
Estimation and Optimization of the Performance of Polyhedral Process
Networks
Haastregt, S. van

Citation
Haastregt, S. van. (2013, December 17). Estimation and Optimization of the Performance of
Polyhedral Process Networks. Retrieved from https://hdl.handle.net/1887/22911

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22911

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22911

Cover Page

The handle http://hdl.handle.net/1887/22911 holds various files of this Leiden University
dissertation.

Author: Haastregt, Sven Joseph Johannes van
Title: Estimation and optimization of the performance of polyhedral process networks
Issue Date: 2013-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22911
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 3
SYNTHESIZING PPNS

In Chapter 2, we introduced the Polyhedral Process Network model of computation

and the PNGEN tool flow which automatically derives PPNs from sequential static

affine nested loop programs written in C. We then introduced the ESPAM tool which

employs the LAURA model to obtain synthesizable RTL implementations of PPNs.

In this chapter, we focus on optimizing the RTL in the aforementioned tool flow.

We first investigate shortcomings of the current state-of-the-art techniques and then

propose extensions to facilitate more efficient RTL implementations.

3.1 Motivation & Contributions

When implementing industrially relevant applications, such as the sphere decoder

application discussed in Chapter 6, and when applying transformations discussed

in Chapter 5, we encountered four limitations of the LAURA model and the ESPAM

tool. These limitations comprise characterization of functions, incorporation of novel

front-end optimizations, handling of more complex domains, and handling out-of-

order communication. In this chapter, we present solutions to these four limitations.

First, in the original work describing the LAURA model, only the delay metric of

an IP core was considered [ZSKD03, NSD08a]. Such a simplified characterization

does not suffice when integrating IP cores generated by HLS tools or when reasoning

about system composition. In Section 3.2, we therefore present a more elaborate

characterization of IP cores.

Second, the PN tool performs several optimizations that were not taken into account

in the original LAURA model. In Section 3.3 and 3.4, we show how data reuse and

sticky FIFO optimizations can be leveraged in the LAURA model to obtain more

38 Chapter 3. Synthesizing PPNs

Read unit

Eval. logic

Exec. unit

IP core

Write unit

Eval. logic

Control unit

3.2

3.3
3.3

3.4

3.5 3.5

3.2

3.6

Figure 3.1: Position of the contributions of this chapter in the LAURA model.

efficient implementations.

Third, for complex iteration domains, the evaluation logic of a LAURA processor

may become part of the critical path limiting the maximum achievable clock fre-

quency of a system. As a result, the overall throughput of the system is limited. In

Section 3.5, we investigate two different approaches to reduce the degradation of the

maximum achievable clock frequency.

Fourth, applications with reordering communication could not be implemented us-

ing the ESPAM tool. Moreover, the known reordering buffer implementations suf-

fered from read and write penalties with regards to non-reordering buffers [ZTKD02].

In Section 3.6, we present a new reordering buffer design with single-cycle read and

write latencies that has been integrated in ESPAM. The particular design enables

effortless integration in ESPAM-generated MPSoCs with point-to-point communica-

tion. In Section 3.7, we summarize this chapter. The positions of the contributions to

the LAURA model have been indicated in Figure 3.1.

3.2 IP Core Characterization

The original LAURA model assumes that the IP core that is integrated into the exe-

cute unit comes from an external library. Such a library contains IP cores for different

functions and possibly multiple IP cores for the same function that differ in perfor-

mance and resource cost metrics. Being able to characterize an IP core in a concise

way is important when considering performance estimations of PPNs in Chapter 4.

To systematically distinguish between different IP cores which possibly implement

the same function, we introduce the notion of a function implementation.

Definition 3.1 (Function Implementation).

A function implementation is a particular implementation of a process function F . A

function implementation is characterized by

3.2. IP Core Characterization 39

• a latency ΛF and

• an initiation interval II F ,

where ΛF ∈ N+ is the input-to-output delay in clock cycles, and II F ∈ N+ is the

initiation interval in clock cycles.

The delay ΛF represents the time between the start of a function execution and the

moment at which all output has been produced. In Figure 3.2c, we show a time line

of three sequential executions of a function implementation with ΛF = 6.

The initiation interval II represents the amount of time between successive starts

of a function implementation. Figure 3.2a depicts a function implementation with

II F = 1, allowing an execution of a function to be started every clock cycle. As a

result, different executions of the function overlap in a pipeline fashion. Figure 3.2b

depicts a function implementation with II F = 4, allowing an execution to be started

only every four clock cycles. The amount of overlap between different executions

is less than the previous scenario. Figure 3.2c depicts a function implementation

with II F = ΛF = 6, resulting in fully sequential executions of the function. This

scenario resembles a non-pipelined function implementation. In this thesis, we set

II F = ΛF to model an implementation on a programmable processor on which

no overlapped execution of function invocations occurs. A low II implies that the

function implementation can deliver a high throughput. However, a low II reduces

the opportunities for resource sharing inside a function implementation, resulting in

higher resource cost compared to function implementations with a higher II . As

such, the II is a key tool in trading off throughput and resource cost of the function

implementation.

3.2.1 IP Core Integration

The function implementations in the IP core library may originate from various

sources. The corresponding IP cores may be implemented in RTL manually, or the

RTL can be automatically derived from a high-level specification using HLS tools.

We have successfully implemented IP cores generated by the PICO [Syn10], Au-

toESL [Xil11], and DWARV HLS tools [YBK+07]. The RTL generated by PICO and

a) II
F
 = 1. b) II

F
 = 4. c) II

F
 = Λ

F
.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10111213 0 1 2 3 4 5 6 7 8 9 10111213 14151617

Figure 3.2: Different initiation intervals for an IP core with delay ΛF = 6.

40 Chapter 3. Synthesizing PPNs

AutoESL can be integrated in a straightforward way by connecting the clock, reset,

enable, and data ports to the execute unit [HK09]. The RTL generated by DWARV

assumes a shared memory model which is different from the distributed memory

model employed in the PPN context. Therefore, integrating DWARV cores requires

an additional wrapper which transfers data to and from a memory that connects to the

DWARV core [NHS+11].

HLS tools such as PICO or AutoESL characterize a generated fixed-latency core by

its latency Λ and initiation interval II [Fin10]. In the original LAURA model, only the

latency was taken into account and the II value was assumed to be one. To integrate

a fixed-delay IP core characterized by Λ and II values, we have extended the LAURA

model to take IP cores with II > 1 into account. Both Λ and II are incorporated in

the control unit of the generated LAURA HDL. Using the delay value, the control unit

enables the write unit at the appropriate times, that is, when valid data is produced

by the execute unit. Using the II value, the control unit enables the read unit only at

valid II boundaries.

Function implementations with a variable delay cannot be characterized accurately

by a single number. Instead, a designer may choose to set Λ to the average or worst-

case delay value for performance analysis purposes. When integrating a variable-

delay IP core, the values Λ and II are not taken into account in the LAURA HDL.

Instead, the control unit requires the IP core to indicate when it is ready to accept or

produce data.

3.3 Data Reuse

In applications such as filters, often a variable or array element is written once and

subsequently read multiple times. For example, the array element a[1] in Figure 3.3a

is written once when i = 1 and read when j = 1 (for argument a[j]) and j = 2
(for argument a[j-1]). In a PPN derived from the C code, both reads of a[1] are

performed by the accum process. For the relation from source to accum, the compiler

detects data reuse, which means the same token is read more than once from this

relation.

A PPN derived from the C code using PNGEN is shown in Figure 3.3b. Channels F1

and F3 implement the data reuse channel pair for the relation from source to accum.

Channel F1 is a regular FIFO which transfers a token when accum needs it for the

first time. Channel F3 is a regular FIFO which propagates the token to subsequent

iterations of accum.

In Figure 3.4, we depict part of a LAURA processor for the accum process of Fig-

ure 3.3c. Its read unit contains two multiplexers. The lower multiplexer passes tokens

3.3. Data Reuse 41

a) C code.

for (i=0; i<5; i++) {
 source(&a[i]);
}
for (j=1; j<5; j++) {
 accum(a[j], a[j-1], &b[j]);
}
for (k=1; k<5; k++) {
 sink(b[k]);
}

b) PPN with data reuse.

F1

F2

F3

sink

accum

source

Figure 3.3: A program with data reuse.

Read unit

Eval. logic

Exec. unit

accum

Write unit

Eval. logic

Reuse

Eval. logic

To F2From F1

FIFO F3

b[j]
a[j]

a[j-1]

Figure 3.4: Handling data reuse in a LAURA processor.

from FIFO F1 to the first input of the accum IP core. The upper multiplexer selects

between FIFO F1 that is read during the first iteration and FIFO F3 that is read dur-

ing subsequent iterations, and passes the token to the second argument of the IP core.

The write unit contains a single demultiplexer which propagates the IP core output

to FIFO F2. To handle the reuse, we extend the write unit with another output port

connected to FIFO F3. The output port is driven by the first input to the IP core. A

separate reuse evaluation logic block ensures that only tokens that need to be prop-

agated to subsequent iterations are written to F3. The reuse evaluation logic block

duplicates the expressions from the write unit’s evaluation logic for the reuse ports to

select the correct output port. Tokens that are reused in subsequent iterations can be

written to F3 immediately after reading them, irrespective of the IP core latency. We

therefore connect the counters of the read unit to the reuse evaluation logic block.

42 Chapter 3. Synthesizing PPNs

3.4 Sticky FIFOs

As an optimization of data reuse, PNGEN can classify a data reuse channel pair as

a sticky FIFO. If the same token is transferred over a FIFO to multiple subsequent

iterations of a process, then PN classifies the FIFO as a sticky FIFO and removes

the selfloop. During a regular read operation on a sticky FIFO, the receiving process

stores the token in a register. Subsequent iterations that need the same token then read

from the register instead of the FIFO. This reduces inter-process communication and

the number of write operations the producing process has to perform.

We implement a sticky FIFO by replacing the read multiplexer of a function argu-

ment with a “sticky read multiplexer”. In Figure 3.5, we illustrate both types of read

multiplexers. Figure 3.5a depicts the situation where all of the three input ports of

the read multiplexer are connected to regular FIFOs. The read unit’s evaluation logic

block drives the input select port of the multiplexer. The output of the multiplexer is

propagated to the execute unit. In the example of Figure 3.5a, we first read a token

from port 2, then a token from port 3, and then four tokens from port 1, as indicated

by the sequence below the input select port.

Figure 3.5b depicts the situation where port 1 is connected to a sticky FIFO. The out-

put of the multiplexer is both propagated to the execute unit and written into register

R. The output of register R is an additional input to the multiplexer. This additional

input is selected when input select is set to zero. This is illustrated by the sequence

below the input select port. We first read a token from port 2, then a token from port

3, and then a token from port 1. Then, input select is set to zero which means we

reuse the token read from port 1 that is still in R. As a result, the process writing to

port 1 has to write the token only once.

Since the register is connected to the output of the multiplexer, it also stores tokens

read from other ports that can be connected to any type of channel. However, tokens

from non-sticky FIFOs are never read from the register, since the semantics of a

a) Port 1 connects to a regular FIFO. b) Port 1 connects to a sticky FIFO.

input_select:

2,3,1,1,1,1

port 1

port 2

port 3

out

input_select:

2,3,1,0,0,0

port 1

port 2

port 3

out

R

Figure 3.5: Read multiplexer architecture.

3.5. Evaluation Logic Optimizations 43

sticky FIFO ensure that a regular read access is always performed before the token

in the register is reused. For the example of Figure 3.5b this means that a zero in

the input select sequence is always preceded by a one, potentially with more zeros in

between. Therefore, we do not need a separate register for each sticky FIFO port, but

use a single register connected to the multiplexer output.

3.5 Evaluation Logic Optimizations

The main purpose of a LAURA processor is to route tokens from different process

ports to the IP core during the appropriate process iterations. The evaluation logic

blocks of a LAURA processor select the process ports that are accessed during a

given iteration. The evaluation logic is driven by a set of cascaded counters that

iterate through the points of the process iteration domain. At each iteration point,

an expression is evaluated for each process port. When the expression evaluates to

true, the port is accessed in the current iteration. The result of the evaluation is for-

warded to the read multiplexer or write demultiplexer of the LAURA processor. In

Figure 3.6, we illustrate the internal structure of the evaluation logic by considering

the read unit’s evaluation logic of Figure 2.12 in more detail. Only one counter is

present, because the domain of the process is one-dimensional. The evaluation logic

contains an expression for each of the two input ports. Port 1 is accessed during the

first five iteration points, as denoted by the bit string in the right part of Figure 3.6.

Port 2 is accessed during the remaining five iteration points.

We have identified two problems with the evaluation logic of a LAURA processor.

First, the evaluation logic may affect the maximum achievable clock frequency of

a LAURA processor, as the expressions become part of the critical path. Second,

expressions containing for example max or div operators are nontrivial to implement.

These problems becomes apparent when considering the scheduling transformation

discussed in Section 5.1.4, as illustrated in for example Figure 5.11.

We address the first problem by pipelining the evaluation logic, as discussed in

Section 3.5.1. We address the second problem by implementing the evaluation logic

using ROM tables, as discussed in Section 3.5.2.

(to multiplexers/demultiplexers)Evaluation logic

i < 5

i >= 5

Counters

i = 0..9

Port1 select: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

Port2 select: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

i

Figure 3.6: Evaluation logic block of a LAURA processor.

44 Chapter 3. Synthesizing PPNs

3.5.1 Pipelined Evaluation Logic

To achieve a higher clock frequency, we break long combinational paths into shorter

combinational paths that are connected by registers. In Figure 3.7, we illustrate this

for the expression i + j < 5. Without pipelining, the maximum combinational path

length is two because the comparison is connected directly to the addition. In Fig-

ure 3.7b, we insert a register between the addition and the comparison. As a result,

the maximum combinational path length is reduced to one and therefore the clock

cycle period for this circuit can be decreased. However, the evaluation of the expres-

sion now takes two clock cycles. Only if subsequent evaluations can execute in an

overlapped fashion then a throughput rate of one operation per clock cycle can be

sustained at a clock frequency that is higher than the original clock frequency.

The advantage of this solution is that the maximum clock frequency of a LAURA

node can be increased at the expense of only a small amount of registers. A disad-

vantage of this solution is that deciding the amount and insertion points of registers

is a non-trivial task. Moreover, control dependencies inside the LAURA model and

control dependencies between LAURA processors and other processing or communi-

cation components of a system do not allow for unlimited insertion of registers. We

have found that pipelining the evaluation logic by one level is still possible.

3.5.2 ROM-Based Evaluation Logic

To implement any non-parametric evaluation logic, we can always resort to a table

based implementation. We obtain this table by evaluating all expressions at compile-

time and storing the results in a Read-Only Memory (ROM). This technique has

already been presented by Derrien et al. [DTZ+05], but was not available in the

Daedalus design flow. Derrien et al. already found that ROM based evaluation logic

is more expensive in terms of resources than expression based evaluation logic. When

realizing designs, we favor expression based evaluation logic, and only use ROM

based evaluation logic when expression based evaluation logic requires operators like

max and div, as these operators are not trivial to implement in RTL. Within Daedalus,

we can select per processor whether to use expression based evaluation logic or ROM

+ <5
i

j
out + <5

i

j
outtmp

a) Original: path length of 2 operations. b) Pipelined: max. path length of 1 operation.

Figure 3.7: Expression pipelining.

3.5. Evaluation Logic Optimizations 45

based evaluation logic.

For each iteration in the process domain, the ROM contains a word that specifies

which ports need to be accessed. In a straightforward implementation of ROM-based

evaluation logic, all port selection signals for each iteration of the process domain are

stored in a table E. For a read or write unit of a process p connected to n ports, such

a table E requires

n · |Dp| (3.1)

bits, where |Dp| is the cardinality of p’s process domain. However, many stream-

ing applications exhibit repeating patterns in the ports accessed during subsequent

iterations. Like [DTZ+05], we compress such repetition by applying a run-length

encoding on the ROM data. This requires an additional table R containing the repe-

tition count of each word in table E.

In Figure 3.8, we show the read unit’s evaluation logic of Figure 2.12 implemented

using ROM containing run-length encoded port selection patterns. Contrary to Fig-

ure 3.6, the evaluation logic block now contains two ROMs instead of a set of ex-

pressions. The first ROM shown at the bottom of the evaluation logic block contains

table E. A column in this ROM represents the ports that are selected during a set of

subsequent iterations. For example, the first column contains the sequence [1, 0]T ,

meaning the first port is selected while the second port is deselected. The second

ROM shown at the top of the evaluation logic block contains table R. It specifies the

amount of times each column in E has to be repeated. In Figure 3.8, table R contains

[4, 4], meaning that both columns in E should be repeated four times. Thus, the first

column is considered in total five times, and then the second column is considered

five times. At run time, this results in port 1 being accessed five times, followed by

port 2 being accessed five times, as illustrated by the bit strings at the right part of

Figure 3.8.

The resource cost of a compressed ROM-based evaluation logic block mainly de-

pends on the sizes of tables E and R. The size of E depends on the number of entries

and the number of ports. The size of R depends on the number of entries and the

number of bits required to store the largest repetition count occurring in R. This

(to multiplexers/demultiplexers)

Evaluation logic

1, 0

0, 1

4, 4Counters

a = 0..9 Port1 select: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
Port2 select: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

a

Figure 3.8: Evaluation logic block of a LAURA processor implemented using ROM.

46 Chapter 3. Synthesizing PPNs

Process - Unit n |Dp| |R| max(R)
ROM Size (bits)

Uncompr. Compressed %

zero-Wr 2 28 13 5 56 65 +16

read-Wr 2 147 42 5 294 210 -29

vectorize-Rd 4 147 42 5 588 294 -50

vectorize-Wr 3 147 42 5 441 252 -43

rotate-Rd 5 441 231 4 2205 1848 -16

rotate-Wr 4 441 212 4 1764 1484 -16

sink-Rd 2 28 13 5 56 65 +16

Table 3.1: Individual ROM sizes for QR decomposition with K = 21, N = 7.

yields a total ROM size of

|R| · n + |R| · w (3.2)

bits, where n is again the number of ports and w = ⌈log2 max(R)⌉. The size of a

compressed evaluation logic block may be larger than the size of an uncompressed

evaluation logic block in case

n · |Dp| < |R| · n + |R| · w. (3.3)

To assess whether this occurs in practice, we consider the QR decomposition appli-

cation which exhibits complex port selection patterns that reduce compression effec-

tiveness.

In Table 3.1, we show statistics for the individual ROMs of the five processes con-

stituting a QR decomposition application. For example, the third row corresponds to

the read unit for the vectorize process. An uncompressed ROM for the vectorize read

unit requires 3 · 147 bits according to Equation (3.1). The compressed ROM requires

42 · 4 + 42 · ⌈log2(5)⌉ bits according to Equation (3.2). Applying the compression

technique to the “zero” and “sink” processes results in ROM sizes that are larger than

the sizes of their uncompressed counterparts. This can be attributed to the small do-

main sizes of these processes. Because each pattern is repeated at most twice, the

overhead of table R outweighs the benefits of a smaller number of entries in E.

In Table 3.2, we show the total ROM size with and without using compression

for instances of the QR decomposition application. In all cases except the first, the

compression technique leads to reduction of the memory cost. For larger values of

parameters K and N , the iteration domain sizes of the processes increase. This

results in a larger reduction, because the number of additional bits required to store

3.5. Evaluation Logic Optimizations 47

Parameters Uncompressed Compressed Reduction

K N (bits) (bits) (%)

3 3 222 226 +1.8

4 4 400 386 -3.5

21 7 5404 4218 -21.9

16 8 5328 3748 -29.7

16 16 20128 8820 -56.2

64 16 78880 34116 -56.7

256 64 4800640 685316 -85.7

Table 3.2: Total ROM sizes for different QR decomposition instances.

higher repetition counts increases more slowly than the number of additional points

in the iteration domain.

The worst case for which run-length encoding does not yield any gains is when al-

ternating between two ports. In such a case, the ROM size approaches n · |Dp| bits.

The cost of repetition count table R should be added to this, yielding a “compressed”

ROM whose size may exceed the size of the uncompressed ROM. However, alternat-

ing port selection patterns can often be handled easily using LAURA’s conventional

expression-based evaluation logic. Therefore, we do not need a ROM-based solution

for such cases.

3.5.3 Related Work

All case studies conducted in this dissertation (cf. Chapter 5), the evaluation logic

could be successfully implemented in either a pipelined or a ROM-based fashion.

However, for applications demanding a clock frequency close to the platform limits,

neither a pipelined nor a ROM-based evaluation logic implementation may suffice. In

particular the application studied in Chapter 6 demands a high clock frequency of 225

MHz which neither pipelined nor ROM-based evaluation logic can provide. In such

a case, one may leverage existing work on control generation. However, this may

require non-trivial integration efforts, because the architectures in which the related

works are used differ from the LAURA architecture. We present three alternative

works that may be considered when further improving the LAURA evaluation logic

components.

The CLooGVHDL tool generates a VHDL controller which traverses the points of

a set of polytopes according to a predefined order [DBC+07]. The controller consists

of a set of communicating automata that iterate over the dimensions of the polytope.

48 Chapter 3. Synthesizing PPNs

By placing registers between the automata, the maximum achievable clock frequency

can be increased. Parallel execution of multiple instances of statements was left as

future work. This would be of interest to us, since such parallel execution occurs in

the LAURA architecture.

PARO attempts to reduce the resource cost of control logic by identifying counters

and control signals that can be shared across different processors [DHRT07]. This

approach was shown to lower resource cost particularly for partitioned applications,

since the different partitions still have parts in common. However, the efficacy of this

is limited for PPNs implemented using LAURA processors because of the globally

asynchronous nature of the PPN model. That is, although two processes may share

the same process domain and thus have similar control logic, they do not necessarily

traverse their domains at the same pace.

Another alternative for the evaluation logic components of a LAURA processor is

to implement them using existing HLS tools such as AutoESL [Xil11] or Synpho-

nyC [Syn10]. This has the advantage that a target clock frequency can be specified.

The HLS tool then produces a pipelined controller that is optimized for the specified

clock frequency. However, we found that in practice the output of such tools have dif-

ficulties with the read and write units of a LAURA processor being decoupled [HK09].

For example, stalling the generated controllers on a blocking read condition was not

fully supported at the time of our investigation. When such implementation prob-

lems have been resolved by HLS tool vendors, using an HLS tool to generate the

evaluation logic might be the most favorable alternative solution.

3.6 Out-of-Order Communication

Ideally, a producer process produces tokens in the same order as the consumer pro-

cess consumes them. Such in-order communication allows the channel from pro-

ducer to consumer to be realized using a relatively inexpensive FIFO buffer. How-

ever, the PPNs of some applications do not exhibit solely in-order communication, as

explained in Section 2.3.1. On some channels the order in which tokens are produced

by the producer process may be different from the order in which tokens are con-

sumed by the consumer process, and vice versa. Such communication is known as

out-of-order communication. Out-of-order channels cannot be realized using FIFO

buffers, because the token order needs to be taken into account to guarantee func-

tional correctness. Instead, more sophisticated interconnects are required, such as

reordering buffers. Reordering buffers store incoming tokens in order in a private

memory and contain reordering logic which outputs the stored tokens in the order

required by the consumer. Alternatively, circular buffers with overlapping windows

3.6. Out-of-Order Communication 49

1 2 3 4

1

2

3

3 6 9 12

2 5 8 11

1 4 7 10

1 2 3

y[1]

y[2]

y[3]
for (i=1; i<=4; i++) {

 for (j=1; j<=3; j++) {

 y[i] = F(y[i]);

 }

}

3 2 1

a) C program and PPN. b) Execution according to original program. c) Execution with inner loop reversed.

CH2F

CH1

1 2 3 4

1

2

3

1 4 7 10

2 5 8 11

3 6 9 12

y[1]

y[2]

y[3]

CH2: CH2:

Figure 3.9: Two executions of a program with different communication behavior.

can realize out-of-order communication [BBS09]. This solution requires modifica-

tions to the producer and consumer process synchronization primitives. The impact

on performance and resource cost of these modifications, and the performance and

resource cost of the buffer itself is unclear, as no RTL implementation case study has

been conducted yet.

In Figure 3.9, we show an example C program and two valid executions of this

program. In the first execution shown in Figure 3.9b, we follow the execution order

of the original program. That is, we first execute (i, j) = (1, 1), followed by (1, 2),
etc. The relative order of iteration executions is illustrated by the number inside

the points of Figure 3.9b. Only when i = 4, tokens are written to channel CH2.

Channel CH2 receives tokens in the order y[1], y[2], y[3]. Another valid execution

in which the inner loop is traversed in the reverse direction is shown in Figure 3.9c.

As a result, channel CH2 receives tokens in the order y[3], y[2], y[1], which is

different from the order shown in Figure 3.9b. If we assume that CH2’s consumer

process is not modified, the tokens would arrive in reverse order if CH2 would be

implemented using a FIFO buffer. To respect the correct token order, channel CH2

has to be implemented using a reordering buffer.

Turjan et al. have proposed different realizations of reordering buffers, such as lin-

ear, pseudo-polynomial, and Content Addressable Memory (CAM) based implemen-

tations [TKD03]. The authors showed that these reordering buffer designs have a

considerable negative impact on performance and resource usage. For example,

read and write operations of a CAM implementation take four and two clock cy-

cles [ZTKD02], respectively, while read and write operations on a regular FIFO take

only one clock cycle.

To avoid counteracting the benefits of an application transformation because of pos-

sible reordering communication, we have developed a new reordering buffer [HK12].

The primary difference with previous work is that read and write operations now take

50 Chapter 3. Synthesizing PPNs

Write Address

Generator

(WAG)

Read Address

Generator

(RAG)

Data

Write

Data

Exist

Read

Memory

OO V tokenA

O1 .

O2 V tokenB

O4 . tokenC

O3 .

O5 . tokenD

Producer: Consumer:

address
gen. logic

counters
address
gen. logic

counters

ip

jp

0 1

0

1

2 D

A -

B -

C

ic

jc

0 1

0

1

2

DC

-

B -

A

Full

Figure 3.10: Reordering buffer.

only one clock cycle. This means that replacing a FIFO buffer with a reordering

buffer increases resource usage, but does not introduce additional delay cycles.

Our reordering buffer is composed of a Write Address Generator (WAG), a Read

Address Generator (RAG), and a private memory. The memory is dual-ported, with

one port being addressed by the WAG and the other port being addressed by the RAG.

The WAG and RAG both contain a set of counters which iterate through domains

associated to the channel. These counters are used by the address generation logic

to compute the next write and read addresses. To avoid delay cycles, the counters

and address generation logic are implemented in a pipeline fashion. To minimize

the latency of the address generation logic, we employ a linear addressing scheme.

This addressing scheme is based on conventional linearization of an n-dimensional

array into a 1-dimensional array. As such, the resulting address expressions are linear

polynomials that can be realized efficiently in hardware.

The interface of the reordering buffer resembles a point-to-point FIFO buffer in-

terface. This allows straightforward integration of reordering buffers in ESPAM-

generated PPN implementations. That is, when a transformation introduces out-

of-order communication, we do not have to modify the interfaces of the processes

involved in the out-of-order communication. The interface is depicted in Figure 3.10.

The outgoing slave interface exposes an output data bus, an exist signal to indicate if

a token is available, and a read signal to acknowledge a read operation. The incom-

ing master interface exposes an input data bus, a full signal to block write operations

when the buffer is not ready to accept them, and a write signal to acknowledge a write

operation.

3.6. Out-of-Order Communication 51

We illustrate the memory organization of our reordering buffer at the bottom part of

Figure 3.10. In the bottom left, we show a producer domain consisting of four points

(0, 0), (0, 1), (0, 2), and (1, 2). The producer produces four tokens in the order A, B,

C, D. We store these tokens according to a linear addressing scheme at address

wAddr(ip, jp) = ip + 2 · jp. (3.4)

The slot for each token is shown in the memory of Figure 3.10. For example, token

C is produced in iteration (0, 2) and is therefore stored at address 04. Because of the

linear addressing scheme, some addresses may remain unused for non-rectangular

domains. In our example, this occurs for addresses 01 and 03. The consumer domain

shown on the bottom right consumes the four tokens in the order C, D, B, A. To

retrieve these tokens in the correct order from the memory, we compute

rAddr(ic, jc) = wAddr(Mp→c(ic, jc)) (3.5)

for each point in the consumer domain. That is, we first apply the channel relation

Mp→c as found by the PN compiler. This gives the point (ip, jp) in the producer do-

main that corresponds to the point (ic, jc) in the consumer domain. We then compute

wAddr(ip, jp) to obtain the address from which the token should be read. For the

example of Figure 3.10, PN finds the channel relation

Mp→c(ic, jc) =

[

ip
2 − jp

]

. (3.6)

Therefore, the read address function becomes

rAddr(ic, jc) = ic + 2 · (2 − jc). (3.7)

For token C, which is consumed in iteration (0, 0), the rAddr function yields address

04 which is the same address that was computed by the WAG. However, a token

may not have been written by the producer yet. For example, token C may not be

available yet at address 04. Therefore, we introduce an additional valid bit for each

memory location. The valid bit is set once a token has been written to its address. To

comply with the blocking read semantics of the PPN model, the RAG blocks until

the token corresponding to the current consumer iteration is written. In the memory

of Figure 3.10, tokens A and B have been written, as indicated by the “V”s, whereas

tokens C and D have not been written yet, as indicated by the “.”s.

52 Chapter 3. Synthesizing PPNs

3.7 Conclusion and Summary

To realize the complete forward synthesis flow from a C specification to an FPGA

implementation (cf. Figure 1.3), we have presented four extensions to the LAURA

methodology in this chapter. These extensions include a more flexible characteriza-

tion of IP core performance and resource cost aspects; support for novel optimiza-

tions of the PNGEN tool flow; architectural optimizations to improve the maximum

clock frequency and handle complex iteration domains; and a novel reordering buffer

implementation that has a lower performance penalty compared to previous reorder-

ing buffer implementations. The extensions enable the Daedalus tool flow to support

transformations and cope with industrially relevant applications, as we show in the

next chapters.

