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CHAPTER 4
PERFORMANCE ESTIMATION

In the previous chapter, we have presented methods to realize an FPGA implemen-

tation of a polyhedral process network. Considering a single optimized design point

does not necessarily result in the best tradeoff between area and performance aspects.

Instead, a designer wants to consider different design points that provide different

tradeoffs between for example area and performance aspects. In this chapter, we

present four different methods to estimate the performance of design points specified

as polyhedral process networks, that differ in accuracy and assessment effort.

4.1 Motivation

Looking at Figure 1.2, which shows the iterative design flow, it becomes clear that the

designer gets feedback very late. Only after time-consuming synthesis and place-and-

route steps does the designer get feedback about performance. This limits the number

of design points that a designer can evaluate in a given amount of time. Since he can

evaluate only a limited number of design points, assessing if his design constraints

can be met is difficult and frustrating. Prototyping for example a sobel design consist-

ing of five LAURA processors already takes about twenty minutes [HK09]. Also, the

forward synthesis flow requires that synthesizable RTL for all components is avail-

able, which is often not the case at the early stage of a design process. Instead, the

designer should obtain feedback faster, possibly at the expense of reduced accuracy,

allowing him to avoid a time-consuming forward synthesis step if he knows a design

will not satisfy his constraints. Ideally, a designer wants to know whether a design

meets his constraints before entering the time-consuming forward synthesis step.
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Figure 4.1: Performance assessment at different levels of the Daedalus design flow.

Getting an early performance estimate of a design is not new and has been investi-

gated by for example Meijer et al. [MNS10] and Nikolov [Nik09]. However, these

approaches only focus on microprocessor based systems. These approaches are not

able to capture the notion of overlap between different iterations of a process and

cannot handle cyclic PPNs, rendering them unsuitable for our design flow. There-

fore, we investigate in this chapter four different techniques to provide the desired

performance estimate.

From the Daedalus design flow, we distill four different levels, as shown in Fig-

ure 4.1. For each level, we investigate how to obtain a performance estimate. At the

first level, the designer creates a system-level specification consisting of sequential

C code and a platform and mapping specification in XML. At the second level, PN-

GEN parallelizes this C code into a parallel model. At the third level, ESPAM maps

the parallel model onto a platform. At the fourth level, commercial synthesis tools

implement the low-level RTL model.

We expect that performance assessments at these different levels provide different

trade-offs between accuracy and assessment effort [HH96, KDWV02]. A high-level

performance assessment can be conducted in a short amount of time, but such high-

level performance numbers often deviate from the actual performance of the pro-

totype. On the other hand, low-level performance assessments take a considerable

amount of time, but the resulting performance numbers are often very close to the

actual performance.

In this chapter, we study the relation between accuracy and assessment effort of per-

formance assessments at the four different levels. We start our investigation from the
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RTL at the fourth level and work our way up to the sequential code at the first level.

We first present some definitions and concepts that we use to discuss performance

estimations in Section 4.2. Performance assessment at the fourth level, RTL simula-

tion, is discussed in Section 4.3. Performance assessment at the third level, SystemC

simulation, is discussed in Section 4.4. Performance assessment at the second level,

analytical analysis, is discussed in Section 4.5. Performance assessment at the first

level, sequential code profiling, is discussed in Section 4.6. After the discussion of

performance assessments at the four levels, we compare the four approaches on dif-

ferent aspects such as the ability to incorporate finite buffer sizes in Section 4.7. In

Section 4.8, we compare the four approaches by applying each approach on a set of

benchmarks. In Section 4.9, we summarize this chapter.

4.2 Definitions

Design constraints on system performance are often expressed as a constraint on

throughput [SB00]. To quantify the performance of a process in a PPN, we employ

the notion of throughput:

Definition 4.1 (Process Period and Throughput).

The period Tp of a PPN process p represents the average time between two subse-

quent firings of p. The throughput τp = 1
Tp

of a process p represents the average

number of firings completed per time unit.

Using the notion of process throughput, we define the throughput of a PPN:

Definition 4.2 (PPN Throughput).

The throughput of a PPN with one sink process equals the throughput of that sink

process.

This definition excludes PPNs with more than one sink process. This is not a fun-

damental limitation because each such PPN can be transformed into a PPN with only

one sink process by merging the sink processes. Alternatively, instead of reasoning

about the throughput of the entire PPN, one may keep the distinction between dif-

ferent sink processes since they represent different output streams of a system. For

example, a video processing system may have a high data rate video output stream

and a low data rate control output stream. Combining both data rates is meaningless

in practice, and thus it is desirable to keep both throughput rates separated.

The external input and output streams connected to the PPN may affect the through-

put achieved by a PPN. For example, if data on the input stream is not delivered fast

enough, the throughput of a PPN may drop as the PPN has to wait for data. Similarly,
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if data on the output stream is not consumed fast enough, the PPN may be stalled

until older data is consumed from the output stream such that storage space for new

data becomes available. In this chapter, we are interested in the throughput of a PPN

irrespective of environmental factors. Therefore, we employ the notion of isolated

throughput:

Definition 4.3 (Isolated Throughput).

The isolated throughput of a PPN is the throughput of the PPN when isolated from

external input and output streams.

As such, the isolated throughput represents the theoretical maximum achievable

throughput considering only the PPN itself. In the remainder of this chapter we

present and review four different techniques to estimate the isolated throughput of

PPNs. We want to estimate the throughput of a PPN on a real system, which we refer

to as the absolute throughput.

Definition 4.4 (Absolute Throughput).

An absolute throughput assessment is used to describe the throughput of an actual

FPGA implementation of a PPN.

The goal of each of the four techniques that we present in this chapter is to ana-

lyze the performance of a multi-processor system. According to van Gemund, the

performance of a parallel system is determined by four key aspects [Gem96]:

• Conditional synchronization, which relates to the performance impacts of

synchronization due to data dependences. For example, if a PPN process de-

pends on two inputs a and b that become available at times ta and tb, then the

process should fire no earlier than max(ta, tb).

• Mutual exclusion, which relates to contention of processing or communica-

tion resources. For example, a processor can only initiate the next PPN process

iteration at a valid initiation interval (II ) boundary.

• Basic calibration, which relates to the performance characteristics of the sys-

tem constituents. For example, Definition 3.1 provides a systematic way to

describe the throughput (II ) and latency (Λ) of an IP core that is integrated in

a PPN.

• Conditional control flow, which relates to non-static control flow inferred by

data-dependent control statements. For example, a process function may have

a varying latency if the function performs a different computation for different

input argument values.

To obtain an accurate assessment of PPN performance, we take the four key aspects

into account in the four performance estimation techniques that we present.
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4.3 RTL Simulation

At the fourth level in Figure 4.1, we have obtained an FPGA project of the system.

This project can be synthesized using vendor-specific low-level synthesis and place-

and-route tools to obtain a bitstream. By downloading the bitstream onto an FPGA

device, the designer obtains a prototype implementation of the design such that for

example functionality and throughput requirements can be verified. However, even

for small designs, synthesis of an FPGA project to a bitstream already takes tens of

minutes. Obtaining a throughput metric by prototyping is thus a time-consuming

approach.

The RTL representation of an FPGA project can be simulated such that low-level

synthesis and place-and-route steps are avoided during throughput assessment. The

feasibility of such a simulation depends on the types of processors in the platform

specification. If one or more programmable processors are involved, an RTL simu-

lation is time-consuming because of the large amount of effort required to simulate

a single instruction at the register transfer level, making RTL simulation impractical

when using programmable processors. Nevertheless, for platforms consisting entirely

of LAURA processors, we found that RTL simulation is a viable approach to obtain a

throughput estimate of a design. Therefore, we have extended ESPAM with a backend

that produces an RTL simulation project for platforms that consist entirely of LAURA

processors. This backend generates a simulation project for the Xilinx ISE simulator.

4.4 SystemC Simulation

At the third level in Figure 4.1, we have obtained a mapped model of the system.

As discussed in the previous section, RTL simulation of platforms containing one or

more programmable processors is often infeasible in practice. To make simulation of

such platforms feasible, we may reduce the amount of simulation details at the ex-

pensive of lower accuracy. We achieve this by simulating the mapped model instead

of the RTL model, thereby addressing the basic calibration and conditional control

flow aspects in less detail. A common solution is to use different simulation tech-

niques for different types of components, known as co-simulation [GCD92, Row94].

The different components are then simulated at different levels of detail. Another

solution is to use execution traces of an application to simulate different system-level

specifications, as done for example by Sesame [PEP06] which is integrated in Dae-

dalus. A widely used standard for simulation of designs with reduced accuracy is the

SystemC standard [Sys05]. We have extended ESPAM with two SystemC backends:

an untimed SystemC backend and a timed SystemC backend.
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The untimed SystemC backend generates a functional simulation in the SystemC

environment. One of the first backends in the history of ESPAM was the YAPI back-

end which generates a functional simulation in the YAPI framework [KES+00]. The

YAPI backend provides fast functional simulation of a PPN, such that a designer can

quickly verify if the functional behavior of a parallelized application is correct. The

motivation behind the untimed SystemC backend is to provide similar fast functional

simulation, but according to an industry standard. Unlike the YAPI framework, Sys-

temC is an official IEEE standard which implies a more widespread acceptance and

better long-term support.

The timed SystemC backend generates a functional simulation which includes a

notion of time. A designer can use a timed SystemC simulation to obtain throughput

metrics in less time than with an RTL simulation. We have explored two different

approaches to incorporate programmable processors into timed SystemC simulations.

In Section 4.4.1, we present an approach which employs a cycle-accurate instruction

set simulator which yields cycle-accurate throughput metrics. In Section 4.4.2, we

present an approach which uses fixed execution time estimates, thereby potentially

degrading accuracy but further increasing the simulation speed.

4.4.1 Cycle-Accurate Timed SystemC Simulation

To obtain a cycle-accurate simulation environment from a system level specification,

we have developed a new backend to ESPAM [HHK10]. This backend generates

the C++ code for a SystemC top-level module and the C++ code that has to be run

on each processor. The backend currently supports LAURA and MicroBlaze proces-

sors. A LAURA processor is simulated using a custom written SystemC module that

models the LAURA execution in a cycle-accurate manner. A MicroBlaze processor is

simulated using the cycle-accurate GDB-based MicroBlaze Instruction Set Simulator

(ISS) provided by Xilinx. Such an ISS allows for a faster performance assessment,

because the ISS simulates only instructions instead of the full RTL implementation of

the MicroBlaze processor. However, the MicroBlaze ISS was not designed to oper-

ate as a multi-processor simulator. Therefore, ESPAM generates a SystemC top-level

module which allows different instances of the ISS to interact.

In Figure 4.2, we show an implementation of the PPN shown in Figure 2.8 using

our cycle-accurate timed SystemC simulation model. We map the source and sink

processes onto separate MicroBlaze processors, and the func1 process onto a LAURA

processor. The top-level module contains submodules that implement a simulation

model for each processor. The channels of a PPN are implemented using sc fifo

primitives from the SystemC standard which interconnect the processor simulation

modules.
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Figure 4.2: A cycle-accurate timed SystemC simulation environment for the PPN of

Figure 2.8.

For each LAURA processor, the SystemC top-level module implements a SystemC

module that simulates the execution of a process on a LAURA processor described

in Section 2.4.1. For each MicroBlaze processor, the SystemC top-level module im-

plements a controller module which drives each MicroBlaze ISS instance, shown in

the bottom part of Figure 4.2. This controller module communicates with the ISS

instance running as a separate heavy-weight process in the operating system. This

allows different ISS instances to run in parallel. A process running on a MicroBlaze

processor normally communicates data to other processors via its FSL ports, using

the get and put instructions. The original MicroBlaze ISS does not implement

these instructions. We have implemented these instructions in the ISS to send and

receive data to and from the controller module associated with an ISS instance. The

controller module subsequently transfers data between the other simulated processors

using sc fifo instances. The get instruction stalls the ISS when no data is available

on the sc fifo being read, and the put instruction stalls the ISS when the maximum

capacity of the sc fifo being written is reached. As such, the ISS implements the

blocking read and write primitives according to the semantics of the PPN model.

To ensure cycle-accurate simulation, a global execution time should be maintained

across all ISS instances. We have modified the ISS such that each ISS instance keeps

track of the global execution time. A straightforward way to synchronize the execu-

tion times of all ISS instances is to use a lockstep approach. With such an approach,

each ISS instance waits for a clock signal from the corresponding SystemC controller

module before a MicroBlaze instruction is executed. The lockstep approach guaran-

tees that all simulated MicroBlaze processors advance at the same pace, resulting in a

cycle-accurate simulation of the system. Unfortunately, the lockstep approach results

in extensive synchronization overhead, because synchronization occurs at every sim-

ulated clock cycle. Using the lockstep approach, at most 42000 clock cycles can be
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simulated per second for a design containing one MicroBlaze processor. When more

MicroBlaze processors are simulated simultaneously, this number drops more or less

linearly. As an alternative to the lockstep approach, we can synchronize the execution

times of two ISS instances only when these ISS instances interact by communicating

a data token. Using such global execution time synchronization, we have observed

up to 80 times increases in simulation speed.

4.4.2 Light-weight Timed SystemC Simulation

Performing a cycle-accurate timed SystemC simulation using ISSs is a delicate task,

because code for all processors has to be compiled for the appropriate instruction set,

and because communication channels between the ISS instances need to be estab-

lished. As a light-weight alternative to cycle-accurate timed SystemC simulation, we

propose another timed SystemC simulation technique. Instead of relying on an ISS

to obtain cycle-accurate execution times, we require the designer to provide function

execution times according to Definition 3.1. Thus, for each function f in the PPN,

a value Λf represents the number of clock cycles taken by a single invocation of f .

By considering only a single value Λf , we decrease simulation complexity at the ex-

pense of lower accuracy. As a result, we simplify the basic calibration aspect as only

one Λf value per function is required, instead of a list of latency values per instruc-

tion. We ignore the conditional control flow aspect, as functions that may contain

data-dependent statements are not executed. As a consequence of the simplification,

the accuracy of Λf determines the accuracy of the final throughput metric.

For each top-level component in a system, that is, a processor in the platform spec-

ification and a channel between two processors, we instantiate a SystemC module.

The SystemC module is based on a template for the component type. Each SystemC

module runs a thread in which the simulation model of the simulated component is

updated at each simulated clock cycle. A top-level module interconnects the Sys-

temC modules and invokes the SystemC simulation kernel. The SystemC kernel

schedules all threads according to a discrete-event simulation model that is also em-

ployed for RTL simulation. Light-weight timed SystemC simulation thus resembles

RTL simulation in which only the conditional synchronization, mutual exclusion, and

basic calibration aspects are included in the simulation model. Other aspects that do

not affect performance significantly, such as the process functionality and input port

multiplexing, are specified as C code without invoking the discrete event scheduler

of SystemC. Thus, no simulation primitives are constructed for non-essential aspects,

which allows faster simulation compared to RTL simulation.

For an example Sobel design mapped on a platform consisting of five processors,

we have measured a simulation speed of about 200000 clock cycles per second. In
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terms of simulation speed, this approach roughly compares to the cycle-accurate

timed SystemC simulation without lockstep synchronization. Assuming the Λf val-

ues are accurate, light-weight timed SystemC simulation is a feasible alternative to

cycle-accurate timed SystemC simulation.

4.5 Maximum Cycle Mean Analysis

At the second level in Figure 4.1, we have obtained a PPN of the application, which

is a particular model of computation. Estimating performance for different models of

computation is a well-established field of research [LSV98, SB00]. In this section,

we want to leverage existing work to find an analytical performance estimation tech-

nique for PPNs. We present a novel analytical technique to estimate the throughput of

a PPN based on Maximum Cycle Mean (MCM) analysis. MCM analysis is an estab-

lished technique to assess the throughput of an HSDF graph [SB00]. MCM analysis

is invariant to the application workload because of the analytical nature. This makes

this approach appealing compared to the RTL and SystemC approaches, as the as-

sessment effort of the latter aproaches directly depends on the workload. We present

an overview of analytical throughput estimation approaches in Section 4.5.1. We dis-

cuss the MCM analysis method for HSDF graphs in Section 4.5.2. We explain how

we derive an HSDF graph for throughput estimation of a PPN in Section 4.5.3. We

conclude this section by applying MCM analysis to two PPNs in Section 4.5.4.

4.5.1 Related Work

Analytical performance assessment of applications modeled as dataflow graphs is

a well-studied research field. An analytical method to compare different instances

of an application modeled as a PPN was first presented by Meijer et al.[MNS10].

Their technique had two limitiations. First, the scope was limited to acyclic PPNs.

Second, the throughput model was developed to obtain relative throughput assess-

ments between two or more PPNs. In contrast, in this chapter we focus on absolute

throughput assessments for both acyclic and cyclic PPNs. Thiele et al. have inves-

tigated performance analysis for cyclic SDF graphs [TS09]. Because the approach

works only on SDF graphs, it cannot cope with varying production and consumption

rates that occur in many embedded applications. Such varying rates can be expressed

in the PPN model, but no absolute performance analysis currently exists for PPNs.

The period of an HSDF graph can be analytically obtained by computing the maxi-

mum cycle mean [DG98, SB00]. Because a PPN is a special case of a CSDF graph,

an equivalent HSDF graph can be derived from a PPN using the conventional method

with which an HSDF graph can be derived from a CSDF graph [BELP96, Fig. 9].
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Moonen et al. use this method to compute a conservative bound on the through-

put of a CSDF graph [MBBM07]. Unfortunately, the equivalent HSDF graph often

exhibits an exponential increase in the number of nodes compared with the CSDF

graph. This increases the running time of the algorithm computing the maximum cy-

cle mean, making analysis of large graphs more time-consuming or even impractical.

In Section 4.5.3, we present an alternative approach to enable maximum cycle mean

analysis on PPNs which avoids the exponential complexity increase.

Ito and Parhi acknowledge the increases in the number of nodes and edges when

deriving the equivalent single-rate data flow (“HSDF”) graph for a given multi-rate

data flow (“SDF”) graph [IP95]. Their solution is to remove edges and nodes through

procedures called edge degeneration and node degeneration, in such a way that the

iteration bound is not affected. The effectiveness of the approach is not guaranteed,

as node degeneration is not applicable for certain graphs, as indicated by the authors.

Instead of working on equivalent HSDF graphs, throughput analysis methods exist

that operate directly on SDF [GGS+06] and CSDF graphs [SGB08]. These methods

construct the state space of the graph by simulating its execution assuming an unlim-

ited number of processor resources. Once a cycle is detected in the state space, the

periodic phase is reached. After identification of the periodic phase, the throughput

of the graph can be computed. Instead of performing an explicit state-space explo-

ration, one can also perform the state-space exploration symbolically using max-plus

algebra [Gei09]. This allows one to obtain an HSDF graph with identical throughput

characteristics that often has fewer nodes than an equivalent HSDF graph obtained

using the conventional method. However, for some graphs the method of [Gei09]

may produce an HSDF graph that has more nodes than the conventionally obtained

HSDF graph.

In summary, existing analytical throughput assessment techniques for PPNs cannot

cope with cyclic graphs and are only intended for relative throughput assessment.

Various techniques exist for HSDF, SDF, and CSDF graphs that can cope with cyclic

graphs and provide absolute throughput assessment. However, techniques for HSDF,

SDF, and CSDF graphs cannot be applied directly to PPNs, because the succinct PPN

representation has to be converted into a more elaborate HSDF, SDF, or CSDF repre-

sentation. Such a conversion leads to an HSDF or SDF graph with an exponentially

large number of nodes, or a CSDF graph with long phase lengths. The conversion

takes an large amount of time, and the size of resulting CSDF graph leads to long

running times of the analysis methods. To avoid any potential exponential increase in

the number of nodes, we look for an approach in which the number of nodes remains

equal to the number of processes in the PPN.
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4.5.2 Maximum Cycle Mean Analysis

The iteration period of an HSDF graph is defined as the time needed to execute an

iteration of the graph [SB00, Chapter 5]. A lower bound on the iteration period,

called the iteration bound, can be obtained by first computing the computation-to-

delay ratios of the cycles in the graph [SB00, Chapter 8]. For each cycle C in an

HSDF graph G, we compute the computation-to-delay ratio

CM (C) =

∑

v∈C t(v)
∑

e∈C d(e)
, (4.1)

which we refer to as the cycle mean of C. Thus, the cycle mean of a cycle C equals

the sum of the execution times t(v) of all nodes v involved in C divided by the sum

of all initial tokens d(e) on the edges e involved in C. The cycle that yields the

maximum CM () value is called the critical cycle of an HSDF graph. The iteration

bound of an HSDF graph G is determined by the critical cycle. Thus, to obtain the

iteration bound we compute the maximum cycle mean

MCM (G) = max{CM (C)}, C ∈ G. (4.2)

The throughput of an HSDF graph G is the reciprocal of the iteration bound, thus

τ(G) =
1

MCM (G)
. (4.3)

Example

We now illustrate the MCM analysis on the HSDF graph of Figure 2.5 on page 23.

This graph contains three cycles:

• c1 = (a1 → b → c → a1),
• c2 = (a2 → b → c → a2), and

• c3 = (b → c → b).

When auto-concurrency is considered, a node may fire multiple times simultaneously.

A node mapped onto a programmable processor executes its firings in sequence, such

that no auto-concurrency occurs. To explicitly exclude auto-concurrency of the indi-

vidual nodes, we assume each node i has a selfloop ci with one initial token. Then,

Equation (4.2) yields
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MCM (G2.5) = max
{

CM (ca1),CM (ca2),CM (cb),CM (cc),CM (c1),CM (c2),CM (c3)
}

= max

{

t(a1)

1
,
t(a2)

1
,
t(b)

1
,
t(c)

1
,

t(a1) + t(b) + t(c)

d(a1 → b) + d(b → c) + d(c → a1)
,

t(a2) + t(b) + t(c)

d(a2 → b) + d(b → c) + d(c → a2)
,

t(b) + t(c)

d(b → c) + d(c → b)

}

= max

{

8

1
,
8

1
,
2

1
,
2

1
,
8 + 2 + 2

0 + 0 + 1
,
8 + 2 + 2

0 + 0 + 1
,
2 + 2

0 + 1

}

= 12 .

The first four terms in the max-expressions above correspond to the selfloops of the

four nodes. The remaining three terms correspond to the three cycles of the graph.

The maximum cycle mean is determined by both CM (c1) and CM (c2) which both

evaluate to 12. Thus, the iteration bound of the HSDF graph of Figure 2.5 is 12, and

consequently the throughput is 1
12 .

4.5.3 Derivation of PPN Modeling Graphs

In Section 4.5.1, we mentioned the possibility of applying MCM analysis on PPNs by

considering the equivalent CSDF graph and converting the CSDF graph into HSDF.

This approach is depicted in the upper part of Figure 4.3. Unfortunately, this results

in an exponential increase in the number of nodes. To keep the time needed for the

MCM computation within reasonable bounds, we must avoid the exponential increase

in the number of nodes, which leads us to a new approach.

We have found a way to derive a more compact HSDF graph from a cyclic PPN,

which we depict in the lower part of Figure 4.3. Our approach works by deriving

an HSDF graph that models the throughput behavior of a PPN, and then applying

conventional MCM analysis to this graph. The number of nodes in our HSDF graph
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equals the number of processes in the PPN. The number of edges in our HSDF graph

is linearly bounded, as we show in Proposition 4.3. As such, no exponential increase

of the graph size occurs, making the approach a suitable alternative for fast perfor-

mance estimation of PPNs. We divide the derivation in two main steps. First, PPN

processes are converted to HSDF nodes. Second, PPN channels are converted to

HSDF edges.

Step 1: Constructing Nodes from Processes

The first step in deriving the PPN modeling HSDF graph is to convert PPN pro-

cesses to HSDF nodes. One possible approach is to interpret the PPN as a CSDF

graph [HZ+10, adg2csdf] and then derive an HSDF graph from this CSDF graph us-

ing the conventional approach [BELP96, Fig. 9]. This approach causes q(p) nodes

to be instantiated for each process p. For consistent PPNs, q(p) always equals the

number of points in the process domain Dp:

Proposition 4.1 (PPN Repetition Vector). For each process p of a consistent PPN, the
corresponding element of the repetition vector of an equivalent CSDF graph equals

the number of points in its process domain, that is, ∀p ∈ P : q(p) = |Dp|.

Proof. In a consistent PPN, for every channel c, the number of points in the corre-

sponding OPDj
σc

is equal to the number of points in the corresponding IPDk
δc

, thus

|OPDj
σc
| = |IPDk

δc
|. Therefore, the solution of the balance equation Γ · r = 0 is

a vector r which contains a ‘1’ for every process. As a result, the elements of the

repetition vector q = S · r are equal to the phase lengths of each node, which equals

the number of points in the process domain.

As a result, a separate HSDF node would be instantiated for each iteration of the

domain, resulting in large graphs even for small applications. This makes the con-

ventional CSDF-to-HSDF approach infeasible for practical purposes. We can avoid

an increase in the number of nodes based on the following observation. In an HSDF

graph, all q(p) nodes originating from a process p may execute in parallel. How-

ever, by definition the iterations of a PPN always execute sequentially. This allows

us to represent each process p by a single HSDF node h, where node h represents

sequential execution of all q(p) nodes of the conventional equivalent HSDF graph.

We multiply the execution time Λp of a single firing of process p by q(p) to model

sequential execution of all q(p) nodes in the equivalent HSDF graph. As a result, the

number of nodes in the resulting HSDF graph equals the number of processes in the

original PPN.
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The execution time t(h) of an HSDF node is set to the total time needed to fire all

iterations of the process consecutively without overlapped execution. Included in this

execution time are the read and write latencies and the time needed to fire the func-

tion. Time spent on a blocking read or write operation is not included, which means

our approach does not address the conditional synchronization aspect introduced in

Section 4.2. Our approach cannot accurately assess throughput of applications in

which read or write operations block on empty or full channels. To exclude auto-

concurrency, we add to each HSDF node a selfloop with one initial token. This avoids

multiple simultaneous executions of the entire PPN, which is undesirable when de-

termining throughput.

Step 2: Constructing Edges from Channels

The second step in deriving the PPN modeling HSDF graph is to interconnect the

HSDF nodes using edges in such a way that the PPN’s throughput characteristics

are preserved. This is not trivial, because of the different semantics of HSDF edges

and PPN channels: HSDF edges have an unbounded capacity and may contain initial

tokens, whereas PPN channels have a bounded capacity and do not have a notion of

initial tokens. We now discuss how to represent edges in a PPN modeling HSDF

graph such that the PPN’s throughput characteristics are preserved.

The PPN modeling graph may contain more than one edge between two nodes a
and b, if for example the PPN contains multiple channels between two processes. It

is sufficient to represent such a collection of channels by a single edge:

Proposition 4.2 (Pruning Multi-Edges in PPN Modeling Graphs). A collection of

PPN channels from process a to process b can be represented by a single edge (a →
b) in the PPN modeling graph.

Proof. If an edge (a → b) is part of a cycle, then another cycle also exists for each

additional edge connecting a to b. The only difference among the cycle means of

those cycles is the number of initial tokens that occurs in the denominator of Equa-

tion (4.1). A cycle with a larger denominator results in a smaller cycle mean, which

implies the cycle mean will not be selected by Equation (4.2). Thus, we only need

to consider the cycle with the smallest number of initial tokens, which is the cycle

containing the edge with the smallest number of initial tokens.

We distinguish between three classes of channels: selfloop channels, feedback chan-

nels, and feedforward channels.
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a b c
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a b c

d = 2

a) PPN containing a cycle. b) Corresponding PPN modeling graph.

... ...

Figure 4.4: Handling feedback edges in a PPN.

Selfloop channels

For a selfloop channel, which connects a process to itself, no edge is added to the

HSDF graph. We omit such selfloops because in step 1 we have already added a

selfloop with one initial token to each node. To see why selfloops can be omitted,

suppose that the critical cycle of a PPN modeling graph would be a selfloop s of

process p with buffer size Ss ≥ 1. This selfloop could be modeled by adding an edge

(p → p) with Ss initial tokens. For this newly added cycle Cs, Equation (4.1) yields

CM (Cs) =
Λp · |Dp|

Ss
.

However, for selfloop e added in line 3 of Algorithm 4.1, we already have

CM (e) =
Λp · |Dp|

1
.

Because CM (e) ≥ CM (Cs) for all Ss ≥ 1, we can ignore CM (Cs) in Equa-

tion (4.2). Thus, a selfloop of a PPN never forms the critical cycle, and therefore

such selfloops can be omitted from the PPN modeling graph without affecting the

MCM value.

Feedback channels

Feedback channels are part of a strongly connected component, and are thus the

constituents of a cycle. The cycle mean of a cycle in the PPN modeling graph is

computed using the sum of all initial tokens on the edges constituting the cycle, as

we have shown in Equation (4.1). Hence, the amount of initial tokens on an HSDF

edge representing a feedback channel may affect the MCM value of an HSDF graph.

Therefore, we should determine the amount of initial tokens for each feedback edge

such that an accurate MCM value is obtained.

Each cycle of a PPN contains one process that is the first process from that cycle

to be fired. The channel of that cycle from which the first process reads is the last
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channel of that cycle. Initially, we construct for each PPN channel part of a cycle an

HSDF edge and assign zero initial tokens to each edge. Only to the edge correspond-

ing to the last channel of the cycle we assign a nonzero number of initial tokens d.

For example, suppose process a in Figure 4.4 first reads from a channel outside of

the cycle and in the next firing reads from channel (c → a) that is part of the cycle

(a → b → c → a). As such, process a is the first process of the cycle that can fire.

Therefore, edge (c → a) is the last edge of the cycle. Selection between edges is not

possible in the HSDF model which requires all incoming edges of a node to be read

during every firing. Without assigning initial tokens to the last edge (c → a) of the

cycle, the HSDF graph would be in a deadlock state, preventing meaningful analysis.

To avoid this deadlock state, we assign initial tokens to the last edge.

Initial tokens on an edge of an HSDF graph are also referred to as the delay of an

edge. Here, “delay” refers to the temporal distance between the nodes in terms of

iterations of the graph. For example, if an edge (a → b) has 2 initial tokens, then the

firing of node b at iteration i depends on the token produced by node a at iteration

i− 2. The PPN model does not have a notion of initial tokens, which means we need

to relate the delay between two HSDF nodes that are part of a cycle to the distance

between processes in the PPN model.

A notion of dependence distances is available for SANLPs from which we derive

PPNs. A dependence distance vector gives the difference between a target iteration

vector and the source iteration vector of a dependence [Pug92, definition d]. For a

PPN channel (a → b), the distance vector gives the difference between an iteration

of process b that consumes a token and the iteration of process a that produced the

token. In general, this difference may not be defined when the process iteration do-

mains are different, which for example happens when the original statements are not

located in the same loop nest. However, the PNGEN tool flow puts all processes in

a common iteration space to compute buffer sizes. In this common iteration space,

the dependence distance vector is defined for any pair of processes that are connected

by a channel. We therefore employ the dependence distance in the common iteration

space to assign initial tokens to feedback edges in the PPN modeling graph.

We cannot use the dependence distance directly, because of the following two rea-

sons. First, the dependence distance is a vector for common iteration spaces consist-

ing of more than one dimension. In contrast, the number of initial tokens of an HSDF

graph should always be a scalar value. Second, a dependence distance may be non-

uniform, that is, the dependence distances may vary for different pairs of iterations.

In such cases, the dependence distance of a single dimension cannot be expressed

using a constant integer only, but is expressed using iterators. In contrast, the number

of initial tokens of an HSDF graph should always be a constant integer value.

To overcome both problems, we use a constant integral scalar approximation of a
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dependence distance. The way in which PNGEN computes the buffer size (cf. Sec-

tion 2.3.2) gives us a suitable approximation of the maximum dependence distance

of a non-uniform dependence. For uniform dependence distances, the buffer size

is an accurate measure of the dependence distance. For non-uniform dependence

distances, the use of the buffer size introduces a source of inaccuracy in the PPN

modeling graph.

The number of initial tokens dc assigned to the last edge of a cycle is determined

as follows. If the cycle is tight, that is, if in every iteration each process depends on

the output of the previous iteration of its predecessor process, the processes execute

sequentially without overlap between firings of different processes. In such a case,

the dependence distance vector contains zeroes for all dimensions except the last

for which it contains a one. That is, the dependence distance vector is of the form

[0, 0, . . . , 1]. The corresponding buffer size Sc is one, and we assign one initial token

to the last edge of the cycle.

If the cycle is not tight, then overlapped execution between firings of different pro-

cesses may occur. In such a case the dependence vector is different from the form

described above. We assign Sc +1 initial tokens to the last edge of a cycle which cor-

responds to the buffer size plus one additional initial token to accomodate overlapped

execution. Currently, this is a known source of inaccuracy in the MCM modeling

HSDF graphs derived from PPNs. Determining the number of initial tokens to assign

to the last edge of a non-tight cycle is therefore subject of future investigation.

Feedforward channels

Feedforward channels connect a strongly connected component of a PPN to another

strongly connected component. As such, the corresponding feedforward edges in an

HSDF graph are not part of any cycle and thus would not affect the MCM value. In

the HSDF model, edges have infinite capacity which implies that a feedforward edge

indeed does not affect the MCM value of an HSDF graph. That is, a feedforward edge

cannot reach a “full” state that would cause blocking writes decreasing throughput.

In contrast to HSDF edges, PPN channels have a finite capacity which may cause

blocking write conditions that decrease throughput.

To take the finite capacity of a channel into account, we add for each feedforward

channel (a → b) a forward edge e = (a → b) and a backedge (b → a) [SB00,

Section 10.4]. We assign zero initial tokens to the corresponding feedforward edge

in the HSDF graph. The number of initial tokens me ∈ N on the backedge represents

a particular buffer capacity. Empirically, we found that a value me corresponds to a

buffer capacity

Sc = me + dc − 2, (4.4)
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where dc is the dependence distance approximation used in the discussion above on

feedback channels. That is, the MCM computed using me matches the PPN period

achieved with a buffer capacity of Sc tokens.

Bounding feedforward channel delays

According to the HSDF model, any positive number of initial tokens m on a backedge

is allowed. This leads to an infinite number of possible buffer configurations. How-

ever, when m is below a certain value, a corresponding PPN buffer size may not

exist due to the operational semantics of a PPN process. This gives a lower bound on

m. Also, when m exceeds a certain value, the MCM is not affected anymore, which

means that increasing the buffer size does not lead to a higher throughput. This gives

an upper bound on m. Therefore, we can bound the design space by only considering

the values that lie between the lower and upper bounds.

The lower bound on m for any edge in the PPN modeling graph is two, which is

a consequence of the operational semantics of a PPN process. This lower bound of

two can be explained as follows. In an HSDF graph, a token is kept on the edge until

the consuming node has finished its firing. In a PPN graph, a token is transfered to

a buffer internal to the process during the read stage. This effectively increases the

buffer size by one. As such, a buffer size of one corresponds to a number of initial

tokens m = 2.

The upper bound on m represents the point where increasing the buffer size does

not yield a higher throughput. This corresponds to a value m for which the maximum

cycle mean of the graph is determined by cycles of the original graph or selfloops,

but not by a cycle introduced by the modeling of a feedforward edge. For an arbitrary

feedforward edge (a → b), we choose m such that the resulting cycle mean value

is less than or equal to the cycle mean of the selfloops of the nodes involved in the

cycle:
t(a) + t(b)

m
≤ max {t(a), t(b)} .

For positive execution times t, this inequation holds if m equals the number of nodes

in the cycle, which is two. However, other paths between a and b may exist which

must be considered as well to avoid that they determine the maximum cycle mean.

To ensure that none of the other paths between a and b determine the maximum cycle

mean, we generalize the above inequation to a path consisting of n nodes:

∑n
i=1 t(i)

n
≤ max n

i=1 {t(i)} . (4.5)

Thus, the upper bound on m originating from a channel c equals the number of pro-
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a) PPN containing feedforward edges. b) Corresponding PPN Modeling graph.

Figure 4.5: Handling feedforward edges in a PPN.

m1 m2 m3 MCM (G4.5b)

1 1 1 90

1 1 2 60

1 1 3 60

1 2 1 90

1 2 2 60

1 2 3 60

m1 m2 m3 MCM (G4.5b)

2 1 1 90

2 1 2 60

2 1 3 60

2 2 1 90

2 2 2 45

2 2 3 30

Table 4.1: MCM values for different numbers of initial tokens. Only for the configu-

rations in boldface a valid PPN buffer size configuration exists.

cesses on the longest path connecting σc to δc.

In Figure 4.5a, we show a PPN containing three feedforward channels. In Fig-

ure 4.5b, we show the corresponding modeling graph. For each feedforward channel

in the PPN, we have added a forward edge and a backedge in the modeling graph.

The values m1, m2, and m3 specify the amount of initial tokens assigned to the

backedges. According to equation (4.5), the upper bound of m1 and m2 is two and

the upper bound of m3 is three. In Table 4.1, we show twelve possible combina-

tions of m-values, deliberately assuming a lower bound of 1 for each m-value. This

yields twelve different design points trading off buffer size against throughput. If

we take the lower bound on m-values for PPN modeling graphs into account, any

combination of m-values containing an m-value below two does not have a corre-

sponding PPN buffer configuration. Hence, only for (m1, m2, m3) = (2, 2, 2) and

(m1, m2, m3) = (2, 2, 3) an actual PPN buffer configuration exists. As such, for this

example the buffer size design space is reduced to only two points.

Summary

The derivation of the more compact HSDF graph is summarized in Algorithm 4.1.

The input is a PPN and a number Λp representing the execution time of a single firing
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of each process p. The output is an HSDF graph that is intended only for throughput

analysis by an MCM algorithm. Lines 1–4 in Algorithm 4.1 perform the conversion

of PPN processes to HSDF nodes. Lines 5 and onwards in Algorithm 4.1 perform

the conversion of PPN channels to HSDF edges, considering the three classes of

channels.

To leverage Proposition 4.2, we assume that the “append edge” operations at lines

12 to 16 of Algorithm 4.1 prune any edges e′ = (σ′(c) → δ′(c)) already present for

which d(e′) is larger than d() of the new edge being added. Here, σ′(c) and δ′(c)
give the HSDF node that corresponds to the PPN process given by σc and δc (cf.

Definition 2.13).

Because there is a one-to-one correspondence between PPN processes and HSDF

nodes, no exponential increase in the number of nodes occurs. An exponential in-

crease of the number of edges in the HSDF graph is also avoided:

Proposition 4.3 (Number of Edges in PPN Modeling Graphs). The number of edges

in a PPN modeling graph for a PPN (P, E) is at most |P| + 2 · |E|.

Proof. For each process p ∈ P , a selfloop is added, resulting in |P| selfloops in the

HSDF graph. For each channel c ∈ E , no edge is added if c is a selfloop; at most

one edge is added if c is a feedback edge; and at most two edges are added if c is a

feedforward edge. Thus, if all channels in a PPN are feedforward edges, then at most

2 · |E| edges are added.

Hence, any exponential increase in the number of nodes or edges is avoided in our

approach.

4.5.4 Case Studies

Acyclic Example from Literature

We first examine an acyclic PPN that was also studied by Meijer et al. [MNS10, Fig.

7]. We show the sequential code and corresponding PPN in Figure 4.6a and 4.6b. The

PPN consists of four processes and three channels. We use latency values {ΛP1 =
ΛP2 = 61, ΛP3 = 126, ΛC = 121} which correspond to the process workloads used

by Meijer et al. The authors found a system throughput of 1
126 using their throughput

estimation method.

The PPN modeling graph derived using Algorithm 4.1 is shown in Figure 4.6c. Each

process has an iteration domain consisting of 1000 points. Therefore, the execution

time of each HSDF node is set to 1000 times the corresponding latency Λ. We add

a selfloop with one initial token to each node. All of the three channels of the PPN

are feedforward channels. Therefore, we add for each channel both the forward edge
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Algorithm 4.1 Derive a modeling graph from a PPN.

Input: PPN G = (P, C), delays {Λp | p ∈ P}
Output: HSDF H = (V, E, t, d)

1: for all processes p in P do

2: append node h to V with t(h) = |Dp| · Λp

3: append edge e = (p → p) to E with d(e) = 1
4: end for

5: for all channels c in C do

6: if c is not a selfloop then

7: if c is a feedback edge (i.e., part of an SCC) then

8: s = 0
9: if δc fires before σc then

10: s = Sc + {1 if a non-tight cycle containing c exists}
11: end if

12: append edge e = (σ′(c) → δ′(c)) to E with d(e) = s
13: else if c is a feedforward edge then

14: append edge e = (σ′(c) → δ′(c)) to E with d(e) = 0
15: s = max{|pi| + 1 | pi is a path from σc to δc}
16: append edge b = (δ′(c) → σ′(c)) to E with d(b) = s
17: end if

18: end if

19: end for

20: return H

and a backedge in the modeling graph. According to Equation (4.5), the number of

initial tokens on each backedge equals two. The maximum cycle mean computation

of the resulting modeling graph yields the following:

MCM (G4.6c) = max

{

t(P1)

1
,
t(P2)

1
,
t(P3)

1
,
t(C)

1
,

t(P1) + t(P3)

d(P1 → P3) + d(P3 → P1)
,

t(P2) + t(P3)

d(P2 → P3) + d(P3 → P2)
,

t(P3) + t(C)

d(P3 → C) + d(C → P3)
,

}

= max

{

61000

1
,
61000

1
,
126000

1
,
121000

1
,
187000

2
,
187000

2
,
247000

2

}

= 126000 .

Thus, a single iteration of the graph takes 126000 time units. In an iteration of the

graph, sink process C fires 1000 times. Therefore, the period TC = 126000
1000 = 126,
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P1

a) Sequential code.

#define M 1000

for (i=0; i<M; i++) {
  P1(&a[i]);
  P2(&b[i]);
}
for (i=0; i<M; i++) {
  P3(a[i], b[i], &c[i]);
}
for (i=0; i<M; i++) {
  C(c[i]);
}

P2

P3

C

b) PPN. c) Modeling graph.

P1
61000

P2
61000

P3
126000

C
121000

Figure 4.6: Throughput analysis on example from [MNS10].

and the PPN’s throughput equals 1
126 . This throughput value exactly matches the

value found by Meijer et al.

Odd-even Transposition Sorting

With this example we illustrate the MCM analysis applied to a cyclic PPN. The odd-

even transposition sorting is a parallel sorting algorithm which sorts an array of n
elements. The algorithm consists of n comparator stages. In each odd-numbered

stage, all even-indexed elements are compared with their odd-indexed neighbours and

swapped if they are not in the correct order. In each even-numbered stage, all odd-

indexed elements are compared with their even-indexed neighbours and swapped if

necessary. In each stage, all n/2 pairs can be compared in parallel.

In Figure 4.7a, we show a PPN for the odd-even transposition sorting algorithm. The

PPN consists of four processes. Source process src provides the data to be sorted.

Processes c1 and c2 perform the compare-and-swap operations. Sink process snk

consumes the sorted data.

In Figure 4.7b, we show the throughput modeling graph derived from the PPN.

All four channels between c1 and c2 in Figure 4.7a are part of a strongly connected

component. From dependence analysis we find that c2 cannot fire before c1 has

fired. Thus, we put zero initial tokens on the forward edge connecting c1 to c2.

The dependence distance vectors for both edges are non-uniform. The upper bound

on the dependence distance is 26. According to line 10 of Algorithm 4.1, we put

27 initial tokens on the feedback edge from c2 to c1. All of the remaining edges

are feedforward edges to which we assign two or three initial tokens according to

Equation (4.5).
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a) PPN. b) Modeling graph.

src

c1

c2

snk src
162

c1
2187

c2
2106

snk
16227

26
1

11

26

1
2

1

1

26

26
3

3

Figure 4.7: Throughput analysis of odd-even transposition sorting.

For brevity reasons we omit the full expansion of Equation (4.2) and only summa-

rize the result. The maximum cycle mean is 2187 which originates from the selfloop

of process c1. Since the sink process domain size is 54, the average period of the PPN

is 2187
54 = 40.5 time units. This corresponds to the average period observed during

simulation of the RTL.

4.6 Sequential Code Profiling

At the first level in Figure 4.1, we have the application specified as sequential C code.

The previous performance estimation techniques discussed in this chapter required

that a PPN was derived. We now investigate whether we can estimate the performance

of a PPN directly from the sequential C code. This has led to a novel profiling-

based method that works directly at the sequential source code level. Our novel

method was inspired by the work of Kumar on measurement of parallelism in Fortran

programs [Kum88].

In Section 4.6.1, we review some existing profiling techniques. In Section 4.6.2,

we present the profiling primitives employed by our approach. In Sections 4.6.3

and 4.6.4, we present the two estimation types provided by our approach. In Sec-

tion 4.6.5, we apply our profiling approach on a case study. In Section 4.6.6, we

present how our profiling approach can model process splitting transformations with-

out the need to actually apply the spltting transformations to the application code. In

Section 4.6.7, we discuss the performance and memory overhead resulting from the

profiling.
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4.6.1 Related Work

Profiling is a well-established technique in which the behavior of a program is ana-

lyzed by closely monitoring the execution of the program. This monitoring is per-

formed by extending a program with small instrumentation code fragments that col-

lect statistics such as function invocation counts during program execution.

A popular free software tool to profile for example C and Fortran programs is GNU

gprof [GKM82]. To profile a program, the compiler instruments the program with

instrumentation code. The instrumentation code collects statistics when the instru-

mented program is running. After running the instrumented program, gprof processes

the statistics into a call graph augmented with the execution time of each call. This

allows the developer to determine in which parts of a program most of the execution

time is spent. To obtain execution time information, gprof relies on statistical pro-

gram counter sampling which is an inexact method. The execution times are only

valid for the platform on which the profiling is performed, which makes gprof not

useful for throughput assessments of programs implemented as PPNs on different,

possibly heterogeneous platforms.

The Valgrind tool set provides tools for debugging and profiling program bina-

ries [NS07]. Each Valgrind tool translates the individual machine instructions into an

intermediate representation, instruments the intermediate representation, and trans-

lates the intermediate representation back into machine instructions. This allows for

more accurate execution time estimates compared with statistical sampling methods,

because each instruction is considered. However, as with gprof, the obtained execu-

tion times are only valid for the processor architecture for which the program was

compiled. In our design flow, different parts of a program may execute on differ-

ent processor architectures, such as ARM or MicroBlaze, or may be implemented as

a LAURA processor. Such alternative heterogeneous architectures are currently not

supported by Valgrind and we believe that adapting Valgrind to support such archi-

tectures would require a significant amount of effort.

Support for different processor architectures was a key design goal for the Total-

Prof profiler [GHC+09]. TotalProf processes the intermediate representation of an

input program into virtual assembly that is captured in the LLVM intermediate rep-

resentation. Different architectures are represented using different forms of the vir-

tual assembly. The virtual assembly is instrumented with profiling statements and

then taken through the code generator which generates executable code for the host

machine. By targeting the host machine, fast execution of the instrumented virtual

assembly code is obtained. By providing different architecture descriptions and in-

terconnecting different TotalProf instances, TotalProf supports profiling of heteroge-

neous MPSoCs. TotalProf currently lacks support for the LAURA architecture, which
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prevents us from using TotalProf for performance assessment of PPNs.

Another approach to achieve a high simulation speed when simulating MPSoCs,

is by compiling the application code of a system for native execution on a general-

purpose computer such as a desktop workstation [SHP12]. Such native simulation

techniques eliminate the need for instruction set simulation or binary translation and

thus avoid a significant amount of run-time overhead. Native simulation is often in-

tended for debugging and verification of an MPSoC design. In contrast, our interest

is mainly in performance assessment to a sufficient level of accuracy to make archi-

tectural tradeoffs.

Sackmann et al. presented a profiling-based method to parallelize sequential pro-

grams [SEJ11]. To discover the parts that may execute in parallel, the authors analyze

call trees obtained using Valgrind. Each node in the call tree represents an invoca-

tion of a function. Two nodes are connected by an edge if a data dependence exists

between the corresponding function invocations. If a pair of nodes is not connected

by an edge, then the corresponding function invocations can execute in parallel. Un-

fortunately, the authors’ approach does not guarantee that all data dependences are

added to the graph. They rely on the user to ensure that all dependences are present

in the call tree. Ensuring correctness of the call tree manually is tedious and error-

prone, because call trees can be large even for small programs, and because a call tree

is only valid for one execution of the program. Instead of partially relying on manual

effort, we favor discovering the amount of parallelism in a fully automated way.

Kumar presented COMET (COncurrency MEasurement Tool) which measures the

total parallelism in Fortran programs [Kum88]. The method assumes a hypothetical

ideal parallel machine with unlimited resources and no scheduling, communication,

and synchronization overhead. COMET takes a Fortran program and extends it with

statements that monitor the execution of the program on the ideal parallel machine.

The functionality of the original program is preserved in the extended program. By

compiling and executing the extended program, statistics on the absolute amount of

parallelism are collected.

At this level two approaches need to be mentioned: the SESAME [PEP06] and

SPADE [LSWD01] approaches. They both work at the high level but do not use

profiling. Instead they use traces to capture the workload of an application in terms

of read, execute, and write events. Both SESAME and SPADE require deriving a PPN,

which is what we want to avoid at the first level of Figure 4.1.

4.6.2 Sequential Code Instrumentation of Static Programs

In this section, we present cprof which is a novel method for PPN performance esti-

mation that is inspired on COMET. Cprof can measure parallelism in an application
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Figure 4.8: The cprof performance estimation technique.

without actually deriving a PPN, but assuming execution as a PPN on one of two

machines. First, cprof can evaluate a PPN on an ideal machine. We consider an

ideal machine to be a platform where each process iteration is mapped on a sepa-

rate processor unit. The ideal machine lacks shared memory, as separate processor

units communicate through separate point-to-point communication channels. Sec-

ond, cprof can evaluate a PPN on a platform generated by ESPAM.

The ideal machine is used to measure the maximum degree of parallelism in an

application, as we discuss in Section 4.6.3. The ESPAM platform is used to obtain an

absolute throughput estimate for a PPN, as we discuss in Section 4.6.4.

Like COMET, cprof takes the original sequential program and produces an extended

program containing additional profiling instrumentation statements. The cprof flow

is depicted in Figure 4.8. We use the Clang/LLVM compiler infrastructure [LA04,

Cla07] to automatically generate the extended program from a C program. The ex-

tended program is again a sequential program that should be compiled by a con-

ventional C++ compiler and executed to obtain performance statistics. In contrast

to COMET, which operates on programs written in the Fortran language, cprof op-

erates on static affine nested loop programs (SANLPs) written in the C language.

Another difference between COMET and cprof is the set of statements being instru-

mented. We only instrument the statements for which PNGEN constructs a process,

because our goal is to obtain a performance estimate for a PPN execution. That is,

cprof does not instrument control expressions and statements inside for-loop headers

and if-conditions, since these are not translated into processes. In contrast, COMET

instruments all statements, including loop-statements and if-statements. Instead of

targeting only an ideal machine, cprof also targets a machine with a fixed amount of

processing resources. This enables performance assessment of programs executing

as a PPN on a user-defined platform.

Both COMET and cprof employ a global time scale. In this global time scale,

COMET and cprof keep track of the timestamps at which the statements of a sequen-

tial program start and finish their executions. We instrument each statement such

that the operational semantics of all processes are represented on a single global time
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scale. The added instrumentation models the read, execute, and write stages of a

PPN process that were described in Section 2.2.4. In the read stage, cprof deter-

mines at which time the actual statement can execute, based on the times at which

all input data is available. In the execute stage, the statement execution finish time is

determined. In the write stage, the times at which the output data of the statement is

available are updated.

The main challenge is to determine the starting times of statement executions. We

determine such starting times by taking into account the four aspects that were intro-

duced in Section 4.2. To address the conditional synchronization, mutual exclusion,

and basic calibration aspects, we employ instrumentation primitives. Since we only

consider SANLPs in which control is static by definition and functions have a fixed

latency, we do not need to address the conditional control flow aspect. The instru-

mentation primitives comprise shadow variables, control variables, and execution

profiles. In the following paragraphs, we discuss each instrumentation primitive and

explain how the first three performance aspects are addressed.

Shadow Variables

For each variable v in the original program, we add a shadow variable $v that holds

the timestamp in which variable v is written. Similarly, for each array in the original

program, we add an array of shadow variables which contains for each array element

the timestamp at which a particular array element is written. A shadow variable

is updated whenever the corresponding variable is written during the write stage.

The new timestamp of a shadow variable $v is set to the timestamp at which the

statement writing to v finishes writing v, plus an additional cost ΛW modeling the

write operation latency.

We use shadow variables to address the conditional synchronization aspect. Con-

ditional synchronization in a PPN execution occurs when a process reads from one

or more channels. As dictated by the operational semantics, a process function can

only fire after all incoming channels have been read. That is, the firing of a process

function may be postponed because of a blocking read operation on one of the incom-

ing channels. In contrast to the other performance assessment techniques discussed

in this chapter, the cprof technique does not explicitly model a program as a PPN

consisting of processes and channels. Despite this, cprof is able to obtain accurate

performance assessments that incorporate blocking read operations. To understand

why we can analyze the performance of a PPN without actually deriving a PPN, we

now explain how blocking read operations are taken into account, thereby addressing

the conditional synchronization aspect.

The SANLP class of C programs that we consider are written assuming a sequential
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execution model in which statements execute one after another. Only one statement

executes at any point in time. The execution order is given by the textual order

of statements in the program and control flow statements such as for-loops. For

a given program, many alternative execution orders may exist which all yield the

same functional meaning of the program as long as all data dependence relations are

respected [Ban97]. A program translated to a PPN employs such an alternative ex-

ecution order, in which processes execute concurrently. Each process fires as soon

as its input data is available. Thus, the performance of a PPN is determined by the

availability times of data. The availability of data is captured by the data dependence

relations of a sequential program. Three different types of data dependence relations

may exist in a sequential program: flow dependences, anti-dependences, and output

dependences [PW86]. We now explain how cprof handles each dependence type us-

ing shadow variables, such that an accurate performance assessment of a PPN derived

from the sequential program is obtained.

Flow dependences, or read-after-write dependences, occur when a statement reads a

variable v written by a previous statement. During the write operation, the timestamp

at which the write occurs is stored in the shadow variable of v. Upon reading v, the

timestamp in the shadow variable of v is taken as the time at which v is available.

By definition, the read operation occurs after the write operation, meaning the flow

dependence is correctly modeled.

Anti-dependences, or write-after-read dependences, occur when a statement writes

data to a variable v that was read by a previous statement. Upon reading v, the

timestamp in the shadow variable of v is taken as the time at which v is available. This

shadow variable is then overwritten by the write operation, which by definition occurs

after the read operation. However, in both COMET and cprof, the instrumentation

for the write operation does not take into account the time at which v was actually

read. Thus, the anti-dependence is not modeled.

Output dependences, or write-after-write dependences, occur when two statements

write data to the same variable v. The timestamp of the first write operation is stored

in the shadow variable of v. The timestamp of the second write operation over-

writes the previous timestamp in the shadow variable, without taking into account

the timestamp of the first write operation. Only the timestamp of the last write is

kept, meaning the output dependence is not modeled.

In summary, COMET and cprof only model flow dependences, and ignore anti-

dependences and output dependences.1 This means that cprof cannot model the per-

formance of a SANLP on a general purpose processor accurately if the program con-

1 An extension to incorporate anti-dependences and output dependences in COMET was described

by Kumar as well [Kum88, Section VI], but this extension has not been incorporated in cprof as anti-

dependences and output dependences are not relevant in the PPN context [Tur07, Chapter 3].



4.6. Sequential Code Profiling 81

tains anti-dependences or output dependences. However, the purpose of cprof is to

model performance of a SANLP assuming execution as a PPN. A key property of the

PPN MoC is that only flow dependences affect its performance. Anti-dependences

and output dependences in a sequential program do not affect the performance of a

PPN, such that these can be safely ignored by cprof, as we now explain.

Anti-dependences in a sequential program do not affect the performance of a PPN

derived from the sequential program, because each produced data token has a private

storage location that is preserved until the token is consumed. Multiple data tokens

representing different values for the same variable of the sequential program may

exist simultaneously. A property of the PPN model is that the storage location of a

data token is never written again after consumption [Tur07, Chapter 3]. This means

anti-dependences do not occur in a PPN and thus do not affect performance.

Output dependences in a sequential program do not affect the performance of a

PPN derived from the sequential program, because a data token is only produced

on a channel if the data token is guaranteed to be consumed. This means output

dependences do not occur in a PPN, and thus output dependences do not affect the

performance.

We have explained that flow dependences are correctly modeled by shadow vari-

ables in cprof. We use shadow variables to address the conditional synchronization

aspect. The conditional synchronization aspect follows from the operational seman-

tics of a PPN process. These operational semantics dictate that a process is allowed to

fire only when all input data is present. In cprof, this means that the maximum value

of the shadow variables of the inputs of the statement represents the correct time of

firing.

Once a statement starts executing in cprof, no delays or stalls occur until the state-

ment has finished writing its output variables. This implies that cprof uses non-

blocking write semantics, assuming that channel sizes are always sufficiently large

to store the produced data. Finite channel sizes affecting throughput via a blocking

write mechanism are currently not supported by cprof. To consider finite channel

sizes, we should explicitly model each channel resource. This requires derivation of

a PPN from the sequential program, because the channels are not explicitly present

in the sequential program. Modeling finite channels sizes is therefore a subject of

future research.

Control Variables

For each statement s for which PNGEN constructs a process, we add a control vari-

able C$s that holds the earliest time at which statement s can execute. This earliest

time is determined by the availability of the input data to statement s. The statement
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executes only when all input data is available, resembling the operational semantics

of a PPN process. As such, we ensure that data dependence relations are not vio-

lated, and thus address the conditional synchronization aspect. Control variables also

address the mutual exclusion aspect, which will be detailed further in Sections 4.6.3

and 4.6.4.

A control variable is updated during the read stage by considering the shadow vari-

ables of the variables read by statement s. A statement s can execute after all vari-

ables read by statement s have been written. Thus, a control variable C$s is set to the

maximum value of all shadow variables that are read by statement s. Taking the max-

imum value of all shadow variables effectively delays the statement to the timestamp

at which all data is available, resembling a blocking read operation in terms of the

PPN operational semantics. The statement only executes when all data is available,

which is in accordance with the PPN semantics.

Statement Execution Profile

For each statement s, we also add three one-dimensional arrays R$s, E$s, and W$s

which together constitute the statement execution profile of s. In the statement exe-

cution profile, we collect the read, execute, and write behavior of the statement over

time. The statement execution profile collect at a high level the operational behav-

ior of a process. For example, W$s[23] = 2 means that two write operations are in

progress at time 23. All array elements are initialized to zero. Array R$s is updated

after reading a statement input. Array E$s is updated after executing the statement.

Array W$s is updated after writing a statement output. An update to any of the three

arrays involves incrementing the array elements in an interval [ts, tf ) by one. Here,

ts is the starting time and tf = ts + Λ is the finish time of an operation with latency

Λ.

After executing the instrumented program, we can extract the following information

for each process from the statement execution profiles:

• The total time spent on read operations, statement executions, and write oper-

ations is obtained by summing all elements in the corresponding R$s, E$s, and

W$s arrays.

• The process start time s(p), which is the first time at which a process can fire,

equals the index of first non-zero element in R$s. For statements that do not

consume any input data, this equals zero.

• The process finish time f(p), which is the time at which the process has fin-

ished all iterations, equals the index of the last element in W$s. For statements

that do not produce any output data, we instead take the index of the last ele-

ment in E$s.
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• The number of idle cycles, which is the number of time units in the interval

[s(p), f(p)) in which each of the R$s, E$s, and W$s arrays contains a zero.

• The maximum number of statement executions that are in progress simultane-

ously is obtained by finding the maximum value in E$s.

• The number of process iterations that are in progress simultaneously at a given

time t is given by the flat execution profile, which we define as

R$s[t]+ E$s[t]+ W$s[t]. (4.6)

The average process period can be computed from the process start and finish times

as

Tp =
f(p) − s(p)

Dp
. (4.7)

We then compute the throughput of a process by taking the reciprocal of Tp. The

throughput of the entire PPN is given by the throughput of the sink process, according

to Definition 4.2.

Global Execution Profile

From all statement execution profiles, we compute the global execution profile G$ as

follows:

G$[k] =

|P |−1
∑

i=0

R$i[k]+ E$i[k]+ W$i[k], (4.8)

0 ≤ k < max {∀p ∈ P | f(p)} .

That is, we sum for each timestamp k the statement execution profiles of all processes.

The global execution profile resembles the PROFILE array in COMET. However, the

global execution profile includes read and write operations, which are not included

in COMET. The global execution profile provides information about the behavior of

the application as a whole. We can extract the following information from the global

execution profile:

• The PPN execution time, which equals the number of elements in G$.

• The maximum degree of parallelism, which is the maximum number of simul-

taneously active processes at any time, equals the maximum element in G$.

• The average degree of parallelism is obtained by dividing the sum of all ele-

ments in G$ by the number of elements in G$.
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Execution Times

To address the basic calibration aspect, we rely on user-provided performance data

for the process functions. In particular, cprof uses the Λ and II values from Defini-

tion 3.1 to characterize the latency and initiation interval of each process function.

This allows cprof to handle both pipelined (e.g., LAURA) processing resources and

non-pipelined (e.g., programmable) processing resources. In addition, cprof assumes

fixed latencies ΛR and ΛW for read and write operations that resemble communica-

tion over PPN channels. The particular use of the Λ and II values is discussed in

Section 4.6.5.

Currently, cprof assumes that Λ and II are constant for all invocations of a process

function. This is the main source of inaccuracy, because this is not always the case.

For example, a division function may have a multi-cycle latency in general, but may

have a one-cycle latency if the divider equals one. Including such latency character-

istics should be possible in cprof, because cprof allows a fully functional execution

of the original program. However, our main interest lies in a simple and fast per-

formance estimation approach, and thus detailed dynamic performance models are

currently beyond the scope of cprof.

4.6.3 Maximum Degree of Parallelism

To gain insight in the amount of parallelism in a given application specification, we

instrument an input program in a way that models execution on a hypothetical ideal

machine. This gives the maximum degree of parallelism, which represents an upper

bound on the number of processing resources required to execute the PPN without

processing resource contention. Adding more processing resources does not result in

a further speedup.

The selection between an ideal machine with an infinite number of processor re-

sources and a real machine with a finite number of processor resources depends on

whether or not the mutual exclusion aspect is addressed. Mutual exclusion can be en-

forced when a control variable C$s is updated during the read stage by taking into ac-

count the time at which a processor is available. On both the ideal and real machine,

the conditional synchronization aspect needs to be addressed, because a statement

cannot start until all input data is available. On the ideal machine, the availability of

the input data is the only condition for the statement to execute, which means we do

not take the mutual exclusion aspect into account. Thus, each control variable C$s

is set to the maximum value of all shadow variables representing inputs to s, which

implies s executes as soon as all its input data is available. After execution of the in-

strumented program on the ideal machine, the information from the global execution

profile G$ can be used to draw conclusions about the application performance.



4.6. Sequential Code Profiling 85

The consequence of using the ideal machine is that the PPN execution time equals

the minimum time needed for the PPN execution. By definition, the ideal machine

has sufficient processing resources to avoid processing resource contention. A PPN

execution time of 1 time unit means that the PPN can fire all iterations of all processes

simultaneously. A PPN execution time larger than 1 time unit means that parts of the

PPN are inherently sequential.

Related to the maximum degree of parallelism is the average degree of parallelism.

This represents an upper bound on the speedup that can be obtained with an un-

bounded number of processors [EZL89] compared to execution of a PPN on a single

processor.

4.6.4 Absolute Throughput Estimation

By instrumenting an input program such that the mutual exclusion aspect is taken

into account, we can obtain an absolute throughput estimate of the execution of a

PPN derived from the input program. This is possible because each statement of a

sequential program corresponds to a process in a PPN and because the operational

semantics of a process are well-defined (cf. Section 2.2.4). On a realistic execution

platform with a finite number of processing resources, an additional condition for the

availability of a suitable processing resource needs to be considered before a state-

ment can be executed. This mutual exclusion aspect was not addressed by COMET,

because COMET assumes only the ideal machine. If we assume that all executions of

a statement are mapped onto the same processing resource, then control variable C$s

should at least equal the time C$s + II at which the processing resource can initiate

a new execution. Instead of taking the maximum only over all shadow variables as

described in Section 4.6.3, we now take the maximum over all shadow variables and

C$s + II .

4.6.5 Case Study

In this case study section, we first apply the absolute throughput estimation (cf. Sec-

tion 4.6.4) to the program shown in Figure 4.9. Next, we show how to determine the

maximum degree of parallelism (cf. Section 4.6.3) of this program.

Case Study: Absolute Throughput

In Figure 4.10, we show the cprof instrumentation for the program code shown in

Figure 4.9. We assume that all executions of statement func1 are mapped onto a

single processor. We furthermore assume that a read operation takes ΛR time units;
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1 for (i=0; i<9; i++) {

2 source(&x[i], &b[i]); // Statement 0

3 func1(x[i], &a[i]); // Statement 1

4 sink(a[i], b[i]); // Statement 2

5 }

Figure 4.9: Example program code on which we illustrate cprof.

that a write operation takes ΛW time units; that the latency of func1 is given by

Λfunc1; and that the initiation interval of func1 is given by II func1.

At line 17 of Figure 4.10, we determine the starting time of statement 1 using the ex-

pression max(C$1, $x[i]) which takes the maximum from control variable C$1 and

shadow variable $x[i]. The control variable in the max-expression ensures that the

statement executes after the previous execution of the statement has finished, which

means the processor resource is available. The shadow variable in the max-expression

ensures that the statement executes when the variable $x[i] has been written. By

adding ΛR, we delay execution of the statement to incorporate a read operation delay

of ΛR time units. At line 18, we add the read operation to the read execution profile.

At line 21, the original statement is executed. For the applications that we consider,

actual execution of the statements is not required to obtain throughput assessments.

By omitting the actual execution of statements, the throughput assessment can be per-

formed in less time. At line 22, we set the finish time of the statement and at line 23

we add the actual execution of the statement to the execution profile. At line 24, we

update control variable C$1 such that the next execution of the statement starts at least

after a full initiation interval. At line 27, we set the time at which a[i] is written. At

line 28, we add the write operation of a[i] to the write execution profile.

At line 31, we show the instrumentation for statement 2 which takes two inputs a[i]

and b[i]. Both a[i] and b[i] have to be available before statement 2 can execute,

so we consider the shadow variables of both input variables to determine the starting

time of statement 2. By including both in the max-expression, we take the conditional

synchronization aspect into account.

After executing the instrumented code, the execution profiles are obtained. In Fig-

ure 4.11, we show the statement execution profiles for all three statements, assuming

ΛR = ΛW = 1, Λfunc1 = 2, Λsource = Λsink = 1 and II source = II func1 =
II sink = 1. The first read operation of source starts at time 0, because the statement

does not depend on any input data. The first read operation of func1 starts at time

2, which means the process func1’s start time equals 2. The last write operation of

func1 finishes at time 38, which means process func1’s finish time equals 38. Using

Equation (4.7) we find that the average period Tfunc1 = 4, which can be verified
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1 for (i=0; i<9; i++) {

2 // Read stage (void, no input arguments to statement 0)

3

4 // Execution stage

5 source(&x[i], &b[i]); // Original statement 0

6 done = C$0 + Λsource

7 for (t=C$0; t<=done; t++) E$0[t]++;

8 C$0 += II source;

9

10 // Write stage

11 $x[i] = done + ΛW;

12 for (t=done; t<=done+ΛW; t++) W$0[t]++;

13 $b[i] = $x[i] + ΛW;

14 for (t=done; t<=done+ΛW; t++) W$0[t]++;

15

16 // Read stage

17 C$1 = max(C$1, $x[i]) + ΛR;

18 for (t=C$1-ΛR; t<=C$1; t++) R$1[t]++;

19

20 // Execution stage

21 func1(x[i], &a[i]); // Original statement 1

22 done = C$1 + Λfunc1

23 for (t=C$1; t<=done; t++) E$1[t]++;

24 C$1 += II func1;

25

26 // Write stage

27 $a[i] = done + ΛW;

28 for (t=done; t<=done+ΛW; t++) W$1[t]++;

29

30 // Read stage

31 C$2 = max(C$2, $a[i], $b[i]) + 2*ΛR;

32 for (t=C$2-2*ΛR; t<=C$2; t++) R$2[t]++;

33

34 // Execution stage

35 sink(a[i], b[i]); // Original statement 2

36 done = C$2 + Λsink

37 for (t=C$2; t<=done; t++) E$2[t]++;

38 C$2 += II sink;

39

40 // Write stage (void, no output arguments to statement 2)

41 }

Figure 4.10: Instrumentation by cprof for the program shown in Figure 4.9.
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Figure 4.11: Execution profiles obtained by executing the instrumented code of Fig-

ure 4.10. Empty cells in the R$, E$, and W$ profiles represent ‘0’.
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visually in Figure 4.11.

The first read operation of sink starts at time 6, because the first execution of sink

depends on variables a[0] and b[0]. Variable a[0] is written by func1 at time 5,

and variable b[0] is written by source at time 2. The first execution of sink can

thus only start after time 5 at which both a[0] and b[0] are available. The number

of idle cycles for the sink statement is eight, since there are eight time units in the

interval [6, 41) in which R$2 = E$2 = W$2 = 0. This means the sink statement

does not receive data at a fast enough rate. The number of idle cycles for the other

two statements is zero, which means they fully utilize their processing resources.

In the bottom part of Figure 4.11 we show the global execution profile G$ that is

obtained using Equation (4.8). From the global execution profile, we can observe

that that a full execution of the PPN takes 41 time units. Furthermore, we can observe

that at most three operations are active simultaneously. Thus, the maximum degree

of parallelism in this execution equals three. Summing all elements in G$ gives a total

amount of work equal to 90 units. The average degree of parallelism in this execution

is 90
41 ≈ 2.1. This means that on average, approximately two processes are active.

Case Study: Maximum Degree of Parallelism

To find an upper bound on the throughput of the application, we are interested in the

amount of parallelism inherent in the application. To reveal the amount of parallelism

in the entire application we instrument the code as described in Section 4.6.3. This

requires only a small change to the instrumentation code that updates the control vari-

ables. For example, the newly instrumented code for statement 1 only differs in one

place from the code shown in Figure 4.10. At line 17, we now assign $x[i] + ΛR to

the control variable. That is, we ignore the previous value of C$1 such that the state-

ment is executed as soon as the input data is available. As a result, each statement

execution is performed on its own processing resource, which mimics execution on

an ideal machine.

For the input program of Figure 4.9, execution on an ideal machine results in the

execution profiles shown in Figure 4.12. All nine iterations of each statement execute

in parallel. For example, the process derived from statement 0 executes nine instances

of its function at time 0. The two output arguments of each of the nine statement

executions are available at time 1, since Λsource = 1. This results in eighteen write

operations at time 1.

From the global execution profile shown in the bottom part of Figure 4.12, we can

observe that execution on the ideal machine takes eight time units. This is a lower

bound on the execution time of a PPN derived from the input program under the given

latency values. Furthermore, we can observe that at most eighteen operations execute
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Figure 4.12: Execution profiles obtained by profiling the code of Figure 4.9 on an

ideal machine. Empty cells in the R$, E$, and W$ profiles represent ‘0’.

in parallel. Thus, to attain the minimum execution time of eight time units, a system

with eighteen processors is required. The average degree of parallelism equals 90
8 =

11.25. This means that on average, 11.25 operations are in progress. Typically, the

average degree of parallelism provides a design point which delivers a performance

close to the maximum achievable performance, at a substantially reduced number of

processing resources [EZL89]. With 11 or 12 processors, the minimum execution

time becomes 10 time units, which is 25% above the minimum execution time. The

reduction in the number of processing resources is 33–39%.

4.6.6 Transformation Performance Estimation

In the previous sections, we have distinguished two modes of operation of cprof. In

Section 4.6.3, we presented how to determine the maximum degree of parallelism,

where each iteration of a process is executed on a separate processing resource. In

Section 4.6.4, we presented the absolute throughput estimation mode, where all it-

erations of a process are executed on the same processing resource. These two

modes represent the two extremal design points of the possible assignments of it-

erations to processing resources. Many alternative design points exist between both

extremes, which can be obtained by varying the assignment of iterations to process-

ing resources. These two extremal design points are essential information for the
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1 for (i=0; i<9; i++) {

2 pr$ = i % N; // For modulo unfold

3 pr$ = i / ((9-0)/N); // For plane cut

4

5 // Read stage

6 C$1[pr$] = max(C$1[pr$], $x[i]) + ΛR;

7 for (t=C$1[pr$]-ΛR; t<=C$1[pr$]; t++) R$1[t]++;

8

9 // Execution stage

10 func1(x[i], &a[i]); // The original statement

11 done = C$1[pr$] + Λfunc1

12 for (t=C$1[pr$]; t<=done; t++) E$1[t]++;

13 C$1[pr$] += II func1;

14

15 // Write stage

16 $a[i] = done + ΛW;

17 for (t=done; t<=done+ΛW; t++) W$1[t]++;

18 }

Figure 4.13: Instrumented code for statement 1 of Figure 4.9 to analyze splitting

transformations.

designer. At this stage, the designer knows whether he can satisfy a performance

constraint at all from the maximum degree of parallelism. However, this extremal

design point has a very high implementation cost, as it assumes execution on an ideal

machine. A realistic design point is provided by the absolute throughput estimate.

Using splitting transformations (cf. Section 5.1.1, the designer can evaluate inter-

mediate design points with higher performance, eventually satisfying his constraints.

Before starting this exploration, a designer already knows if his performance con-

straint can be satisfied.

A convenient way to obtain the alternative design points is through process split-

ting transformations that resemble loop unfolding transformations [Muc97, SKD02].

Such splitting transformations are covered in detail in Chapter 5.

In this section, we present how the performance of transformed PPNs can be ana-

lyzed using cprof, without the need to actually apply the splitting transformation on

the program code. This allows a designer to quickly evaluate different design points,

and then select the design point that best matches the design requirements. Then, the

designer has to apply only those splitting transformations that result in the selected

design point to obtain the desired implementation. To model a splitting transforma-

tion with factor N , we generalize the mutual exclusion aspect to N processors.

In Figure 4.13, we show the instrumented code for statement 1 of Figure 4.9. This
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code differs from the original instrumented code shown in Figure 4.10, to enable

performance estimation of splitting transformations. The differences with the original

instrumentation are underlined in Figure 4.13. The main difference with the original

instrumentation is that statement 1’s control variable C$1 is changed into an array of

N elements, where N is the splitting factor. The control variable array is indexed

using a processing resource selection variable pr$. At the start of each iteration, this

variable is set to the identifier of the processing resource to which the iteration is

assigned.

As detailed further in Section 5.1.1, a process iteration domain can be split in dif-

ferent ways. We distinguish between modulo unfolding and plane cutting transfor-

mations. The assignment to pr$ depends on the chosen transformation. At line 2 in

Figure 4.13, we assign i%N to analyze a modulo unfolding transformation. At line 3

in Figure 4.13, we assign i / ((9-0)/N to analyze a plane cutting transformation.

Setting the pr$ variable effectively selects the control variable that is used for the

iteration. The instrumentation statements for the read, execute, and write stages then

work on this control variable according to the method described in Section 4.6.4.

In Figure 4.14, we show the execution profiles obtained after instrumenting the code

of Figure 4.10 such that a modulo unfolding transformation on func1 is modeled.

We assume N = 3, which results in three partitions of the func1 statement. For each

partition, we maintain separate statement execution profiles, to which we append an

n suffix, with 0 ≤ n ≤ 2 identifying the partition. The execution time is reduced

to 33 time units, compared to 41 time units for the untransformed case. The number

of idle cycles for the sink statement is reduced from 8 to zero, which means it now

receives data at a fast enough rate. As a result, the processing resource executing

sink is now fully utilized. However, the three processing resources executing func1

are now underutilized, because each exhibits 10 idle cycles.

4.6.7 Instrumentation Overhead

A program instrumented by cprof exhibits two forms of overhead: performance

degradation and an increased memory footprint. Performance degradation is caused

by the instrumentation statements that update the shadow variables, control variables,

and execution profiles. These profiling primitives are updated at each statement ex-

ecution using a few inexpensive addition instructions. However, these instructions

result in significant performance degradation when dealing with large function laten-

cies Λ, because the number of instrumentation instructions depends on the latency.

The memory footprint of the instrumented program may easily be twice the mem-

ory footprint of the original uninstrumented program. This large memory footprint

is mainly caused by two instrumentation primitives: shadow variables and statement
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Figure 4.14: Execution profiles obtained by executing the code of Figure 4.10, with

statement 1 subject to a modulo unfolding transformation with splitting factor N = 3.
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Aspect RTL sim. SystemC MCM cprof

Analytical 8 8 4 8

Functional validation 4 4 8 4

Runtime min-hrs minutes seconds seconds

Accuracy very high high medium high

Effort medium high small small

Buffer sizes 4 4 4 8

Reordering 4 8 8 4

Interconnect type 4 4 8 8

Intra-process overlap 4 4 8 4

Table 4.2: Characteristics of different estimation methods.

execution profiles. For each scalar variable or array element a shadow variable is

instantiated. Thus, programs that contain many variables or large arrays result in pro-

grams with many shadow variables, increasing the memory footprint. The statement

execution profiles mainly affect the memory footprint depending on the execution

time. Thus, the memory footprint increases as the execution time of a program in-

creases.

4.7 Comparison

We have discussed four performance estimation methods in the previous sections.

How do these four methods compare to each other? In this section, we compare nine

different aspects for the four estimation methods in Table 4.2. Below, we discuss

each aspect in more detail.

Only the MCM method is analytical. This means it does not rely on actual exe-

cution of (a simulation model of) the PPN, but computes a performance estimate by

analytical means. The other three methods rely on execution of the PPN. That is,

each firing of each process is simulated during the estimation. As such, a functional

validation can be performed with little additional effort, which allows a designer to

verify functional correctness.

The running time of each method varies from minutes or hours for RTL simulation,

to seconds for the MCM and cprof methods. The difference in running times is caused

by the difference in the level of detail of the estimation method. For example, the RTL

simulation method works at the level of logical gates and registers, while the cprof

method works at the level of process firings. For most systems, the number of logical
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gates and registers is a few orders of magnitude higher than the number of processes.

As such, the RTL simulation method needs to update more simulation primitives per

time step than the cprof method, which leads to a longer running time. Because the

MCM method is analytical, its running time is independent of the process domain

sizes and latencies. In contrast, the non-analytical methods are dependent on these

factors, since they simulate every time unit of the system execution.

The accuracy of the RTL simulation method is very high, since the method uses

the same RTL code that is used for implementation of the system. The accuracy of

the SystemC and cprof methods is lower than the accuracy of the RTL simulation

method, because low-level details of for example communication delays are omitted

in the SystemC and cprof methods. Nevertheless, both approaches have a comparable

accuracy, because they use the same characterization of process execution times. The

MCM method only has high accuracy for PPNs with uniform dependence distances

and without reordering communication. For PPNs with non-uniform dependence

distances or reordering communication, the MCM method’s accuracy decreases.

The effort for the designer to obtain a throughput estimate varies significantly be-

tween the four methods. The generation of an RTL simulation project is highly auto-

mated in ESPAM’s ISE backend. Because the RTL simulation uses the same RTL that

is also used for synthesis, no custom simulation models have to be developed. Still,

some effort is required from the designer, such as integrating custom IP cores into the

system. A SystemC simulation requires considerably more effort, in particular if the

system contains custom processing or communication components for which no Sys-

temC model exists. In such a case, the designer has to develop a SystemC model for

the unsupported components before a SystemC simulation can be performed. The

MCM and cprof methods are both fully automated and require no effort from the

designer.

The cprof method currently does not take the finite buffer sizes of a PPN into ac-

count, as explained in Section 4.6.2. The other three methods do take buffer sizes

into account, such that a blocking write resulting from a full FIFO buffer may result

in a smaller throughput estimate.

Reordering channels are currently only supported by the RTL simulation and cprof

methods. Reordering support for the RTL simulation method is provided by the syn-

thesizable reordering buffer presented in Section 3.6. Reordering support for the

SystemC simulation method requires development of a SystemC reordering buffer

model. Reordering support for the MCM method requires further investigation. Re-

ordering support for the cprof method is provided because tokens are not stored in a

channel model, but are stored in shared random access memory instead.

The MCM and cprof methods assume fixed-latency communication between pro-

cesses and do not take the interconnect type into account. In contrast, SystemC and
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Name Type #processes #channels (OO) cyclic

mns10 kernel 4 3 (0) no

grid kernel 4 5 (0) self

oddeven-sort kernel 4 13 (0) yes

dv97ex4 kernel 4 7 (2) self

qr kernel 8 15 (0) yes

mmm kernel 8 10 (0) self

mvt kernel 7 11 (1) self

sobel kernel 5 15 (0) no

mp3dec application 28 58 (0) yes

mrvd-qrd application 43 110 (0) yes

mjpeg-enc application 6 6 (0) no

H.264dec application 11 24 (0) yes

Table 4.3: Characteristics of benchmarks used in experiments.

RTL simulation may include any type of communication component, such as a FIFO

buffer or Network-on-Chip (NoC). However, the designer needs to develop a Sys-

temC model to use a new interconnect type in a SystemC simulation.

The RTL simulation, SystemC simulation, and cprof methods support intra-process

overlapped execution of subsequent iterations of a process. The MCM analysis

method does not support overlapped execution of subsequent iterations, because it

assumes sequential execution of all iterations when determining the execution times

of the throughput modeling graph nodes.

4.8 Experimental Results

To assess the feasibility and accuracy of the four performance estimation methods

presented in this chapter, we have performed experiments on twelve different ap-

plications. The first eight applications are small kernels, whereas the remaining six

applications perform a larger amount of work per process. In Table 4.3, we list for

each application the number of processes; the total number of channels; the number

of out-of-order channels; and whether the PPN is cyclic, acyclic with selfloops, or

truly acyclic. For example, application dv97ex4 consists of 4 processes, and 7 chan-

nels of which two are out-of-order, and contains selfloops but no cycles involving

multiple nodes.

Not all aspects are covered by each of the four throughput estimation methods. To
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Figure 4.15: Accuracy of throughput estimation methods.

enable a comparison across the four methods, we make the following four assump-

tions. First, we assume buffer sizes are large enough to avoid performance penalties

due to blocking write operations on full channels. That is, increasing any buffer size

by any amount does not result in a higher throughput of the PPN. Second, we as-

sume a fixed latency Λf for each firing of a function f . Third, we explicitly exclude

overlapped execution between iterations of a process by setting each function II f to

Λf + c, where c equals the number of cycles to read and write a single token. As

such, no overlap occurs between the read, execute, and write stages of a process.

Fourth, we assume that all read operations of an iteration happen in parallel in one

cycle according to the LAURA execution model. Similarly, we assume that all write

operations of an iteration happen in parallel in one cycle.

4.8.1 Accuracy

We show the accuracy of each of the four methods for our set of twelve applications

in Figure 4.15. On the vertical axis, we show the percentual deviation from the actual

throughput value. We assume that RTL simulation gives a fully accurate assessment,

and thus use the RTL simulation as the baseline for comparing accuracy of the Sys-

temC simulation, MCM, and cprof methods.

As can be seen in Figure 4.15, only the accuracy of the MCM method exhibits

significant deviations. The inaccuracy of qr and H.264dec is caused by incorporating
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non-uniform dependences in the MCM modeling graph. The inaccuracy of dv97ex4

and mvt is caused by out-of-order communication in the application. We cannot

define tight bounds on the inaccuracy of the MCM method, nor whether the method

overestimates or underestimates the actual throughput.

The SystemC and cprof methods deliver highly accurate results for all applications.

The difference in reported throughput with RTL simulation is at most on the order

of tens of clock cycles, which can be attributed to (re)initialization of components.

SystemC simulations are missing for the dv97ex4 and mvt applications, because ES-

PAM’s current SystemC backend does not support reordering communication.

Using any of the four methods described in this chapter, the period of a PPN can be

obtained. This period is expressed as a number of clock cycles. However, to obtain

the absolute execution time of a PPN period, the number of clock cycles should be

multiplied by the clock cycle length. This clock cycle length depends on factors such

as combinational path lengths and routing delays. These factors are known only after

place-and-route of the PPN’s RTL implementation. Thus, none of the four methods

allow obtaining throughput assessments expressed in absolute time.

4.8.2 Running Time

We have measured running times of the different estimation methods on an Intel Core

2 Duo system running at a 2400 MHz clock frequency and having 4 GB of RAM

available. The running time for RTL simulation includes scripted Xilinx ISE 13.1

project creation, simulation model compilation using Xilinx Fuse 0.40d, and simula-

tion model execution. The running time for SystemC simulation includes compilation

and execution of the simulation model. The running time for MCM analysis includes

generation of the model and execution of the SDF3 MCM analysis tool [SGB06].

The running time for cprof includes generation, compilation, and execution of the

instrumented code. For all estimation methods, we disable generation of waveforms

or traces, to eliminate tracing overhead from the results.

We show the running times of each of the four methods for our set of twelve ap-

plications in Table 4.4. The running times for RTL simulation vary from tens of

seconds for applications with small function latencies and small domains, to hours

or even days for applications with large function latencies or large domains such as

mjpeg-enc. The running times for SystemC simulation vary from seconds to minutes,

making SystemC simulation a few orders of magnitude faster than RTL simulation.

The running times for the MCM method are in all but two cases well below one sec-

ond. Exceptions are mp3dec and mrvd-qrd, where the large number of edges and

cycles in the PPN results in a large number of cycle means to be computed. The run-

ning times for cprof are in most cases below one second. Exceptions are mjpeg-enc



4.9. Conclusion and Summary 99

Application RTL sim. (s) SystemC (s) MCM (s) cprof (s)

mns10 46 2.6 0.1 0.3

grid 34 2.7 0.1 0.3

oddeven-sort 36 2.7 0.1 0.3

dv97ex4 46 n/a (OO) 0.1 0.3

qr 38 3.0 0.1 0.3

mmm 37 2.9 0.1 0.3

mvt 35 n/a (OO) 0.1 0.3

sobel 320 33 0.1 0.3

mp3dec 63 1.2 1.2 0.4

mrvd-qrd 64 4.6 140 0.4

mjpeg-enc 248433 220 0.1 6.4

H.264dec 13771 91 0.1 2.7

Table 4.4: Running times of different estimation methods.

and H.264dec, which have large function latencies on the order of thousands of clock

cycles. These long latencies result in many updates to the execution profiles, which

increases the total running time of cprof. In contrast, the running time of the MCM

method does not depend on actual function latency values due to the analytical nature

of the MCM method.

4.9 Conclusion and Summary

In this chapter, we have evaluated four different performance estimation methods for

PPNs. The first is RTL simulation, which is often not attractive or feasible due the

amount of time required to obtain a performance estimate for a given system. The

second is SystemC simulation, which yields accurate results in significantly less time

compared to RTL simulation. The third is a novel analytical approach for PPNs based

on MCM analysis. Our MCM method is able to deliver accurate results for a subset

of PPNs. However, we cannot define tight bounds on the inaccuracy of the MCM

method, nor whether the method overestimates or underestimates the actual through-

put. This model is theoretically attractive and gives insight in the behavior of a PPN,

but is impractical because of the lack of accuracy bounds. The fourth is a novel

profiling-based approach for PPNs, named cprof. This allows one to obtain accurate

results, often in less than one second, without deriving a PPN. Moreover, cprof also

allows assessment of the amount of parallelism in the application, and allows early
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performance assessment of transformed versions of the applications without the need

to actually transform the application.

Each performance estimation method works at a different level of the design phase,

providing different tradeoffs between estimation time, effort, and accuracy. In partic-

ular the cprof method that works at the sequential code provides a fast, robust, and

scalable performance assessment method. Given the characterization using Defini-

tion 3.1, cprof can deliver a very accurate performance estimate of a possibly hetero-

geneous system. As a result, the designer can perform the design iteration depicted

in Figure 1.3 in significantly less time.


