensional schedule for each state-

ment in a greedy fashion. In each step, the algorithm constructs a linear program

to find an affine function with minimum latency that satisfies as many dependence

relations as possible. The dependences that are not satisfied are considered in a sub-

sequent recursive step. Each recursive step leads to a new dimension in the schedule

being constructed. The algorithm terminates when all dependences are satisfied, or

when no affine schedule can be found.

We are interested in Feautrier’s algorithm for two reasons. First, Feautrier’s algo-

rithm finds the optimal schedule if it can be expressed in the affine form of Defini-

tion 5.8. That is, no other affine schedule exists that yields a lower execution latency.

This implies that Feautrier’s algorithm includes all transformations that can be ex-

pressed using an affine mapping of an iteration domain, such as loop interchange

or loop skewing [Fea92b, Viv02]. Second, we do not have to perform any addi-

tional analysis to run Feautrier’s algorithm on a PPN because all input needed for

Feautrier’s algorithm is already made available by the exact data dependence analy-

sis step of PNGEN.

To apply Feautrier’s scheduling algorithm to a PPN, we relate statements to pro-

cesses and dependences to channels. That is, for each process p, we add a vertex

representing p to V and we add the process domain Dp to D. For each channel c, we

add an edge representing e to E and we add the channel relation Mc to R. Feautrier’s

algorithm computes an affine schedule for each vertex. We apply the schedule of
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each vertex to the corresponding process domain according to Equation (5.3). As a

result, all processes of a PPN execute their iterations in the optimal order found by

Feautrier’s algorithm, potentially increasing overlapped execution.

Extension to a Bijective Schedule

The schedule returned by Feautrier’s algorithm is not necessarily a bijective schedule.

In fact, the schedule is only bijective if no overlap between any pair of iterations

is possible, which occurs only if an application is entirely sequential. When two

iterations may execute in parallel, then the schedule yields the same time stamp for

both iterations. To comply with the PPN process semantics, we should extend the

schedule with one or more dimensions such that for each iteration the schedule yields

a unique time stamp.

We use the default algorithm of isl [Ver08] to extend the schedule found by Feau-

trier’s algorithm to a bijective schedule. This default algorithm minimizes the depen-

dence distance over the dependences, using an approach similar to Pluto’s [BBK+08].

For our running example schedule of Equation (5.1), extending the schedule using

isl gives the schedule of Equation (5.2) in which a second dimension containing j
has been added.

Impact of Scheduling

The schedule computed by Feautrier’s algorithm does not necessarily enforce in-

order communication of data between processes. Thus, after applying the schedule,

the order in which tokens are produced by the producer process may be different from

the order in which tokens are consumed by the consumer process, and vice versa.

This requires us to perform a reordering test [TKD07] on each channel after apply-

ing a scheduling transformation. Some channels may be classified as out-of-order

after scheduling, and thus these should be implemented using a reordering buffer to

preserve the functional behavior of the original application.

Existing reordering buffer designs were shown to have a considerable negative im-

pact on both performance and resource usage [TKD03]. To avoid counteracting the

performance benefits of a better schedule because of possible reordering communi-

cation, we use the reordering buffer that was presented in Section 3.6. Read and write

operations on this reordering buffer take only one clock cycle. This means that re-

placing a FIFO buffer with a reordering buffer increases resource usage, but does not

introduce additional delay cycles. As a result, we avoid counteracting the benefits of

a better schedule.
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1 for (i=0; i<=5; i++) {

2 for (j=max(0,i-3); j<=min(2,i); j++) {

3 F(x[i], y[j], &x[i], &y[j]);

4 }

5 }

Figure 5.11: Code to traverse the transformed iteration space of Figure 5.10b in the

lexicographical order.

Another consequence of the scheduling transformation is the complexity of the eval-

uation logic blocks of a LAURA processor. The complexity of iterating through a

rescheduled domain typically increases. To illustrate this using our running example,

we show the code which iterates over the rescheduled process domain in the right

part of Figure 5.11. This code is more complicated than the code iterating over the

original process domain, because loop bounds of the j-loop are now max and min ex-

pressions involving i. This increases the combinational path lengths in the RTL for

the evaluation logic blocks of the read and write units shown in Figure 2.12, affecting

both resource usage and the maximum achievable clock frequency. From experi-

ments, we found that control overhead induced by a scheduling transformation may

reduce the clock frequency by 50%, potentially negating the benefits of increased

overlapped execution. To avoid that control overhead counteracts the benefits of a

better schedule, a designer may for example choose to consider the evaluation logic

optimization techniques described in Section 3.5.2.

5.2 Transformation Efficacy Analysis

In the previous section, we have discussed four different transformations that can be

applied on a PPN. Many combinations of these transformations are possible to obtain

design points that provide different tradeoffs between circuit area and performance.

Deciding which transformations to apply to obtain a particular design point is not

trivial. In this section, we present how the results of PPN throughput analysis can be

applied to assess the efficacy of transformations. That is, for the transformations that

we consider, we discuss the conditions when a particular transformation should be

applied to obtain a particular change on PPN throughput.

5.2.1 Splitting

Throughput of a PPN can often be increased by applying one of the splitting trans-

formations discussed in Section 5.1.1 on a process. To apply a splitting transforma-
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Figure 5.12: Statement execution profile for function F of the program shown in

Figure 5.1. Empty cells represent zero.

tion, the designer should select a splitting method such as modulo unfolding or plane

cutting, and the splitting factor. Selection of the splitting method was discussed ex-

tensively by Meijer et al. [MNS09]. However, Meijer’s algorithm still requires the

designer to specify a splitting factor. We therefore present heuristics to find a splitting

factor in this section.

An obvious upper bound on the splitting factor of a process is the cardinality of the

process domain. If the splitting factor for a process is chosen higher than the domain

cardinality, then some partitions resulting from the splitting transformation contain

zero iterations, meaning that a lower splitting factor would suffice as well.

Maximum Iteration Overlap

Another upper bound on the splitting factor of a process is the maximum iteration

overlap. We define iteration overlap as the number of process iterations that can

execute simultaneously at a given time, assuming a sufficient number of processing

resources is available. The maximum iteration overlap thus represents the maximum

number of process iterations that can execute simultaneously during the entire exe-

cution of the PPN. We propose two different methods to obtain this upper bound: by

profiling or by analytical means.

Profiling-based Determination of Maximum Iteration Overlap

For the profiling-based method we employ cprof to obtain the maximum iteration

overlap. We profile the sequential application code on a hypothetical ideal machine

with an infinite number of processing resources as described in Section 4.6.3. We

can extract the iteration overlap at a given time t from the statement execution profile

of a process using Equation (4.6). By ranging t between the process start and finish

times we obtain the maximum iteration overlap.

In Figure 5.12, we show an execution profile obtained using cprof for function F of

the program shown in Figure 5.1. The first iteration (0, 0) of the process derived from
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the function call to F starts at time 2. Since F takes two input arguments, two read

operations are executed which execute in parallel on the ideal machine. At time 3, the

function executes and at time 4, the two output arguments are written. Considering

the entire execution profile E$F in the range [2, 20), at most three iterations of F exe-

cute in parallel. Thus, the maximum iteration overlap for the program of Figure 5.1

equals three.

Analytical Determination of Maximum Iteration Overlap

For the analytical method we employ Feautrier’s multi-dimensional scheduling al-

gorithm. Recall from Section 5.1.4 that for each process iteration i, we can use

Feautrier’s algorithm to compute the earliest timestamp t = θp(i) at which i can ex-

ecute. This earliest timestamp is solely determined by the data dependences of the

application. Feautrier’s algorithm assumes no processing resource contention occurs,

resembling an ideal machine. For iterations that execute in parallel, the schedule

yields the same timestamp. To find out the maximum iteration overlap for a given

schedule, we compute the maximum number of iterations executing at the same time-

stamp.

The iterations executing in parallel at a given timestamp t are given by the inverse

of the schedule

θ−1
p (t), where t is in the range of θp(i),∀i ∈ Dp.

That is, we only consider timestamps t at which one or more points in the domain

execute. A piecewise quasipolynomial that gives the number of iterations executing

in parallel at a time t can be found by computing the cardinality using the barvinok

library. The upper bound on this piecewise quasipolynomial represents the maximum

number of iterations executing in parallel, and is given by

max
∣

∣

∣θ−1
p (t)

∣

∣

∣ . (5.4)

This upper bound can be found using the barvinok library.

We illustrate the analytical method using the schedule of Equation (5.1) for the

function call to F of the program shown in Figure 5.1. The iterations executing at a

timestamp t are given by the inverse polyhedral map

θ−1(t) = {t → (i, t − i) | 0 ≤ i ≤ 3 ∧ i ≤ t ≤ i + 2},

which can be obtained using isl. For example, computing θ−1(1) tells us that itera-

tions (0, 1) and (1, 0) can execute in parallel at t = 1. This can be verified by looking

at Figure 5.10a: iterations B and D only depend on A, since B and D only have an

incoming arrow from A. Thus, once A has been executed, both B and D can execute.
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The number of iterations that can execute at a given time t is given by the piecewise

quasipolynomial

|θ−1(t)| =















t + 1 if 0 ≤ t ≤ 2,

6 − t if 3 ≤ t ≤ 5,

0 otherwise.

The upper bound of this piecewise quasipolynomial equals 3, implying that at most

three iterations can execute in parallel in the program of Figure 5.1. This is in agree-

ment with the value found by means of profiling-based determination of maximum

iteration overlap: at most three iterations execute simultaneously, as shown by profile

E$F in Figure 5.12.

Average Iteration Overlap

Using both the profiling-based and analytical approaches discussed above, we found

that at most three iterations execute in parallel in the program of Figure 5.1. Thus, an

upper bound on the splitting factor is three. However, only during two out of six oc-

casions, three iterations actually execute in parallel, and in four out of six occasions,

a third processor would be idle.

Using the maximum iteration overlap as a splitting factor then results in a system

in which some processors are used only during these few points in time. This may

result in a high area overhead while a slightly lower throughput could be achieved

with significantly less processors. Therefore, the average number of process iter-

ations executing simultaneously may provide a better tradeoff between throughput

and resource cost, as proposed by Eager et al. [EZL89]. We propose two different

methods to obtain the average iteration overlap: by profiling or by analytical means.

Profiling-based Determination of Average Iteration Overlap

To determine the average iteration overlap by profiling, we again leverage cprof’s

application analysis method presented in Section 4.6.3. We extract the average itera-

tion overlap from the statement execution profile of a process by dividing the process

domain cardinality by the number of non-zero entries in E$.

Using Figure 5.12, we find the average iteration overlap for function F in the pro-

gram of Figure 5.1. The process domain of F consists of twelve points. The execu-

tion profile E$F consists of six non-zero entries. Thus, the average iteration overlap

is 12
6 = 2.
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Analytical Determination of Average Iteration Overlap

To determine the average iteration overlap analytically, we again leverage Feautrier’s

algorithm. Instead of computing the maximum number of iterations using Equa-

tion (5.4), we compute

∑

t∈Θp

∣

∣

∣θ−1
p (t)

∣

∣

∣

|Θp|
, where Θp = {θp(i) | i ∈ Dp} . (5.5)

That is, we evaluate the piecewise quasipolynomial at every timestamp and sum these

evaluations, which can be done using the barvinok library [Ver03a]. We then divide

by the total number of timestamps to obtain the number of iterations executing in

parallel on average.

For function F in the program of Figure 5.1, Equation (5.5) evaluates to

1 + 2 + 3 + 3 + 2 + 1

6
= 2.

Thus, the average iteration overlap is two.

Depending on design constraints, different upper bounds on the process splitting

factor may be considered. If maximum performance is required regardless of re-

source cost, then the maximum iteration overlap should be used as an upper bound.

If a less expensive solution is required, then the average iteration overlap provides an

upper bound that provides a good balance between resource cost and performance,

as shown by Eager et al. [EZL89].

5.2.2 Merging

Meijer et al. investigated applying the merging transformation on programmable pro-

cessors such as the MicroBlaze [MNS10]. In this section, we investigate application

of the merging transformation on LAURA processors. In the general case of LAURA

processor merging, resource cost savings are limited, because the IP cores imple-

menting each process’ functionality should still be provided. These IP cores often

account for the greater part of the LAURA processor cost. However, when LAURA

processors execute the same function, then a merging transformation can reduce re-

source cost by resource-sharing the IP core among the processes in the compound

process.

The processes merged onto the same LAURA processor compete for the same IP

core of the LAURA processor. This may cause a decrease in throughput if at least one

of these processes is in the critical path. Therefore, two LAURA processors should

only be merged if they do not execute at the same time. This can be determined by
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inspecting statement execution profiles obtained from cprof. For example, assume

the arrays E$1_0, E$1_1, and E$1_2 in Figure 4.14 represent the execution profiles

of three separate LAURA processors. That is, these arrays indicate when the IP core

of the LAURA processor is active during the execute stage of a process iteration. At

most one of the three E$-arrays contains a one at any time, meaning that at most one

of the three LAURA processors is active at any time. Therefore, we conclude that

merging these three LAURA processors into a single LAURA processor would not

affect throughput.

5.2.3 Stream Multiplexing

The stream multiplexing transformation aims to increase throughput of multiple exe-

cutions of a PPN containing a feedback loop. A stream multiplexing transformation

can still be beneficial when the cycle mean of the feedback loop cannot be decreased

by other transformations of processes in the feedback loop, such as for example a

splitting transformation, or by replacement of a programmable processor with a dedi-

cated hardware IP core. We first identify two conditions when a stream multiplexing

transformation can be beneficial. We then discuss how to determine the maximum

stream multiplexing factor such that the latency of a single PPN execution is not

increased.

Efficacy Conditions

A first condition is that a complete execution of the PPN is independent of the previ-

ous execution of the PPN, to enable interleaving of multiple executions. This is often

the case for the streaming applications that we consider, as the PPN often works on

discrete and independent units of the incoming data stream such as video frames.

A second condition is that the PPN should have a feedback loop that limits through-

put of a single execution of a PPN. Such a feedback loop can be detected using the

MCM analysis technique presented in Section 4.5. Computing the cycle means of a

PPN reveals which parts of a PPN prevent meeting a target throughput τ . The cycle

means that are greater than T = 1
τ

represent parts of the PPN that prevent meeting

throughput τ . The cycle means are the result from three different classes of cycles

that occur in the PPN modeling graph:

1. cycles involving only one process;

2. cycles resulting from feedforward edges; and

3. cycles resulting from feedback edges.

These three cycle classes stem from the three channel classes identified for the con-

struction of edges in the PPN modeling graph that is discussed in Section 4.5.3.
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Cycle Cycle mean Class Feedback loop?

src → src 3 first no

P1 → P1 9 first no

P2 → P2 18 first no

P3 → P3 24 first no

src → P1 → src 6 second no

P1 → P2 → P3 → P1 51 third yes

Table 5.1: Cycles in the PPN modeling graph for a PPN derived from Figure 5.5.

Cycles of the first class always originate from the selfloop added to the PPN mod-

eling graph to eliminate auto-concurrency of a process. If the corresponding cycle

mean is greater than T , then a period of T time units cannot be achieved due to

sequential execution of all process iterations on a single processing resource. A limi-

tation of the MCM analysis technique is that pipelined execution of multiple process

iterations cannot be captured, because the MCM analysis technique does not incor-

porate the II value of a process. The actual execution time of a process may be lower

than reported by the MCM technique if II < Λ such that pipelined execution of pro-

cess iterations is possible. The actual execution time of a pipelined process depends

on the presence of selfloops in the original PPN. Such selfloops represent a feedback

loop in which an iteration depends on the output of a previous iteration. We therefore

consider a cycle of the first class as a feedback loop if the original PPN contains a

selfloop for the process in the cycle.

Cycles of the second class originate from the backedges added to model finite buffer

sizes. If the corresponding cycle mean is greater than T then the cycle represents

a buffer whose size is too small to sustain period T . These cycle means can be

prevented from being the maximum cycle mean by enlarging buffer sizes such that

they do not affect performance. In Section 4.5.3, we have described how initial tokens

on backedges can be chosen such that cycles of this second class never have the

maximum cycle mean. We therefore ignore cycles of the second class when analyzing

the PPN for feedback loops.

Cycles of the third class originate from cycles present in the original PPN. If the

corresponding cycle mean is greater than T then the cycle represents a bottleneck

inherent in the application. We therefore always consider a cycle of the third class as

a feedback loop.

As an example, we consider the PPN shown in Figure 5.7a. The PPN modeling

graph constructed from this PPN is shown in Figure 5.7b. The cycles in the PPN
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Figure 5.13: Flat execution profiles for the code of Figure 5.5.

modeling graph are listed in Table 5.1. All four cycles of the first class are not con-

sidered as a feedback loop, because the original PPN does not contain a selfloop for

any of the processes in these cycles. As discussed above, cycles of the second class

are never considered as a feedback loop. The PPN modeling graph contains one cycle

of the third class, which is considered a feedback loop. We therefore conclude that

a stream multiplexing might be beneficial and proceed to determine the maximum

stream multiplexing factor.

Maximum Stream Multiplexing Factor

The maximum stream multiplexing factor is the maximum number of PPN executions

that can be interleaved without increasing the latency of a single PPN execution. We

illustrate how the maximum factor can be found using the flat execution profiles

shown in Figure 5.13. These flat execution profiles are obtained by profiling the code

of Figure 5.5 using cprof with the II and Λ values for each process shown in the

left part of Figure 5.13. The factor is determined by the depth of the feedback loop

and the II of the process functions involved in the feedback loop. We represent a

feedback loop as a set of PPN channels C ⊆ E .

The depth of a feedback loop C is the number of clock cycles since the start of

the first process in the feedback loop until the next firing of the first process in the

feedback loop. The feedback loop depth can be determined from the flat execution

profiles obtained using cprof. For the flat execution profiles shown in Figure 5.13,

we find that the feedback loop depth is 17 clock cycles. Alternatively, the feedback

loop depth can be determined by analysis of the PPN. The dependence distance of

a channel (a → b) represents the distance between process a and b as an iteration

count. We use the channel size as a scalar approximation of the dependence distance,

as motivated in Section 4.5.3. The sum of the dependence distances of the channels

in the feedback loop gives the feedback loop depth expressed as an iteration count.

To obtain the feedback loop depth depth(C) expressed in terms of clock cycles, we

multiply the size of each channel c ∈ C with the latency of the process that writes to
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c:

depth(C) =
∑

c∈C

Sc · Λσ(c),

with Sc being the size of channel c.

After determining the feedback loop depth, we compute the number of PPN execu-

tions that can be interleaved by dividing the feedback loop depth by the maximum

II of all processes in the feedback loop. For the example of Figure 5.13, the max-

imum II of all processes is two because of process P3. Dividing the maximum

feedback loop depth by the maximum II gives the number of independent executions

of the feedback loop that can be interleaved. For the example of Figure 5.13, divid-

ing 17 by 2 gives 8.5, which we round down to eight complete executions. Thus, a

stream multiplexing transformation with a factor of eight can be applied to increase

the throughput of multiple executions of the PPN, without increasing the latency of a

single execution of the PPN.

5.2.4 Scheduling

Processes containing deeply pipelined IP cores may suffer from pipeline underutiliza-

tion which limits throughput. Such underutilization is caused by a data dependency

of the current iteration on a previous iteration that is still in the pipeline. Using the

scheduling transformation presented in Section 5.1.4, the distance between dependent

iterations can be altered, such that a higher throughput may be obtained. However,

a scheduling transformation only increases throughput under certain circumstances,

while it increases the control overhead of a LAURA processor in many cases. We

therefore identify the following four criteria to assess the efficacy of a scheduling

transformation on a process.

1. The purpose of a scheduling transformation is to increase pipeline utilization.

Thus, the processor onto which a process is mapped should allow pipelined

execution of process iterations. In terms of our implementation model of Defi-

nition 3.1, this means that II < Λ.

2. The process should have sufficient “room” for overlapped execution. Applying

a scheduling transformation to a process which inherently executes its itera-

tions in a fully sequential fashion will not improve performance.

3. The process should exhibit significant idling because of data dependences,

causing the pipeline to be underutilized. Applying a scheduling transforma-

tion to a process that already yields full pipeline utilization will not improve

performance.

4. The control overhead resulting from the new schedule should not cancel out
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the performance gain of the new schedule.

Criterium 1 implies that the scheduling transformation is only effective for pro-

cesses mapped onto LAURA processors. Overlapped, pipelined execution of process

iterations is not possible on the programmable processors supported by ESPAM, such

as the MicroBlaze, because their single-threaded instruction pipeline is too short to

allow overlapped execution of process iterations.

Criterium 2 requires analysis of the application. The maximum iteration overlap

that was introduced in Section 5.2.1 gives an upper bound on the number of iterations

that can execute in an overlapped fashion. A maximum iteration overlap of one means

that none of the iterations may execute in a partially overlapped fashion because

the application is inherently sequential. In such a case, a scheduling transformation

cannot improve overlapped execution, and thus should not be applied.

Criterium 3 can be evaluated in two ways: by analyzing the application code using

cprof (cf. Section 4.6), or by analyzing a scheduled version of the application code

using cprof. The first method is less accurate than the second, but is easier to perform

because no changes to the application code have to be made.

To get a rough assessment of whether a scheduling transformation improves over-

lapped execution using the first method, we evaluate the original application code

using cprof on both a real machine and an ideal machine. We assume a pipeline

depth of four, that is, ΛF = 4 and II F = 1, meaning that up to four iterations can

be active simultaneously. In Figure 5.14, we show the flat execution profile for the

program of Figure 5.1 on the real and ideal machine. We observe that on the real

machine, only one iteration is active for most of the time. On the ideal machine,

on average two iterations are active. In both cases, the pipeline is underutilized,

because a maximum iteration overlap of four dictated by the pipeline depth is not

achieved. A scheduling transformation increases the average utilization from one to

two simultaneously active iterations. We have verified using RTL simulation that a

scheduling transformation on the program of Figure 5.1 indeed increases overlapped

execution. As another example, consider the flat execution profiles of a 1D Jacobi

kernel [BBK+08] in Figure 5.15. On the real machine, on average 7 iterations are

active simultaneously. On the ideal machine, 29 iterations are active simultaneously.

Although more overlapped execution occurs on the ideal machine, the average itera-

tion overlap of seven on the real machine is already sufficient to keep the five-stage

pipelined IP core of the application fully utilized. We have verified using RTL simu-

lation that a scheduling transformation does not increase overlapped execution of the

Jacobi application.

Alternatively, to get a more accurate assessment of the impact of scheduling on

throughput using the second method, we evaluate a scheduled version of the appli-

cation code using cprof. The scheduled application code can be obtained in a semi-
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Figure 5.14: Flat execution profile for function F of the program shown in Figure 5.1.
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Figure 5.15: Flat execution profile for the Jacobi application.

automated way using for example CLooG [Bas04] or isl [Ver08]. By comparing the

execution time of the original application code with the execution time of the sched-

uled application code, we quantify the effect of a scheduling transformation. For the

example of Figure 5.14, we measure a decrease in execution time of 29%. For the

example of Figure 5.15, we measure an increase in execution time of 56%, which

means the scheduling transformation degrades performance. As a result of the analy-

sis, we chose to apply the scheduling transformation for the example of Figure 5.14,

but not for the example of Figure 5.15.

Criterium 4 is difficult to address at compile time, because the effects of the new

schedule on control overhead are not known until time-consuming low-level synthesis

and place-and-route steps have been performed. To avoid time-consuming synthesis

steps, we use a heuristic to quickly determine if a particular schedule is likely to

result in significant control overhead. A non-unit coefficient in a schedule leads to

“gaps” in the transformed domain. For example, consider the polyhedral map of

Equation (2.1) which has a coefficient of two for j1. By applying this polyhedral

map to the polyhedral set of Figure 2.2b, we obtain the transformed polyhedral set

shown in Figure 2.3. Because of the non-unit coefficient, the transformed polyhedral

set contains gaps in dimension j. To handle such gaps in the LAURA processor,
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a division by the coefficient is required in the evaluation logic blocks. This is not

a problem for coefficients that are a power of two, since division by such values

can easily be implemented in RTL using bit shifts. For coefficients that are not a

power of two, the resulting division may severely limit the maximum achievable

clock frequency. Therefore, when Feautrier’s algorithm computes a schedule with

coefficients that are not a power of two, a scheduling transformation is not likely to

yield higher throughput.

5.3 Conclusion and Summary

We have discussed four PPN transformations in this chapter: process splitting, pro-

cess merging, stream multiplexing, and scheduling. We have presented how each of

these transformations can be applied to a PPN in an automated fashion in the Dae-

dalus tool flow. This enables a designer to quickly obtain functionally equivalent

implementations of the same application that differ in performance and resource cost

aspects.

Deciding when to apply any subset of the discussed transformations to obtain an

implementation meeting a particular performance requirement is a nontrivial task

for a designer. We leverage two techniques introduced in Chapter 4 to guide the

designer in selecting the appropriate transformations and transformation parameters:

the analytical MCM analysis technique and the profiling-based cprof technique. This

enables a designer to systematically obtain an implementation that best matches a

performance constraint.
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