
Estimation and Optimization of the Performance of Polyhedral Process
Networks
Haastregt, S. van

Citation
Haastregt, S. van. (2013, December 17). Estimation and Optimization of the Performance of
Polyhedral Process Networks. Retrieved from https://hdl.handle.net/1887/22911

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22911

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22911

Cover Page

The handle http://hdl.handle.net/1887/22911 holds various files of this Leiden University
dissertation.

Author: Haastregt, Sven Joseph Johannes van
Title: Estimation and optimization of the performance of polyhedral process networks
Issue Date: 2013-12-17

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22911
https://openaccess.leidenuniv.nl/handle/1887/1�

CHAPTER 2
BACKGROUND

In this chapter, we introduce concepts and notations that are used throughout this

thesis. In Section 2.1, we introduce the polyhedral model which we employ for anal-

ysis of programs. In Section 2.2, we review various models of computation that are

widely employed to represent applications. We focus on the polyhedral process net-

work model of computation employed by Daedalus and review in Section 2.3 how

such networks can be derived from a particular class of sequential programs. In

Section 2.4, we review how processes of polyhedral process networks can be imple-

mented in hardware.

2.1 Polyhedral Model

The streaming applications that we consider in this thesis are data-driven: a sequence

of computations is repeatedly applied on an incoming data stream, such as a stream

of images produced by a video camera. These streaming applications spend most of

their execution time in loops that perform computations on data stored in arrays. For

example, edge detection algorithms consist of loop nests that iterate over all pixels

of the input image that is stored in a 2-dimensional array. These loop nests are the

primary candidates for optimization, since most of the time is spent there. To select

and apply optimizations, one needs means to reason about iterations of loops and rela-

tions between statements contained in loop nests. This is possible with the polyhedral

model [Pug91, Fea96] which is employed by modern compilers like GCC [PCB+06]

and LLVM/Polly [GZA+11]. The polyhedral model allows a compact representation

of loop nests while providing sufficient means to express advanced optimizations

such as loop skewing [SKD02]. We use polyhedra to compactly represent loop nests

16 Chapter 2. Background

0 1 2 3 4 5
0

1

2

3

4

5
Upper half-space

Lower half-space

Figure 2.1: A 1-dimensional hyperplane (i.e., a line) H1 = {(j, i) ∈ Q2 | i = 3}
dividing a 2-dimensional space.

in the polyhedral model. A polyhedron can be defined using hyperplanes.

Definition 2.1 (Hyperplane).

A hyperplane H is a subspace of dimension d− 1 inside a d-dimensional space, that

is,

H = {x ∈ Qd | aTx = c},

where a is a non-zero vector of size d and c is a constant [Rij02].

A hyperplane is a generalization of a conventional 2-dimensional plane to n ∈ N

dimensions. A 1-dimensional hyperplane dividing a 2-dimensional space is shown

in Figure 2.1. A hyperplane divides a space into an upper and a lower half-space.

We distinguish open half-spaces which do not include the dividing hyperplane itself,

and closed half-spaces which include the dividing hyperplane. We use hyperplanes

to define subspaces of Qd, known as rational polyhedra:

Definition 2.2 (Rational Polyhedron).

A rational polyhedron P is a subspace of Qd that is bounded by a finite set of m
hyperplanes, that is,

P = {x ∈ Qd | Ax ≥ c},

where A is an integral m × d matrix and c is an integral vector of size m [Ver10].

The shaded rectangular area in Figure 2.2a represents a 2-dimensional rational poly-

hedron that is bounded by the closed upper half-spaces of two 1-dimensional hyper-

planes i = 1 and j = 2. This rational polyhedron extends into infinity in both

dimensions. By adding the closed lower half-space of the hyperplane i+ j = 6 to the

bounds, we obtain a rational polyhedron that is fully enclosed by its bounding hyper-

planes, as shown in Figure 2.2b. Such an enclosed rational polyhedron containing a

finite number of integral points is called a rational polytope.

2.1. Polyhedral Model 17

a) Rational polyhedron. b) Rational polytope.

0 1 2 3 4 5
0

1

2

3

4

5

0 1 2 3 4 5
0

1

2

3

4

5

e) Statement with modulo guard.

for (j=2;j<=5;j++) {
 for (i=1;i<=6-j;i++) {
 F(...);
 }
}

c) Loop nest represented by b).

for (j=2;j<=5;j++) {
 for (i=1;i<=6-j;i++) {
 if (i%2 == 0)
 F(...);
 }
}

for (j=2;j<=N;j++) {
 for (i=1;i<=6-j;i++) {
 F(...);
 }
}

d) Loop with parametric bound.

Figure 2.2: a) A 2-dimensional rational polyhedron; b) a 2-dimensional rational poly-

tope; c) a loop nest of depth two that can be represented by the 2-dimensional ratio-

nal polytope given in b); d) a loop nest where the outer loop has a parametric upper

bound; and e) a statement with a modulo guard.

Definition 2.3 (Parametric Rational Polyhedron).

A parametric rational polyhedron P(s) is a family of rational polyhedra in Qd that

is parametrized by parameters s ∈ Qn:

s 7→ P(s) = {x ∈ Qd | Ax + Bs ≥ c},

where A is an integral m × d matrix, B is an integral m × n matrix, and c is an

integral vector of size m [Ver10].

A parametric rational polyhedron can represent a loop nest that iterates over a finite,

possibly parameterized set of iterations. By assuming that the iterators of such a

loop nest are integers, we can represent a loop nest as a set of integral points in a

(parametric) rational polyhedron. For example, the loop nest shown in Figure 2.2c

can be represented by the rational polytope shown in Figure 2.2b. Each iteration of

the loop nest has a corresponding point in the rational polytope. The loop nest shown

in Figure 2.2d can be represented by a parametric rational polytope.

When for example a statement is guarded with an expression containing a modulo

operator, we are interested in only a subset of the points of a parametric rational

polyhedron. In the example shown in Figure 2.2d, function F is called only for even

values of iterator i. We define the polyhedral set to represent a subset of points in a

parametric rational polyhedron.

18 Chapter 2. Background

3 4 5
0

1

2

3

4

5

6 7 8 9 10

S =

{

(j, i) ∈ Z2 | ∃e ∈ Z :











−1 0
1 0
1 0
0 1

−1 −2











·

(

j

i

)

+











2
−2

0
0
0











· (e) ≥











0
0
4
1

−12











}

= {(j, i) ∈ Z2 | ∃e ∈ Z : 2e = j ∧ j ≥ 4 ∧ i ≥ 1∧
2i + j ≤ 12}

Figure 2.3: Example polyhedral set.

Definition 2.4 (Polyhedral Set).

A polyhedral set S is a finite union of basic integer sets, S =
⋃

i Si, of type Qn →

2Qd

, where each basic integer set Si is defined as

Si = s 7→ Si(s) = {x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c},

where A is an integral m × d matrix, B is an integral m × n matrix, D is an integral

m × e matrix, and c is an integral vector of size m. The parameter domain of S,

{s ∈ Zn | S(s) 6= ∅}, is a polyhedral set containing all parameter values s for which

S is non-empty. A polyhedral set with an empty parameter domain (i.e., n = 0)

is called a non-parametric polyhedral set, and denoted with “s 7→” omitted. The

parameter domain of a polyhedral set is always non-parametric [Ver10].

The polyhedral set depicted in Figure 2.3 contains only a subset of the integral

points of its bounding rational polytope. In particular, it only contains the integral

points for even values of j, which can be expressed as “j mod 2 = 0”. Such con-

straints are enforced using the existentially quantified variables z in Definition 2.4.

For example, the constraint “j mod 2 = 0” is represented by a condition 2e = j and

the requirement that e is integral.

To allow reasoning about the execution order of different iterations of a program,

we define the lexicographic order on the points of a polyhedral set:

Definition 2.5 (Lexicographic Order).

The lexicographic order is a total order on the elements of a polyhedral set. An

element a is lexicographically smaller than an element b, denoted as a ≺ b, if

2.1. Polyhedral Model 19

ai < bi for the first dimension i in which both elements differ, or, equivalently,

a ≺ b ≡
n
∨

i=1



 ai < bi ∧
i−1
∧

j=1

aj = bj



 .

For example, an element a = (2, 3, 5) is lexicographically smaller than an element

b = (2, 4, 0), because the first difference between both elements is in the second

dimension, and the value 3 in the second dimension of a is less than the value 4 in

the second dimension of b.

Loop optimizations such as skewing transform iteration domains that we represent

using polyhedral sets. A transformation of a polyhedral set can be expressed as a

relation between the original polyhedral set and the transformed polyhedral set. We

define the polyhedral map to express such relations:

Definition 2.6 (Polyhedral Map).

A polyhedral map M is a finite union of basic polyhedral maps, M =
⋃

i Mi, of

type Qn → 2Qd1+d2
, where each basic polyhedral map is defined as

Mi = s 7→ Mi(S)

= {(x1,x2) ∈ Zd1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c},

where A1 is an integral m × d1 matrix, A2 is an integral m × d2 matrix, B is an

integral m × n matrix, D is an integral m × e matrix, and c is an integral vector of

size m [Ver10].

The polyhedral set

s 7→ {x1 ∈ Zd1 | ∃x2 ∈ Zd2 : (x1,x2) ∈ M(s)}

is the domain of a polyhedral map M . The polyhedral set

s 7→ {x2 ∈ Zd2 | ∃x1 ∈ Zd1 : (x1,x2) ∈ M(s)}

is the range of a polyhedral map M . In this thesis, we denote polyhedral maps as

M = s 7→ {x1 → x2 | . . . }.

An example polyhedral map consisting of only one basic polyhedral map is

M1 = {(j1, i1) → (j2, i2) | j2 = 2j1 ∧ i2 = i1}. (2.1)

We use polyhedral maps to manipulate points or polyhedral sets by application of the

20 Chapter 2. Background

polyhedral map. For example, applying M1 to a point (2, 1) yields (4, 1), denoted as

M1(2, 1) = (4, 1).

If we apply this polyhedral map to the polyhedral set of Figure 2.2b, that is, if we

compute M1(S1), we obtain the polyhedral set depicted in Figure 2.3. The points in

this new polyhedral set result from application of M1 to each point in the original

polyhedral set S1.

We sometimes need to know the size of a polyhedral set or map, for example to

judge whether a certain transformation is beneficial to a given program. The number

of elements in a polyhedral set or polyhedral map is given by the cardinality:

Definition 2.7 (Cardinality).

The cardinality of a polyhedral set S, denoted as |S|, represents the number of ele-

ments in S.

The cardinality of a polyhedral map M, denoted as |M|, represents the number of

elements in the range of M associated to any element in the domain of M.

We use the barvinok library to analytically determine the cardinality of polyhe-

dral sets and maps [VSB+07, Ver03a]. The cardinality is expressed as a piecewise

quasipolynomial. A piecewise quasipolynomial consists of one or more quasipoly-

nomials:

Definition 2.8 (Quasipolynomial).

A quasipolynomial q(x) is a polynomial expression in greatest integer parts of affine

expressions of variables in x. The coefficient of each term may include a constant

integer division [Ver10].

Definition 2.9 (Piecewise Quasipolynomial).

A piecewise quasipolynomial q(x) consists of one or more quasipolynomials. Each

quasipolynomial qi(x) is defined only for a disjoint piece Di of a domain D. For a

given point x ∈ D, the piecewise quasipolynomial evaluates to

q(x) =

{

qi(x) if x ∈ Di,

0 otherwise [Ver10].

For example, the cardinality of the polyhedral set S2 of Figure 2.3 is expressed using

the piecewise quasipolynomial

|S2| =
{

10 if 1 ≥ 0 .

The cardinality of S2 is constant because all bounding hyperplanes are constant.

Therefore, the cardinality is not dependent on any parameters or variables and con-

2.2. Models of Computation 21

sists of only one piece that is selected using the tautology 1 ≥ 0. The quasipolyno-

mial has a constant value of 10, as S2 consists of 10 points.

The cardinality of the polyhedral map M1 of Equation (2.1) is expressed using the

piecewise quasipolynomial

|M1|(j1, i1) =

{

1 if (j1, i1) ∈ Z2,

0 otherwise.

This means that applying M1 to any point (j1, i1) that is in Z2 always yields exactly

one new point (j2, i2).

2.2 Models of Computation

Designers specify the behavior of a system in a structured way using a Model of

Computation (MoC). To facilitate programming of multi-processor systems, a par-

allel MoC is needed such that the tasks for each processor and the communication

and synchronization mechanisms can be specified. Different MoCs have been pro-

posed and evaluated for their use in design automation in literature [LSV98, JS05].

For example, HDL simulators often employ a timed discrete-event MoC in which

all events are ordered globally in time. A global ordering is often not desired for a

multi-processor system because different parts of the system may execute in parallel.

Our interest is in untimed dataflow process network based MoCs such as Kahn Pro-

cess Networks (KPNs) defined by Kahn [Kah74]. The dataflow-based MoCs that we

consider in this thesis have several properties that make them attractive for specifica-

tion of multi-processor systems [SZT+04]. One desirable property is deterministic

behavior, such that a given input sequence always results in the same output sequence

regardless of variations in computation or communication times. Another desirable

property is that each task behaves autonomously, such that each processor of a multi-

processor system can be considered in isolation. This allows designers to better cope

with complex multi-processor systems.

Many different specializations of dataflow process network based MoCs have been

proposed in literature for the design of streaming applications. A major reason for

the abundance of different specializations is to allow different tradeoffs of expres-

siveness against analyzability. With expressiveness of a model we refer to the ability

to express an application in that model in a succinct way. Although more general

models often can be converted to more specialized equivalent models, such a conver-

sion often increases the size of the application model making it no longer succinct.

With analyzability of a model we refer to the existence and complexity of compile-

time analysis algorithms to compute for example static schedules, buffer sizes, or

22 Chapter 2. Background

HSDF

SDF

KPN

CSDFExpressiveness,

succinctness

Analyzability

PPN

Figure 2.4: Different models and their expressiveness and analyzability.

throughput. In Figure 2.4, we depict five different models and compare their expres-

siveness and analyzability. For example, many applications can be expressed in the

KPN MoC, but due to the genericity of the model, the compile-time analyzability

is limited. In contrast, the HSDF model has a lower expressiveness but this allows

for full analyzability. We now review four dataflow-based models that we use in the

remainder of this thesis for specification and analysis of MPSoCs: the HSDF, SDF,

CSDF, and PPN models of computation.

2.2.1 Homogeneous Synchronous Dataflow

The most restricted model of computation that we consider in this thesis is the homo-

geneous synchronous dataflow model, which is also known as the single-rate dataflow

model [GGS+06]. The more generic models that we discuss later extend the homo-

geneous synchronous dataflow model. We use the following definition, in line with

the notation used by e.g. Moreira et al. [MBGS10]

Definition 2.10 (Homogeneous Synchronous Dataflow Graph).

A Homogeneous Synchronous Data Flow (HSDF) graph is a directed graph defined

by a tuple (V, E, t, d), where

• V is a set of vertices representing computation nodes,

• E is a set of edges representing communication channels that carry tokens,

• t(i), i ∈ V represents the time needed for a single execution of node i, and

• d(e), e ∈ E represents the number of initial tokens on edge e, also referred to

as the delay of edge e.

An HSDF graph consisting of four nodes and six edges is shown in Figure 2.5.

Shown in the upper half of each node is a label that we assign for convenient refer-

encing. Shown in the lower half of each node is the node’s execution time t(i). For

2.2. Models of Computation 23

a2
8

b
2

c
2

a1
8

Figure 2.5: An HSDF graph.

example, node b has an execution time t(b) = 2 time units. Initial tokens d(e) for

each edge are shown as dots on the edges. For example, the edge connecting node c

to a2 contains one initial token, that is, d(c → a2) = 1. For clarity reasons, we may

visualize multiple initial tokens by a single dot and a number above or below the dot.

Edges transfer units of data referred to as tokens. A node is said to be enabled if

each of its incoming edges contains at least one token. An enabled node is said to

fire when it consumes a token from each incoming edge, performs a computation on

these tokens, and then produces a token on each of its outgoing edges. If none of the

nodes is enabled, then the graph is in a deadlock state. If all nodes of a graph can

fire infinitely often, then the graph is live. An HSDF graph is said to be consistent

if every token written to an edge is eventually consumed, such that the graph can

be executed under bounded memory conditions. An iteration of an HSDF graph is

defined as each node executing exactly once.

Different firings of a node may start at the same time, such that overlapped execution

between firings of the same node occurs. For example, if edge c → a1 in Figure 2.5

would contain two initial tokens, then two firings of a1 can start simultaneously. Such

overlapped execution of firings of the same node is referred to as auto-concurrency.

By adding an edge from a node to itself, referred to as a selfloop, we can regulate

auto-concurrency of a node. The number of initial tokens on that selfloop limits

the number of parallel firings. By putting one initial token on the selfloop, auto-

concurrency is fully prevented. In such a case, the node consumes the initial token

from the selfloop at the first firing, and only produces a new token on the edge once

it finishes its firing. The node is not enabled for any subsequent firings until the first

firing has finished, meaning no overlap between firings occurs.

2.2.2 Synchronous Dataflow

HSDF graphs are a special case of the more general synchronous dataflow graphs

defined by Lee and Messerschmitt [LM87].

24 Chapter 2. Background

a
8

b
2

c
2

1

1

2

1 1

1

2

1

Γ =









1 −2 0
0 1 −1
0 −1 1

−1 0 2









Figure 2.6: An SDF graph and its topology matrix Γ.

Definition 2.11 (Synchronous Dataflow Graph).

A Synchronous Data Flow (SDF) graph is a directed graph defined by a tuple

(V, E, t, d, p, c), where

• V , E, t, and d follow those in Definition 2.10,

• p(e), e ∈ E represents the number of tokens placed on edge e when the corre-

sponding source node fires, referred to as the production rate, and

• c(e), e ∈ E represents the number of tokens consumed from edge e when the

corresponding destination node fires, referred to as the consumption rate.

An SDF graph consisting of three nodes and four edges is shown in Figure 2.6.

The numbers depicted at the location where edges connect to nodes represent the

production and consumption rates. For example, when node c fires it consumes

c(b → c) = 1 token from edge b → c, and it produces p(c → b) = 1 token on

edge c → b and p(c → a) = 2 tokens on edge c → a.

The structure and production and consumption rates of an SDF graph are com-

pactly represented by a topology matrix Γ. The columns of Γ represent the nodes and

the rows of Γ represent the edges. A positive entry Γ(i, j) means that node j pro-

duces Γ(i, j) tokens on edge i. A negative entry Γ(i, j) means that node j consumes

−Γ(i, j) tokens from edge i. A zero entry Γ(i, j) means that node j does not read

or write to edge i. A selfloop can be represented in Γ by the net difference between

production and consumption [LM87, p. 27].

An SDF graph can be converted into an equivalent HSDF graph [SB00, Chapter

3]. However, such a conversion may cause an exponential increase in the number of

nodes in the worst case. The HSDF graph of Figure 2.5 is the result of converting

the SDF graph of Figure 2.6. An iteration of an SDF graph is defined as each node

of the equivalent HSDF graph executing exactly once. If an SDF graph is consistent,

then a repetition vector q exists which contains for every node the number of times

the node has to fire to return the SDF graph to its initial state. The repetition vector is

the smallest non-trivial positive integer vector that is a valid solution to the balance

equation Γ · q = 0.

For the graph of Figure 2.6, the smallest non-trivial solution to the balance equation

is the repetition vector q = [2, 1, 1]T . This means that if node a fires twice, node b

2.2. Models of Computation 25

fires once, and node c fires once, then the number of initial tokens on each edge is the

same as before the execution of these four firings.

An SDF node always consumes tokens from all input edges and produces tokens

on all output edges during a firing. Consequently, the SDF model cannot describe a

node that for example reads from different input ports during different firings. This

means that applications in which such behavior occurs cannot be modeled as an SDF

graph.

2.2.3 Cyclo-Static Dataflow

An extension to the SDF model that allows such behavior is the cyclo-static dataflow

model [BELP96]. This model allows a compact representation of applications with a

cyclically changing, but predefined behavior.

Definition 2.12 (Cyclo-Static Dataflow Graph).

A Cyclo-Static Data Flow (CSDF) graph is a directed graph defined by a tuple

(V, E, f , t, d,p, c), where

• V , E, and d follow those in Definition 2.10,

• f j , j ∈ V represents the function repertoire for node j, which is a sequence of

functions [fj(0), fj(1), · · · , fj(Sj − 1)] of phase length Sj ,

• tj(i), j ∈ V represents the time needed for an execution of function i in f j ,

• pe(i), e ∈ E is a sequence of integers representing the number of tokens pro-

duced on edge e after e’s source node fires its i-th function, and

• ce(i), e ∈ E is a sequence of integers representing the number of tokens con-

sumed from edge e before e’s destination node fires its i-th function.

Each node in a CSDF graph executes the functions in its function repertoire in a

cyclic fashion. At the start of the n-th firing of node j, ce(n mod Sj) tokens are

consumed from incoming edge e. Then, function fj(n mod Sj) is executed which

takes tj(n mod Sj) time units. After the function finishes execution, pe(n mod Sj)
tokens are produced on outgoing edge e.

Similar to the topology matrix of an SDF graph, we can define a topology matrix Γ
for a CSDF graph. A positive entry Γ(i, j) means that node j produces in total Γ(i, j)

tokens on edge i for a complete execution sequence, that is, Γ(i, j) =
∑Sj−1

k=0 pi(k).
A negative entry Γ(i, j) means that node j consumes in total Γ(i, j) tokens from

edge i for a complete execution sequence, that is, Γ(i, j) = −
∑Sj−1

k=0 ci(k). All

other entries are zero.

26 Chapter 2. Background

a
[8]

b c
[4,6,5][1]

[0 1 1 1 1 1 1 1 1]

[1 1 1 1 1 1 1 1 1] [2,0,1]

[1 1 1 1 1 1 1 1 0]

[1 0 0 0 0 0 0 0 0]

[2 2 2 2 2 2 2 2 2]

Γ =





1 -1 0

0 0 0

0 9 -3





S =





1 0 0

0 9 0

0 0 3





Figure 2.7: A CSDF graph, its topology matrix Γ, and its phase matrix S.

To obtain the repetition vector of a CSDF graph, one first solves the balance equa-

tion Γ · r = 0. The repetition vector then equals

q = S · r, where S(i, j) =

{

Sj if i = j,

0 otherwise.
(2.2)

Matrix S in Equation (2.2), whose diagonal contains the phase lengths of all nodes,

is referred to as the phase matrix.

A CSDF graph consisting of three nodes and three edges is shown in Figure 2.7.

The function repertoire of node c contains three functions with latencies 4, 6, and 5,

as shown in the bottom part of the node. Thus, the phase length of node c Sc = 3.

Node c has one incoming edge b → c. In the 0 (mod 3)-th execution of node c,

two tokens are consumed from this edge; in the 1 (mod 3)-th execution of node c,

no tokens are consumed; and in the 2 (mod 3)-th execution of node c, one token is

consumed from this edge.

The topology matrix of the CSDF graph is shown in the upper right part of Fig-

ure 2.7. Since the CSDF graph contains a selfloop, the second row of Γ consists

entirely of zeros. The phase matrix of the CSDF graph is shown in the lower right

part of Figure 2.7. For example, the lower right element of this matrix equals node

c’s phase length Sc = 3. The smallest non-trivial solution to the balance equation is

r = [1, 1, 3]T . Hence, the repetition vector of the CSDF graph q = [1, 9, 9]T .

The phase lengths and production and consumption patterns p and c may be large

for applications that have mainly regular, but occasionally irregular behavior. This is

for example found in image edge detection algorithms, whose behavior is regular for

most pixels, but irregular for pixels at the image borders. Large phase lengths make

a CSDF representation impractical for analysis and synthesis tools. We therefore

present another model in which complex patterns can be captured in a compact way

using the polyhedral model.

2.2. Models of Computation 27

2.2.4 Polyhedral Process Networks

The Daedalus system-level design tool set that was introduced in Section 1.1 (cf.

Figure 1.1) employs polyhedral process networks as its application model. The poly-

hedral process network model was first coined by Meijer et al. [MNS10] and was

later formally defined by Verdoolaege [Ver10]. The definition of Verdoolaege dif-

fers from the classical definitions employed by the Compaan and Daedalus tools,

as presented by for example Turjan [Tur07], Nikolov et al. [NSD08b], and Rijp-

kema [Rij02]. Throughout this thesis, we use the definition of the latter references.

A conversion from the definition of Verdoolaege to the definition used by Daedalus

is possible and is extensively used in the Daedalus tool flow [Ver03b].

Definition 2.13 (Polyhedral Process Network).

A Polyhedral Process Network (PPN) is a directed graph (P, E) where P is a set of

vertices representing processes and E is a set of edges representing communication

channels. Each process pi ∈ P is characterized by:

• a function Fi,

• a process dimensionality di,

• a polyhedral set Di ⊆ Zdi defining the process’ domain.

• a set of input ports IP i, where the k-th input port IPk
i is bound to an input

argument of Fi and has an associated Input Port Domain (IPD) IPDk
i ⊆ Di,

and

• a set of output portsOP i, where the k-th output port OPk
i is bound to an output

argument of Fi and has an associated Output Port Domain (OPD) OPDk
i ⊆

Di.

Each channel ci ∈ E is characterized by:

• a source process σi ∈ P ,

• a destination process δi ∈ P ,

• a source process’ output port OP
j
δi

,

• a destination process’ input port IPk
σi

,

• a polyhedral map Mi ⊆ Dσi
× Dδi

mapping iterations from the destination

process domain back to the source process domain.

• a channel type Ti, which is FIFO, sticky FIFO, or out-of-order (cf. Sec-

tion 2.3.1), and

• a piecewise quasipolynomial Si representing the buffer size.

The parameters that occur in the process domains, channel maps and buffer sizes are

static, meaning that their values are fixed at run-time. A more general model which

28 Chapter 2. Background

MCH3 = {ifunc → ifunc − 1}

MCH1 =
{ifunc → 0}

MCH2 =
{isink → ifunc}

func sinksource CH1 CH2

CH3

IP1

IP2 OP2

OP1OP1 IP1

1

1

1

Dsource = {i | i = 0}

OPD
1
source = {i | i = 0}

Dfunc = {i | 1 ≤ i ≤ 9}

IPD
1
func = {i | i = 1}

IPD
2
func = {i | 2 ≤ i ≤ 9}

OPD
1
func = {i | 1 ≤ i ≤ 9}

OPD
2
func = {i | 1 ≤ i ≤ 8}

Dsink = {i | 1 ≤ i ≤ 9}

IPD
1
sink = {i | 1 ≤ i ≤ 9}

Figure 2.8: A polyhedral process network.

also includes dynamic parameters is the Parameterized Polyhedral Process Network

(P3N) model [ZNS11]. Such dynamic parameters enable the P3N model to cope

with applications that adapt their behavior at runtime. Another related model is the

Approximated Dependence Graph (ADG) [SD03]. The ADG model supports the

class of weakly dynamic programs, which is more generic than the class of static

affine nested loop programs that we consider in this thesis.

In this thesis, we are dealing with instances of PPNs for which all static parameters

have known fixed values. We replace the static parameters by their fixed values,

thereby removing the paramters, for the sake of simplicity.

An example PPN consisting of three processes and three channels is depicted in

Figure 2.8. In this thesis, we only consider PPNs that consist of exactly one connected

component. That is, if one replaces all directed edges in the graph by undirected

edges, then a path from u to v exists for every pair of vertices u, v. The PPNs that

we consider may contain zero or more strongly connected components. A strongly

connected component is a subgraph in which a path from any vertex in the subgraph

to any other vertex in the subgraph exists.

If a process does not have any input ports, that is, IP i = ∅, then the process is

called a source process. Likewise, if a process does not have any output ports, that is,

OP i = ∅, then the process is called a sink process. The function of a process should

be a pure function, that is, it should always yield the same output for a given input and

it should not have any side effects. Exceptions to this requirement are source and sink

processes, which often serve as an abstraction for the input and output interfaces of a

system. As such, input and output operations are desired side-effects for functions of

2.2. Models of Computation 29

source and sink processes.

In the PPN of Figure 2.8, source is a source process with one output port and sink

is a sink process with one input port. The ports of a process are depicted by the

dots on the border of each process. The output argument of the source function is

connected to the output port of the process. Similarly, the input port of the sink

process is connected to the input argument of the function. The func process has two

input ports and two output ports. The func function has one input argument and one

output argument. Both input ports connect to the same input argument and the output

argument is connected to both output ports. Port multiplexing and demultiplexing

is performed at run-time, as computations are distributed as a result of data flow

analysis. Input and output tokens of a process need to be communicated from and to

different processes at different iterations through process input and output ports.

The process and port domains are depicted below the processes in Figure 2.8. For

example, the domain of the sink process consists of the integral points from 1 to 9.

The IPD of its input port is identical to the process domain, which means that in every

iteration a token is read from this input port.

The channels in the PPN of Figure 2.8 are shown as rectangles. All channels in this

PPN are FIFO channels of size one, as denoted by the number above each channel.

The map for each channel is shown above the channel sizes. Channel CH1 maps an

iteration of the func process to iteration i = 0 of the source process. Channel CH2

maps iterations of the sink process to iterations of the func process. Channel CH3

maps iterations of the func process to its previous iteration. In the remainder of this

thesis, we depict channels in a more compact way as a single arrow with a number

specifying the buffer size.

Operational Semantics

Each process of a PPN executes autonomously according to a three-stage program

that is executed for each point in the process domain: a read stage, an execute stage,

and a write stage [ZI08]. This is an important property that we exploit throughout

this thesis. First, in the read stage, the input arguments to the process function are

read from the input ports whose IPD contains the current iteration. If the channel

connected to an input port does not contain any tokens, then the process blocks until

a token becomes available. Second, in the execute stage, the process function is

executed with the input data obtained during the read stage. Third, in the write stage,

the output arguments of the process function are written to the output ports whose

OPD contains the current iteration. If the channel connected to an output port does

not have sufficient room to store another token, then the process blocks until a free

slot becomes available in the channel.

30 Chapter 2. Background

A process traverses the points in its iteration domain Di in the lexicographical order,

in a sequential fashion. Thus, two iterations cannot start at the same time.

2.3 Derivation of PPNs from Sequential Programs

Polyhedral process networks can be derived automatically from sequential programs

known as static affine nested loop programs [RDK00, VNS07].

Definition 2.14 (Static Affine Nested Loop Program).

A static affine nested loop program (SANLP) is a program consisting of statements

enclosed by zero or more loops, where:

• all loops have a constant integral stride,

• loop bounds, if-conditions, and array index expressions are affine combinations

of constants and enclosing loop iterators, and

• communication between statements is explicit, that is, statements do not ex-

change data through hidden variables.

The SANLP for the example of Figure 2.8 is shown in Figure 2.10. This PPN can

be derived from the SANLP using the c2pdg, pn, and pn2adg tools from the isa tool

set [Ver03b]. The tool flow is depicted in Figure 2.9. First, the c2pdg tool converts the

SANLP into a Polyhedral Dependence Graph (PDG). This PDG contains the state-

ments of the SANLP, the iteration domain of each statement, and the variable and

array accesses performed by each statement. The pn tool extends the PDG with de-

pendence information [VNS07] obtained using exact dataflow analysis [Fea91]. The

pn2adg tool converts the extended PDG into an Approximated Dependence Graph

(ADG). The PPN model that we introduced in Section 2.2.4 is a subset of this ADG

model, as we do not handle dynamic parameters. We therefore consider the output of

pn2adg as the actual PPN, assuming the input C code does not result in an ADG that

lies beyond our PPN model. In this thesis, we refer to the consecutive execution of

the c2pdg, pn, and pn2adg tools as PNGEN.

For each of the three function calls in the SANLP of Figure 2.10, PNGEN constructs

a process. The domain of each process is derived from the for-loops and if-statements

PDG

+dep
PDGC pn2adg PPNpnc2pdg

Figure 2.9: PNGEN: Tool flow to convert a SANLP written in C into a PPN.

2.3. Derivation of PPNs from Sequential Programs 31

surrounding the function call. For function calls not enclosed in any for-loop, such

as source, a 1-dimensional domain containing a single point is constructed.

PNGEN determines which processes should be interconnected by channels using

exact dataflow analysis [Fea91] which is based on parametric integer programming

techniques [Fea88]. For each read operation of a variable or array element, exact

dataflow analysis reports the latest write operation that wrote the variable or array

element. For example, at line 3 of Figure 2.10 we read array element a[0] during

iteration i = 1. This array element is written in line 1. Therefore, PNGEN adds chan-

nel CH1 to the PPN which connects the write operation (that is, the source process)

to the read operation (that is, the func process). As another example, consider the

read operations of array elements a[1] to a[8] at line 3. The read operations are

performed during iterations 2 ≤ i ≤ 9. Exact dataflow analysis reports that these

array elements are written in line 3 during iterations 1 ≤ i ≤ 8. Therefore, PNGEN

adds channel CH3 to the PPN which connects the func process to itself. The corre-

sponding OPD contains the iterations 1 ≤ i ≤ 8 during which the array elements are

written. The corresponding IPD contains the iterations 2 ≤ i ≤ 9 during which the

array elements are read. This corresponds to the domains shown in Figure 2.8.

2.3.1 Channel Type Determination

Channels in a PPN are not all FIFOs, but need to be further classified [TKD07]. Each

channel is either of type FIFO, sticky FIFO, or out-of-order, as defined in Defin-

tion 2.13. To distinguish between out-of-order and (sticky) FIFO channel types, PN-

GEN first verifies if the values written to a channel are read in the same order as

the order in which they were written. That is, communication over a channel is in-

order if for any pair of write operations (w1,w2), the corresponding read operations

(r1, r2) execute in the same order. If a pair of write operations exists for which the

corresponding read operations occur in the opposite order, then the channel is marked

as out-of-order.

1 source(&a[0]);

2 for (i=1; i<=9; i++) {

3 func(a[i-1], &a[i]);

4 }

5 for (i=1; i<=9; i++) {

6 sink(a[i]);

7 }

Figure 2.10: SANLP for the polyhedral process network of Figure 2.8.

32 Chapter 2. Background

In the example of Figure 2.10, all array elements are written and read exactly once.

All communication is in-order, which causes the channels to be classified as FIFOs.

If we would surround the for-loop containing the sink function call by another for-

loop, then the elements of array b are written once and read multiple times. PNGEN

employs a reuse detection technique to identify channels from which a single token

is read multiple times. Reuse detection results in the construction of a data reuse

channel pair, consisting of two FIFO channels. The first FIFO channel propagates

data from the write operation to the first read operation. The second FIFO channel

is a selfloop which propagates data from a read operation to a later read operation by

the same process. If the same token is used by multiple subsequent iterations, then

the reuse channel pair can be optimized further into a sticky FIFO. This means the

selfloop is replaced by a register. We refer to Section 3.3 for an example of reuse

detection, and we refer to Section 3.4 for an example of a sticky FIFO.

2.3.2 Buffer Size Computation

Each channel of a PPN has an associated buffer size specifying the number of tokens

that can be stored. The buffer size has to be chosen under the following constraints.

Choosing a buffer size that is too small results in an artificial deadlock, a condition

in which none of the process can make progress because one or more processes are

blocked on a write operation. Choosing an arbitrary large buffer size prevents arti-

ficial deadlocks, but increases memory cost. Therefore, careful selection of buffer

sizes is required.

The buffer size computation performed by PNGEN consists of the following steps.

First, PNGEN computes a global schedule for all processes. That is, it determines

a single execution sequence containing all iterations of all processes. PNGEN en-

sures that the schedule is valid, meaning that each value is always written before it

is read. Next, for each channel a buffer size is determined for the computed sched-

ule. The schedule specifies a relative order on any pair of iterations from the same

or a different process. Therefore, for a read iteration r (i.e., an iteration performing

a read operation), the number of read iterations nR(r) and the number of iterations

performing a write iteration nW (r) preceding r is known. The buffer size is then the

maximal value of nW (r) − nR(r) over all read iterations r. For the non-parametric

PPNs that we consider, this maximal value can be computed symbolically or obtained

using simulation. The symbolic approach works by computing an upper bound on a

quasi-polynomial [CFGV09]. The simulation-based approach works by simulating

the write and read iterations according to the schedule and tracking the maximal

amount of tokens stored in the channel.

Computing minimal deadlock-free buffer sizes or a deadlock-free schedule is a non-

2.4. Code Generation 33

trivial optimization problem. PNGEN employs a greedy algorithm to compute a

deadlock-free schedule. As a result, the buffer sizes computed by PNGEN are not

guaranteed to be minimal, but at least a deadlock-free execution exists for the com-

puted buffer sizes. The schedule is used for buffer size computation. Execution of

a PPN is not bound to the schedule, as processes in a PPN only synchronize using

blocking read and write operations.

2.4 Code Generation

We employ the ESPAM tool [NSD08b] to implement PPNs derived by PN. We il-

lustrate the ESPAM tool flow in Figure 2.11. The input to ESPAM is a System-Level

Specification, consisting of three components. First, we provide the application spec-

ification in the form of a PPN which is derived from a C program using PNGEN.

Second, we provide a target platform specification describing the amount and types

of processors and peripherals, and the type of interconnect. For example, the de-

signer can populate a platform with programmable processors such as MicroBlazes

and function-specific hardware IP cores. Third, we provide a mapping specification

which maps the processes of the PPN onto the processors. The platform and mapping

specifications are at a high level of abstraction, omitting low-level details such as the

processor memory organization. ESPAM automatically elaborates the specifications

to the required degree of detail. After elaboration and possible refinement, one of

the backends at the right part of Figure 2.11 generates code which implements the

specified system.

ESPAM offers different backends such that a given system-level specification can be

implemented in different forms. We distinguish two classes of backends:

• Implementation backends produce a fully functional implementation of a

Plat-

form

Map-

ping

C PPN

ESPAM

PNGEN

XPS Project

HDPC Project

SystemC Simulation

YAPI Simulation

ISE RTL Simulation

Figure 2.11: The ESPAM tool flow.

34 Chapter 2. Background

given system. ESPAM contains a Xilinx Platform Studio (XPS) backend which

generates an FPGA project at the register transfer level, that can be synthe-

sized using vendor-specific low-level synthesis tools to obtain a working pro-

totype. ESPAM also contains a Heterogeneous Desktop Parallel Computing

(HDPC) backend which generates a software implementation for a general pur-

pose desktop computer containing for example a GPU device.

• Simulation backends produce an environment in which a given system can be

simulated. For example, ESPAM contains a YAPI backend [KES+00] which

enables fast functional verification of a parallelized application.

In Chapter 4 of this thesis, we present two new backends to ESPAM, which are de-

picted at the bottom right part of Figure 2.11. The SystemC simulation backend

provides fast performance assessment. It works at a raised level of detail compared

to RTL simulation, thereby increasing the simulation speed at the expense of lower

accuracy. When more accurate performance and resource cost metrics are needed,

the ISE backend can be employed. The ISE backend produces a Xilinx ISE project

that implements the system entirely in VHDL. This project can be simulated and syn-

thesized in the Xilinx ISE tool to obtain accurate execution time and resource usage

metrics. Since the ISE simulation works at a more detailed level, obtaining metrics

is more time-consuming compared to a SystemC simulation. For a small application

like QR decomposition, a SystemC simulation takes a few seconds, whereas an ISE

simulation may take about a minute.

2.4.1 Integrating Dedicated IP Cores

In systems with tight throughput constraints, performing all computations on pro-

grammable processors may not be feasible due to the limited performance of such

processors. To increase the overall system throughput, designers offload the heaviest

computations onto dedicated hardware IP cores. These IP cores are custom archi-

tectures that are optimized to perform a specific task. Such IP cores are traditionally

written in RTL or may be generated from code written in a high-level language using

a high-level synthesis tool. The LAURA Virtual Processor model was proposed to

include such IP cores in the Daedalus tool flow [ZSKD03, NSD08a].

A representation of a process as C code is shown in the left part of Figure 2.12.

The LAURA processor for this process is depicted in the right part of Figure 2.12. A

LAURA processor consists of a read, execute, write, and control unit to implement

the operational semantics of a PPN process. The read and write units iterate over the

process domain Dp and ensure at runtime that the proper channel is being read or

written during each iteration. The execute unit contains an IP core which implements

the process’ functionality, that is, the function F. The read, execute, and write units

2.4. Code Generation 35

Read unit

Eval. logic

Exec. unit

IP core

Write unit

Eval. logic

DoneReset Control unit

CH1

CH2

CH3

CH4

Incoming

data
Outgoing

data
for (i=0; i<10; i++) {
 if (i<5)

 in = CH1.read();

 else if (i>=5)

 in = CH2.read();

 out = F(in);

 if (i<5)

 CH3.write(out);

 else if (i>=5)

 CH4.write(out);

}

Figure 2.12: Example process code and the corresponding LAURA processor.

operate in a pipeline fashion, as depicted in Figure 2.13. For example, when iteration

0 enters the execute stage, the LAURA processor can initiate the read stage of the next

iteration. The control unit orchestrates execution of the read, execute, and write units.

For example, it stalls the read and execute units if the write unit reports a blocking

write condition. In Figure 2.13, a blocking read condition occurs during iteration 3.

In such a case, the controller ensures that previous iterations that are already in the

pipeline continue executing, while iteration 3 is stalled until data is available. This

leads to a bubble in the pipeline, which is indicated by a “–” in Figure 2.13.

The read unit is connected to the incoming channels of the process. For each input

argument of the process’ function F, a read multiplexer is instantiated. This multi-

plexer selects the incoming channels from which the argument is read. The selection

is driven by the read unit’s evaluation logic block. The evaluation logic employs a set

of counters that iterate over the process domain. For each input port, the evaluation

logic contains an expression in terms of the iterators that selects when that port has

to be read. As such, data from the appropriate input ports is forwarded to the execute

unit according to the current iteration.

The execute unit implements the process’ function F. It provides an insertion slot

for an IP core that implements the function F. The execute unit passes the argument

values selected by the read unit to the IP core. The IP core processes the input data

and produces output data after a delay that is specific to the IP core. The output data

of the IP core is passed to the write unit. An IP core is often implemented in a pipeline

fashion to provide high throughput. By employing pipelined IP cores, execution of

subsequent independent process firings can overlap in time, thereby increasing the

process’ throughput.

The write unit is connected to the outgoing channels of the process. For each output

argument of the process’ function F, a demultiplexer selects the appropriate output

channel to which the argument is written. The selection is driven by the write unit’s

evaluation logic block, which functions similarly to the evaluation logic of the read

36 Chapter 2. Background

R

Time

E

R

E E W

E E E W

R E E E WIteration

0

1

2

R - - - -

R E E E W

3 (blocking read)

3

Figure 2.13: Pipelined execution of a LAURA processor containing a 3-stage IP core.

unit.

The control unit is responsible to implement the blocking read and write behavior

of a PPN process. It enables or disables the read, execute, and write units based

on information provided by those three units. The read unit reports a blocking read

condition if one of the selected input channels does not contain any tokens. During

a blocking read condition, the read unit is stalled while the execute and write units

may still continue to process iterations pending in the pipeline. The write unit re-

ports a blocking write condition if one of the selected output channels does not have

sufficient room to store another token. During a blocking write condition, all units

are stalled until the external consumer process clears the blocking write condition by

reading a token from the full channel. The delay of an IP core may vary per firing of

a process. For example, the delay of a variable length encoder IP core may depend

on the input data. To integrate such IP cores in LAURA, the IP core should indicate

when it is ready to accept or produce data. The execute unit forwards this information

to the control unit, which then enables the read and write units accordingly.

