
Estimation and Optimization of the Performance of Polyhedral Process
Networks
Haastregt, S. van

Citation
Haastregt, S. van. (2013, December 17). Estimation and Optimization of the Performance of
Polyhedral Process Networks. Retrieved from https://hdl.handle.net/1887/22911
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22911
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22911


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/22911 holds various files of this Leiden University 
dissertation. 
 
Author: Haastregt, Sven Joseph Johannes van 
Title: Estimation and optimization of the performance of polyhedral process networks 
Issue Date: 2013-12-17 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22911
https://openaccess.leidenuniv.nl/handle/1887/1�


CHAPTER 1
INTRODUCTION

E
LEMENT NUMBER 14, or silicon, has been important for many ancient civiliza-

tions, albeit mostly as a constituent of sand and rocks. Silicon was essential

for the construction of houses, temples, and roads, which together formed the cen-

ters of society. In 1954, a new and very different use for silicon was found that

would have a dramatic impact on the established centers of society: Gordon Teal

and his team produced the first silicon transistor [Che04]. Many electronic devices

have become available since then, in which silicon transistors are an essential com-

ponent. By miniaturization, more and more transistors could be fit onto a small area,

thereby enabling the construction of complex processing systems. Contemporary

examples of such processing systems include the special purpose processors found

in automotive, mobile communications, medical, industrial, and entertainment ap-

plication domains. Many of these processing systems are tightly coupled to their

environment and perform a specific task, and are therefore classified as embedded

systems [LS11, Mar11, SB00]. Central to this dissertation is the design of the special

purpose processors in these embedded systems.

1.1 Problem Context

The special purpose processors in embedded systems are highly optimized to perform

their application-specific computations in a fast and area- and energy-efficient way.

The design of those processors is becoming increasingly challenging due to increas-

ing application complexity, the ever-increasing demand for computational power,

and worldwide time-to-market pressure. To satisfy the demand for computational

power, Multi-Processor System-on-Chip (MPSoC) solutions are deployed in modern



2 Chapter 1. Introduction

embedded systems. Such MPSoCs consist of many different components such as

programmable processing components, specialized processing components, memory

components, and input/output interfaces. By letting multiple components work in

parallel, the demand for computational power is met. Unfortunately, the design of an

MPSoC is even more challenging than the design of a single-processor system. The

challenge for the designer is to distribute computations over different processors of

the MPSoC. While doing so, the designer should guarantee functional correctness of

the system and at the same time make tradeoffs between orthogonal design aspects

such as circuit area and performance [Mar06]. Thus, the shift to multi-processor sys-

tems may address the demand for computational power, but this comes at the expense

of a further increase in design complexity.

Traditionally, processors have been designed at the Register Transfer Level (RTL).

An RTL specification of a processor consists of registers that are interconnected by

signals and combinational logic. RTL design of modern MPSoCs is becoming in-

creasingly error-prone and time-consuming because of the abundance of registers,

signals, and combinational logic needed for a modern MPSoC’s functionality. To

cope with the design complexity of modern MPSoCs, the designer needs to work

at a level of abstraction above the RTL. This has led to the emergence of Elec-

tronic System-Level (ESL) design methodologies [GAGS09, BM10]. In such a design

methodology, the designer first specifies a system at a high level of abstraction. Next,

the designer constructs an RTL implementation from the initial specification with the

aid of system-level design automation tools.

An example system-level design tool set is the open-source Daedalus tool set which

has been developed at the Leiden Embedded Research Center (LERC) [NSD08b,

Lei08]. We leverage the Daedalus tool set in this thesis. This means that we want to

develop the special purpose processors of an embedded system with Daedalus. An

overview of the Daedalus system-level tool flow is depicted in Figure 1.1. Daedalus

enables a designer to obtain a deployable gate-level specification from a system-level

specification in a fully automated way. The functional behavior of the system-level

specification is specified as a sequential C program, as shown at the upper right part

of Figure 1.1. The elaboration from one specification level to a lower specification

level is done in a fully automated way. We discuss the different aspects of Daedalus

in the following paragraphs.

Many applications in the embedded systems domain are specified using an imper-

ative model of computation, in for example the C language. Such models are well-

suited and widely adopted to specify the functionality of single-processor systems.

Unfortunately, mapping an imperative specification onto a multi-processor system is

difficult because of two mismatches. First, the sequential nature of an imperative

specification does not match the parallel nature of a multi-processor system. Sec-



1.1. Problem Context 3

Pµ

Pµ Pµ

System−level

specification

specification

V
a

lid
a

ti
o

n
 /

 C
a

lib
ra

ti
o

n

Gate−level

specification

RTL

specification

MemMem

HW IP

MPSoC

connect
Inter−

Functional

Mapping spec.
in XML

Sequential
program in C

L
ib

ra
ry

 I
P

 c
o
m

p
o
n
e
n
ts

RTL
Models

Models
High−level

Platform spec.

Automated system−level synthesis: Espam

Platform IP cores
processors

Auxiliary

PNgen
Parallelization:System−level design space exploration:

Sesame

Manually creating a PPN

Polyhedral Process Networkin XML

in VHDL

Application spec. in XML

code forC
netlist files

Low−level synthesis: e.g. Xilinx Platform Studio, XST

Figure 1.1: Daedalus system-level tool flow overview [NSD08b].

ond, an imperative specification assumes shared memory which is likely to become

a performance bottleneck on a multi-processor system. A distributed memory model

better matches a multi-processor system, but it is not possible in the general case to

extract a distributed memory model from an imperative specification.

The functionality of a multi-processor system is more naturally specified using a

parallel model of computation such as a network of processes communicating over

channels. A model that has gained widespread popularity is the Kahn Process Net-

work model [Kah74]. Specifying the functionality of a system using a parallel model

of computation is considered more difficult compared to using an imperative model of

computation. This is because the human brain tends to solve problems as a sequence

of steps, which matches the sequential nature of an imperative model of computation.

Moreover, in a parallel specification deadlocks and race conditions may occur that are

very difficult to detect or predict beforehand [Mar06]. Such difficulties do not occur

in a sequential specification. As such, many designers prefer specifying an applica-

tion using a sequential specification, despite the subsequent difficulties of implement-

ing the specification as an MPSoC. The mismatch between the programmer-preferred

sequential specifications and the parallel specifications desired for multi-processor

systems is known as the specification gap [Ste04].



4 Chapter 1. Introduction

Various approaches exist to bridge the specification gap. One approach is to ex-

tend a sequential program with library calls or compiler pragma directives to indicate

tasks that can execute concurrently. Examples of this approach include pthreads,

OpenCL [Khr08], and OpenMP [Ope97]. Another approach is to automatically ex-

tract concurrent tasks from a sequential program using a parallelizing compiler such

as LooPo [GL97], Polaris [BEF+94], Pluto [BBK+08], or PNGEN [VNS07]. The

latter is part of Daedalus to bridge the specification gap. PNGEN generates a parallel

specification from a sequential program written in a subset of the C language. We

discuss PNGEN in more detail in Section 2.3.

A system-level specification lacks many details that are present in the RTL speci-

fication because these details are irrelevant at the system level. For example, at the

system level the designer reasons about sending data from one processor to another

without specifying the registers and logic that implement such communication in the

RTL specification. Not exposing the designer to such implementation details allows

a designer to better cope with complex systems. However, the omission of imple-

mentation details opens up a gap between the system-level specification and the RTL

implementation, which is known as the implementation gap [NSD08b]. To obtain a

functional implementation from a system-level specification, the implementation gap

needs to be bridged by adding low-level implementation details to the system-level

specification. This is done by a system-level synthesis tool which refines a system-

level specification into an RTL specification in a systematic and automated way.

The Daedalus tool set provides the ESPAM tool for automated system-level synthe-

sis. A system-level specification for ESPAM is composed of three individual specifi-

cations: an implementation platform specification describing the number and types of

processing and interconnect components of the system; a parallel application specifi-

cation consisting of a network of communicating tasks; and a mapping specification

that maps the application tasks onto processing components. The ESPAM tool gen-

erates an RTL specification from the three specifications. This RTL specification is

then taken through commercial low-level synthesis tools that convert the RTL into

a gate-level specification. Place-and-route tools take such a gate-level specification

and create a layout of the circuit which can be implemented on a Field-Programmable

Gate Array (FPGA) or provided to an Application-Specific Integrated Circuit (ASIC)

manufacturing process. This last step yields a complete MPSoC implementation.

1.2 Problem Statement

Existing system-level design tools such as Daedalus present a forward synthesis flow

to bridge the specification and implementation gaps. This allows a designer to obtain



1.2. Problem Statement 5

a working prototype of a system in only a few hours of time [NSD08b]. However,

many different implementations of an application specification are possible that have

identical functionality but differ in performance and implementation cost aspects.

This presents the designer with another problem: selecting an implementation from

a vast design space of possible implementations. Only a subset of the design points

in this design space represent implementations that satisfy a set of given design con-

straints on performance and circuit area. Thus, solely closing the specification and

implementation gaps still leaves open the problem of selecting the design point that

best matches a set of design constraints.

A Daedalus system-level specification consists of the application, platform, and

mapping subspecifications, as described in the previous section and shown in Fig-

ure 1.1. Each of these subspecifications may be transformed to yield a functionally

equivalent implementation that has different performance and resource cost prop-

erties, as described by the Y-chart approach [KDWV02]. For example, a designer

can transfrom the platform specification by adding or removing processors, or trans-

form the mapping specification by moving a task from one processor to another, or

transform the application specification by splitting a tasks into smaller subtasks and

thereby exposing more parallelism. Many combinations of such transformations are

possible and this number grows rapidly as application and platform sizes increase.

As a result, the design space for a modern MPSoC is typically very large.

Despite the existence of fully automated system-level synthesis tools, implementing

and evaluating all design points is infeasible for modern MPSoC design because of

the large design space. Therefore, the design space should be explored in such a way

that only the “promising” design points need to be implemented and evaluated. Find-

ing the promising design points is a non-trivial multi-objective optimization problem.

Many Design Space Exploration (DSE) techniques have been proposed to efficiently

search large design spaces [Gri04]. Daedalus incorporates the SESAME DSE tool to

explore the design space using an evolutionary algorithm [PEP06]. SESAME relies on

trace-based simulation to estimate the performance of candidate design points. Al-

though SESAME’s simulation is intended for fast performance analysis, conducting

many simulations may still take a considerable amount of time [PP12]. This leads to

unreasonably long design times.

An alternative way of finding a satisfactory design point is the (naive) iterative de-

sign flow depicted in Figure 1.2. The design flow starts with an initial system-level

specification. A parallel application specification is automatically derived from an

imperative program using for example PNGEN, thereby bridging the specification

gap. The designer synthesizes this system-level specification into an FPGA proto-

type to verify if for example performance constraints are satisfied. The designer

uses a system-level synthesis tool such as ESPAM in this step, thereby bridging the



6 Chapter 1. Introduction

System-level specification

(application, platform, mapping)

Implementation

(FPGA)

Performance (post-implementation)
Design

decisions

Parallelize,

synthesize

How to satisfy design constraints?

Forward synthesis flow

Figure 1.2: Iterative system-level design flow.

implementation gap. If a performance constraint is not satisfied, the system-level

specification is transformed based on performance and cost metrics obtained from the

prototype implementation. These transformations entail modifying the application by

rewriting the C code, modifying the platform by adding processors, or modifying the

mapping by assigned tasks to different processors. The designer relies on experience

and expertise to come up with transformations that most likely have the desirable

effect on performance and cost aspects. Building up this knowledge is referred to as

the “acquisition of insight” [Spe97]. However, it is not trivial to predict beforehand if

and by how much a certain transformation affects performance and cost aspects. At

this moment, the best a designer can do is to perform a new time-consuming synthesis

step after transforming the system-level specification. This procedure is repeated un-

til an implementation is obtained that satisfies performance constraints. The designer

can then proceed with the actual manufacturing of the system.

A naive iterative design flow may appear to be more deterministic than a random-

search driven DSE flow. Because the designer iteratively transforms a system-level

specification in a pragmatic manner, a system that satisfies all performance con-

straints should eventually be the result. However, this only holds if the designer

always makes the optimal decisions. This does not always happen in practice, be-

cause the designer may for example overlook solutions or ignore solutions that seem

counter-intuitive. Another problem with a naive iterative design flow is that evalua-

tion of a single specification may easily take a few hours of time. This reduces the

number of iterations a designer can make in a given time frame, increasing time-to-

market.

The naive iterative design flow bridges both the specification and implementation

gaps by employing advanced parallelizing compilation techniques and system-level



1.3. Related Work 7

synthesis tools. However, it does not address the following problem: given a perfor-

mance constraint, which transformations should the designer apply to obtain an im-

plementation that meets this performance constraint? For example, consider the sce-

nario in which a designer constructs a video processing system under the constraint

that the system should meet a throughput of 20 frames per second. After synthesiz-

ing the system-level specification, the designer finds that the system works at only 11

frames per second. This puts a burden on the designer to transform the system-level

specification such that the performance constraint of 20 frames per second is met. We

therefore argue that solely bridging the specification and implementation gaps is not

sufficient to solve a design problem.

In this dissertation, we consider the iterative system-level design flow of Figure 1.2

and address a designer’s problem that is currently not addressed. That is, we ask

how to modify this design flow to obtain a constraint-satisfying implementation of

a system in a short amount of time. This modification is needed as synthesizing a

design in the current flow takes too long, keeping the designer in the dark whether

the design will satisfy the designer’s constraints. Performance estimation methods

are lacking that could provide an early indication of whether a design will satisfy

the designer’s constraints at all. After obtaining an implementation not meeting the

constraints, there is little guidance to help a designer transform his design in such a

way that his performance constraints will be satisfied. In this context, we formulate

our three central research problems as follows:

1. Synthesis: How to automatically obtain efficient RTL implementations from a

high-level specification that enable application of established transformations

such as splitting, merging, stream multiplexing, and scheduling?

2. Performance estimation: How to assess the absolute performance of a de-

sign point, possibly in different ways by trading off evaluation speed against

accuracy?

3. Optimization: How to obtain an implementation that satisfies a performance

constraint while reducing the number of design iterations?

Only after addressing these three problems from a designer’s perspective, Daedalus

can become a powerful system-level synthesis tool capable of solving design prob-

lems.

1.3 Related Work

We address the central problems listed above in this dissertation by leveraging and ex-

tending the underlying theory of the Daedalus methodology [NSD08b, Lei08]. The



8 Chapter 1. Introduction

Daedalus methodology addresses the problem of obtaining an efficient FPGA im-

plementation from a high-level application specification in a short amount of time.

As such, Daedalus provides an important stepping stone to address the three central

problems, ultimately leading to an extended Daedalus design flow that also considers

performance constraints.

Daedalus is only one of many methodologies to (semi-)automatically obtain special

purpose processor implementations from high-level application and system specifi-

cations. In this section, we give a brief overview of related approaches to obtain

RTL implementations from high-level application specifications. We discuss related

high-level synthesis techniques in Section 1.3.1 and related electronic system-level

synthesis techniques in Section 1.3.2. Related work specific to each of the three

central problems is discussed separately in Chapters 3, 4, and 5.

1.3.1 High-Level Synthesis

Automated synthesis of RTL implementations from specifications above the register

transfer level, known as High-Level Synthesis (HLS), has been subject of research

since the late 1980s [MK88, MPC88, PK89]. Since then, many academic and com-

mercial HLS tools have been developed. In 1994, electronic design automation com-

pany Synopsys released its Behavioral Compiler tool that is widely regarded as the

first commercial HLS tool [CM08]. This tool took a behavioral description of a de-

sign in VHDL or Verilog as input and generated a cycle-accurate VHDL or Verilog

description. During synthesis, the tool allowed the designer to trade off throughput

against chip area. Since then, many different HLS tools have been released by dif-

ferent companies, with varying degrees of commercial success. As of 2013, three

of the major commercially available HLS tools are Synopsis SynphonyC [Syn10],

Xilinx Vivado HLS [Xil13], and Calypso Catapult [Cal11]. A difference with Be-

havioral Compiler is that modern commercial HLS tools have anchored on C, C++,

or SystemC input specifications instead of input specifications using Hardware De-

scription Languages like VHDL or Verilog [Fin10]. Meeus et al. conducted a com-

parison between twelve different commercial and open-source high-level synthesis

tools [MVBG+12].

Next to commercial tools, numerous academic high-level synthesis tools have been

developed. One of the early academic tools was Hercules [MK88] which has been

integrated in the Olympus Synthesis System [MKMT90]. Olympus takes an input

specification written in HardwareC and provides synthesis and simulation of designs.

HardwareC is a C-like language in which a system is described as a set of concurrent

modules. The modules are interconnected using communication primitives. This re-

quires the designer to split the application functionality across different modules and



1.3. Related Work 9

interconnect them manually using communication primitives. Advanced compilation

techniques such as those employed by Daedalus allow tools to automatically derive

such interconnects from a sequential specification. The ROCCC tool takes a subset

of the C language as input and generates RTL targeted towards FPGAs [GNB08].

ROCCC requires that loop iterators are used in at most one array dimension. This

poses a problem when expressing for example a loop skewing transformation. Such a

restriction is not necessary in Daedalus as any affine expression of loop iterators is an-

alyzable using the polyhedral model. Other HLS approaches that employ the polyhe-

dral model include for example PARO [HRDT08] and MMALPHA [GQR03]. These

approaches use functional languages as input, while commercial tools and Daedalus

all use an imperative language. Related early work included modeling affine nested

loop programs using uniform recurrence equations to generate systolic array imple-

mentations [Qui84]. The FCUDA approach takes C code annotated using NVIDIA’s

CUDA primitives and generates C code annotated with AutoESL pragmas to obtain

an FPGA implementation [PGS+09]. This allows a designer to express parallelism

in a single specification and target both GPU and FPGA platforms. Besides the main

FPGA backend, Daedalus also includes a GPU backend, allowing a designer to also

target both GPU and FPGA platforms. Unlike FCUDA, Daedalus does not require

CUDA-like annotations of the C code.

High-level synthesis should not be confused with design entry using a high-level

language, because the use of a high-level language does not necessarily imply that

the design is specified at a high level of abstraction. For example, Handel-C is a

subset of the C language with extensions to describe hardware succinctly [Pag96].

Parallel behavior is expressed using the Communicating Sequential Processes (CSP)

model of computation [Hoa85]. Similar to RTL design, the designer should per-

form scheduling and pipelining manually, whereas this is performed automatically

in an HLS flow. Cobble is a language similar to Handel-C [TCL05] with support

for custom compilation schemes. This allows a designer to define how a particular

pattern in the source program should be mapped to hardware. Cobble is compiled

into Pebble, which is a simplified hardware description language supporting design

parameterization and run-time reconfiguration [LM98]. MyHDL allows a designer to

specify hardware in the Python language [Dec03]. MyHDL still requires the designer

to specify the behavior of the hardware at the register-transfer level using constructs

provided by the MyHDL Python package.

Daedalus may be regarded as an HLS tool to some extent, since it generates RTL

from a specification in the C language when a process is mapped onto an application-

specific hardware processor. But in contrast to a conventional HLS tool, Daedalus

only generates the control path RTL of a hardware processor. Daedalus does not gen-

erate data path RTL, as it relies on the designer to provide IP cores that implement



10 Chapter 1. Introduction

the data path [NSD08a]. Moreover, Daedalus generates complete heterogeneous MP-

SoC implementations, which is a task that is beyond the scope of high-level synthe-

sis. Another difference between HLS tools and Daedalus is the model used to rep-

resent applications. HLS tools predominantly employ Control Data Flow Graphs

(CDFGs) [MPC88, CGMT09], whereas Daedalus employs a process network based

model [VNS07].

1.3.2 Electronic System-Level Synthesis

During the late 1990s, electronic system-level synthesis gained interest of system

designers as it provided means to cope with the increasing design complexity of

systems. A system-level synthesis flow focuses on an entire system possibly con-

taining programmable processors. In contrast, a high-level synthesis flow focuses

on a highly optimized application-specific RTL architecture implementing one or

more kernels. Many different system-level synthesis tools exist besides Daedalus.

SystemCoDesigner takes a set of SystemC modules as input and implements a sys-

tem by mapping these modules onto hardware and software components [KSS+09].

Ptolemy is an environment for simulation and prototyping of heterogeneous sys-

tems [BHLM94, EJL+03]. A system design in Ptolemy may consist of subsystems

that employ different models of computation, such as continuous time or process

network based models. PeaCE [HKL+08] provides a system-level design environ-

ment based on Ptolemy, but restricts itself to an extension of the synchronous data

flow model and an extension of the finite state machine model. SystemCoDesigner,

Ptolemy, and PeaCE require the designer to specify a system as a set of actors inter-

connected using communication channels, while Daedalus automatically derives ac-

tors (processes) and channels from sequential code. The StreamIt approach [GTA06]

requires the designer to specify an application graph using actors and communication

channels in a custom language. StreamIt employs the Synchronous Data Flow (SDF)

model, which is more restrictive than the PPN model employed by Daedalus. The

System-on-Chip Environment (SCE) [DGP+08] uses the SpecC language [ZDG97]

to describe system behavior. The SCE design flow consists of similar design steps

as Daedalus, such as parallelization, communication synthesis, and RTL generation.

However, the parallelization step is automated in Daedalus, whereas SCE requires

the designer to explicitly specify the system as a set of concurrent tasks intercon-

nected using communication channels. The MPSoC Application Programming Stu-

dio (MAPS) [LC10] is a framework that aids the MPSoC designer with C applica-

tion parallelization. The parallelization in MAPS is relies on profiling information,

whereas parallelization in Daedalus is static. Like Daedalus, MAPS can also incorpo-

rate already parallelized applications specified as a (Kahn) process network. Unlike



1.3. Related Work 11

Daedalus, MAPS does not provide an automated way to obtain a parallelized variant

of a sequential application. The Multi-Application and Multi-Processor Synthesis

(MAMPS) flow maps synchronous dataflow graphs onto homogeneous MPSoCs. In

contrast, Daedalus uses the more expressive PPN model and targets heterogeneous

MPSoCs. MAMPS on the other hand supports multiple applications at once, whereas

the Daedalus version used in this thesis supports only one application at once, al-

though the DaedalusRT extension does support multiple applications [BZNS12].

Bluespec SystemVerilog (BSV) is a high-level hardware description language in-

tended to describe complete systems [NC10]. In a comparison conducted by Nikolov

et al., a C specification of an H.264 video decoder was implemented using both the

automated Daedalus flow and as a semi-custom design in BSV [NRD+09]. The Dae-

dalus design employed programmable components as processing elements, on which

the C specification was mapped. The Bluespec design employed dedicated hardware

processing elements, requiring manual conversion of the C specification to BSV. The

authors found that the design time for the Daedalus approach was roughly 6 times

shorter than the design time for the Bluespec design. This difference was mainly

caused by the manual conversion and verification in the BSV design. However, the

shorter design time in Daedalus came at the expense of higher resource cost caused

by the use of programmable processors. Replacing programmable processors with

dedicated RTL cores may reduce the resource cost footprint in the Daedalus flow.

Such cores can be obtained automatically from C using HLS tools. We discuss the

integration of HLS in Daedalus in Chapter 3.

Several ESL tools focus on graphical entry of a system-level design. For example,

a system is specified in Koski using Unified Modeling Language (UML) [KKO+06].

Xilinx System Generator provides a block-based design environment [Xil02]. A Sys-

tem Generator design can be compiled into a netlist, which can then be synthesized

onto an FPGA. The latest Vivado design suite from Xilinx integrates System Gener-

ator, AutoESL, and RTL synthesis into a single ESL design environment.

Many of the discussed high-level synthesis and system-level design tools do not

address the specification gap, as they require the designer to provide a parallel spec-

ification. On the other hand, Daedalus employs the PNGEN tool flow to bridge the

specification gap as it can automatically find a parallel specification. As the designer

does not have to provide a parallel specification, the design process is accelerated.

A key challenge of automated parallelization is detecting the statements that are in-

dependent of each other, such that they can execute in parallel. PNGEN employs

exact data dependence analysis to precisely find the dependence relations between

statements [Fea91]. Obtaining exact data dependence information is complicated

and is not always possible for arbitrary code. Most HLS and ESL tools that start

from a sequential specification therefore rely on approximate data dependence anal-



12 Chapter 1. Introduction

ysis techniques such as Banerjee’s test [Ban88]. But as a result of the approximate

nature, tools may need to conservatively assume a data dependence exists between

statements, possibly preventing any parallel execution. Such false data dependences

can be circumvented using tool-specific compiler pragmas that need to be inserted

by the designer. Daedalus requires that the application is specified as a SANLP (cf.

Section 2.3) for which exact data dependence analysis is always feasible. This elim-

inates the need for conservative data dependence assumptions, freeing the designer

from having to manually analyze data dependences.

1.4 Contributions and Outline

In Section 1.2, we identified three central problems in an iterative system-level de-

sign flow. We solve these three problems in this dissertation in the context of the

Daedalus methodology [NSD08b], which we discuss in more detail in Chapter 2.

The Daedalus methodology is the result of many dissertations in the LERC group

[Rij02, Ste04, Tur07, ZI08, Nik09, Mei10, Nad12, Bal13]. We want to build further

upon the contributions made in these dissertations. The research conducted in this

thesis has led to the following four contributions:

Contribution I [HK09, NHS+11, HK12]: As a solution to the synthesis problem,

we add extensions to the Daedalus methodology. These extensions enable us to obtain

FPGA implementations from C programs which were already accepted by Daedalus,

but for which an FPGA implementation was not yet feasible. With these extensions,

we are now able to obtain complete FPGA implementations for industrially relevant

applications, like the sphere decoder application discussed in Chapter 6. We have

shown that we can characterize and integrate functional kernels (IP cores) from a

broad set of conventional HLS tools like the industrial tools Vivado HLS and Syn-

phony C, and the academic tool DWARV. Our extensions to the Daedalus methodol-

ogy provide an enabling step to realize the complete conventional “forward” system-

level synthesis flow for FPGAs in the flow shown in Figure 1.3. The position of these

extensions is indicated by the Ê in Figure 1.3 and are discussed in Chapter 3.

Contribution II [HHK10]: As a solution to the performance estimation problem,

we investigate four different performance estimation techniques, that differ in accu-

racy and assessment effort. We want to emphasize on two techniques in particular.

We show a novel analytical approach to estimate the performance of cyclic PPNs.

The analytical approach is based on the well-known Maximum Cycle Mean (MCM)

theory from the HSDF model of computation, but avoids exponential complexity ex-

plosion in the PPN-to-HSDF conversion. Although providing a theoretical basis, the

practical use is limited due to unknown accuracy of the result. In that respect, an-



1.4. Contributions and Outline 13

System-level specification

(application, platform, mapping)

Implementation

(FPGA)

Performance (post-implementation)
Design

decisions

Parallelize,

synthesize

How to satisfy design constraints?

Forward synthesis flow

1

2

3

Performance

Heuristics

Extensions

Figure 1.3: Contributions positioned in the iterative design flow.

other contribution of this thesis is cprof, which is a novel profiling based approach

that completely bypasses the forward synthesis flow. The approach is robust as it

relies only on an ordinary C++ compiler to obtain accurate performance estimates of

PPNs. Moreover, the approach allows for early estimation of the effects of transfor-

mations. The approach provides the designer with an upper bound on the degree of

parallelism in an application specification. This allows a designer to assess at a very

early stage in the design flow whether he can meet his constraints. The position of the

alternative performance estimation techniques in the overall design flow is indicated

by the Ë in Figure 1.3 and is discussed in Chapter 4.

Contribution III [HK12]: As a solution to the optimization problem, we provide

heuristics to optimize a design by leveraging the insight gained from the performance

estimation techniques discussed in Chapter 4. The heuristics provide a concrete set

of criteria that guide the designer in selecting standard transformations such as split-

ting, merging, stream multiplexing, and scheduling. This position of the heuristics is

indicated by the Ì in Figure 1.3 and is discussed in Chapter 5.

Contribution IV [HNVK11, NNH+10, NNH+11]: We have shown that we can

apply the extended forward system-level synthesis flow depicted in Figure 1.3 on an

industrially relevant application. This case study also shows that PPNs are a feasible

alternative to conventional CDFG-based C-to-RTL flows. Using the heuristics from

Chapter 5, in particular merging, we were able to transform the design to obtain

a new pareto design point that was not achievable with a state-of-the-art industrial

HLS tool. The use of the profiling-based cprof performance estimation technique

presented in Chapter 4 was essential to gain insight in the application performance

and the optimization opportunities. The case study is discussed in Chapter 6.

We summarize our work and conclude in Chapter 7.



14 Chapter 1. Introduction


