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NOTATION

| · | Cardinality: |S| ≡ the number of elements in S, page 20.

[·, ·) Interval: [a, b) = {x ∈ Z | a ≤ x < b}.

⌈·⌉ Least integer: ⌈x⌉ = n ⇔ n ∈ N ∧ n − 1 < x ≤ n.

· ≺ · Lexicographical order, page 18.

Dp Iteration domain of process p, page 27.

d(e) Number of initial tokens on edge e, page 22.

δc Process reading from channel c, page 27.

E The set of channels of a PPN, page 27.

II F Initiation interval of function F , page 38.

IPDk
i k-th Input Port Domain of process i, page 27.

ΛF Latency (input-to-output delay) of function F , page 38.

Mc Channel relation of channel c, page 27.

N The set of natural numbers, including 0.

N+ The set of positive natural numbers, excluding 0.

OPDk
i k-th Output Port Domain of process i, page 27.

P The set of processes of a PPN, page 27.

Q The set of rational numbers.

σc Process writing to channel c, page 27.

Tp Period of a process p, page 55.

t(a) Execution time of data flow node a, page 22.

τp Throughput of a process p, page 55.

θ(i) Application of schedule θ to iteration vector i, pages 111, 112.

Z The set of integers.





CHAPTER 1
INTRODUCTION

E
LEMENT NUMBER 14, or silicon, has been important for many ancient civiliza-

tions, albeit mostly as a constituent of sand and rocks. Silicon was essential

for the construction of houses, temples, and roads, which together formed the cen-

ters of society. In 1954, a new and very different use for silicon was found that

would have a dramatic impact on the established centers of society: Gordon Teal

and his team produced the first silicon transistor [Che04]. Many electronic devices

have become available since then, in which silicon transistors are an essential com-

ponent. By miniaturization, more and more transistors could be fit onto a small area,

thereby enabling the construction of complex processing systems. Contemporary

examples of such processing systems include the special purpose processors found

in automotive, mobile communications, medical, industrial, and entertainment ap-

plication domains. Many of these processing systems are tightly coupled to their

environment and perform a specific task, and are therefore classified as embedded

systems [LS11, Mar11, SB00]. Central to this dissertation is the design of the special

purpose processors in these embedded systems.

1.1 Problem Context

The special purpose processors in embedded systems are highly optimized to perform

their application-specific computations in a fast and area- and energy-efficient way.

The design of those processors is becoming increasingly challenging due to increas-

ing application complexity, the ever-increasing demand for computational power,

and worldwide time-to-market pressure. To satisfy the demand for computational

power, Multi-Processor System-on-Chip (MPSoC) solutions are deployed in modern
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embedded systems. Such MPSoCs consist of many different components such as

programmable processing components, specialized processing components, memory

components, and input/output interfaces. By letting multiple components work in

parallel, the demand for computational power is met. Unfortunately, the design of an

MPSoC is even more challenging than the design of a single-processor system. The

challenge for the designer is to distribute computations over different processors of

the MPSoC. While doing so, the designer should guarantee functional correctness of

the system and at the same time make tradeoffs between orthogonal design aspects

such as circuit area and performance [Mar06]. Thus, the shift to multi-processor sys-

tems may address the demand for computational power, but this comes at the expense

of a further increase in design complexity.

Traditionally, processors have been designed at the Register Transfer Level (RTL).

An RTL specification of a processor consists of registers that are interconnected by

signals and combinational logic. RTL design of modern MPSoCs is becoming in-

creasingly error-prone and time-consuming because of the abundance of registers,

signals, and combinational logic needed for a modern MPSoC’s functionality. To

cope with the design complexity of modern MPSoCs, the designer needs to work

at a level of abstraction above the RTL. This has led to the emergence of Elec-

tronic System-Level (ESL) design methodologies [GAGS09, BM10]. In such a design

methodology, the designer first specifies a system at a high level of abstraction. Next,

the designer constructs an RTL implementation from the initial specification with the

aid of system-level design automation tools.

An example system-level design tool set is the open-source Daedalus tool set which

has been developed at the Leiden Embedded Research Center (LERC) [NSD08b,

Lei08]. We leverage the Daedalus tool set in this thesis. This means that we want to

develop the special purpose processors of an embedded system with Daedalus. An

overview of the Daedalus system-level tool flow is depicted in Figure 1.1. Daedalus

enables a designer to obtain a deployable gate-level specification from a system-level

specification in a fully automated way. The functional behavior of the system-level

specification is specified as a sequential C program, as shown at the upper right part

of Figure 1.1. The elaboration from one specification level to a lower specification

level is done in a fully automated way. We discuss the different aspects of Daedalus

in the following paragraphs.

Many applications in the embedded systems domain are specified using an imper-

ative model of computation, in for example the C language. Such models are well-

suited and widely adopted to specify the functionality of single-processor systems.

Unfortunately, mapping an imperative specification onto a multi-processor system is

difficult because of two mismatches. First, the sequential nature of an imperative

specification does not match the parallel nature of a multi-processor system. Sec-
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Figure 1.1: Daedalus system-level tool flow overview [NSD08b].

ond, an imperative specification assumes shared memory which is likely to become

a performance bottleneck on a multi-processor system. A distributed memory model

better matches a multi-processor system, but it is not possible in the general case to

extract a distributed memory model from an imperative specification.

The functionality of a multi-processor system is more naturally specified using a

parallel model of computation such as a network of processes communicating over

channels. A model that has gained widespread popularity is the Kahn Process Net-

work model [Kah74]. Specifying the functionality of a system using a parallel model

of computation is considered more difficult compared to using an imperative model of

computation. This is because the human brain tends to solve problems as a sequence

of steps, which matches the sequential nature of an imperative model of computation.

Moreover, in a parallel specification deadlocks and race conditions may occur that are

very difficult to detect or predict beforehand [Mar06]. Such difficulties do not occur

in a sequential specification. As such, many designers prefer specifying an applica-

tion using a sequential specification, despite the subsequent difficulties of implement-

ing the specification as an MPSoC. The mismatch between the programmer-preferred

sequential specifications and the parallel specifications desired for multi-processor

systems is known as the specification gap [Ste04].
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Various approaches exist to bridge the specification gap. One approach is to ex-

tend a sequential program with library calls or compiler pragma directives to indicate

tasks that can execute concurrently. Examples of this approach include pthreads,

OpenCL [Khr08], and OpenMP [Ope97]. Another approach is to automatically ex-

tract concurrent tasks from a sequential program using a parallelizing compiler such

as LooPo [GL97], Polaris [BEF+94], Pluto [BBK+08], or PNGEN [VNS07]. The

latter is part of Daedalus to bridge the specification gap. PNGEN generates a parallel

specification from a sequential program written in a subset of the C language. We

discuss PNGEN in more detail in Section 2.3.

A system-level specification lacks many details that are present in the RTL speci-

fication because these details are irrelevant at the system level. For example, at the

system level the designer reasons about sending data from one processor to another

without specifying the registers and logic that implement such communication in the

RTL specification. Not exposing the designer to such implementation details allows

a designer to better cope with complex systems. However, the omission of imple-

mentation details opens up a gap between the system-level specification and the RTL

implementation, which is known as the implementation gap [NSD08b]. To obtain a

functional implementation from a system-level specification, the implementation gap

needs to be bridged by adding low-level implementation details to the system-level

specification. This is done by a system-level synthesis tool which refines a system-

level specification into an RTL specification in a systematic and automated way.

The Daedalus tool set provides the ESPAM tool for automated system-level synthe-

sis. A system-level specification for ESPAM is composed of three individual specifi-

cations: an implementation platform specification describing the number and types of

processing and interconnect components of the system; a parallel application specifi-

cation consisting of a network of communicating tasks; and a mapping specification

that maps the application tasks onto processing components. The ESPAM tool gen-

erates an RTL specification from the three specifications. This RTL specification is

then taken through commercial low-level synthesis tools that convert the RTL into

a gate-level specification. Place-and-route tools take such a gate-level specification

and create a layout of the circuit which can be implemented on a Field-Programmable

Gate Array (FPGA) or provided to an Application-Specific Integrated Circuit (ASIC)

manufacturing process. This last step yields a complete MPSoC implementation.

1.2 Problem Statement

Existing system-level design tools such as Daedalus present a forward synthesis flow

to bridge the specification and implementation gaps. This allows a designer to obtain
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a working prototype of a system in only a few hours of time [NSD08b]. However,

many different implementations of an application specification are possible that have

identical functionality but differ in performance and implementation cost aspects.

This presents the designer with another problem: selecting an implementation from

a vast design space of possible implementations. Only a subset of the design points

in this design space represent implementations that satisfy a set of given design con-

straints on performance and circuit area. Thus, solely closing the specification and

implementation gaps still leaves open the problem of selecting the design point that

best matches a set of design constraints.

A Daedalus system-level specification consists of the application, platform, and

mapping subspecifications, as described in the previous section and shown in Fig-

ure 1.1. Each of these subspecifications may be transformed to yield a functionally

equivalent implementation that has different performance and resource cost prop-

erties, as described by the Y-chart approach [KDWV02]. For example, a designer

can transfrom the platform specification by adding or removing processors, or trans-

form the mapping specification by moving a task from one processor to another, or

transform the application specification by splitting a tasks into smaller subtasks and

thereby exposing more parallelism. Many combinations of such transformations are

possible and this number grows rapidly as application and platform sizes increase.

As a result, the design space for a modern MPSoC is typically very large.

Despite the existence of fully automated system-level synthesis tools, implementing

and evaluating all design points is infeasible for modern MPSoC design because of

the large design space. Therefore, the design space should be explored in such a way

that only the “promising” design points need to be implemented and evaluated. Find-

ing the promising design points is a non-trivial multi-objective optimization problem.

Many Design Space Exploration (DSE) techniques have been proposed to efficiently

search large design spaces [Gri04]. Daedalus incorporates the SESAME DSE tool to

explore the design space using an evolutionary algorithm [PEP06]. SESAME relies on

trace-based simulation to estimate the performance of candidate design points. Al-

though SESAME’s simulation is intended for fast performance analysis, conducting

many simulations may still take a considerable amount of time [PP12]. This leads to

unreasonably long design times.

An alternative way of finding a satisfactory design point is the (naive) iterative de-

sign flow depicted in Figure 1.2. The design flow starts with an initial system-level

specification. A parallel application specification is automatically derived from an

imperative program using for example PNGEN, thereby bridging the specification

gap. The designer synthesizes this system-level specification into an FPGA proto-

type to verify if for example performance constraints are satisfied. The designer

uses a system-level synthesis tool such as ESPAM in this step, thereby bridging the
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Design
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Parallelize,

synthesize

How to satisfy design constraints?

Forward synthesis flow

Figure 1.2: Iterative system-level design flow.

implementation gap. If a performance constraint is not satisfied, the system-level

specification is transformed based on performance and cost metrics obtained from the

prototype implementation. These transformations entail modifying the application by

rewriting the C code, modifying the platform by adding processors, or modifying the

mapping by assigned tasks to different processors. The designer relies on experience

and expertise to come up with transformations that most likely have the desirable

effect on performance and cost aspects. Building up this knowledge is referred to as

the “acquisition of insight” [Spe97]. However, it is not trivial to predict beforehand if

and by how much a certain transformation affects performance and cost aspects. At

this moment, the best a designer can do is to perform a new time-consuming synthesis

step after transforming the system-level specification. This procedure is repeated un-

til an implementation is obtained that satisfies performance constraints. The designer

can then proceed with the actual manufacturing of the system.

A naive iterative design flow may appear to be more deterministic than a random-

search driven DSE flow. Because the designer iteratively transforms a system-level

specification in a pragmatic manner, a system that satisfies all performance con-

straints should eventually be the result. However, this only holds if the designer

always makes the optimal decisions. This does not always happen in practice, be-

cause the designer may for example overlook solutions or ignore solutions that seem

counter-intuitive. Another problem with a naive iterative design flow is that evalua-

tion of a single specification may easily take a few hours of time. This reduces the

number of iterations a designer can make in a given time frame, increasing time-to-

market.

The naive iterative design flow bridges both the specification and implementation

gaps by employing advanced parallelizing compilation techniques and system-level
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synthesis tools. However, it does not address the following problem: given a perfor-

mance constraint, which transformations should the designer apply to obtain an im-

plementation that meets this performance constraint? For example, consider the sce-

nario in which a designer constructs a video processing system under the constraint

that the system should meet a throughput of 20 frames per second. After synthesiz-

ing the system-level specification, the designer finds that the system works at only 11

frames per second. This puts a burden on the designer to transform the system-level

specification such that the performance constraint of 20 frames per second is met. We

therefore argue that solely bridging the specification and implementation gaps is not

sufficient to solve a design problem.

In this dissertation, we consider the iterative system-level design flow of Figure 1.2

and address a designer’s problem that is currently not addressed. That is, we ask

how to modify this design flow to obtain a constraint-satisfying implementation of

a system in a short amount of time. This modification is needed as synthesizing a

design in the current flow takes too long, keeping the designer in the dark whether

the design will satisfy the designer’s constraints. Performance estimation methods

are lacking that could provide an early indication of whether a design will satisfy

the designer’s constraints at all. After obtaining an implementation not meeting the

constraints, there is little guidance to help a designer transform his design in such a

way that his performance constraints will be satisfied. In this context, we formulate

our three central research problems as follows:

1. Synthesis: How to automatically obtain efficient RTL implementations from a

high-level specification that enable application of established transformations

such as splitting, merging, stream multiplexing, and scheduling?

2. Performance estimation: How to assess the absolute performance of a de-

sign point, possibly in different ways by trading off evaluation speed against

accuracy?

3. Optimization: How to obtain an implementation that satisfies a performance

constraint while reducing the number of design iterations?

Only after addressing these three problems from a designer’s perspective, Daedalus

can become a powerful system-level synthesis tool capable of solving design prob-

lems.

1.3 Related Work

We address the central problems listed above in this dissertation by leveraging and ex-

tending the underlying theory of the Daedalus methodology [NSD08b, Lei08]. The
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Daedalus methodology addresses the problem of obtaining an efficient FPGA im-

plementation from a high-level application specification in a short amount of time.

As such, Daedalus provides an important stepping stone to address the three central

problems, ultimately leading to an extended Daedalus design flow that also considers

performance constraints.

Daedalus is only one of many methodologies to (semi-)automatically obtain special

purpose processor implementations from high-level application and system specifi-

cations. In this section, we give a brief overview of related approaches to obtain

RTL implementations from high-level application specifications. We discuss related

high-level synthesis techniques in Section 1.3.1 and related electronic system-level

synthesis techniques in Section 1.3.2. Related work specific to each of the three

central problems is discussed separately in Chapters 3, 4, and 5.

1.3.1 High-Level Synthesis

Automated synthesis of RTL implementations from specifications above the register

transfer level, known as High-Level Synthesis (HLS), has been subject of research

since the late 1980s [MK88, MPC88, PK89]. Since then, many academic and com-

mercial HLS tools have been developed. In 1994, electronic design automation com-

pany Synopsys released its Behavioral Compiler tool that is widely regarded as the

first commercial HLS tool [CM08]. This tool took a behavioral description of a de-

sign in VHDL or Verilog as input and generated a cycle-accurate VHDL or Verilog

description. During synthesis, the tool allowed the designer to trade off throughput

against chip area. Since then, many different HLS tools have been released by dif-

ferent companies, with varying degrees of commercial success. As of 2013, three

of the major commercially available HLS tools are Synopsis SynphonyC [Syn10],

Xilinx Vivado HLS [Xil13], and Calypso Catapult [Cal11]. A difference with Be-

havioral Compiler is that modern commercial HLS tools have anchored on C, C++,

or SystemC input specifications instead of input specifications using Hardware De-

scription Languages like VHDL or Verilog [Fin10]. Meeus et al. conducted a com-

parison between twelve different commercial and open-source high-level synthesis

tools [MVBG+12].

Next to commercial tools, numerous academic high-level synthesis tools have been

developed. One of the early academic tools was Hercules [MK88] which has been

integrated in the Olympus Synthesis System [MKMT90]. Olympus takes an input

specification written in HardwareC and provides synthesis and simulation of designs.

HardwareC is a C-like language in which a system is described as a set of concurrent

modules. The modules are interconnected using communication primitives. This re-

quires the designer to split the application functionality across different modules and
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interconnect them manually using communication primitives. Advanced compilation

techniques such as those employed by Daedalus allow tools to automatically derive

such interconnects from a sequential specification. The ROCCC tool takes a subset

of the C language as input and generates RTL targeted towards FPGAs [GNB08].

ROCCC requires that loop iterators are used in at most one array dimension. This

poses a problem when expressing for example a loop skewing transformation. Such a

restriction is not necessary in Daedalus as any affine expression of loop iterators is an-

alyzable using the polyhedral model. Other HLS approaches that employ the polyhe-

dral model include for example PARO [HRDT08] and MMALPHA [GQR03]. These

approaches use functional languages as input, while commercial tools and Daedalus

all use an imperative language. Related early work included modeling affine nested

loop programs using uniform recurrence equations to generate systolic array imple-

mentations [Qui84]. The FCUDA approach takes C code annotated using NVIDIA’s

CUDA primitives and generates C code annotated with AutoESL pragmas to obtain

an FPGA implementation [PGS+09]. This allows a designer to express parallelism

in a single specification and target both GPU and FPGA platforms. Besides the main

FPGA backend, Daedalus also includes a GPU backend, allowing a designer to also

target both GPU and FPGA platforms. Unlike FCUDA, Daedalus does not require

CUDA-like annotations of the C code.

High-level synthesis should not be confused with design entry using a high-level

language, because the use of a high-level language does not necessarily imply that

the design is specified at a high level of abstraction. For example, Handel-C is a

subset of the C language with extensions to describe hardware succinctly [Pag96].

Parallel behavior is expressed using the Communicating Sequential Processes (CSP)

model of computation [Hoa85]. Similar to RTL design, the designer should per-

form scheduling and pipelining manually, whereas this is performed automatically

in an HLS flow. Cobble is a language similar to Handel-C [TCL05] with support

for custom compilation schemes. This allows a designer to define how a particular

pattern in the source program should be mapped to hardware. Cobble is compiled

into Pebble, which is a simplified hardware description language supporting design

parameterization and run-time reconfiguration [LM98]. MyHDL allows a designer to

specify hardware in the Python language [Dec03]. MyHDL still requires the designer

to specify the behavior of the hardware at the register-transfer level using constructs

provided by the MyHDL Python package.

Daedalus may be regarded as an HLS tool to some extent, since it generates RTL

from a specification in the C language when a process is mapped onto an application-

specific hardware processor. But in contrast to a conventional HLS tool, Daedalus

only generates the control path RTL of a hardware processor. Daedalus does not gen-

erate data path RTL, as it relies on the designer to provide IP cores that implement
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the data path [NSD08a]. Moreover, Daedalus generates complete heterogeneous MP-

SoC implementations, which is a task that is beyond the scope of high-level synthe-

sis. Another difference between HLS tools and Daedalus is the model used to rep-

resent applications. HLS tools predominantly employ Control Data Flow Graphs

(CDFGs) [MPC88, CGMT09], whereas Daedalus employs a process network based

model [VNS07].

1.3.2 Electronic System-Level Synthesis

During the late 1990s, electronic system-level synthesis gained interest of system

designers as it provided means to cope with the increasing design complexity of

systems. A system-level synthesis flow focuses on an entire system possibly con-

taining programmable processors. In contrast, a high-level synthesis flow focuses

on a highly optimized application-specific RTL architecture implementing one or

more kernels. Many different system-level synthesis tools exist besides Daedalus.

SystemCoDesigner takes a set of SystemC modules as input and implements a sys-

tem by mapping these modules onto hardware and software components [KSS+09].

Ptolemy is an environment for simulation and prototyping of heterogeneous sys-

tems [BHLM94, EJL+03]. A system design in Ptolemy may consist of subsystems

that employ different models of computation, such as continuous time or process

network based models. PeaCE [HKL+08] provides a system-level design environ-

ment based on Ptolemy, but restricts itself to an extension of the synchronous data

flow model and an extension of the finite state machine model. SystemCoDesigner,

Ptolemy, and PeaCE require the designer to specify a system as a set of actors inter-

connected using communication channels, while Daedalus automatically derives ac-

tors (processes) and channels from sequential code. The StreamIt approach [GTA06]

requires the designer to specify an application graph using actors and communication

channels in a custom language. StreamIt employs the Synchronous Data Flow (SDF)

model, which is more restrictive than the PPN model employed by Daedalus. The

System-on-Chip Environment (SCE) [DGP+08] uses the SpecC language [ZDG97]

to describe system behavior. The SCE design flow consists of similar design steps

as Daedalus, such as parallelization, communication synthesis, and RTL generation.

However, the parallelization step is automated in Daedalus, whereas SCE requires

the designer to explicitly specify the system as a set of concurrent tasks intercon-

nected using communication channels. The MPSoC Application Programming Stu-

dio (MAPS) [LC10] is a framework that aids the MPSoC designer with C applica-

tion parallelization. The parallelization in MAPS is relies on profiling information,

whereas parallelization in Daedalus is static. Like Daedalus, MAPS can also incorpo-

rate already parallelized applications specified as a (Kahn) process network. Unlike



1.3. Related Work 11

Daedalus, MAPS does not provide an automated way to obtain a parallelized variant

of a sequential application. The Multi-Application and Multi-Processor Synthesis

(MAMPS) flow maps synchronous dataflow graphs onto homogeneous MPSoCs. In

contrast, Daedalus uses the more expressive PPN model and targets heterogeneous

MPSoCs. MAMPS on the other hand supports multiple applications at once, whereas

the Daedalus version used in this thesis supports only one application at once, al-

though the DaedalusRT extension does support multiple applications [BZNS12].

Bluespec SystemVerilog (BSV) is a high-level hardware description language in-

tended to describe complete systems [NC10]. In a comparison conducted by Nikolov

et al., a C specification of an H.264 video decoder was implemented using both the

automated Daedalus flow and as a semi-custom design in BSV [NRD+09]. The Dae-

dalus design employed programmable components as processing elements, on which

the C specification was mapped. The Bluespec design employed dedicated hardware

processing elements, requiring manual conversion of the C specification to BSV. The

authors found that the design time for the Daedalus approach was roughly 6 times

shorter than the design time for the Bluespec design. This difference was mainly

caused by the manual conversion and verification in the BSV design. However, the

shorter design time in Daedalus came at the expense of higher resource cost caused

by the use of programmable processors. Replacing programmable processors with

dedicated RTL cores may reduce the resource cost footprint in the Daedalus flow.

Such cores can be obtained automatically from C using HLS tools. We discuss the

integration of HLS in Daedalus in Chapter 3.

Several ESL tools focus on graphical entry of a system-level design. For example,

a system is specified in Koski using Unified Modeling Language (UML) [KKO+06].

Xilinx System Generator provides a block-based design environment [Xil02]. A Sys-

tem Generator design can be compiled into a netlist, which can then be synthesized

onto an FPGA. The latest Vivado design suite from Xilinx integrates System Gener-

ator, AutoESL, and RTL synthesis into a single ESL design environment.

Many of the discussed high-level synthesis and system-level design tools do not

address the specification gap, as they require the designer to provide a parallel spec-

ification. On the other hand, Daedalus employs the PNGEN tool flow to bridge the

specification gap as it can automatically find a parallel specification. As the designer

does not have to provide a parallel specification, the design process is accelerated.

A key challenge of automated parallelization is detecting the statements that are in-

dependent of each other, such that they can execute in parallel. PNGEN employs

exact data dependence analysis to precisely find the dependence relations between

statements [Fea91]. Obtaining exact data dependence information is complicated

and is not always possible for arbitrary code. Most HLS and ESL tools that start

from a sequential specification therefore rely on approximate data dependence anal-
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ysis techniques such as Banerjee’s test [Ban88]. But as a result of the approximate

nature, tools may need to conservatively assume a data dependence exists between

statements, possibly preventing any parallel execution. Such false data dependences

can be circumvented using tool-specific compiler pragmas that need to be inserted

by the designer. Daedalus requires that the application is specified as a SANLP (cf.

Section 2.3) for which exact data dependence analysis is always feasible. This elim-

inates the need for conservative data dependence assumptions, freeing the designer

from having to manually analyze data dependences.

1.4 Contributions and Outline

In Section 1.2, we identified three central problems in an iterative system-level de-

sign flow. We solve these three problems in this dissertation in the context of the

Daedalus methodology [NSD08b], which we discuss in more detail in Chapter 2.

The Daedalus methodology is the result of many dissertations in the LERC group

[Rij02, Ste04, Tur07, ZI08, Nik09, Mei10, Nad12, Bal13]. We want to build further

upon the contributions made in these dissertations. The research conducted in this

thesis has led to the following four contributions:

Contribution I [HK09, NHS+11, HK12]: As a solution to the synthesis problem,

we add extensions to the Daedalus methodology. These extensions enable us to obtain

FPGA implementations from C programs which were already accepted by Daedalus,

but for which an FPGA implementation was not yet feasible. With these extensions,

we are now able to obtain complete FPGA implementations for industrially relevant

applications, like the sphere decoder application discussed in Chapter 6. We have

shown that we can characterize and integrate functional kernels (IP cores) from a

broad set of conventional HLS tools like the industrial tools Vivado HLS and Syn-

phony C, and the academic tool DWARV. Our extensions to the Daedalus methodol-

ogy provide an enabling step to realize the complete conventional “forward” system-

level synthesis flow for FPGAs in the flow shown in Figure 1.3. The position of these

extensions is indicated by the Ê in Figure 1.3 and are discussed in Chapter 3.

Contribution II [HHK10]: As a solution to the performance estimation problem,

we investigate four different performance estimation techniques, that differ in accu-

racy and assessment effort. We want to emphasize on two techniques in particular.

We show a novel analytical approach to estimate the performance of cyclic PPNs.

The analytical approach is based on the well-known Maximum Cycle Mean (MCM)

theory from the HSDF model of computation, but avoids exponential complexity ex-

plosion in the PPN-to-HSDF conversion. Although providing a theoretical basis, the

practical use is limited due to unknown accuracy of the result. In that respect, an-
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Figure 1.3: Contributions positioned in the iterative design flow.

other contribution of this thesis is cprof, which is a novel profiling based approach

that completely bypasses the forward synthesis flow. The approach is robust as it

relies only on an ordinary C++ compiler to obtain accurate performance estimates of

PPNs. Moreover, the approach allows for early estimation of the effects of transfor-

mations. The approach provides the designer with an upper bound on the degree of

parallelism in an application specification. This allows a designer to assess at a very

early stage in the design flow whether he can meet his constraints. The position of the

alternative performance estimation techniques in the overall design flow is indicated

by the Ë in Figure 1.3 and is discussed in Chapter 4.

Contribution III [HK12]: As a solution to the optimization problem, we provide

heuristics to optimize a design by leveraging the insight gained from the performance

estimation techniques discussed in Chapter 4. The heuristics provide a concrete set

of criteria that guide the designer in selecting standard transformations such as split-

ting, merging, stream multiplexing, and scheduling. This position of the heuristics is

indicated by the Ì in Figure 1.3 and is discussed in Chapter 5.

Contribution IV [HNVK11, NNH+10, NNH+11]: We have shown that we can

apply the extended forward system-level synthesis flow depicted in Figure 1.3 on an

industrially relevant application. This case study also shows that PPNs are a feasible

alternative to conventional CDFG-based C-to-RTL flows. Using the heuristics from

Chapter 5, in particular merging, we were able to transform the design to obtain

a new pareto design point that was not achievable with a state-of-the-art industrial

HLS tool. The use of the profiling-based cprof performance estimation technique

presented in Chapter 4 was essential to gain insight in the application performance

and the optimization opportunities. The case study is discussed in Chapter 6.

We summarize our work and conclude in Chapter 7.
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CHAPTER 2
BACKGROUND

In this chapter, we introduce concepts and notations that are used throughout this

thesis. In Section 2.1, we introduce the polyhedral model which we employ for anal-

ysis of programs. In Section 2.2, we review various models of computation that are

widely employed to represent applications. We focus on the polyhedral process net-

work model of computation employed by Daedalus and review in Section 2.3 how

such networks can be derived from a particular class of sequential programs. In

Section 2.4, we review how processes of polyhedral process networks can be imple-

mented in hardware.

2.1 Polyhedral Model

The streaming applications that we consider in this thesis are data-driven: a sequence

of computations is repeatedly applied on an incoming data stream, such as a stream

of images produced by a video camera. These streaming applications spend most of

their execution time in loops that perform computations on data stored in arrays. For

example, edge detection algorithms consist of loop nests that iterate over all pixels

of the input image that is stored in a 2-dimensional array. These loop nests are the

primary candidates for optimization, since most of the time is spent there. To select

and apply optimizations, one needs means to reason about iterations of loops and rela-

tions between statements contained in loop nests. This is possible with the polyhedral

model [Pug91, Fea96] which is employed by modern compilers like GCC [PCB+06]

and LLVM/Polly [GZA+11]. The polyhedral model allows a compact representation

of loop nests while providing sufficient means to express advanced optimizations

such as loop skewing [SKD02]. We use polyhedra to compactly represent loop nests
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Figure 2.1: A 1-dimensional hyperplane (i.e., a line) H1 = {(j, i) ∈ Q2 | i = 3}
dividing a 2-dimensional space.

in the polyhedral model. A polyhedron can be defined using hyperplanes.

Definition 2.1 (Hyperplane).

A hyperplane H is a subspace of dimension d− 1 inside a d-dimensional space, that

is,

H = {x ∈ Qd | aTx = c},

where a is a non-zero vector of size d and c is a constant [Rij02].

A hyperplane is a generalization of a conventional 2-dimensional plane to n ∈ N

dimensions. A 1-dimensional hyperplane dividing a 2-dimensional space is shown

in Figure 2.1. A hyperplane divides a space into an upper and a lower half-space.

We distinguish open half-spaces which do not include the dividing hyperplane itself,

and closed half-spaces which include the dividing hyperplane. We use hyperplanes

to define subspaces of Qd, known as rational polyhedra:

Definition 2.2 (Rational Polyhedron).

A rational polyhedron P is a subspace of Qd that is bounded by a finite set of m
hyperplanes, that is,

P = {x ∈ Qd | Ax ≥ c},

where A is an integral m × d matrix and c is an integral vector of size m [Ver10].

The shaded rectangular area in Figure 2.2a represents a 2-dimensional rational poly-

hedron that is bounded by the closed upper half-spaces of two 1-dimensional hyper-

planes i = 1 and j = 2. This rational polyhedron extends into infinity in both

dimensions. By adding the closed lower half-space of the hyperplane i+ j = 6 to the

bounds, we obtain a rational polyhedron that is fully enclosed by its bounding hyper-

planes, as shown in Figure 2.2b. Such an enclosed rational polyhedron containing a

finite number of integral points is called a rational polytope.
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a) Rational polyhedron. b) Rational polytope.
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e) Statement with modulo guard.

for (j=2;j<=5;j++) {
  for (i=1;i<=6-j;i++) {
    F(...);
  }
}

c) Loop nest represented by b).

for (j=2;j<=5;j++) {
  for (i=1;i<=6-j;i++) {
    if (i%2 == 0)
      F(...);
  }
}

for (j=2;j<=N;j++) {
  for (i=1;i<=6-j;i++) {
    F(...);
  }
}

d) Loop with parametric bound.

Figure 2.2: a) A 2-dimensional rational polyhedron; b) a 2-dimensional rational poly-

tope; c) a loop nest of depth two that can be represented by the 2-dimensional ratio-

nal polytope given in b); d) a loop nest where the outer loop has a parametric upper

bound; and e) a statement with a modulo guard.

Definition 2.3 (Parametric Rational Polyhedron).

A parametric rational polyhedron P(s) is a family of rational polyhedra in Qd that

is parametrized by parameters s ∈ Qn:

s 7→ P(s) = {x ∈ Qd | Ax + Bs ≥ c},

where A is an integral m × d matrix, B is an integral m × n matrix, and c is an

integral vector of size m [Ver10].

A parametric rational polyhedron can represent a loop nest that iterates over a finite,

possibly parameterized set of iterations. By assuming that the iterators of such a

loop nest are integers, we can represent a loop nest as a set of integral points in a

(parametric) rational polyhedron. For example, the loop nest shown in Figure 2.2c

can be represented by the rational polytope shown in Figure 2.2b. Each iteration of

the loop nest has a corresponding point in the rational polytope. The loop nest shown

in Figure 2.2d can be represented by a parametric rational polytope.

When for example a statement is guarded with an expression containing a modulo

operator, we are interested in only a subset of the points of a parametric rational

polyhedron. In the example shown in Figure 2.2d, function F is called only for even

values of iterator i. We define the polyhedral set to represent a subset of points in a

parametric rational polyhedron.
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Figure 2.3: Example polyhedral set.

Definition 2.4 (Polyhedral Set).

A polyhedral set S is a finite union of basic integer sets, S =
⋃

i Si, of type Qn →

2Qd

, where each basic integer set Si is defined as

Si = s 7→ Si(s) = {x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz ≥ c},

where A is an integral m × d matrix, B is an integral m × n matrix, D is an integral

m × e matrix, and c is an integral vector of size m. The parameter domain of S,

{s ∈ Zn | S(s) 6= ∅}, is a polyhedral set containing all parameter values s for which

S is non-empty. A polyhedral set with an empty parameter domain (i.e., n = 0)

is called a non-parametric polyhedral set, and denoted with “s 7→” omitted. The

parameter domain of a polyhedral set is always non-parametric [Ver10].

The polyhedral set depicted in Figure 2.3 contains only a subset of the integral

points of its bounding rational polytope. In particular, it only contains the integral

points for even values of j, which can be expressed as “j mod 2 = 0”. Such con-

straints are enforced using the existentially quantified variables z in Definition 2.4.

For example, the constraint “j mod 2 = 0” is represented by a condition 2e = j and

the requirement that e is integral.

To allow reasoning about the execution order of different iterations of a program,

we define the lexicographic order on the points of a polyhedral set:

Definition 2.5 (Lexicographic Order).

The lexicographic order is a total order on the elements of a polyhedral set. An

element a is lexicographically smaller than an element b, denoted as a ≺ b, if
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ai < bi for the first dimension i in which both elements differ, or, equivalently,

a ≺ b ≡
n
∨

i=1



 ai < bi ∧
i−1
∧

j=1

aj = bj



 .

For example, an element a = (2, 3, 5) is lexicographically smaller than an element

b = (2, 4, 0), because the first difference between both elements is in the second

dimension, and the value 3 in the second dimension of a is less than the value 4 in

the second dimension of b.

Loop optimizations such as skewing transform iteration domains that we represent

using polyhedral sets. A transformation of a polyhedral set can be expressed as a

relation between the original polyhedral set and the transformed polyhedral set. We

define the polyhedral map to express such relations:

Definition 2.6 (Polyhedral Map).

A polyhedral map M is a finite union of basic polyhedral maps, M =
⋃

i Mi, of

type Qn → 2Qd1+d2
, where each basic polyhedral map is defined as

Mi = s 7→ Mi(S)

= {(x1,x2) ∈ Zd1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz ≥ c},

where A1 is an integral m × d1 matrix, A2 is an integral m × d2 matrix, B is an

integral m × n matrix, D is an integral m × e matrix, and c is an integral vector of

size m [Ver10].

The polyhedral set

s 7→ {x1 ∈ Zd1 | ∃x2 ∈ Zd2 : (x1,x2) ∈ M(s)}

is the domain of a polyhedral map M . The polyhedral set

s 7→ {x2 ∈ Zd2 | ∃x1 ∈ Zd1 : (x1,x2) ∈ M(s)}

is the range of a polyhedral map M . In this thesis, we denote polyhedral maps as

M = s 7→ {x1 → x2 | . . . }.

An example polyhedral map consisting of only one basic polyhedral map is

M1 = {(j1, i1) → (j2, i2) | j2 = 2j1 ∧ i2 = i1}. (2.1)

We use polyhedral maps to manipulate points or polyhedral sets by application of the
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polyhedral map. For example, applying M1 to a point (2, 1) yields (4, 1), denoted as

M1(2, 1) = (4, 1).

If we apply this polyhedral map to the polyhedral set of Figure 2.2b, that is, if we

compute M1(S1), we obtain the polyhedral set depicted in Figure 2.3. The points in

this new polyhedral set result from application of M1 to each point in the original

polyhedral set S1.

We sometimes need to know the size of a polyhedral set or map, for example to

judge whether a certain transformation is beneficial to a given program. The number

of elements in a polyhedral set or polyhedral map is given by the cardinality:

Definition 2.7 (Cardinality).

The cardinality of a polyhedral set S, denoted as |S|, represents the number of ele-

ments in S.

The cardinality of a polyhedral map M, denoted as |M|, represents the number of

elements in the range of M associated to any element in the domain of M.

We use the barvinok library to analytically determine the cardinality of polyhe-

dral sets and maps [VSB+07, Ver03a]. The cardinality is expressed as a piecewise

quasipolynomial. A piecewise quasipolynomial consists of one or more quasipoly-

nomials:

Definition 2.8 (Quasipolynomial).

A quasipolynomial q(x) is a polynomial expression in greatest integer parts of affine

expressions of variables in x. The coefficient of each term may include a constant

integer division [Ver10].

Definition 2.9 (Piecewise Quasipolynomial).

A piecewise quasipolynomial q(x) consists of one or more quasipolynomials. Each

quasipolynomial qi(x) is defined only for a disjoint piece Di of a domain D. For a

given point x ∈ D, the piecewise quasipolynomial evaluates to

q(x) =

{

qi(x) if x ∈ Di,

0 otherwise [Ver10].

For example, the cardinality of the polyhedral set S2 of Figure 2.3 is expressed using

the piecewise quasipolynomial

|S2| =
{

10 if 1 ≥ 0 .

The cardinality of S2 is constant because all bounding hyperplanes are constant.

Therefore, the cardinality is not dependent on any parameters or variables and con-
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sists of only one piece that is selected using the tautology 1 ≥ 0. The quasipolyno-

mial has a constant value of 10, as S2 consists of 10 points.

The cardinality of the polyhedral map M1 of Equation (2.1) is expressed using the

piecewise quasipolynomial

|M1|(j1, i1) =

{

1 if (j1, i1) ∈ Z2,

0 otherwise.

This means that applying M1 to any point (j1, i1) that is in Z2 always yields exactly

one new point (j2, i2).

2.2 Models of Computation

Designers specify the behavior of a system in a structured way using a Model of

Computation (MoC). To facilitate programming of multi-processor systems, a par-

allel MoC is needed such that the tasks for each processor and the communication

and synchronization mechanisms can be specified. Different MoCs have been pro-

posed and evaluated for their use in design automation in literature [LSV98, JS05].

For example, HDL simulators often employ a timed discrete-event MoC in which

all events are ordered globally in time. A global ordering is often not desired for a

multi-processor system because different parts of the system may execute in parallel.

Our interest is in untimed dataflow process network based MoCs such as Kahn Pro-

cess Networks (KPNs) defined by Kahn [Kah74]. The dataflow-based MoCs that we

consider in this thesis have several properties that make them attractive for specifica-

tion of multi-processor systems [SZT+04]. One desirable property is deterministic

behavior, such that a given input sequence always results in the same output sequence

regardless of variations in computation or communication times. Another desirable

property is that each task behaves autonomously, such that each processor of a multi-

processor system can be considered in isolation. This allows designers to better cope

with complex multi-processor systems.

Many different specializations of dataflow process network based MoCs have been

proposed in literature for the design of streaming applications. A major reason for

the abundance of different specializations is to allow different tradeoffs of expres-

siveness against analyzability. With expressiveness of a model we refer to the ability

to express an application in that model in a succinct way. Although more general

models often can be converted to more specialized equivalent models, such a conver-

sion often increases the size of the application model making it no longer succinct.

With analyzability of a model we refer to the existence and complexity of compile-

time analysis algorithms to compute for example static schedules, buffer sizes, or
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Figure 2.4: Different models and their expressiveness and analyzability.

throughput. In Figure 2.4, we depict five different models and compare their expres-

siveness and analyzability. For example, many applications can be expressed in the

KPN MoC, but due to the genericity of the model, the compile-time analyzability

is limited. In contrast, the HSDF model has a lower expressiveness but this allows

for full analyzability. We now review four dataflow-based models that we use in the

remainder of this thesis for specification and analysis of MPSoCs: the HSDF, SDF,

CSDF, and PPN models of computation.

2.2.1 Homogeneous Synchronous Dataflow

The most restricted model of computation that we consider in this thesis is the homo-

geneous synchronous dataflow model, which is also known as the single-rate dataflow

model [GGS+06]. The more generic models that we discuss later extend the homo-

geneous synchronous dataflow model. We use the following definition, in line with

the notation used by e.g. Moreira et al. [MBGS10]

Definition 2.10 (Homogeneous Synchronous Dataflow Graph).

A Homogeneous Synchronous Data Flow (HSDF) graph is a directed graph defined

by a tuple (V, E, t, d), where

• V is a set of vertices representing computation nodes,

• E is a set of edges representing communication channels that carry tokens,

• t(i), i ∈ V represents the time needed for a single execution of node i, and

• d(e), e ∈ E represents the number of initial tokens on edge e, also referred to

as the delay of edge e.

An HSDF graph consisting of four nodes and six edges is shown in Figure 2.5.

Shown in the upper half of each node is a label that we assign for convenient refer-

encing. Shown in the lower half of each node is the node’s execution time t(i). For
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Figure 2.5: An HSDF graph.

example, node b has an execution time t(b) = 2 time units. Initial tokens d(e) for

each edge are shown as dots on the edges. For example, the edge connecting node c

to a2 contains one initial token, that is, d(c → a2) = 1. For clarity reasons, we may

visualize multiple initial tokens by a single dot and a number above or below the dot.

Edges transfer units of data referred to as tokens. A node is said to be enabled if

each of its incoming edges contains at least one token. An enabled node is said to

fire when it consumes a token from each incoming edge, performs a computation on

these tokens, and then produces a token on each of its outgoing edges. If none of the

nodes is enabled, then the graph is in a deadlock state. If all nodes of a graph can

fire infinitely often, then the graph is live. An HSDF graph is said to be consistent

if every token written to an edge is eventually consumed, such that the graph can

be executed under bounded memory conditions. An iteration of an HSDF graph is

defined as each node executing exactly once.

Different firings of a node may start at the same time, such that overlapped execution

between firings of the same node occurs. For example, if edge c → a1 in Figure 2.5

would contain two initial tokens, then two firings of a1 can start simultaneously. Such

overlapped execution of firings of the same node is referred to as auto-concurrency.

By adding an edge from a node to itself, referred to as a selfloop, we can regulate

auto-concurrency of a node. The number of initial tokens on that selfloop limits

the number of parallel firings. By putting one initial token on the selfloop, auto-

concurrency is fully prevented. In such a case, the node consumes the initial token

from the selfloop at the first firing, and only produces a new token on the edge once

it finishes its firing. The node is not enabled for any subsequent firings until the first

firing has finished, meaning no overlap between firings occurs.

2.2.2 Synchronous Dataflow

HSDF graphs are a special case of the more general synchronous dataflow graphs

defined by Lee and Messerschmitt [LM87].
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Figure 2.6: An SDF graph and its topology matrix Γ.

Definition 2.11 (Synchronous Dataflow Graph).

A Synchronous Data Flow (SDF) graph is a directed graph defined by a tuple

(V, E, t, d, p, c), where

• V , E, t, and d follow those in Definition 2.10,

• p(e), e ∈ E represents the number of tokens placed on edge e when the corre-

sponding source node fires, referred to as the production rate, and

• c(e), e ∈ E represents the number of tokens consumed from edge e when the

corresponding destination node fires, referred to as the consumption rate.

An SDF graph consisting of three nodes and four edges is shown in Figure 2.6.

The numbers depicted at the location where edges connect to nodes represent the

production and consumption rates. For example, when node c fires it consumes

c(b → c) = 1 token from edge b → c, and it produces p(c → b) = 1 token on

edge c → b and p(c → a) = 2 tokens on edge c → a.

The structure and production and consumption rates of an SDF graph are com-

pactly represented by a topology matrix Γ. The columns of Γ represent the nodes and

the rows of Γ represent the edges. A positive entry Γ(i, j) means that node j pro-

duces Γ(i, j) tokens on edge i. A negative entry Γ(i, j) means that node j consumes

−Γ(i, j) tokens from edge i. A zero entry Γ(i, j) means that node j does not read

or write to edge i. A selfloop can be represented in Γ by the net difference between

production and consumption [LM87, p. 27].

An SDF graph can be converted into an equivalent HSDF graph [SB00, Chapter

3]. However, such a conversion may cause an exponential increase in the number of

nodes in the worst case. The HSDF graph of Figure 2.5 is the result of converting

the SDF graph of Figure 2.6. An iteration of an SDF graph is defined as each node

of the equivalent HSDF graph executing exactly once. If an SDF graph is consistent,

then a repetition vector q exists which contains for every node the number of times

the node has to fire to return the SDF graph to its initial state. The repetition vector is

the smallest non-trivial positive integer vector that is a valid solution to the balance

equation Γ · q = 0.

For the graph of Figure 2.6, the smallest non-trivial solution to the balance equation

is the repetition vector q = [2, 1, 1]T . This means that if node a fires twice, node b
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fires once, and node c fires once, then the number of initial tokens on each edge is the

same as before the execution of these four firings.

An SDF node always consumes tokens from all input edges and produces tokens

on all output edges during a firing. Consequently, the SDF model cannot describe a

node that for example reads from different input ports during different firings. This

means that applications in which such behavior occurs cannot be modeled as an SDF

graph.

2.2.3 Cyclo-Static Dataflow

An extension to the SDF model that allows such behavior is the cyclo-static dataflow

model [BELP96]. This model allows a compact representation of applications with a

cyclically changing, but predefined behavior.

Definition 2.12 (Cyclo-Static Dataflow Graph).

A Cyclo-Static Data Flow (CSDF) graph is a directed graph defined by a tuple

(V, E, f , t, d,p, c), where

• V , E, and d follow those in Definition 2.10,

• f j , j ∈ V represents the function repertoire for node j, which is a sequence of

functions [fj(0), fj(1), · · · , fj(Sj − 1)] of phase length Sj ,

• tj(i), j ∈ V represents the time needed for an execution of function i in f j ,

• pe(i), e ∈ E is a sequence of integers representing the number of tokens pro-

duced on edge e after e’s source node fires its i-th function, and

• ce(i), e ∈ E is a sequence of integers representing the number of tokens con-

sumed from edge e before e’s destination node fires its i-th function.

Each node in a CSDF graph executes the functions in its function repertoire in a

cyclic fashion. At the start of the n-th firing of node j, ce(n mod Sj) tokens are

consumed from incoming edge e. Then, function fj(n mod Sj) is executed which

takes tj(n mod Sj) time units. After the function finishes execution, pe(n mod Sj)
tokens are produced on outgoing edge e.

Similar to the topology matrix of an SDF graph, we can define a topology matrix Γ
for a CSDF graph. A positive entry Γ(i, j) means that node j produces in total Γ(i, j)

tokens on edge i for a complete execution sequence, that is, Γ(i, j) =
∑Sj−1

k=0 pi(k).
A negative entry Γ(i, j) means that node j consumes in total Γ(i, j) tokens from

edge i for a complete execution sequence, that is, Γ(i, j) = −
∑Sj−1

k=0 ci(k). All

other entries are zero.
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Figure 2.7: A CSDF graph, its topology matrix Γ, and its phase matrix S.

To obtain the repetition vector of a CSDF graph, one first solves the balance equa-

tion Γ · r = 0. The repetition vector then equals

q = S · r, where S(i, j) =

{

Sj if i = j,

0 otherwise.
(2.2)

Matrix S in Equation (2.2), whose diagonal contains the phase lengths of all nodes,

is referred to as the phase matrix.

A CSDF graph consisting of three nodes and three edges is shown in Figure 2.7.

The function repertoire of node c contains three functions with latencies 4, 6, and 5,

as shown in the bottom part of the node. Thus, the phase length of node c Sc = 3.

Node c has one incoming edge b → c. In the 0 (mod 3)-th execution of node c,

two tokens are consumed from this edge; in the 1 (mod 3)-th execution of node c,

no tokens are consumed; and in the 2 (mod 3)-th execution of node c, one token is

consumed from this edge.

The topology matrix of the CSDF graph is shown in the upper right part of Fig-

ure 2.7. Since the CSDF graph contains a selfloop, the second row of Γ consists

entirely of zeros. The phase matrix of the CSDF graph is shown in the lower right

part of Figure 2.7. For example, the lower right element of this matrix equals node

c’s phase length Sc = 3. The smallest non-trivial solution to the balance equation is

r = [1, 1, 3]T . Hence, the repetition vector of the CSDF graph q = [1, 9, 9]T .

The phase lengths and production and consumption patterns p and c may be large

for applications that have mainly regular, but occasionally irregular behavior. This is

for example found in image edge detection algorithms, whose behavior is regular for

most pixels, but irregular for pixels at the image borders. Large phase lengths make

a CSDF representation impractical for analysis and synthesis tools. We therefore

present another model in which complex patterns can be captured in a compact way

using the polyhedral model.
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2.2.4 Polyhedral Process Networks

The Daedalus system-level design tool set that was introduced in Section 1.1 (cf.

Figure 1.1) employs polyhedral process networks as its application model. The poly-

hedral process network model was first coined by Meijer et al. [MNS10] and was

later formally defined by Verdoolaege [Ver10]. The definition of Verdoolaege dif-

fers from the classical definitions employed by the Compaan and Daedalus tools,

as presented by for example Turjan [Tur07], Nikolov et al. [NSD08b], and Rijp-

kema [Rij02]. Throughout this thesis, we use the definition of the latter references.

A conversion from the definition of Verdoolaege to the definition used by Daedalus

is possible and is extensively used in the Daedalus tool flow [Ver03b].

Definition 2.13 (Polyhedral Process Network).

A Polyhedral Process Network (PPN) is a directed graph (P, E) where P is a set of

vertices representing processes and E is a set of edges representing communication

channels. Each process pi ∈ P is characterized by:

• a function Fi,

• a process dimensionality di,

• a polyhedral set Di ⊆ Zdi defining the process’ domain.

• a set of input ports IP i, where the k-th input port IPk
i is bound to an input

argument of Fi and has an associated Input Port Domain (IPD) IPDk
i ⊆ Di,

and

• a set of output portsOP i, where the k-th output port OPk
i is bound to an output

argument of Fi and has an associated Output Port Domain (OPD) OPDk
i ⊆

Di.

Each channel ci ∈ E is characterized by:

• a source process σi ∈ P ,

• a destination process δi ∈ P ,

• a source process’ output port OP
j
δi

,

• a destination process’ input port IPk
σi

,

• a polyhedral map Mi ⊆ Dσi
× Dδi

mapping iterations from the destination

process domain back to the source process domain.

• a channel type Ti, which is FIFO, sticky FIFO, or out-of-order (cf. Sec-

tion 2.3.1), and

• a piecewise quasipolynomial Si representing the buffer size.

The parameters that occur in the process domains, channel maps and buffer sizes are

static, meaning that their values are fixed at run-time. A more general model which
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Figure 2.8: A polyhedral process network.

also includes dynamic parameters is the Parameterized Polyhedral Process Network

(P3N) model [ZNS11]. Such dynamic parameters enable the P3N model to cope

with applications that adapt their behavior at runtime. Another related model is the

Approximated Dependence Graph (ADG) [SD03]. The ADG model supports the

class of weakly dynamic programs, which is more generic than the class of static

affine nested loop programs that we consider in this thesis.

In this thesis, we are dealing with instances of PPNs for which all static parameters

have known fixed values. We replace the static parameters by their fixed values,

thereby removing the paramters, for the sake of simplicity.

An example PPN consisting of three processes and three channels is depicted in

Figure 2.8. In this thesis, we only consider PPNs that consist of exactly one connected

component. That is, if one replaces all directed edges in the graph by undirected

edges, then a path from u to v exists for every pair of vertices u, v. The PPNs that

we consider may contain zero or more strongly connected components. A strongly

connected component is a subgraph in which a path from any vertex in the subgraph

to any other vertex in the subgraph exists.

If a process does not have any input ports, that is, IP i = ∅, then the process is

called a source process. Likewise, if a process does not have any output ports, that is,

OP i = ∅, then the process is called a sink process. The function of a process should

be a pure function, that is, it should always yield the same output for a given input and

it should not have any side effects. Exceptions to this requirement are source and sink

processes, which often serve as an abstraction for the input and output interfaces of a

system. As such, input and output operations are desired side-effects for functions of



2.2. Models of Computation 29

source and sink processes.

In the PPN of Figure 2.8, source is a source process with one output port and sink

is a sink process with one input port. The ports of a process are depicted by the

dots on the border of each process. The output argument of the source function is

connected to the output port of the process. Similarly, the input port of the sink

process is connected to the input argument of the function. The func process has two

input ports and two output ports. The func function has one input argument and one

output argument. Both input ports connect to the same input argument and the output

argument is connected to both output ports. Port multiplexing and demultiplexing

is performed at run-time, as computations are distributed as a result of data flow

analysis. Input and output tokens of a process need to be communicated from and to

different processes at different iterations through process input and output ports.

The process and port domains are depicted below the processes in Figure 2.8. For

example, the domain of the sink process consists of the integral points from 1 to 9.

The IPD of its input port is identical to the process domain, which means that in every

iteration a token is read from this input port.

The channels in the PPN of Figure 2.8 are shown as rectangles. All channels in this

PPN are FIFO channels of size one, as denoted by the number above each channel.

The map for each channel is shown above the channel sizes. Channel CH1 maps an

iteration of the func process to iteration i = 0 of the source process. Channel CH2

maps iterations of the sink process to iterations of the func process. Channel CH3

maps iterations of the func process to its previous iteration. In the remainder of this

thesis, we depict channels in a more compact way as a single arrow with a number

specifying the buffer size.

Operational Semantics

Each process of a PPN executes autonomously according to a three-stage program

that is executed for each point in the process domain: a read stage, an execute stage,

and a write stage [ZI08]. This is an important property that we exploit throughout

this thesis. First, in the read stage, the input arguments to the process function are

read from the input ports whose IPD contains the current iteration. If the channel

connected to an input port does not contain any tokens, then the process blocks until

a token becomes available. Second, in the execute stage, the process function is

executed with the input data obtained during the read stage. Third, in the write stage,

the output arguments of the process function are written to the output ports whose

OPD contains the current iteration. If the channel connected to an output port does

not have sufficient room to store another token, then the process blocks until a free

slot becomes available in the channel.
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A process traverses the points in its iteration domain Di in the lexicographical order,

in a sequential fashion. Thus, two iterations cannot start at the same time.

2.3 Derivation of PPNs from Sequential Programs

Polyhedral process networks can be derived automatically from sequential programs

known as static affine nested loop programs [RDK00, VNS07].

Definition 2.14 (Static Affine Nested Loop Program).

A static affine nested loop program (SANLP) is a program consisting of statements

enclosed by zero or more loops, where:

• all loops have a constant integral stride,

• loop bounds, if-conditions, and array index expressions are affine combinations

of constants and enclosing loop iterators, and

• communication between statements is explicit, that is, statements do not ex-

change data through hidden variables.

The SANLP for the example of Figure 2.8 is shown in Figure 2.10. This PPN can

be derived from the SANLP using the c2pdg, pn, and pn2adg tools from the isa tool

set [Ver03b]. The tool flow is depicted in Figure 2.9. First, the c2pdg tool converts the

SANLP into a Polyhedral Dependence Graph (PDG). This PDG contains the state-

ments of the SANLP, the iteration domain of each statement, and the variable and

array accesses performed by each statement. The pn tool extends the PDG with de-

pendence information [VNS07] obtained using exact dataflow analysis [Fea91]. The

pn2adg tool converts the extended PDG into an Approximated Dependence Graph

(ADG). The PPN model that we introduced in Section 2.2.4 is a subset of this ADG

model, as we do not handle dynamic parameters. We therefore consider the output of

pn2adg as the actual PPN, assuming the input C code does not result in an ADG that

lies beyond our PPN model. In this thesis, we refer to the consecutive execution of

the c2pdg, pn, and pn2adg tools as PNGEN.

For each of the three function calls in the SANLP of Figure 2.10, PNGEN constructs

a process. The domain of each process is derived from the for-loops and if-statements

PDG

+dep
PDGC pn2adg PPNpnc2pdg

Figure 2.9: PNGEN: Tool flow to convert a SANLP written in C into a PPN.
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surrounding the function call. For function calls not enclosed in any for-loop, such

as source, a 1-dimensional domain containing a single point is constructed.

PNGEN determines which processes should be interconnected by channels using

exact dataflow analysis [Fea91] which is based on parametric integer programming

techniques [Fea88]. For each read operation of a variable or array element, exact

dataflow analysis reports the latest write operation that wrote the variable or array

element. For example, at line 3 of Figure 2.10 we read array element a[0] during

iteration i = 1. This array element is written in line 1. Therefore, PNGEN adds chan-

nel CH1 to the PPN which connects the write operation (that is, the source process)

to the read operation (that is, the func process). As another example, consider the

read operations of array elements a[1] to a[8] at line 3. The read operations are

performed during iterations 2 ≤ i ≤ 9. Exact dataflow analysis reports that these

array elements are written in line 3 during iterations 1 ≤ i ≤ 8. Therefore, PNGEN

adds channel CH3 to the PPN which connects the func process to itself. The corre-

sponding OPD contains the iterations 1 ≤ i ≤ 8 during which the array elements are

written. The corresponding IPD contains the iterations 2 ≤ i ≤ 9 during which the

array elements are read. This corresponds to the domains shown in Figure 2.8.

2.3.1 Channel Type Determination

Channels in a PPN are not all FIFOs, but need to be further classified [TKD07]. Each

channel is either of type FIFO, sticky FIFO, or out-of-order, as defined in Defin-

tion 2.13. To distinguish between out-of-order and (sticky) FIFO channel types, PN-

GEN first verifies if the values written to a channel are read in the same order as

the order in which they were written. That is, communication over a channel is in-

order if for any pair of write operations (w1,w2), the corresponding read operations

(r1, r2) execute in the same order. If a pair of write operations exists for which the

corresponding read operations occur in the opposite order, then the channel is marked

as out-of-order.

1 source(&a[0]);

2 for (i=1; i<=9; i++) {

3 func(a[i-1], &a[i]);

4 }

5 for (i=1; i<=9; i++) {

6 sink(a[i]);

7 }

Figure 2.10: SANLP for the polyhedral process network of Figure 2.8.
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In the example of Figure 2.10, all array elements are written and read exactly once.

All communication is in-order, which causes the channels to be classified as FIFOs.

If we would surround the for-loop containing the sink function call by another for-

loop, then the elements of array b are written once and read multiple times. PNGEN

employs a reuse detection technique to identify channels from which a single token

is read multiple times. Reuse detection results in the construction of a data reuse

channel pair, consisting of two FIFO channels. The first FIFO channel propagates

data from the write operation to the first read operation. The second FIFO channel

is a selfloop which propagates data from a read operation to a later read operation by

the same process. If the same token is used by multiple subsequent iterations, then

the reuse channel pair can be optimized further into a sticky FIFO. This means the

selfloop is replaced by a register. We refer to Section 3.3 for an example of reuse

detection, and we refer to Section 3.4 for an example of a sticky FIFO.

2.3.2 Buffer Size Computation

Each channel of a PPN has an associated buffer size specifying the number of tokens

that can be stored. The buffer size has to be chosen under the following constraints.

Choosing a buffer size that is too small results in an artificial deadlock, a condition

in which none of the process can make progress because one or more processes are

blocked on a write operation. Choosing an arbitrary large buffer size prevents arti-

ficial deadlocks, but increases memory cost. Therefore, careful selection of buffer

sizes is required.

The buffer size computation performed by PNGEN consists of the following steps.

First, PNGEN computes a global schedule for all processes. That is, it determines

a single execution sequence containing all iterations of all processes. PNGEN en-

sures that the schedule is valid, meaning that each value is always written before it

is read. Next, for each channel a buffer size is determined for the computed sched-

ule. The schedule specifies a relative order on any pair of iterations from the same

or a different process. Therefore, for a read iteration r (i.e., an iteration performing

a read operation), the number of read iterations nR(r) and the number of iterations

performing a write iteration nW (r) preceding r is known. The buffer size is then the

maximal value of nW (r) − nR(r) over all read iterations r. For the non-parametric

PPNs that we consider, this maximal value can be computed symbolically or obtained

using simulation. The symbolic approach works by computing an upper bound on a

quasi-polynomial [CFGV09]. The simulation-based approach works by simulating

the write and read iterations according to the schedule and tracking the maximal

amount of tokens stored in the channel.

Computing minimal deadlock-free buffer sizes or a deadlock-free schedule is a non-
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trivial optimization problem. PNGEN employs a greedy algorithm to compute a

deadlock-free schedule. As a result, the buffer sizes computed by PNGEN are not

guaranteed to be minimal, but at least a deadlock-free execution exists for the com-

puted buffer sizes. The schedule is used for buffer size computation. Execution of

a PPN is not bound to the schedule, as processes in a PPN only synchronize using

blocking read and write operations.

2.4 Code Generation

We employ the ESPAM tool [NSD08b] to implement PPNs derived by PN. We il-

lustrate the ESPAM tool flow in Figure 2.11. The input to ESPAM is a System-Level

Specification, consisting of three components. First, we provide the application spec-

ification in the form of a PPN which is derived from a C program using PNGEN.

Second, we provide a target platform specification describing the amount and types

of processors and peripherals, and the type of interconnect. For example, the de-

signer can populate a platform with programmable processors such as MicroBlazes

and function-specific hardware IP cores. Third, we provide a mapping specification

which maps the processes of the PPN onto the processors. The platform and mapping

specifications are at a high level of abstraction, omitting low-level details such as the

processor memory organization. ESPAM automatically elaborates the specifications

to the required degree of detail. After elaboration and possible refinement, one of

the backends at the right part of Figure 2.11 generates code which implements the

specified system.

ESPAM offers different backends such that a given system-level specification can be

implemented in different forms. We distinguish two classes of backends:

• Implementation backends produce a fully functional implementation of a

Plat-

form

Map-

ping

C PPN

ESPAM

PNGEN

XPS Project

HDPC Project

SystemC Simulation

YAPI Simulation

ISE RTL Simulation

Figure 2.11: The ESPAM tool flow.
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given system. ESPAM contains a Xilinx Platform Studio (XPS) backend which

generates an FPGA project at the register transfer level, that can be synthe-

sized using vendor-specific low-level synthesis tools to obtain a working pro-

totype. ESPAM also contains a Heterogeneous Desktop Parallel Computing

(HDPC) backend which generates a software implementation for a general pur-

pose desktop computer containing for example a GPU device.

• Simulation backends produce an environment in which a given system can be

simulated. For example, ESPAM contains a YAPI backend [KES+00] which

enables fast functional verification of a parallelized application.

In Chapter 4 of this thesis, we present two new backends to ESPAM, which are de-

picted at the bottom right part of Figure 2.11. The SystemC simulation backend

provides fast performance assessment. It works at a raised level of detail compared

to RTL simulation, thereby increasing the simulation speed at the expense of lower

accuracy. When more accurate performance and resource cost metrics are needed,

the ISE backend can be employed. The ISE backend produces a Xilinx ISE project

that implements the system entirely in VHDL. This project can be simulated and syn-

thesized in the Xilinx ISE tool to obtain accurate execution time and resource usage

metrics. Since the ISE simulation works at a more detailed level, obtaining metrics

is more time-consuming compared to a SystemC simulation. For a small application

like QR decomposition, a SystemC simulation takes a few seconds, whereas an ISE

simulation may take about a minute.

2.4.1 Integrating Dedicated IP Cores

In systems with tight throughput constraints, performing all computations on pro-

grammable processors may not be feasible due to the limited performance of such

processors. To increase the overall system throughput, designers offload the heaviest

computations onto dedicated hardware IP cores. These IP cores are custom archi-

tectures that are optimized to perform a specific task. Such IP cores are traditionally

written in RTL or may be generated from code written in a high-level language using

a high-level synthesis tool. The LAURA Virtual Processor model was proposed to

include such IP cores in the Daedalus tool flow [ZSKD03, NSD08a].

A representation of a process as C code is shown in the left part of Figure 2.12.

The LAURA processor for this process is depicted in the right part of Figure 2.12. A

LAURA processor consists of a read, execute, write, and control unit to implement

the operational semantics of a PPN process. The read and write units iterate over the

process domain Dp and ensure at runtime that the proper channel is being read or

written during each iteration. The execute unit contains an IP core which implements

the process’ functionality, that is, the function F. The read, execute, and write units
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data
for (i=0; i<10; i++) {
  if (i<5)

    in = CH1.read();

  else if (i>=5)

    in = CH2.read();

  out = F(in);

  if (i<5)

    CH3.write(out);

  else if (i>=5)

    CH4.write(out);

}

Figure 2.12: Example process code and the corresponding LAURA processor.

operate in a pipeline fashion, as depicted in Figure 2.13. For example, when iteration

0 enters the execute stage, the LAURA processor can initiate the read stage of the next

iteration. The control unit orchestrates execution of the read, execute, and write units.

For example, it stalls the read and execute units if the write unit reports a blocking

write condition. In Figure 2.13, a blocking read condition occurs during iteration 3.

In such a case, the controller ensures that previous iterations that are already in the

pipeline continue executing, while iteration 3 is stalled until data is available. This

leads to a bubble in the pipeline, which is indicated by a “–” in Figure 2.13.

The read unit is connected to the incoming channels of the process. For each input

argument of the process’ function F, a read multiplexer is instantiated. This multi-

plexer selects the incoming channels from which the argument is read. The selection

is driven by the read unit’s evaluation logic block. The evaluation logic employs a set

of counters that iterate over the process domain. For each input port, the evaluation

logic contains an expression in terms of the iterators that selects when that port has

to be read. As such, data from the appropriate input ports is forwarded to the execute

unit according to the current iteration.

The execute unit implements the process’ function F. It provides an insertion slot

for an IP core that implements the function F. The execute unit passes the argument

values selected by the read unit to the IP core. The IP core processes the input data

and produces output data after a delay that is specific to the IP core. The output data

of the IP core is passed to the write unit. An IP core is often implemented in a pipeline

fashion to provide high throughput. By employing pipelined IP cores, execution of

subsequent independent process firings can overlap in time, thereby increasing the

process’ throughput.

The write unit is connected to the outgoing channels of the process. For each output

argument of the process’ function F, a demultiplexer selects the appropriate output

channel to which the argument is written. The selection is driven by the write unit’s

evaluation logic block, which functions similarly to the evaluation logic of the read
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Figure 2.13: Pipelined execution of a LAURA processor containing a 3-stage IP core.

unit.

The control unit is responsible to implement the blocking read and write behavior

of a PPN process. It enables or disables the read, execute, and write units based

on information provided by those three units. The read unit reports a blocking read

condition if one of the selected input channels does not contain any tokens. During

a blocking read condition, the read unit is stalled while the execute and write units

may still continue to process iterations pending in the pipeline. The write unit re-

ports a blocking write condition if one of the selected output channels does not have

sufficient room to store another token. During a blocking write condition, all units

are stalled until the external consumer process clears the blocking write condition by

reading a token from the full channel. The delay of an IP core may vary per firing of

a process. For example, the delay of a variable length encoder IP core may depend

on the input data. To integrate such IP cores in LAURA, the IP core should indicate

when it is ready to accept or produce data. The execute unit forwards this information

to the control unit, which then enables the read and write units accordingly.



CHAPTER 3
SYNTHESIZING PPNS

In Chapter 2, we introduced the Polyhedral Process Network model of computation

and the PNGEN tool flow which automatically derives PPNs from sequential static

affine nested loop programs written in C. We then introduced the ESPAM tool which

employs the LAURA model to obtain synthesizable RTL implementations of PPNs.

In this chapter, we focus on optimizing the RTL in the aforementioned tool flow.

We first investigate shortcomings of the current state-of-the-art techniques and then

propose extensions to facilitate more efficient RTL implementations.

3.1 Motivation & Contributions

When implementing industrially relevant applications, such as the sphere decoder

application discussed in Chapter 6, and when applying transformations discussed

in Chapter 5, we encountered four limitations of the LAURA model and the ESPAM

tool. These limitations comprise characterization of functions, incorporation of novel

front-end optimizations, handling of more complex domains, and handling out-of-

order communication. In this chapter, we present solutions to these four limitations.

First, in the original work describing the LAURA model, only the delay metric of

an IP core was considered [ZSKD03, NSD08a]. Such a simplified characterization

does not suffice when integrating IP cores generated by HLS tools or when reasoning

about system composition. In Section 3.2, we therefore present a more elaborate

characterization of IP cores.

Second, the PN tool performs several optimizations that were not taken into account

in the original LAURA model. In Section 3.3 and 3.4, we show how data reuse and

sticky FIFO optimizations can be leveraged in the LAURA model to obtain more
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Figure 3.1: Position of the contributions of this chapter in the LAURA model.

efficient implementations.

Third, for complex iteration domains, the evaluation logic of a LAURA processor

may become part of the critical path limiting the maximum achievable clock fre-

quency of a system. As a result, the overall throughput of the system is limited. In

Section 3.5, we investigate two different approaches to reduce the degradation of the

maximum achievable clock frequency.

Fourth, applications with reordering communication could not be implemented us-

ing the ESPAM tool. Moreover, the known reordering buffer implementations suf-

fered from read and write penalties with regards to non-reordering buffers [ZTKD02].

In Section 3.6, we present a new reordering buffer design with single-cycle read and

write latencies that has been integrated in ESPAM. The particular design enables

effortless integration in ESPAM-generated MPSoCs with point-to-point communica-

tion. In Section 3.7, we summarize this chapter. The positions of the contributions to

the LAURA model have been indicated in Figure 3.1.

3.2 IP Core Characterization

The original LAURA model assumes that the IP core that is integrated into the exe-

cute unit comes from an external library. Such a library contains IP cores for different

functions and possibly multiple IP cores for the same function that differ in perfor-

mance and resource cost metrics. Being able to characterize an IP core in a concise

way is important when considering performance estimations of PPNs in Chapter 4.

To systematically distinguish between different IP cores which possibly implement

the same function, we introduce the notion of a function implementation.

Definition 3.1 (Function Implementation).

A function implementation is a particular implementation of a process function F . A

function implementation is characterized by
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• a latency ΛF and

• an initiation interval II F ,

where ΛF ∈ N+ is the input-to-output delay in clock cycles, and II F ∈ N+ is the

initiation interval in clock cycles.

The delay ΛF represents the time between the start of a function execution and the

moment at which all output has been produced. In Figure 3.2c, we show a time line

of three sequential executions of a function implementation with ΛF = 6.

The initiation interval II represents the amount of time between successive starts

of a function implementation. Figure 3.2a depicts a function implementation with

II F = 1, allowing an execution of a function to be started every clock cycle. As a

result, different executions of the function overlap in a pipeline fashion. Figure 3.2b

depicts a function implementation with II F = 4, allowing an execution to be started

only every four clock cycles. The amount of overlap between different executions

is less than the previous scenario. Figure 3.2c depicts a function implementation

with II F = ΛF = 6, resulting in fully sequential executions of the function. This

scenario resembles a non-pipelined function implementation. In this thesis, we set

II F = ΛF to model an implementation on a programmable processor on which

no overlapped execution of function invocations occurs. A low II implies that the

function implementation can deliver a high throughput. However, a low II reduces

the opportunities for resource sharing inside a function implementation, resulting in

higher resource cost compared to function implementations with a higher II . As

such, the II is a key tool in trading off throughput and resource cost of the function

implementation.

3.2.1 IP Core Integration

The function implementations in the IP core library may originate from various

sources. The corresponding IP cores may be implemented in RTL manually, or the

RTL can be automatically derived from a high-level specification using HLS tools.

We have successfully implemented IP cores generated by the PICO [Syn10], Au-

toESL [Xil11], and DWARV HLS tools [YBK+07]. The RTL generated by PICO and

a) II
F
 = 1. b) II

F
 = 4. c) II

F
 = Λ

F
.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10111213 0 1 2 3 4 5 6 7 8 9 10111213 14151617

Figure 3.2: Different initiation intervals for an IP core with delay ΛF = 6.
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AutoESL can be integrated in a straightforward way by connecting the clock, reset,

enable, and data ports to the execute unit [HK09]. The RTL generated by DWARV

assumes a shared memory model which is different from the distributed memory

model employed in the PPN context. Therefore, integrating DWARV cores requires

an additional wrapper which transfers data to and from a memory that connects to the

DWARV core [NHS+11].

HLS tools such as PICO or AutoESL characterize a generated fixed-latency core by

its latency Λ and initiation interval II [Fin10]. In the original LAURA model, only the

latency was taken into account and the II value was assumed to be one. To integrate

a fixed-delay IP core characterized by Λ and II values, we have extended the LAURA

model to take IP cores with II > 1 into account. Both Λ and II are incorporated in

the control unit of the generated LAURA HDL. Using the delay value, the control unit

enables the write unit at the appropriate times, that is, when valid data is produced

by the execute unit. Using the II value, the control unit enables the read unit only at

valid II boundaries.

Function implementations with a variable delay cannot be characterized accurately

by a single number. Instead, a designer may choose to set Λ to the average or worst-

case delay value for performance analysis purposes. When integrating a variable-

delay IP core, the values Λ and II are not taken into account in the LAURA HDL.

Instead, the control unit requires the IP core to indicate when it is ready to accept or

produce data.

3.3 Data Reuse

In applications such as filters, often a variable or array element is written once and

subsequently read multiple times. For example, the array element a[1] in Figure 3.3a

is written once when i = 1 and read when j = 1 (for argument a[j]) and j = 2
(for argument a[j-1]). In a PPN derived from the C code, both reads of a[1] are

performed by the accum process. For the relation from source to accum, the compiler

detects data reuse, which means the same token is read more than once from this

relation.

A PPN derived from the C code using PNGEN is shown in Figure 3.3b. Channels F1

and F3 implement the data reuse channel pair for the relation from source to accum.

Channel F1 is a regular FIFO which transfers a token when accum needs it for the

first time. Channel F3 is a regular FIFO which propagates the token to subsequent

iterations of accum.

In Figure 3.4, we depict part of a LAURA processor for the accum process of Fig-

ure 3.3c. Its read unit contains two multiplexers. The lower multiplexer passes tokens
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a) C code.

for (i=0; i<5; i++) {
  source(&a[i]);
}
for (j=1; j<5; j++) {
  accum(a[j], a[j-1], &b[j]);
}
for (k=1; k<5; k++) {
  sink(b[k]);
}

b) PPN with data reuse.

F1

F2

F3

sink

accum

source

Figure 3.3: A program with data reuse.

Read unit

Eval. logic

Exec. unit

accum

Write unit

Eval. logic

Reuse

Eval. logic

To F2From F1

FIFO F3

b[j]
a[j]

a[j-1]

Figure 3.4: Handling data reuse in a LAURA processor.

from FIFO F1 to the first input of the accum IP core. The upper multiplexer selects

between FIFO F1 that is read during the first iteration and FIFO F3 that is read dur-

ing subsequent iterations, and passes the token to the second argument of the IP core.

The write unit contains a single demultiplexer which propagates the IP core output

to FIFO F2. To handle the reuse, we extend the write unit with another output port

connected to FIFO F3. The output port is driven by the first input to the IP core. A

separate reuse evaluation logic block ensures that only tokens that need to be prop-

agated to subsequent iterations are written to F3. The reuse evaluation logic block

duplicates the expressions from the write unit’s evaluation logic for the reuse ports to

select the correct output port. Tokens that are reused in subsequent iterations can be

written to F3 immediately after reading them, irrespective of the IP core latency. We

therefore connect the counters of the read unit to the reuse evaluation logic block.
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3.4 Sticky FIFOs

As an optimization of data reuse, PNGEN can classify a data reuse channel pair as

a sticky FIFO. If the same token is transferred over a FIFO to multiple subsequent

iterations of a process, then PN classifies the FIFO as a sticky FIFO and removes

the selfloop. During a regular read operation on a sticky FIFO, the receiving process

stores the token in a register. Subsequent iterations that need the same token then read

from the register instead of the FIFO. This reduces inter-process communication and

the number of write operations the producing process has to perform.

We implement a sticky FIFO by replacing the read multiplexer of a function argu-

ment with a “sticky read multiplexer”. In Figure 3.5, we illustrate both types of read

multiplexers. Figure 3.5a depicts the situation where all of the three input ports of

the read multiplexer are connected to regular FIFOs. The read unit’s evaluation logic

block drives the input select port of the multiplexer. The output of the multiplexer is

propagated to the execute unit. In the example of Figure 3.5a, we first read a token

from port 2, then a token from port 3, and then four tokens from port 1, as indicated

by the sequence below the input select port.

Figure 3.5b depicts the situation where port 1 is connected to a sticky FIFO. The out-

put of the multiplexer is both propagated to the execute unit and written into register

R. The output of register R is an additional input to the multiplexer. This additional

input is selected when input select is set to zero. This is illustrated by the sequence

below the input select port. We first read a token from port 2, then a token from port

3, and then a token from port 1. Then, input select is set to zero which means we

reuse the token read from port 1 that is still in R. As a result, the process writing to

port 1 has to write the token only once.

Since the register is connected to the output of the multiplexer, it also stores tokens

read from other ports that can be connected to any type of channel. However, tokens

from non-sticky FIFOs are never read from the register, since the semantics of a

a) Port 1 connects to a regular FIFO. b) Port 1 connects to a sticky FIFO.

input_select:

2,3,1,1,1,1

port 1

port 2

port 3

out

input_select:

2,3,1,0,0,0

port 1

port 2

port 3

out

R

Figure 3.5: Read multiplexer architecture.
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sticky FIFO ensure that a regular read access is always performed before the token

in the register is reused. For the example of Figure 3.5b this means that a zero in

the input select sequence is always preceded by a one, potentially with more zeros in

between. Therefore, we do not need a separate register for each sticky FIFO port, but

use a single register connected to the multiplexer output.

3.5 Evaluation Logic Optimizations

The main purpose of a LAURA processor is to route tokens from different process

ports to the IP core during the appropriate process iterations. The evaluation logic

blocks of a LAURA processor select the process ports that are accessed during a

given iteration. The evaluation logic is driven by a set of cascaded counters that

iterate through the points of the process iteration domain. At each iteration point,

an expression is evaluated for each process port. When the expression evaluates to

true, the port is accessed in the current iteration. The result of the evaluation is for-

warded to the read multiplexer or write demultiplexer of the LAURA processor. In

Figure 3.6, we illustrate the internal structure of the evaluation logic by considering

the read unit’s evaluation logic of Figure 2.12 in more detail. Only one counter is

present, because the domain of the process is one-dimensional. The evaluation logic

contains an expression for each of the two input ports. Port 1 is accessed during the

first five iteration points, as denoted by the bit string in the right part of Figure 3.6.

Port 2 is accessed during the remaining five iteration points.

We have identified two problems with the evaluation logic of a LAURA processor.

First, the evaluation logic may affect the maximum achievable clock frequency of

a LAURA processor, as the expressions become part of the critical path. Second,

expressions containing for example max or div operators are nontrivial to implement.

These problems becomes apparent when considering the scheduling transformation

discussed in Section 5.1.4, as illustrated in for example Figure 5.11.

We address the first problem by pipelining the evaluation logic, as discussed in

Section 3.5.1. We address the second problem by implementing the evaluation logic

using ROM tables, as discussed in Section 3.5.2.

(to multiplexers/demultiplexers)Evaluation logic

i < 5

i >= 5

Counters

i = 0..9

Port1 select: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

Port2 select: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

i

Figure 3.6: Evaluation logic block of a LAURA processor.
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3.5.1 Pipelined Evaluation Logic

To achieve a higher clock frequency, we break long combinational paths into shorter

combinational paths that are connected by registers. In Figure 3.7, we illustrate this

for the expression i + j < 5. Without pipelining, the maximum combinational path

length is two because the comparison is connected directly to the addition. In Fig-

ure 3.7b, we insert a register between the addition and the comparison. As a result,

the maximum combinational path length is reduced to one and therefore the clock

cycle period for this circuit can be decreased. However, the evaluation of the expres-

sion now takes two clock cycles. Only if subsequent evaluations can execute in an

overlapped fashion then a throughput rate of one operation per clock cycle can be

sustained at a clock frequency that is higher than the original clock frequency.

The advantage of this solution is that the maximum clock frequency of a LAURA

node can be increased at the expense of only a small amount of registers. A disad-

vantage of this solution is that deciding the amount and insertion points of registers

is a non-trivial task. Moreover, control dependencies inside the LAURA model and

control dependencies between LAURA processors and other processing or communi-

cation components of a system do not allow for unlimited insertion of registers. We

have found that pipelining the evaluation logic by one level is still possible.

3.5.2 ROM-Based Evaluation Logic

To implement any non-parametric evaluation logic, we can always resort to a table

based implementation. We obtain this table by evaluating all expressions at compile-

time and storing the results in a Read-Only Memory (ROM). This technique has

already been presented by Derrien et al. [DTZ+05], but was not available in the

Daedalus design flow. Derrien et al. already found that ROM based evaluation logic

is more expensive in terms of resources than expression based evaluation logic. When

realizing designs, we favor expression based evaluation logic, and only use ROM

based evaluation logic when expression based evaluation logic requires operators like

max and div, as these operators are not trivial to implement in RTL. Within Daedalus,

we can select per processor whether to use expression based evaluation logic or ROM

+ <5
i

j
out + <5

i

j
outtmp

a) Original: path length of 2 operations. b) Pipelined: max. path length of 1 operation.

Figure 3.7: Expression pipelining.
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based evaluation logic.

For each iteration in the process domain, the ROM contains a word that specifies

which ports need to be accessed. In a straightforward implementation of ROM-based

evaluation logic, all port selection signals for each iteration of the process domain are

stored in a table E. For a read or write unit of a process p connected to n ports, such

a table E requires

n · |Dp| (3.1)

bits, where |Dp| is the cardinality of p’s process domain. However, many stream-

ing applications exhibit repeating patterns in the ports accessed during subsequent

iterations. Like [DTZ+05], we compress such repetition by applying a run-length

encoding on the ROM data. This requires an additional table R containing the repe-

tition count of each word in table E.

In Figure 3.8, we show the read unit’s evaluation logic of Figure 2.12 implemented

using ROM containing run-length encoded port selection patterns. Contrary to Fig-

ure 3.6, the evaluation logic block now contains two ROMs instead of a set of ex-

pressions. The first ROM shown at the bottom of the evaluation logic block contains

table E. A column in this ROM represents the ports that are selected during a set of

subsequent iterations. For example, the first column contains the sequence [1, 0]T ,

meaning the first port is selected while the second port is deselected. The second

ROM shown at the top of the evaluation logic block contains table R. It specifies the

amount of times each column in E has to be repeated. In Figure 3.8, table R contains

[4, 4], meaning that both columns in E should be repeated four times. Thus, the first

column is considered in total five times, and then the second column is considered

five times. At run time, this results in port 1 being accessed five times, followed by

port 2 being accessed five times, as illustrated by the bit strings at the right part of

Figure 3.8.

The resource cost of a compressed ROM-based evaluation logic block mainly de-

pends on the sizes of tables E and R. The size of E depends on the number of entries

and the number of ports. The size of R depends on the number of entries and the

number of bits required to store the largest repetition count occurring in R. This

(to multiplexers/demultiplexers)

Evaluation logic

1, 0

0, 1

4, 4Counters

a = 0..9 Port1 select: [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
Port2 select: [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]

a

Figure 3.8: Evaluation logic block of a LAURA processor implemented using ROM.
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Process - Unit n |Dp| |R| max(R)
ROM Size (bits)

Uncompr. Compressed %

zero-Wr 2 28 13 5 56 65 +16

read-Wr 2 147 42 5 294 210 -29

vectorize-Rd 4 147 42 5 588 294 -50

vectorize-Wr 3 147 42 5 441 252 -43

rotate-Rd 5 441 231 4 2205 1848 -16

rotate-Wr 4 441 212 4 1764 1484 -16

sink-Rd 2 28 13 5 56 65 +16

Table 3.1: Individual ROM sizes for QR decomposition with K = 21, N = 7.

yields a total ROM size of

|R| · n + |R| · w (3.2)

bits, where n is again the number of ports and w = ⌈log2 max(R)⌉. The size of a

compressed evaluation logic block may be larger than the size of an uncompressed

evaluation logic block in case

n · |Dp| < |R| · n + |R| · w. (3.3)

To assess whether this occurs in practice, we consider the QR decomposition appli-

cation which exhibits complex port selection patterns that reduce compression effec-

tiveness.

In Table 3.1, we show statistics for the individual ROMs of the five processes con-

stituting a QR decomposition application. For example, the third row corresponds to

the read unit for the vectorize process. An uncompressed ROM for the vectorize read

unit requires 3 · 147 bits according to Equation (3.1). The compressed ROM requires

42 · 4 + 42 · ⌈log2(5)⌉ bits according to Equation (3.2). Applying the compression

technique to the “zero” and “sink” processes results in ROM sizes that are larger than

the sizes of their uncompressed counterparts. This can be attributed to the small do-

main sizes of these processes. Because each pattern is repeated at most twice, the

overhead of table R outweighs the benefits of a smaller number of entries in E.

In Table 3.2, we show the total ROM size with and without using compression

for instances of the QR decomposition application. In all cases except the first, the

compression technique leads to reduction of the memory cost. For larger values of

parameters K and N , the iteration domain sizes of the processes increase. This

results in a larger reduction, because the number of additional bits required to store
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Parameters Uncompressed Compressed Reduction

K N (bits) (bits) (%)

3 3 222 226 +1.8

4 4 400 386 -3.5

21 7 5404 4218 -21.9

16 8 5328 3748 -29.7

16 16 20128 8820 -56.2

64 16 78880 34116 -56.7

256 64 4800640 685316 -85.7

Table 3.2: Total ROM sizes for different QR decomposition instances.

higher repetition counts increases more slowly than the number of additional points

in the iteration domain.

The worst case for which run-length encoding does not yield any gains is when al-

ternating between two ports. In such a case, the ROM size approaches n · |Dp| bits.

The cost of repetition count table R should be added to this, yielding a “compressed”

ROM whose size may exceed the size of the uncompressed ROM. However, alternat-

ing port selection patterns can often be handled easily using LAURA’s conventional

expression-based evaluation logic. Therefore, we do not need a ROM-based solution

for such cases.

3.5.3 Related Work

All case studies conducted in this dissertation (cf. Chapter 5), the evaluation logic

could be successfully implemented in either a pipelined or a ROM-based fashion.

However, for applications demanding a clock frequency close to the platform limits,

neither a pipelined nor a ROM-based evaluation logic implementation may suffice. In

particular the application studied in Chapter 6 demands a high clock frequency of 225

MHz which neither pipelined nor ROM-based evaluation logic can provide. In such

a case, one may leverage existing work on control generation. However, this may

require non-trivial integration efforts, because the architectures in which the related

works are used differ from the LAURA architecture. We present three alternative

works that may be considered when further improving the LAURA evaluation logic

components.

The CLooGVHDL tool generates a VHDL controller which traverses the points of

a set of polytopes according to a predefined order [DBC+07]. The controller consists

of a set of communicating automata that iterate over the dimensions of the polytope.
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By placing registers between the automata, the maximum achievable clock frequency

can be increased. Parallel execution of multiple instances of statements was left as

future work. This would be of interest to us, since such parallel execution occurs in

the LAURA architecture.

PARO attempts to reduce the resource cost of control logic by identifying counters

and control signals that can be shared across different processors [DHRT07]. This

approach was shown to lower resource cost particularly for partitioned applications,

since the different partitions still have parts in common. However, the efficacy of this

is limited for PPNs implemented using LAURA processors because of the globally

asynchronous nature of the PPN model. That is, although two processes may share

the same process domain and thus have similar control logic, they do not necessarily

traverse their domains at the same pace.

Another alternative for the evaluation logic components of a LAURA processor is

to implement them using existing HLS tools such as AutoESL [Xil11] or Synpho-

nyC [Syn10]. This has the advantage that a target clock frequency can be specified.

The HLS tool then produces a pipelined controller that is optimized for the specified

clock frequency. However, we found that in practice the output of such tools have dif-

ficulties with the read and write units of a LAURA processor being decoupled [HK09].

For example, stalling the generated controllers on a blocking read condition was not

fully supported at the time of our investigation. When such implementation prob-

lems have been resolved by HLS tool vendors, using an HLS tool to generate the

evaluation logic might be the most favorable alternative solution.

3.6 Out-of-Order Communication

Ideally, a producer process produces tokens in the same order as the consumer pro-

cess consumes them. Such in-order communication allows the channel from pro-

ducer to consumer to be realized using a relatively inexpensive FIFO buffer. How-

ever, the PPNs of some applications do not exhibit solely in-order communication, as

explained in Section 2.3.1. On some channels the order in which tokens are produced

by the producer process may be different from the order in which tokens are con-

sumed by the consumer process, and vice versa. Such communication is known as

out-of-order communication. Out-of-order channels cannot be realized using FIFO

buffers, because the token order needs to be taken into account to guarantee func-

tional correctness. Instead, more sophisticated interconnects are required, such as

reordering buffers. Reordering buffers store incoming tokens in order in a private

memory and contain reordering logic which outputs the stored tokens in the order

required by the consumer. Alternatively, circular buffers with overlapping windows
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Figure 3.9: Two executions of a program with different communication behavior.

can realize out-of-order communication [BBS09]. This solution requires modifica-

tions to the producer and consumer process synchronization primitives. The impact

on performance and resource cost of these modifications, and the performance and

resource cost of the buffer itself is unclear, as no RTL implementation case study has

been conducted yet.

In Figure 3.9, we show an example C program and two valid executions of this

program. In the first execution shown in Figure 3.9b, we follow the execution order

of the original program. That is, we first execute (i, j) = (1, 1), followed by (1, 2),
etc. The relative order of iteration executions is illustrated by the number inside

the points of Figure 3.9b. Only when i = 4, tokens are written to channel CH2.

Channel CH2 receives tokens in the order y[1], y[2], y[3]. Another valid execution

in which the inner loop is traversed in the reverse direction is shown in Figure 3.9c.

As a result, channel CH2 receives tokens in the order y[3], y[2], y[1], which is

different from the order shown in Figure 3.9b. If we assume that CH2’s consumer

process is not modified, the tokens would arrive in reverse order if CH2 would be

implemented using a FIFO buffer. To respect the correct token order, channel CH2

has to be implemented using a reordering buffer.

Turjan et al. have proposed different realizations of reordering buffers, such as lin-

ear, pseudo-polynomial, and Content Addressable Memory (CAM) based implemen-

tations [TKD03]. The authors showed that these reordering buffer designs have a

considerable negative impact on performance and resource usage. For example,

read and write operations of a CAM implementation take four and two clock cy-

cles [ZTKD02], respectively, while read and write operations on a regular FIFO take

only one clock cycle.

To avoid counteracting the benefits of an application transformation because of pos-

sible reordering communication, we have developed a new reordering buffer [HK12].

The primary difference with previous work is that read and write operations now take
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only one clock cycle. This means that replacing a FIFO buffer with a reordering

buffer increases resource usage, but does not introduce additional delay cycles.

Our reordering buffer is composed of a Write Address Generator (WAG), a Read

Address Generator (RAG), and a private memory. The memory is dual-ported, with

one port being addressed by the WAG and the other port being addressed by the RAG.

The WAG and RAG both contain a set of counters which iterate through domains

associated to the channel. These counters are used by the address generation logic

to compute the next write and read addresses. To avoid delay cycles, the counters

and address generation logic are implemented in a pipeline fashion. To minimize

the latency of the address generation logic, we employ a linear addressing scheme.

This addressing scheme is based on conventional linearization of an n-dimensional

array into a 1-dimensional array. As such, the resulting address expressions are linear

polynomials that can be realized efficiently in hardware.

The interface of the reordering buffer resembles a point-to-point FIFO buffer in-

terface. This allows straightforward integration of reordering buffers in ESPAM-

generated PPN implementations. That is, when a transformation introduces out-

of-order communication, we do not have to modify the interfaces of the processes

involved in the out-of-order communication. The interface is depicted in Figure 3.10.

The outgoing slave interface exposes an output data bus, an exist signal to indicate if

a token is available, and a read signal to acknowledge a read operation. The incom-

ing master interface exposes an input data bus, a full signal to block write operations

when the buffer is not ready to accept them, and a write signal to acknowledge a write

operation.
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We illustrate the memory organization of our reordering buffer at the bottom part of

Figure 3.10. In the bottom left, we show a producer domain consisting of four points

(0, 0), (0, 1), (0, 2), and (1, 2). The producer produces four tokens in the order A, B,

C, D. We store these tokens according to a linear addressing scheme at address

wAddr(ip, jp) = ip + 2 · jp. (3.4)

The slot for each token is shown in the memory of Figure 3.10. For example, token

C is produced in iteration (0, 2) and is therefore stored at address 04. Because of the

linear addressing scheme, some addresses may remain unused for non-rectangular

domains. In our example, this occurs for addresses 01 and 03. The consumer domain

shown on the bottom right consumes the four tokens in the order C, D, B, A. To

retrieve these tokens in the correct order from the memory, we compute

rAddr(ic, jc) = wAddr(Mp→c(ic, jc)) (3.5)

for each point in the consumer domain. That is, we first apply the channel relation

Mp→c as found by the PN compiler. This gives the point (ip, jp) in the producer do-

main that corresponds to the point (ic, jc) in the consumer domain. We then compute

wAddr(ip, jp) to obtain the address from which the token should be read. For the

example of Figure 3.10, PN finds the channel relation

Mp→c(ic, jc) =

[

ip
2 − jp

]

. (3.6)

Therefore, the read address function becomes

rAddr(ic, jc) = ic + 2 · (2 − jc). (3.7)

For token C, which is consumed in iteration (0, 0), the rAddr function yields address

04 which is the same address that was computed by the WAG. However, a token

may not have been written by the producer yet. For example, token C may not be

available yet at address 04. Therefore, we introduce an additional valid bit for each

memory location. The valid bit is set once a token has been written to its address. To

comply with the blocking read semantics of the PPN model, the RAG blocks until

the token corresponding to the current consumer iteration is written. In the memory

of Figure 3.10, tokens A and B have been written, as indicated by the “V”s, whereas

tokens C and D have not been written yet, as indicated by the “.”s.



52 Chapter 3. Synthesizing PPNs

3.7 Conclusion and Summary

To realize the complete forward synthesis flow from a C specification to an FPGA

implementation (cf. Figure 1.3), we have presented four extensions to the LAURA

methodology in this chapter. These extensions include a more flexible characteriza-

tion of IP core performance and resource cost aspects; support for novel optimiza-

tions of the PNGEN tool flow; architectural optimizations to improve the maximum

clock frequency and handle complex iteration domains; and a novel reordering buffer

implementation that has a lower performance penalty compared to previous reorder-

ing buffer implementations. The extensions enable the Daedalus tool flow to support

transformations and cope with industrially relevant applications, as we show in the

next chapters.



CHAPTER 4
PERFORMANCE ESTIMATION

In the previous chapter, we have presented methods to realize an FPGA implemen-

tation of a polyhedral process network. Considering a single optimized design point

does not necessarily result in the best tradeoff between area and performance aspects.

Instead, a designer wants to consider different design points that provide different

tradeoffs between for example area and performance aspects. In this chapter, we

present four different methods to estimate the performance of design points specified

as polyhedral process networks, that differ in accuracy and assessment effort.

4.1 Motivation

Looking at Figure 1.2, which shows the iterative design flow, it becomes clear that the

designer gets feedback very late. Only after time-consuming synthesis and place-and-

route steps does the designer get feedback about performance. This limits the number

of design points that a designer can evaluate in a given amount of time. Since he can

evaluate only a limited number of design points, assessing if his design constraints

can be met is difficult and frustrating. Prototyping for example a sobel design consist-

ing of five LAURA processors already takes about twenty minutes [HK09]. Also, the

forward synthesis flow requires that synthesizable RTL for all components is avail-

able, which is often not the case at the early stage of a design process. Instead, the

designer should obtain feedback faster, possibly at the expense of reduced accuracy,

allowing him to avoid a time-consuming forward synthesis step if he knows a design

will not satisfy his constraints. Ideally, a designer wants to know whether a design

meets his constraints before entering the time-consuming forward synthesis step.
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Figure 4.1: Performance assessment at different levels of the Daedalus design flow.

Getting an early performance estimate of a design is not new and has been investi-

gated by for example Meijer et al. [MNS10] and Nikolov [Nik09]. However, these

approaches only focus on microprocessor based systems. These approaches are not

able to capture the notion of overlap between different iterations of a process and

cannot handle cyclic PPNs, rendering them unsuitable for our design flow. There-

fore, we investigate in this chapter four different techniques to provide the desired

performance estimate.

From the Daedalus design flow, we distill four different levels, as shown in Fig-

ure 4.1. For each level, we investigate how to obtain a performance estimate. At the

first level, the designer creates a system-level specification consisting of sequential

C code and a platform and mapping specification in XML. At the second level, PN-

GEN parallelizes this C code into a parallel model. At the third level, ESPAM maps

the parallel model onto a platform. At the fourth level, commercial synthesis tools

implement the low-level RTL model.

We expect that performance assessments at these different levels provide different

trade-offs between accuracy and assessment effort [HH96, KDWV02]. A high-level

performance assessment can be conducted in a short amount of time, but such high-

level performance numbers often deviate from the actual performance of the pro-

totype. On the other hand, low-level performance assessments take a considerable

amount of time, but the resulting performance numbers are often very close to the

actual performance.

In this chapter, we study the relation between accuracy and assessment effort of per-

formance assessments at the four different levels. We start our investigation from the
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RTL at the fourth level and work our way up to the sequential code at the first level.

We first present some definitions and concepts that we use to discuss performance

estimations in Section 4.2. Performance assessment at the fourth level, RTL simula-

tion, is discussed in Section 4.3. Performance assessment at the third level, SystemC

simulation, is discussed in Section 4.4. Performance assessment at the second level,

analytical analysis, is discussed in Section 4.5. Performance assessment at the first

level, sequential code profiling, is discussed in Section 4.6. After the discussion of

performance assessments at the four levels, we compare the four approaches on dif-

ferent aspects such as the ability to incorporate finite buffer sizes in Section 4.7. In

Section 4.8, we compare the four approaches by applying each approach on a set of

benchmarks. In Section 4.9, we summarize this chapter.

4.2 Definitions

Design constraints on system performance are often expressed as a constraint on

throughput [SB00]. To quantify the performance of a process in a PPN, we employ

the notion of throughput:

Definition 4.1 (Process Period and Throughput).

The period Tp of a PPN process p represents the average time between two subse-

quent firings of p. The throughput τp = 1
Tp

of a process p represents the average

number of firings completed per time unit.

Using the notion of process throughput, we define the throughput of a PPN:

Definition 4.2 (PPN Throughput).

The throughput of a PPN with one sink process equals the throughput of that sink

process.

This definition excludes PPNs with more than one sink process. This is not a fun-

damental limitation because each such PPN can be transformed into a PPN with only

one sink process by merging the sink processes. Alternatively, instead of reasoning

about the throughput of the entire PPN, one may keep the distinction between dif-

ferent sink processes since they represent different output streams of a system. For

example, a video processing system may have a high data rate video output stream

and a low data rate control output stream. Combining both data rates is meaningless

in practice, and thus it is desirable to keep both throughput rates separated.

The external input and output streams connected to the PPN may affect the through-

put achieved by a PPN. For example, if data on the input stream is not delivered fast

enough, the throughput of a PPN may drop as the PPN has to wait for data. Similarly,
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if data on the output stream is not consumed fast enough, the PPN may be stalled

until older data is consumed from the output stream such that storage space for new

data becomes available. In this chapter, we are interested in the throughput of a PPN

irrespective of environmental factors. Therefore, we employ the notion of isolated

throughput:

Definition 4.3 (Isolated Throughput).

The isolated throughput of a PPN is the throughput of the PPN when isolated from

external input and output streams.

As such, the isolated throughput represents the theoretical maximum achievable

throughput considering only the PPN itself. In the remainder of this chapter we

present and review four different techniques to estimate the isolated throughput of

PPNs. We want to estimate the throughput of a PPN on a real system, which we refer

to as the absolute throughput.

Definition 4.4 (Absolute Throughput).

An absolute throughput assessment is used to describe the throughput of an actual

FPGA implementation of a PPN.

The goal of each of the four techniques that we present in this chapter is to ana-

lyze the performance of a multi-processor system. According to van Gemund, the

performance of a parallel system is determined by four key aspects [Gem96]:

• Conditional synchronization, which relates to the performance impacts of

synchronization due to data dependences. For example, if a PPN process de-

pends on two inputs a and b that become available at times ta and tb, then the

process should fire no earlier than max(ta, tb).

• Mutual exclusion, which relates to contention of processing or communica-

tion resources. For example, a processor can only initiate the next PPN process

iteration at a valid initiation interval (II ) boundary.

• Basic calibration, which relates to the performance characteristics of the sys-

tem constituents. For example, Definition 3.1 provides a systematic way to

describe the throughput (II ) and latency (Λ) of an IP core that is integrated in

a PPN.

• Conditional control flow, which relates to non-static control flow inferred by

data-dependent control statements. For example, a process function may have

a varying latency if the function performs a different computation for different

input argument values.

To obtain an accurate assessment of PPN performance, we take the four key aspects

into account in the four performance estimation techniques that we present.
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4.3 RTL Simulation

At the fourth level in Figure 4.1, we have obtained an FPGA project of the system.

This project can be synthesized using vendor-specific low-level synthesis and place-

and-route tools to obtain a bitstream. By downloading the bitstream onto an FPGA

device, the designer obtains a prototype implementation of the design such that for

example functionality and throughput requirements can be verified. However, even

for small designs, synthesis of an FPGA project to a bitstream already takes tens of

minutes. Obtaining a throughput metric by prototyping is thus a time-consuming

approach.

The RTL representation of an FPGA project can be simulated such that low-level

synthesis and place-and-route steps are avoided during throughput assessment. The

feasibility of such a simulation depends on the types of processors in the platform

specification. If one or more programmable processors are involved, an RTL simu-

lation is time-consuming because of the large amount of effort required to simulate

a single instruction at the register transfer level, making RTL simulation impractical

when using programmable processors. Nevertheless, for platforms consisting entirely

of LAURA processors, we found that RTL simulation is a viable approach to obtain a

throughput estimate of a design. Therefore, we have extended ESPAM with a backend

that produces an RTL simulation project for platforms that consist entirely of LAURA

processors. This backend generates a simulation project for the Xilinx ISE simulator.

4.4 SystemC Simulation

At the third level in Figure 4.1, we have obtained a mapped model of the system.

As discussed in the previous section, RTL simulation of platforms containing one or

more programmable processors is often infeasible in practice. To make simulation of

such platforms feasible, we may reduce the amount of simulation details at the ex-

pensive of lower accuracy. We achieve this by simulating the mapped model instead

of the RTL model, thereby addressing the basic calibration and conditional control

flow aspects in less detail. A common solution is to use different simulation tech-

niques for different types of components, known as co-simulation [GCD92, Row94].

The different components are then simulated at different levels of detail. Another

solution is to use execution traces of an application to simulate different system-level

specifications, as done for example by Sesame [PEP06] which is integrated in Dae-

dalus. A widely used standard for simulation of designs with reduced accuracy is the

SystemC standard [Sys05]. We have extended ESPAM with two SystemC backends:

an untimed SystemC backend and a timed SystemC backend.
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The untimed SystemC backend generates a functional simulation in the SystemC

environment. One of the first backends in the history of ESPAM was the YAPI back-

end which generates a functional simulation in the YAPI framework [KES+00]. The

YAPI backend provides fast functional simulation of a PPN, such that a designer can

quickly verify if the functional behavior of a parallelized application is correct. The

motivation behind the untimed SystemC backend is to provide similar fast functional

simulation, but according to an industry standard. Unlike the YAPI framework, Sys-

temC is an official IEEE standard which implies a more widespread acceptance and

better long-term support.

The timed SystemC backend generates a functional simulation which includes a

notion of time. A designer can use a timed SystemC simulation to obtain throughput

metrics in less time than with an RTL simulation. We have explored two different

approaches to incorporate programmable processors into timed SystemC simulations.

In Section 4.4.1, we present an approach which employs a cycle-accurate instruction

set simulator which yields cycle-accurate throughput metrics. In Section 4.4.2, we

present an approach which uses fixed execution time estimates, thereby potentially

degrading accuracy but further increasing the simulation speed.

4.4.1 Cycle-Accurate Timed SystemC Simulation

To obtain a cycle-accurate simulation environment from a system level specification,

we have developed a new backend to ESPAM [HHK10]. This backend generates

the C++ code for a SystemC top-level module and the C++ code that has to be run

on each processor. The backend currently supports LAURA and MicroBlaze proces-

sors. A LAURA processor is simulated using a custom written SystemC module that

models the LAURA execution in a cycle-accurate manner. A MicroBlaze processor is

simulated using the cycle-accurate GDB-based MicroBlaze Instruction Set Simulator

(ISS) provided by Xilinx. Such an ISS allows for a faster performance assessment,

because the ISS simulates only instructions instead of the full RTL implementation of

the MicroBlaze processor. However, the MicroBlaze ISS was not designed to oper-

ate as a multi-processor simulator. Therefore, ESPAM generates a SystemC top-level

module which allows different instances of the ISS to interact.

In Figure 4.2, we show an implementation of the PPN shown in Figure 2.8 using

our cycle-accurate timed SystemC simulation model. We map the source and sink

processes onto separate MicroBlaze processors, and the func1 process onto a LAURA

processor. The top-level module contains submodules that implement a simulation

model for each processor. The channels of a PPN are implemented using sc fifo

primitives from the SystemC standard which interconnect the processor simulation

modules.
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Figure 4.2: A cycle-accurate timed SystemC simulation environment for the PPN of

Figure 2.8.

For each LAURA processor, the SystemC top-level module implements a SystemC

module that simulates the execution of a process on a LAURA processor described

in Section 2.4.1. For each MicroBlaze processor, the SystemC top-level module im-

plements a controller module which drives each MicroBlaze ISS instance, shown in

the bottom part of Figure 4.2. This controller module communicates with the ISS

instance running as a separate heavy-weight process in the operating system. This

allows different ISS instances to run in parallel. A process running on a MicroBlaze

processor normally communicates data to other processors via its FSL ports, using

the get and put instructions. The original MicroBlaze ISS does not implement

these instructions. We have implemented these instructions in the ISS to send and

receive data to and from the controller module associated with an ISS instance. The

controller module subsequently transfers data between the other simulated processors

using sc fifo instances. The get instruction stalls the ISS when no data is available

on the sc fifo being read, and the put instruction stalls the ISS when the maximum

capacity of the sc fifo being written is reached. As such, the ISS implements the

blocking read and write primitives according to the semantics of the PPN model.

To ensure cycle-accurate simulation, a global execution time should be maintained

across all ISS instances. We have modified the ISS such that each ISS instance keeps

track of the global execution time. A straightforward way to synchronize the execu-

tion times of all ISS instances is to use a lockstep approach. With such an approach,

each ISS instance waits for a clock signal from the corresponding SystemC controller

module before a MicroBlaze instruction is executed. The lockstep approach guaran-

tees that all simulated MicroBlaze processors advance at the same pace, resulting in a

cycle-accurate simulation of the system. Unfortunately, the lockstep approach results

in extensive synchronization overhead, because synchronization occurs at every sim-

ulated clock cycle. Using the lockstep approach, at most 42000 clock cycles can be
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simulated per second for a design containing one MicroBlaze processor. When more

MicroBlaze processors are simulated simultaneously, this number drops more or less

linearly. As an alternative to the lockstep approach, we can synchronize the execution

times of two ISS instances only when these ISS instances interact by communicating

a data token. Using such global execution time synchronization, we have observed

up to 80 times increases in simulation speed.

4.4.2 Light-weight Timed SystemC Simulation

Performing a cycle-accurate timed SystemC simulation using ISSs is a delicate task,

because code for all processors has to be compiled for the appropriate instruction set,

and because communication channels between the ISS instances need to be estab-

lished. As a light-weight alternative to cycle-accurate timed SystemC simulation, we

propose another timed SystemC simulation technique. Instead of relying on an ISS

to obtain cycle-accurate execution times, we require the designer to provide function

execution times according to Definition 3.1. Thus, for each function f in the PPN,

a value Λf represents the number of clock cycles taken by a single invocation of f .

By considering only a single value Λf , we decrease simulation complexity at the ex-

pense of lower accuracy. As a result, we simplify the basic calibration aspect as only

one Λf value per function is required, instead of a list of latency values per instruc-

tion. We ignore the conditional control flow aspect, as functions that may contain

data-dependent statements are not executed. As a consequence of the simplification,

the accuracy of Λf determines the accuracy of the final throughput metric.

For each top-level component in a system, that is, a processor in the platform spec-

ification and a channel between two processors, we instantiate a SystemC module.

The SystemC module is based on a template for the component type. Each SystemC

module runs a thread in which the simulation model of the simulated component is

updated at each simulated clock cycle. A top-level module interconnects the Sys-

temC modules and invokes the SystemC simulation kernel. The SystemC kernel

schedules all threads according to a discrete-event simulation model that is also em-

ployed for RTL simulation. Light-weight timed SystemC simulation thus resembles

RTL simulation in which only the conditional synchronization, mutual exclusion, and

basic calibration aspects are included in the simulation model. Other aspects that do

not affect performance significantly, such as the process functionality and input port

multiplexing, are specified as C code without invoking the discrete event scheduler

of SystemC. Thus, no simulation primitives are constructed for non-essential aspects,

which allows faster simulation compared to RTL simulation.

For an example Sobel design mapped on a platform consisting of five processors,

we have measured a simulation speed of about 200000 clock cycles per second. In
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terms of simulation speed, this approach roughly compares to the cycle-accurate

timed SystemC simulation without lockstep synchronization. Assuming the Λf val-

ues are accurate, light-weight timed SystemC simulation is a feasible alternative to

cycle-accurate timed SystemC simulation.

4.5 Maximum Cycle Mean Analysis

At the second level in Figure 4.1, we have obtained a PPN of the application, which

is a particular model of computation. Estimating performance for different models of

computation is a well-established field of research [LSV98, SB00]. In this section,

we want to leverage existing work to find an analytical performance estimation tech-

nique for PPNs. We present a novel analytical technique to estimate the throughput of

a PPN based on Maximum Cycle Mean (MCM) analysis. MCM analysis is an estab-

lished technique to assess the throughput of an HSDF graph [SB00]. MCM analysis

is invariant to the application workload because of the analytical nature. This makes

this approach appealing compared to the RTL and SystemC approaches, as the as-

sessment effort of the latter aproaches directly depends on the workload. We present

an overview of analytical throughput estimation approaches in Section 4.5.1. We dis-

cuss the MCM analysis method for HSDF graphs in Section 4.5.2. We explain how

we derive an HSDF graph for throughput estimation of a PPN in Section 4.5.3. We

conclude this section by applying MCM analysis to two PPNs in Section 4.5.4.

4.5.1 Related Work

Analytical performance assessment of applications modeled as dataflow graphs is

a well-studied research field. An analytical method to compare different instances

of an application modeled as a PPN was first presented by Meijer et al.[MNS10].

Their technique had two limitiations. First, the scope was limited to acyclic PPNs.

Second, the throughput model was developed to obtain relative throughput assess-

ments between two or more PPNs. In contrast, in this chapter we focus on absolute

throughput assessments for both acyclic and cyclic PPNs. Thiele et al. have inves-

tigated performance analysis for cyclic SDF graphs [TS09]. Because the approach

works only on SDF graphs, it cannot cope with varying production and consumption

rates that occur in many embedded applications. Such varying rates can be expressed

in the PPN model, but no absolute performance analysis currently exists for PPNs.

The period of an HSDF graph can be analytically obtained by computing the maxi-

mum cycle mean [DG98, SB00]. Because a PPN is a special case of a CSDF graph,

an equivalent HSDF graph can be derived from a PPN using the conventional method

with which an HSDF graph can be derived from a CSDF graph [BELP96, Fig. 9].
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Moonen et al. use this method to compute a conservative bound on the through-

put of a CSDF graph [MBBM07]. Unfortunately, the equivalent HSDF graph often

exhibits an exponential increase in the number of nodes compared with the CSDF

graph. This increases the running time of the algorithm computing the maximum cy-

cle mean, making analysis of large graphs more time-consuming or even impractical.

In Section 4.5.3, we present an alternative approach to enable maximum cycle mean

analysis on PPNs which avoids the exponential complexity increase.

Ito and Parhi acknowledge the increases in the number of nodes and edges when

deriving the equivalent single-rate data flow (“HSDF”) graph for a given multi-rate

data flow (“SDF”) graph [IP95]. Their solution is to remove edges and nodes through

procedures called edge degeneration and node degeneration, in such a way that the

iteration bound is not affected. The effectiveness of the approach is not guaranteed,

as node degeneration is not applicable for certain graphs, as indicated by the authors.

Instead of working on equivalent HSDF graphs, throughput analysis methods exist

that operate directly on SDF [GGS+06] and CSDF graphs [SGB08]. These methods

construct the state space of the graph by simulating its execution assuming an unlim-

ited number of processor resources. Once a cycle is detected in the state space, the

periodic phase is reached. After identification of the periodic phase, the throughput

of the graph can be computed. Instead of performing an explicit state-space explo-

ration, one can also perform the state-space exploration symbolically using max-plus

algebra [Gei09]. This allows one to obtain an HSDF graph with identical throughput

characteristics that often has fewer nodes than an equivalent HSDF graph obtained

using the conventional method. However, for some graphs the method of [Gei09]

may produce an HSDF graph that has more nodes than the conventionally obtained

HSDF graph.

In summary, existing analytical throughput assessment techniques for PPNs cannot

cope with cyclic graphs and are only intended for relative throughput assessment.

Various techniques exist for HSDF, SDF, and CSDF graphs that can cope with cyclic

graphs and provide absolute throughput assessment. However, techniques for HSDF,

SDF, and CSDF graphs cannot be applied directly to PPNs, because the succinct PPN

representation has to be converted into a more elaborate HSDF, SDF, or CSDF repre-

sentation. Such a conversion leads to an HSDF or SDF graph with an exponentially

large number of nodes, or a CSDF graph with long phase lengths. The conversion

takes an large amount of time, and the size of resulting CSDF graph leads to long

running times of the analysis methods. To avoid any potential exponential increase in

the number of nodes, we look for an approach in which the number of nodes remains

equal to the number of processes in the PPN.
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4.5.2 Maximum Cycle Mean Analysis

The iteration period of an HSDF graph is defined as the time needed to execute an

iteration of the graph [SB00, Chapter 5]. A lower bound on the iteration period,

called the iteration bound, can be obtained by first computing the computation-to-

delay ratios of the cycles in the graph [SB00, Chapter 8]. For each cycle C in an

HSDF graph G, we compute the computation-to-delay ratio

CM (C) =

∑

v∈C t(v)
∑

e∈C d(e)
, (4.1)

which we refer to as the cycle mean of C. Thus, the cycle mean of a cycle C equals

the sum of the execution times t(v) of all nodes v involved in C divided by the sum

of all initial tokens d(e) on the edges e involved in C. The cycle that yields the

maximum CM () value is called the critical cycle of an HSDF graph. The iteration

bound of an HSDF graph G is determined by the critical cycle. Thus, to obtain the

iteration bound we compute the maximum cycle mean

MCM (G) = max{CM (C)}, C ∈ G. (4.2)

The throughput of an HSDF graph G is the reciprocal of the iteration bound, thus

τ(G) =
1

MCM (G)
. (4.3)

Example

We now illustrate the MCM analysis on the HSDF graph of Figure 2.5 on page 23.

This graph contains three cycles:

• c1 = (a1 → b → c → a1),
• c2 = (a2 → b → c → a2), and

• c3 = (b → c → b).

When auto-concurrency is considered, a node may fire multiple times simultaneously.

A node mapped onto a programmable processor executes its firings in sequence, such

that no auto-concurrency occurs. To explicitly exclude auto-concurrency of the indi-

vidual nodes, we assume each node i has a selfloop ci with one initial token. Then,

Equation (4.2) yields
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PPN

MCM

Analysis

Throughput

Conversion to

CSDF, (H)SDF

Derivation of

modeling graph

...

... ...

...
conventional

our approach

Figure 4.3: Two approaches to apply MCM analysis to PPNs.

MCM (G2.5) = max
{

CM (ca1),CM (ca2),CM (cb),CM (cc),CM (c1),CM (c2),CM (c3)
}

= max

{

t(a1)

1
,
t(a2)

1
,
t(b)

1
,
t(c)

1
,

t(a1) + t(b) + t(c)

d(a1 → b) + d(b → c) + d(c → a1)
,

t(a2) + t(b) + t(c)

d(a2 → b) + d(b → c) + d(c → a2)
,

t(b) + t(c)

d(b → c) + d(c → b)

}

= max

{

8

1
,
8

1
,
2

1
,
2

1
,
8 + 2 + 2

0 + 0 + 1
,
8 + 2 + 2

0 + 0 + 1
,
2 + 2

0 + 1

}

= 12 .

The first four terms in the max-expressions above correspond to the selfloops of the

four nodes. The remaining three terms correspond to the three cycles of the graph.

The maximum cycle mean is determined by both CM (c1) and CM (c2) which both

evaluate to 12. Thus, the iteration bound of the HSDF graph of Figure 2.5 is 12, and

consequently the throughput is 1
12 .

4.5.3 Derivation of PPN Modeling Graphs

In Section 4.5.1, we mentioned the possibility of applying MCM analysis on PPNs by

considering the equivalent CSDF graph and converting the CSDF graph into HSDF.

This approach is depicted in the upper part of Figure 4.3. Unfortunately, this results

in an exponential increase in the number of nodes. To keep the time needed for the

MCM computation within reasonable bounds, we must avoid the exponential increase

in the number of nodes, which leads us to a new approach.

We have found a way to derive a more compact HSDF graph from a cyclic PPN,

which we depict in the lower part of Figure 4.3. Our approach works by deriving

an HSDF graph that models the throughput behavior of a PPN, and then applying

conventional MCM analysis to this graph. The number of nodes in our HSDF graph
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equals the number of processes in the PPN. The number of edges in our HSDF graph

is linearly bounded, as we show in Proposition 4.3. As such, no exponential increase

of the graph size occurs, making the approach a suitable alternative for fast perfor-

mance estimation of PPNs. We divide the derivation in two main steps. First, PPN

processes are converted to HSDF nodes. Second, PPN channels are converted to

HSDF edges.

Step 1: Constructing Nodes from Processes

The first step in deriving the PPN modeling HSDF graph is to convert PPN pro-

cesses to HSDF nodes. One possible approach is to interpret the PPN as a CSDF

graph [HZ+10, adg2csdf] and then derive an HSDF graph from this CSDF graph us-

ing the conventional approach [BELP96, Fig. 9]. This approach causes q(p) nodes

to be instantiated for each process p. For consistent PPNs, q(p) always equals the

number of points in the process domain Dp:

Proposition 4.1 (PPN Repetition Vector). For each process p of a consistent PPN, the
corresponding element of the repetition vector of an equivalent CSDF graph equals

the number of points in its process domain, that is, ∀p ∈ P : q(p) = |Dp|.

Proof. In a consistent PPN, for every channel c, the number of points in the corre-

sponding OPDj
σc

is equal to the number of points in the corresponding IPDk
δc

, thus

|OPDj
σc
| = |IPDk

δc
|. Therefore, the solution of the balance equation Γ · r = 0 is

a vector r which contains a ‘1’ for every process. As a result, the elements of the

repetition vector q = S · r are equal to the phase lengths of each node, which equals

the number of points in the process domain.

As a result, a separate HSDF node would be instantiated for each iteration of the

domain, resulting in large graphs even for small applications. This makes the con-

ventional CSDF-to-HSDF approach infeasible for practical purposes. We can avoid

an increase in the number of nodes based on the following observation. In an HSDF

graph, all q(p) nodes originating from a process p may execute in parallel. How-

ever, by definition the iterations of a PPN always execute sequentially. This allows

us to represent each process p by a single HSDF node h, where node h represents

sequential execution of all q(p) nodes of the conventional equivalent HSDF graph.

We multiply the execution time Λp of a single firing of process p by q(p) to model

sequential execution of all q(p) nodes in the equivalent HSDF graph. As a result, the

number of nodes in the resulting HSDF graph equals the number of processes in the

original PPN.
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The execution time t(h) of an HSDF node is set to the total time needed to fire all

iterations of the process consecutively without overlapped execution. Included in this

execution time are the read and write latencies and the time needed to fire the func-

tion. Time spent on a blocking read or write operation is not included, which means

our approach does not address the conditional synchronization aspect introduced in

Section 4.2. Our approach cannot accurately assess throughput of applications in

which read or write operations block on empty or full channels. To exclude auto-

concurrency, we add to each HSDF node a selfloop with one initial token. This avoids

multiple simultaneous executions of the entire PPN, which is undesirable when de-

termining throughput.

Step 2: Constructing Edges from Channels

The second step in deriving the PPN modeling HSDF graph is to interconnect the

HSDF nodes using edges in such a way that the PPN’s throughput characteristics

are preserved. This is not trivial, because of the different semantics of HSDF edges

and PPN channels: HSDF edges have an unbounded capacity and may contain initial

tokens, whereas PPN channels have a bounded capacity and do not have a notion of

initial tokens. We now discuss how to represent edges in a PPN modeling HSDF

graph such that the PPN’s throughput characteristics are preserved.

The PPN modeling graph may contain more than one edge between two nodes a
and b, if for example the PPN contains multiple channels between two processes. It

is sufficient to represent such a collection of channels by a single edge:

Proposition 4.2 (Pruning Multi-Edges in PPN Modeling Graphs). A collection of

PPN channels from process a to process b can be represented by a single edge (a →
b) in the PPN modeling graph.

Proof. If an edge (a → b) is part of a cycle, then another cycle also exists for each

additional edge connecting a to b. The only difference among the cycle means of

those cycles is the number of initial tokens that occurs in the denominator of Equa-

tion (4.1). A cycle with a larger denominator results in a smaller cycle mean, which

implies the cycle mean will not be selected by Equation (4.2). Thus, we only need

to consider the cycle with the smallest number of initial tokens, which is the cycle

containing the edge with the smallest number of initial tokens.

We distinguish between three classes of channels: selfloop channels, feedback chan-

nels, and feedforward channels.
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a b c
1 1

2

a b c

d = 2

a) PPN containing a cycle. b) Corresponding PPN modeling graph.

... ...

Figure 4.4: Handling feedback edges in a PPN.

Selfloop channels

For a selfloop channel, which connects a process to itself, no edge is added to the

HSDF graph. We omit such selfloops because in step 1 we have already added a

selfloop with one initial token to each node. To see why selfloops can be omitted,

suppose that the critical cycle of a PPN modeling graph would be a selfloop s of

process p with buffer size Ss ≥ 1. This selfloop could be modeled by adding an edge

(p → p) with Ss initial tokens. For this newly added cycle Cs, Equation (4.1) yields

CM (Cs) =
Λp · |Dp|

Ss
.

However, for selfloop e added in line 3 of Algorithm 4.1, we already have

CM (e) =
Λp · |Dp|

1
.

Because CM (e) ≥ CM (Cs) for all Ss ≥ 1, we can ignore CM (Cs) in Equa-

tion (4.2). Thus, a selfloop of a PPN never forms the critical cycle, and therefore

such selfloops can be omitted from the PPN modeling graph without affecting the

MCM value.

Feedback channels

Feedback channels are part of a strongly connected component, and are thus the

constituents of a cycle. The cycle mean of a cycle in the PPN modeling graph is

computed using the sum of all initial tokens on the edges constituting the cycle, as

we have shown in Equation (4.1). Hence, the amount of initial tokens on an HSDF

edge representing a feedback channel may affect the MCM value of an HSDF graph.

Therefore, we should determine the amount of initial tokens for each feedback edge

such that an accurate MCM value is obtained.

Each cycle of a PPN contains one process that is the first process from that cycle

to be fired. The channel of that cycle from which the first process reads is the last
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channel of that cycle. Initially, we construct for each PPN channel part of a cycle an

HSDF edge and assign zero initial tokens to each edge. Only to the edge correspond-

ing to the last channel of the cycle we assign a nonzero number of initial tokens d.

For example, suppose process a in Figure 4.4 first reads from a channel outside of

the cycle and in the next firing reads from channel (c → a) that is part of the cycle

(a → b → c → a). As such, process a is the first process of the cycle that can fire.

Therefore, edge (c → a) is the last edge of the cycle. Selection between edges is not

possible in the HSDF model which requires all incoming edges of a node to be read

during every firing. Without assigning initial tokens to the last edge (c → a) of the

cycle, the HSDF graph would be in a deadlock state, preventing meaningful analysis.

To avoid this deadlock state, we assign initial tokens to the last edge.

Initial tokens on an edge of an HSDF graph are also referred to as the delay of an

edge. Here, “delay” refers to the temporal distance between the nodes in terms of

iterations of the graph. For example, if an edge (a → b) has 2 initial tokens, then the

firing of node b at iteration i depends on the token produced by node a at iteration

i− 2. The PPN model does not have a notion of initial tokens, which means we need

to relate the delay between two HSDF nodes that are part of a cycle to the distance

between processes in the PPN model.

A notion of dependence distances is available for SANLPs from which we derive

PPNs. A dependence distance vector gives the difference between a target iteration

vector and the source iteration vector of a dependence [Pug92, definition d]. For a

PPN channel (a → b), the distance vector gives the difference between an iteration

of process b that consumes a token and the iteration of process a that produced the

token. In general, this difference may not be defined when the process iteration do-

mains are different, which for example happens when the original statements are not

located in the same loop nest. However, the PNGEN tool flow puts all processes in

a common iteration space to compute buffer sizes. In this common iteration space,

the dependence distance vector is defined for any pair of processes that are connected

by a channel. We therefore employ the dependence distance in the common iteration

space to assign initial tokens to feedback edges in the PPN modeling graph.

We cannot use the dependence distance directly, because of the following two rea-

sons. First, the dependence distance is a vector for common iteration spaces consist-

ing of more than one dimension. In contrast, the number of initial tokens of an HSDF

graph should always be a scalar value. Second, a dependence distance may be non-

uniform, that is, the dependence distances may vary for different pairs of iterations.

In such cases, the dependence distance of a single dimension cannot be expressed

using a constant integer only, but is expressed using iterators. In contrast, the number

of initial tokens of an HSDF graph should always be a constant integer value.

To overcome both problems, we use a constant integral scalar approximation of a
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dependence distance. The way in which PNGEN computes the buffer size (cf. Sec-

tion 2.3.2) gives us a suitable approximation of the maximum dependence distance

of a non-uniform dependence. For uniform dependence distances, the buffer size

is an accurate measure of the dependence distance. For non-uniform dependence

distances, the use of the buffer size introduces a source of inaccuracy in the PPN

modeling graph.

The number of initial tokens dc assigned to the last edge of a cycle is determined

as follows. If the cycle is tight, that is, if in every iteration each process depends on

the output of the previous iteration of its predecessor process, the processes execute

sequentially without overlap between firings of different processes. In such a case,

the dependence distance vector contains zeroes for all dimensions except the last

for which it contains a one. That is, the dependence distance vector is of the form

[0, 0, . . . , 1]. The corresponding buffer size Sc is one, and we assign one initial token

to the last edge of the cycle.

If the cycle is not tight, then overlapped execution between firings of different pro-

cesses may occur. In such a case the dependence vector is different from the form

described above. We assign Sc +1 initial tokens to the last edge of a cycle which cor-

responds to the buffer size plus one additional initial token to accomodate overlapped

execution. Currently, this is a known source of inaccuracy in the MCM modeling

HSDF graphs derived from PPNs. Determining the number of initial tokens to assign

to the last edge of a non-tight cycle is therefore subject of future investigation.

Feedforward channels

Feedforward channels connect a strongly connected component of a PPN to another

strongly connected component. As such, the corresponding feedforward edges in an

HSDF graph are not part of any cycle and thus would not affect the MCM value. In

the HSDF model, edges have infinite capacity which implies that a feedforward edge

indeed does not affect the MCM value of an HSDF graph. That is, a feedforward edge

cannot reach a “full” state that would cause blocking writes decreasing throughput.

In contrast to HSDF edges, PPN channels have a finite capacity which may cause

blocking write conditions that decrease throughput.

To take the finite capacity of a channel into account, we add for each feedforward

channel (a → b) a forward edge e = (a → b) and a backedge (b → a) [SB00,

Section 10.4]. We assign zero initial tokens to the corresponding feedforward edge

in the HSDF graph. The number of initial tokens me ∈ N on the backedge represents

a particular buffer capacity. Empirically, we found that a value me corresponds to a

buffer capacity

Sc = me + dc − 2, (4.4)
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where dc is the dependence distance approximation used in the discussion above on

feedback channels. That is, the MCM computed using me matches the PPN period

achieved with a buffer capacity of Sc tokens.

Bounding feedforward channel delays

According to the HSDF model, any positive number of initial tokens m on a backedge

is allowed. This leads to an infinite number of possible buffer configurations. How-

ever, when m is below a certain value, a corresponding PPN buffer size may not

exist due to the operational semantics of a PPN process. This gives a lower bound on

m. Also, when m exceeds a certain value, the MCM is not affected anymore, which

means that increasing the buffer size does not lead to a higher throughput. This gives

an upper bound on m. Therefore, we can bound the design space by only considering

the values that lie between the lower and upper bounds.

The lower bound on m for any edge in the PPN modeling graph is two, which is

a consequence of the operational semantics of a PPN process. This lower bound of

two can be explained as follows. In an HSDF graph, a token is kept on the edge until

the consuming node has finished its firing. In a PPN graph, a token is transfered to

a buffer internal to the process during the read stage. This effectively increases the

buffer size by one. As such, a buffer size of one corresponds to a number of initial

tokens m = 2.

The upper bound on m represents the point where increasing the buffer size does

not yield a higher throughput. This corresponds to a value m for which the maximum

cycle mean of the graph is determined by cycles of the original graph or selfloops,

but not by a cycle introduced by the modeling of a feedforward edge. For an arbitrary

feedforward edge (a → b), we choose m such that the resulting cycle mean value

is less than or equal to the cycle mean of the selfloops of the nodes involved in the

cycle:
t(a) + t(b)

m
≤ max {t(a), t(b)} .

For positive execution times t, this inequation holds if m equals the number of nodes

in the cycle, which is two. However, other paths between a and b may exist which

must be considered as well to avoid that they determine the maximum cycle mean.

To ensure that none of the other paths between a and b determine the maximum cycle

mean, we generalize the above inequation to a path consisting of n nodes:

∑n
i=1 t(i)

n
≤ max n

i=1 {t(i)} . (4.5)

Thus, the upper bound on m originating from a channel c equals the number of pro-
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a) PPN containing feedforward edges. b) Corresponding PPN Modeling graph.

Figure 4.5: Handling feedforward edges in a PPN.

m1 m2 m3 MCM (G4.5b)

1 1 1 90

1 1 2 60

1 1 3 60

1 2 1 90

1 2 2 60

1 2 3 60

m1 m2 m3 MCM (G4.5b)

2 1 1 90

2 1 2 60

2 1 3 60

2 2 1 90

2 2 2 45

2 2 3 30

Table 4.1: MCM values for different numbers of initial tokens. Only for the configu-

rations in boldface a valid PPN buffer size configuration exists.

cesses on the longest path connecting σc to δc.

In Figure 4.5a, we show a PPN containing three feedforward channels. In Fig-

ure 4.5b, we show the corresponding modeling graph. For each feedforward channel

in the PPN, we have added a forward edge and a backedge in the modeling graph.

The values m1, m2, and m3 specify the amount of initial tokens assigned to the

backedges. According to equation (4.5), the upper bound of m1 and m2 is two and

the upper bound of m3 is three. In Table 4.1, we show twelve possible combina-

tions of m-values, deliberately assuming a lower bound of 1 for each m-value. This

yields twelve different design points trading off buffer size against throughput. If

we take the lower bound on m-values for PPN modeling graphs into account, any

combination of m-values containing an m-value below two does not have a corre-

sponding PPN buffer configuration. Hence, only for (m1, m2, m3) = (2, 2, 2) and

(m1, m2, m3) = (2, 2, 3) an actual PPN buffer configuration exists. As such, for this

example the buffer size design space is reduced to only two points.

Summary

The derivation of the more compact HSDF graph is summarized in Algorithm 4.1.

The input is a PPN and a number Λp representing the execution time of a single firing
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of each process p. The output is an HSDF graph that is intended only for throughput

analysis by an MCM algorithm. Lines 1–4 in Algorithm 4.1 perform the conversion

of PPN processes to HSDF nodes. Lines 5 and onwards in Algorithm 4.1 perform

the conversion of PPN channels to HSDF edges, considering the three classes of

channels.

To leverage Proposition 4.2, we assume that the “append edge” operations at lines

12 to 16 of Algorithm 4.1 prune any edges e′ = (σ′(c) → δ′(c)) already present for

which d(e′) is larger than d() of the new edge being added. Here, σ′(c) and δ′(c)
give the HSDF node that corresponds to the PPN process given by σc and δc (cf.

Definition 2.13).

Because there is a one-to-one correspondence between PPN processes and HSDF

nodes, no exponential increase in the number of nodes occurs. An exponential in-

crease of the number of edges in the HSDF graph is also avoided:

Proposition 4.3 (Number of Edges in PPN Modeling Graphs). The number of edges

in a PPN modeling graph for a PPN (P, E) is at most |P| + 2 · |E|.

Proof. For each process p ∈ P , a selfloop is added, resulting in |P| selfloops in the

HSDF graph. For each channel c ∈ E , no edge is added if c is a selfloop; at most

one edge is added if c is a feedback edge; and at most two edges are added if c is a

feedforward edge. Thus, if all channels in a PPN are feedforward edges, then at most

2 · |E| edges are added.

Hence, any exponential increase in the number of nodes or edges is avoided in our

approach.

4.5.4 Case Studies

Acyclic Example from Literature

We first examine an acyclic PPN that was also studied by Meijer et al. [MNS10, Fig.

7]. We show the sequential code and corresponding PPN in Figure 4.6a and 4.6b. The

PPN consists of four processes and three channels. We use latency values {ΛP1 =
ΛP2 = 61, ΛP3 = 126, ΛC = 121} which correspond to the process workloads used

by Meijer et al. The authors found a system throughput of 1
126 using their throughput

estimation method.

The PPN modeling graph derived using Algorithm 4.1 is shown in Figure 4.6c. Each

process has an iteration domain consisting of 1000 points. Therefore, the execution

time of each HSDF node is set to 1000 times the corresponding latency Λ. We add

a selfloop with one initial token to each node. All of the three channels of the PPN

are feedforward channels. Therefore, we add for each channel both the forward edge
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Algorithm 4.1 Derive a modeling graph from a PPN.

Input: PPN G = (P, C), delays {Λp | p ∈ P}
Output: HSDF H = (V, E, t, d)

1: for all processes p in P do

2: append node h to V with t(h) = |Dp| · Λp

3: append edge e = (p → p) to E with d(e) = 1
4: end for

5: for all channels c in C do

6: if c is not a selfloop then

7: if c is a feedback edge (i.e., part of an SCC) then

8: s = 0
9: if δc fires before σc then

10: s = Sc + {1 if a non-tight cycle containing c exists}
11: end if

12: append edge e = (σ′(c) → δ′(c)) to E with d(e) = s
13: else if c is a feedforward edge then

14: append edge e = (σ′(c) → δ′(c)) to E with d(e) = 0
15: s = max{|pi| + 1 | pi is a path from σc to δc}
16: append edge b = (δ′(c) → σ′(c)) to E with d(b) = s
17: end if

18: end if

19: end for

20: return H

and a backedge in the modeling graph. According to Equation (4.5), the number of

initial tokens on each backedge equals two. The maximum cycle mean computation

of the resulting modeling graph yields the following:

MCM (G4.6c) = max

{

t(P1)

1
,
t(P2)

1
,
t(P3)

1
,
t(C)

1
,

t(P1) + t(P3)

d(P1 → P3) + d(P3 → P1)
,

t(P2) + t(P3)

d(P2 → P3) + d(P3 → P2)
,

t(P3) + t(C)

d(P3 → C) + d(C → P3)
,

}

= max

{

61000

1
,
61000

1
,
126000

1
,
121000

1
,
187000

2
,
187000

2
,
247000

2

}

= 126000 .

Thus, a single iteration of the graph takes 126000 time units. In an iteration of the

graph, sink process C fires 1000 times. Therefore, the period TC = 126000
1000 = 126,
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P1

a) Sequential code.

#define M 1000

for (i=0; i<M; i++) {
  P1(&a[i]);
  P2(&b[i]);
}
for (i=0; i<M; i++) {
  P3(a[i], b[i], &c[i]);
}
for (i=0; i<M; i++) {
  C(c[i]);
}

P2

P3

C

b) PPN. c) Modeling graph.

P1
61000

P2
61000

P3
126000

C
121000

Figure 4.6: Throughput analysis on example from [MNS10].

and the PPN’s throughput equals 1
126 . This throughput value exactly matches the

value found by Meijer et al.

Odd-even Transposition Sorting

With this example we illustrate the MCM analysis applied to a cyclic PPN. The odd-

even transposition sorting is a parallel sorting algorithm which sorts an array of n
elements. The algorithm consists of n comparator stages. In each odd-numbered

stage, all even-indexed elements are compared with their odd-indexed neighbours and

swapped if they are not in the correct order. In each even-numbered stage, all odd-

indexed elements are compared with their even-indexed neighbours and swapped if

necessary. In each stage, all n/2 pairs can be compared in parallel.

In Figure 4.7a, we show a PPN for the odd-even transposition sorting algorithm. The

PPN consists of four processes. Source process src provides the data to be sorted.

Processes c1 and c2 perform the compare-and-swap operations. Sink process snk

consumes the sorted data.

In Figure 4.7b, we show the throughput modeling graph derived from the PPN.

All four channels between c1 and c2 in Figure 4.7a are part of a strongly connected

component. From dependence analysis we find that c2 cannot fire before c1 has

fired. Thus, we put zero initial tokens on the forward edge connecting c1 to c2.

The dependence distance vectors for both edges are non-uniform. The upper bound

on the dependence distance is 26. According to line 10 of Algorithm 4.1, we put

27 initial tokens on the feedback edge from c2 to c1. All of the remaining edges

are feedforward edges to which we assign two or three initial tokens according to

Equation (4.5).
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a) PPN. b) Modeling graph.

src

c1

c2

snk src
162

c1
2187

c2
2106

snk
16227

26
1

11

26

1
2

1

1

26

26
3

3

Figure 4.7: Throughput analysis of odd-even transposition sorting.

For brevity reasons we omit the full expansion of Equation (4.2) and only summa-

rize the result. The maximum cycle mean is 2187 which originates from the selfloop

of process c1. Since the sink process domain size is 54, the average period of the PPN

is 2187
54 = 40.5 time units. This corresponds to the average period observed during

simulation of the RTL.

4.6 Sequential Code Profiling

At the first level in Figure 4.1, we have the application specified as sequential C code.

The previous performance estimation techniques discussed in this chapter required

that a PPN was derived. We now investigate whether we can estimate the performance

of a PPN directly from the sequential C code. This has led to a novel profiling-

based method that works directly at the sequential source code level. Our novel

method was inspired by the work of Kumar on measurement of parallelism in Fortran

programs [Kum88].

In Section 4.6.1, we review some existing profiling techniques. In Section 4.6.2,

we present the profiling primitives employed by our approach. In Sections 4.6.3

and 4.6.4, we present the two estimation types provided by our approach. In Sec-

tion 4.6.5, we apply our profiling approach on a case study. In Section 4.6.6, we

present how our profiling approach can model process splitting transformations with-

out the need to actually apply the spltting transformations to the application code. In

Section 4.6.7, we discuss the performance and memory overhead resulting from the

profiling.
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4.6.1 Related Work

Profiling is a well-established technique in which the behavior of a program is ana-

lyzed by closely monitoring the execution of the program. This monitoring is per-

formed by extending a program with small instrumentation code fragments that col-

lect statistics such as function invocation counts during program execution.

A popular free software tool to profile for example C and Fortran programs is GNU

gprof [GKM82]. To profile a program, the compiler instruments the program with

instrumentation code. The instrumentation code collects statistics when the instru-

mented program is running. After running the instrumented program, gprof processes

the statistics into a call graph augmented with the execution time of each call. This

allows the developer to determine in which parts of a program most of the execution

time is spent. To obtain execution time information, gprof relies on statistical pro-

gram counter sampling which is an inexact method. The execution times are only

valid for the platform on which the profiling is performed, which makes gprof not

useful for throughput assessments of programs implemented as PPNs on different,

possibly heterogeneous platforms.

The Valgrind tool set provides tools for debugging and profiling program bina-

ries [NS07]. Each Valgrind tool translates the individual machine instructions into an

intermediate representation, instruments the intermediate representation, and trans-

lates the intermediate representation back into machine instructions. This allows for

more accurate execution time estimates compared with statistical sampling methods,

because each instruction is considered. However, as with gprof, the obtained execu-

tion times are only valid for the processor architecture for which the program was

compiled. In our design flow, different parts of a program may execute on differ-

ent processor architectures, such as ARM or MicroBlaze, or may be implemented as

a LAURA processor. Such alternative heterogeneous architectures are currently not

supported by Valgrind and we believe that adapting Valgrind to support such archi-

tectures would require a significant amount of effort.

Support for different processor architectures was a key design goal for the Total-

Prof profiler [GHC+09]. TotalProf processes the intermediate representation of an

input program into virtual assembly that is captured in the LLVM intermediate rep-

resentation. Different architectures are represented using different forms of the vir-

tual assembly. The virtual assembly is instrumented with profiling statements and

then taken through the code generator which generates executable code for the host

machine. By targeting the host machine, fast execution of the instrumented virtual

assembly code is obtained. By providing different architecture descriptions and in-

terconnecting different TotalProf instances, TotalProf supports profiling of heteroge-

neous MPSoCs. TotalProf currently lacks support for the LAURA architecture, which
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prevents us from using TotalProf for performance assessment of PPNs.

Another approach to achieve a high simulation speed when simulating MPSoCs,

is by compiling the application code of a system for native execution on a general-

purpose computer such as a desktop workstation [SHP12]. Such native simulation

techniques eliminate the need for instruction set simulation or binary translation and

thus avoid a significant amount of run-time overhead. Native simulation is often in-

tended for debugging and verification of an MPSoC design. In contrast, our interest

is mainly in performance assessment to a sufficient level of accuracy to make archi-

tectural tradeoffs.

Sackmann et al. presented a profiling-based method to parallelize sequential pro-

grams [SEJ11]. To discover the parts that may execute in parallel, the authors analyze

call trees obtained using Valgrind. Each node in the call tree represents an invoca-

tion of a function. Two nodes are connected by an edge if a data dependence exists

between the corresponding function invocations. If a pair of nodes is not connected

by an edge, then the corresponding function invocations can execute in parallel. Un-

fortunately, the authors’ approach does not guarantee that all data dependences are

added to the graph. They rely on the user to ensure that all dependences are present

in the call tree. Ensuring correctness of the call tree manually is tedious and error-

prone, because call trees can be large even for small programs, and because a call tree

is only valid for one execution of the program. Instead of partially relying on manual

effort, we favor discovering the amount of parallelism in a fully automated way.

Kumar presented COMET (COncurrency MEasurement Tool) which measures the

total parallelism in Fortran programs [Kum88]. The method assumes a hypothetical

ideal parallel machine with unlimited resources and no scheduling, communication,

and synchronization overhead. COMET takes a Fortran program and extends it with

statements that monitor the execution of the program on the ideal parallel machine.

The functionality of the original program is preserved in the extended program. By

compiling and executing the extended program, statistics on the absolute amount of

parallelism are collected.

At this level two approaches need to be mentioned: the SESAME [PEP06] and

SPADE [LSWD01] approaches. They both work at the high level but do not use

profiling. Instead they use traces to capture the workload of an application in terms

of read, execute, and write events. Both SESAME and SPADE require deriving a PPN,

which is what we want to avoid at the first level of Figure 4.1.

4.6.2 Sequential Code Instrumentation of Static Programs

In this section, we present cprof which is a novel method for PPN performance esti-

mation that is inspired on COMET. Cprof can measure parallelism in an application
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binary

(ELF)

exten-
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prog.

C

prog.
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cprof
(clang)
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Process  Tot.time  Parallel  Idle  Start  Stop

         RD EX WR  Max  Avg         time  time

0: P1     0  4  4   4   2       0      0     1

1: P2     0  3  3   3   1.5     0      0     1

2: F     24 12 24   3   0.6     0      2    19

3: C      4  4  0   1   0.3     3     11    21

Figure 4.8: The cprof performance estimation technique.

without actually deriving a PPN, but assuming execution as a PPN on one of two

machines. First, cprof can evaluate a PPN on an ideal machine. We consider an

ideal machine to be a platform where each process iteration is mapped on a sepa-

rate processor unit. The ideal machine lacks shared memory, as separate processor

units communicate through separate point-to-point communication channels. Sec-

ond, cprof can evaluate a PPN on a platform generated by ESPAM.

The ideal machine is used to measure the maximum degree of parallelism in an

application, as we discuss in Section 4.6.3. The ESPAM platform is used to obtain an

absolute throughput estimate for a PPN, as we discuss in Section 4.6.4.

Like COMET, cprof takes the original sequential program and produces an extended

program containing additional profiling instrumentation statements. The cprof flow

is depicted in Figure 4.8. We use the Clang/LLVM compiler infrastructure [LA04,

Cla07] to automatically generate the extended program from a C program. The ex-

tended program is again a sequential program that should be compiled by a con-

ventional C++ compiler and executed to obtain performance statistics. In contrast

to COMET, which operates on programs written in the Fortran language, cprof op-

erates on static affine nested loop programs (SANLPs) written in the C language.

Another difference between COMET and cprof is the set of statements being instru-

mented. We only instrument the statements for which PNGEN constructs a process,

because our goal is to obtain a performance estimate for a PPN execution. That is,

cprof does not instrument control expressions and statements inside for-loop headers

and if-conditions, since these are not translated into processes. In contrast, COMET

instruments all statements, including loop-statements and if-statements. Instead of

targeting only an ideal machine, cprof also targets a machine with a fixed amount of

processing resources. This enables performance assessment of programs executing

as a PPN on a user-defined platform.

Both COMET and cprof employ a global time scale. In this global time scale,

COMET and cprof keep track of the timestamps at which the statements of a sequen-

tial program start and finish their executions. We instrument each statement such

that the operational semantics of all processes are represented on a single global time
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scale. The added instrumentation models the read, execute, and write stages of a

PPN process that were described in Section 2.2.4. In the read stage, cprof deter-

mines at which time the actual statement can execute, based on the times at which

all input data is available. In the execute stage, the statement execution finish time is

determined. In the write stage, the times at which the output data of the statement is

available are updated.

The main challenge is to determine the starting times of statement executions. We

determine such starting times by taking into account the four aspects that were intro-

duced in Section 4.2. To address the conditional synchronization, mutual exclusion,

and basic calibration aspects, we employ instrumentation primitives. Since we only

consider SANLPs in which control is static by definition and functions have a fixed

latency, we do not need to address the conditional control flow aspect. The instru-

mentation primitives comprise shadow variables, control variables, and execution

profiles. In the following paragraphs, we discuss each instrumentation primitive and

explain how the first three performance aspects are addressed.

Shadow Variables

For each variable v in the original program, we add a shadow variable $v that holds

the timestamp in which variable v is written. Similarly, for each array in the original

program, we add an array of shadow variables which contains for each array element

the timestamp at which a particular array element is written. A shadow variable

is updated whenever the corresponding variable is written during the write stage.

The new timestamp of a shadow variable $v is set to the timestamp at which the

statement writing to v finishes writing v, plus an additional cost ΛW modeling the

write operation latency.

We use shadow variables to address the conditional synchronization aspect. Con-

ditional synchronization in a PPN execution occurs when a process reads from one

or more channels. As dictated by the operational semantics, a process function can

only fire after all incoming channels have been read. That is, the firing of a process

function may be postponed because of a blocking read operation on one of the incom-

ing channels. In contrast to the other performance assessment techniques discussed

in this chapter, the cprof technique does not explicitly model a program as a PPN

consisting of processes and channels. Despite this, cprof is able to obtain accurate

performance assessments that incorporate blocking read operations. To understand

why we can analyze the performance of a PPN without actually deriving a PPN, we

now explain how blocking read operations are taken into account, thereby addressing

the conditional synchronization aspect.

The SANLP class of C programs that we consider are written assuming a sequential
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execution model in which statements execute one after another. Only one statement

executes at any point in time. The execution order is given by the textual order

of statements in the program and control flow statements such as for-loops. For

a given program, many alternative execution orders may exist which all yield the

same functional meaning of the program as long as all data dependence relations are

respected [Ban97]. A program translated to a PPN employs such an alternative ex-

ecution order, in which processes execute concurrently. Each process fires as soon

as its input data is available. Thus, the performance of a PPN is determined by the

availability times of data. The availability of data is captured by the data dependence

relations of a sequential program. Three different types of data dependence relations

may exist in a sequential program: flow dependences, anti-dependences, and output

dependences [PW86]. We now explain how cprof handles each dependence type us-

ing shadow variables, such that an accurate performance assessment of a PPN derived

from the sequential program is obtained.

Flow dependences, or read-after-write dependences, occur when a statement reads a

variable v written by a previous statement. During the write operation, the timestamp

at which the write occurs is stored in the shadow variable of v. Upon reading v, the

timestamp in the shadow variable of v is taken as the time at which v is available.

By definition, the read operation occurs after the write operation, meaning the flow

dependence is correctly modeled.

Anti-dependences, or write-after-read dependences, occur when a statement writes

data to a variable v that was read by a previous statement. Upon reading v, the

timestamp in the shadow variable of v is taken as the time at which v is available. This

shadow variable is then overwritten by the write operation, which by definition occurs

after the read operation. However, in both COMET and cprof, the instrumentation

for the write operation does not take into account the time at which v was actually

read. Thus, the anti-dependence is not modeled.

Output dependences, or write-after-write dependences, occur when two statements

write data to the same variable v. The timestamp of the first write operation is stored

in the shadow variable of v. The timestamp of the second write operation over-

writes the previous timestamp in the shadow variable, without taking into account

the timestamp of the first write operation. Only the timestamp of the last write is

kept, meaning the output dependence is not modeled.

In summary, COMET and cprof only model flow dependences, and ignore anti-

dependences and output dependences.1 This means that cprof cannot model the per-

formance of a SANLP on a general purpose processor accurately if the program con-

1 An extension to incorporate anti-dependences and output dependences in COMET was described

by Kumar as well [Kum88, Section VI], but this extension has not been incorporated in cprof as anti-

dependences and output dependences are not relevant in the PPN context [Tur07, Chapter 3].
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tains anti-dependences or output dependences. However, the purpose of cprof is to

model performance of a SANLP assuming execution as a PPN. A key property of the

PPN MoC is that only flow dependences affect its performance. Anti-dependences

and output dependences in a sequential program do not affect the performance of a

PPN, such that these can be safely ignored by cprof, as we now explain.

Anti-dependences in a sequential program do not affect the performance of a PPN

derived from the sequential program, because each produced data token has a private

storage location that is preserved until the token is consumed. Multiple data tokens

representing different values for the same variable of the sequential program may

exist simultaneously. A property of the PPN model is that the storage location of a

data token is never written again after consumption [Tur07, Chapter 3]. This means

anti-dependences do not occur in a PPN and thus do not affect performance.

Output dependences in a sequential program do not affect the performance of a

PPN derived from the sequential program, because a data token is only produced

on a channel if the data token is guaranteed to be consumed. This means output

dependences do not occur in a PPN, and thus output dependences do not affect the

performance.

We have explained that flow dependences are correctly modeled by shadow vari-

ables in cprof. We use shadow variables to address the conditional synchronization

aspect. The conditional synchronization aspect follows from the operational seman-

tics of a PPN process. These operational semantics dictate that a process is allowed to

fire only when all input data is present. In cprof, this means that the maximum value

of the shadow variables of the inputs of the statement represents the correct time of

firing.

Once a statement starts executing in cprof, no delays or stalls occur until the state-

ment has finished writing its output variables. This implies that cprof uses non-

blocking write semantics, assuming that channel sizes are always sufficiently large

to store the produced data. Finite channel sizes affecting throughput via a blocking

write mechanism are currently not supported by cprof. To consider finite channel

sizes, we should explicitly model each channel resource. This requires derivation of

a PPN from the sequential program, because the channels are not explicitly present

in the sequential program. Modeling finite channels sizes is therefore a subject of

future research.

Control Variables

For each statement s for which PNGEN constructs a process, we add a control vari-

able C$s that holds the earliest time at which statement s can execute. This earliest

time is determined by the availability of the input data to statement s. The statement
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executes only when all input data is available, resembling the operational semantics

of a PPN process. As such, we ensure that data dependence relations are not vio-

lated, and thus address the conditional synchronization aspect. Control variables also

address the mutual exclusion aspect, which will be detailed further in Sections 4.6.3

and 4.6.4.

A control variable is updated during the read stage by considering the shadow vari-

ables of the variables read by statement s. A statement s can execute after all vari-

ables read by statement s have been written. Thus, a control variable C$s is set to the

maximum value of all shadow variables that are read by statement s. Taking the max-

imum value of all shadow variables effectively delays the statement to the timestamp

at which all data is available, resembling a blocking read operation in terms of the

PPN operational semantics. The statement only executes when all data is available,

which is in accordance with the PPN semantics.

Statement Execution Profile

For each statement s, we also add three one-dimensional arrays R$s, E$s, and W$s

which together constitute the statement execution profile of s. In the statement exe-

cution profile, we collect the read, execute, and write behavior of the statement over

time. The statement execution profile collect at a high level the operational behav-

ior of a process. For example, W$s[23] = 2 means that two write operations are in

progress at time 23. All array elements are initialized to zero. Array R$s is updated

after reading a statement input. Array E$s is updated after executing the statement.

Array W$s is updated after writing a statement output. An update to any of the three

arrays involves incrementing the array elements in an interval [ts, tf ) by one. Here,

ts is the starting time and tf = ts + Λ is the finish time of an operation with latency

Λ.

After executing the instrumented program, we can extract the following information

for each process from the statement execution profiles:

• The total time spent on read operations, statement executions, and write oper-

ations is obtained by summing all elements in the corresponding R$s, E$s, and

W$s arrays.

• The process start time s(p), which is the first time at which a process can fire,

equals the index of first non-zero element in R$s. For statements that do not

consume any input data, this equals zero.

• The process finish time f(p), which is the time at which the process has fin-

ished all iterations, equals the index of the last element in W$s. For statements

that do not produce any output data, we instead take the index of the last ele-

ment in E$s.
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• The number of idle cycles, which is the number of time units in the interval

[s(p), f(p)) in which each of the R$s, E$s, and W$s arrays contains a zero.

• The maximum number of statement executions that are in progress simultane-

ously is obtained by finding the maximum value in E$s.

• The number of process iterations that are in progress simultaneously at a given

time t is given by the flat execution profile, which we define as

R$s[t]+ E$s[t]+ W$s[t]. (4.6)

The average process period can be computed from the process start and finish times

as

Tp =
f(p) − s(p)

Dp
. (4.7)

We then compute the throughput of a process by taking the reciprocal of Tp. The

throughput of the entire PPN is given by the throughput of the sink process, according

to Definition 4.2.

Global Execution Profile

From all statement execution profiles, we compute the global execution profile G$ as

follows:

G$[k] =

|P |−1
∑

i=0

R$i[k]+ E$i[k]+ W$i[k], (4.8)

0 ≤ k < max {∀p ∈ P | f(p)} .

That is, we sum for each timestamp k the statement execution profiles of all processes.

The global execution profile resembles the PROFILE array in COMET. However, the

global execution profile includes read and write operations, which are not included

in COMET. The global execution profile provides information about the behavior of

the application as a whole. We can extract the following information from the global

execution profile:

• The PPN execution time, which equals the number of elements in G$.

• The maximum degree of parallelism, which is the maximum number of simul-

taneously active processes at any time, equals the maximum element in G$.

• The average degree of parallelism is obtained by dividing the sum of all ele-

ments in G$ by the number of elements in G$.
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Execution Times

To address the basic calibration aspect, we rely on user-provided performance data

for the process functions. In particular, cprof uses the Λ and II values from Defini-

tion 3.1 to characterize the latency and initiation interval of each process function.

This allows cprof to handle both pipelined (e.g., LAURA) processing resources and

non-pipelined (e.g., programmable) processing resources. In addition, cprof assumes

fixed latencies ΛR and ΛW for read and write operations that resemble communica-

tion over PPN channels. The particular use of the Λ and II values is discussed in

Section 4.6.5.

Currently, cprof assumes that Λ and II are constant for all invocations of a process

function. This is the main source of inaccuracy, because this is not always the case.

For example, a division function may have a multi-cycle latency in general, but may

have a one-cycle latency if the divider equals one. Including such latency character-

istics should be possible in cprof, because cprof allows a fully functional execution

of the original program. However, our main interest lies in a simple and fast per-

formance estimation approach, and thus detailed dynamic performance models are

currently beyond the scope of cprof.

4.6.3 Maximum Degree of Parallelism

To gain insight in the amount of parallelism in a given application specification, we

instrument an input program in a way that models execution on a hypothetical ideal

machine. This gives the maximum degree of parallelism, which represents an upper

bound on the number of processing resources required to execute the PPN without

processing resource contention. Adding more processing resources does not result in

a further speedup.

The selection between an ideal machine with an infinite number of processor re-

sources and a real machine with a finite number of processor resources depends on

whether or not the mutual exclusion aspect is addressed. Mutual exclusion can be en-

forced when a control variable C$s is updated during the read stage by taking into ac-

count the time at which a processor is available. On both the ideal and real machine,

the conditional synchronization aspect needs to be addressed, because a statement

cannot start until all input data is available. On the ideal machine, the availability of

the input data is the only condition for the statement to execute, which means we do

not take the mutual exclusion aspect into account. Thus, each control variable C$s

is set to the maximum value of all shadow variables representing inputs to s, which

implies s executes as soon as all its input data is available. After execution of the in-

strumented program on the ideal machine, the information from the global execution

profile G$ can be used to draw conclusions about the application performance.
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The consequence of using the ideal machine is that the PPN execution time equals

the minimum time needed for the PPN execution. By definition, the ideal machine

has sufficient processing resources to avoid processing resource contention. A PPN

execution time of 1 time unit means that the PPN can fire all iterations of all processes

simultaneously. A PPN execution time larger than 1 time unit means that parts of the

PPN are inherently sequential.

Related to the maximum degree of parallelism is the average degree of parallelism.

This represents an upper bound on the speedup that can be obtained with an un-

bounded number of processors [EZL89] compared to execution of a PPN on a single

processor.

4.6.4 Absolute Throughput Estimation

By instrumenting an input program such that the mutual exclusion aspect is taken

into account, we can obtain an absolute throughput estimate of the execution of a

PPN derived from the input program. This is possible because each statement of a

sequential program corresponds to a process in a PPN and because the operational

semantics of a process are well-defined (cf. Section 2.2.4). On a realistic execution

platform with a finite number of processing resources, an additional condition for the

availability of a suitable processing resource needs to be considered before a state-

ment can be executed. This mutual exclusion aspect was not addressed by COMET,

because COMET assumes only the ideal machine. If we assume that all executions of

a statement are mapped onto the same processing resource, then control variable C$s

should at least equal the time C$s + II at which the processing resource can initiate

a new execution. Instead of taking the maximum only over all shadow variables as

described in Section 4.6.3, we now take the maximum over all shadow variables and

C$s + II .

4.6.5 Case Study

In this case study section, we first apply the absolute throughput estimation (cf. Sec-

tion 4.6.4) to the program shown in Figure 4.9. Next, we show how to determine the

maximum degree of parallelism (cf. Section 4.6.3) of this program.

Case Study: Absolute Throughput

In Figure 4.10, we show the cprof instrumentation for the program code shown in

Figure 4.9. We assume that all executions of statement func1 are mapped onto a

single processor. We furthermore assume that a read operation takes ΛR time units;
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1 for (i=0; i<9; i++) {

2 source(&x[i], &b[i]); // Statement 0

3 func1(x[i], &a[i]); // Statement 1

4 sink(a[i], b[i]); // Statement 2

5 }

Figure 4.9: Example program code on which we illustrate cprof.

that a write operation takes ΛW time units; that the latency of func1 is given by

Λfunc1; and that the initiation interval of func1 is given by II func1.

At line 17 of Figure 4.10, we determine the starting time of statement 1 using the ex-

pression max(C$1, $x[i]) which takes the maximum from control variable C$1 and

shadow variable $x[i]. The control variable in the max-expression ensures that the

statement executes after the previous execution of the statement has finished, which

means the processor resource is available. The shadow variable in the max-expression

ensures that the statement executes when the variable $x[i] has been written. By

adding ΛR, we delay execution of the statement to incorporate a read operation delay

of ΛR time units. At line 18, we add the read operation to the read execution profile.

At line 21, the original statement is executed. For the applications that we consider,

actual execution of the statements is not required to obtain throughput assessments.

By omitting the actual execution of statements, the throughput assessment can be per-

formed in less time. At line 22, we set the finish time of the statement and at line 23

we add the actual execution of the statement to the execution profile. At line 24, we

update control variable C$1 such that the next execution of the statement starts at least

after a full initiation interval. At line 27, we set the time at which a[i] is written. At

line 28, we add the write operation of a[i] to the write execution profile.

At line 31, we show the instrumentation for statement 2 which takes two inputs a[i]

and b[i]. Both a[i] and b[i] have to be available before statement 2 can execute,

so we consider the shadow variables of both input variables to determine the starting

time of statement 2. By including both in the max-expression, we take the conditional

synchronization aspect into account.

After executing the instrumented code, the execution profiles are obtained. In Fig-

ure 4.11, we show the statement execution profiles for all three statements, assuming

ΛR = ΛW = 1, Λfunc1 = 2, Λsource = Λsink = 1 and II source = II func1 =
II sink = 1. The first read operation of source starts at time 0, because the statement

does not depend on any input data. The first read operation of func1 starts at time

2, which means the process func1’s start time equals 2. The last write operation of

func1 finishes at time 38, which means process func1’s finish time equals 38. Using

Equation (4.7) we find that the average period Tfunc1 = 4, which can be verified
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1 for (i=0; i<9; i++) {

2 // Read stage (void, no input arguments to statement 0)

3

4 // Execution stage

5 source(&x[i], &b[i]); // Original statement 0

6 done = C$0 + Λsource

7 for (t=C$0; t<=done; t++) E$0[t]++;

8 C$0 += II source;

9

10 // Write stage

11 $x[i] = done + ΛW;

12 for (t=done; t<=done+ΛW; t++) W$0[t]++;

13 $b[i] = $x[i] + ΛW;

14 for (t=done; t<=done+ΛW; t++) W$0[t]++;

15

16 // Read stage

17 C$1 = max(C$1, $x[i]) + ΛR;

18 for (t=C$1-ΛR; t<=C$1; t++) R$1[t]++;

19

20 // Execution stage

21 func1(x[i], &a[i]); // Original statement 1

22 done = C$1 + Λfunc1

23 for (t=C$1; t<=done; t++) E$1[t]++;

24 C$1 += II func1;

25

26 // Write stage

27 $a[i] = done + ΛW;

28 for (t=done; t<=done+ΛW; t++) W$1[t]++;

29

30 // Read stage

31 C$2 = max(C$2, $a[i], $b[i]) + 2*ΛR;

32 for (t=C$2-2*ΛR; t<=C$2; t++) R$2[t]++;

33

34 // Execution stage

35 sink(a[i], b[i]); // Original statement 2

36 done = C$2 + Λsink

37 for (t=C$2; t<=done; t++) E$2[t]++;

38 C$2 += II sink;

39

40 // Write stage (void, no output arguments to statement 2)

41 }

Figure 4.10: Instrumentation by cprof for the program shown in Figure 4.9.
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Figure 4.11: Execution profiles obtained by executing the instrumented code of Fig-

ure 4.10. Empty cells in the R$, E$, and W$ profiles represent ‘0’.
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visually in Figure 4.11.

The first read operation of sink starts at time 6, because the first execution of sink

depends on variables a[0] and b[0]. Variable a[0] is written by func1 at time 5,

and variable b[0] is written by source at time 2. The first execution of sink can

thus only start after time 5 at which both a[0] and b[0] are available. The number

of idle cycles for the sink statement is eight, since there are eight time units in the

interval [6, 41) in which R$2 = E$2 = W$2 = 0. This means the sink statement

does not receive data at a fast enough rate. The number of idle cycles for the other

two statements is zero, which means they fully utilize their processing resources.

In the bottom part of Figure 4.11 we show the global execution profile G$ that is

obtained using Equation (4.8). From the global execution profile, we can observe

that that a full execution of the PPN takes 41 time units. Furthermore, we can observe

that at most three operations are active simultaneously. Thus, the maximum degree

of parallelism in this execution equals three. Summing all elements in G$ gives a total

amount of work equal to 90 units. The average degree of parallelism in this execution

is 90
41 ≈ 2.1. This means that on average, approximately two processes are active.

Case Study: Maximum Degree of Parallelism

To find an upper bound on the throughput of the application, we are interested in the

amount of parallelism inherent in the application. To reveal the amount of parallelism

in the entire application we instrument the code as described in Section 4.6.3. This

requires only a small change to the instrumentation code that updates the control vari-

ables. For example, the newly instrumented code for statement 1 only differs in one

place from the code shown in Figure 4.10. At line 17, we now assign $x[i] + ΛR to

the control variable. That is, we ignore the previous value of C$1 such that the state-

ment is executed as soon as the input data is available. As a result, each statement

execution is performed on its own processing resource, which mimics execution on

an ideal machine.

For the input program of Figure 4.9, execution on an ideal machine results in the

execution profiles shown in Figure 4.12. All nine iterations of each statement execute

in parallel. For example, the process derived from statement 0 executes nine instances

of its function at time 0. The two output arguments of each of the nine statement

executions are available at time 1, since Λsource = 1. This results in eighteen write

operations at time 1.

From the global execution profile shown in the bottom part of Figure 4.12, we can

observe that execution on the ideal machine takes eight time units. This is a lower

bound on the execution time of a PPN derived from the input program under the given

latency values. Furthermore, we can observe that at most eighteen operations execute
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Figure 4.12: Execution profiles obtained by profiling the code of Figure 4.9 on an

ideal machine. Empty cells in the R$, E$, and W$ profiles represent ‘0’.

in parallel. Thus, to attain the minimum execution time of eight time units, a system

with eighteen processors is required. The average degree of parallelism equals 90
8 =

11.25. This means that on average, 11.25 operations are in progress. Typically, the

average degree of parallelism provides a design point which delivers a performance

close to the maximum achievable performance, at a substantially reduced number of

processing resources [EZL89]. With 11 or 12 processors, the minimum execution

time becomes 10 time units, which is 25% above the minimum execution time. The

reduction in the number of processing resources is 33–39%.

4.6.6 Transformation Performance Estimation

In the previous sections, we have distinguished two modes of operation of cprof. In

Section 4.6.3, we presented how to determine the maximum degree of parallelism,

where each iteration of a process is executed on a separate processing resource. In

Section 4.6.4, we presented the absolute throughput estimation mode, where all it-

erations of a process are executed on the same processing resource. These two

modes represent the two extremal design points of the possible assignments of it-

erations to processing resources. Many alternative design points exist between both

extremes, which can be obtained by varying the assignment of iterations to process-

ing resources. These two extremal design points are essential information for the
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1 for (i=0; i<9; i++) {

2 pr$ = i % N; // For modulo unfold

3 pr$ = i / ((9-0)/N); // For plane cut

4

5 // Read stage

6 C$1[pr$] = max(C$1[pr$], $x[i]) + ΛR;

7 for (t=C$1[pr$]-ΛR; t<=C$1[pr$]; t++) R$1[t]++;

8

9 // Execution stage

10 func1(x[i], &a[i]); // The original statement

11 done = C$1[pr$] + Λfunc1

12 for (t=C$1[pr$]; t<=done; t++) E$1[t]++;

13 C$1[pr$] += II func1;

14

15 // Write stage

16 $a[i] = done + ΛW;

17 for (t=done; t<=done+ΛW; t++) W$1[t]++;

18 }

Figure 4.13: Instrumented code for statement 1 of Figure 4.9 to analyze splitting

transformations.

designer. At this stage, the designer knows whether he can satisfy a performance

constraint at all from the maximum degree of parallelism. However, this extremal

design point has a very high implementation cost, as it assumes execution on an ideal

machine. A realistic design point is provided by the absolute throughput estimate.

Using splitting transformations (cf. Section 5.1.1, the designer can evaluate inter-

mediate design points with higher performance, eventually satisfying his constraints.

Before starting this exploration, a designer already knows if his performance con-

straint can be satisfied.

A convenient way to obtain the alternative design points is through process split-

ting transformations that resemble loop unfolding transformations [Muc97, SKD02].

Such splitting transformations are covered in detail in Chapter 5.

In this section, we present how the performance of transformed PPNs can be ana-

lyzed using cprof, without the need to actually apply the splitting transformation on

the program code. This allows a designer to quickly evaluate different design points,

and then select the design point that best matches the design requirements. Then, the

designer has to apply only those splitting transformations that result in the selected

design point to obtain the desired implementation. To model a splitting transforma-

tion with factor N , we generalize the mutual exclusion aspect to N processors.

In Figure 4.13, we show the instrumented code for statement 1 of Figure 4.9. This
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code differs from the original instrumented code shown in Figure 4.10, to enable

performance estimation of splitting transformations. The differences with the original

instrumentation are underlined in Figure 4.13. The main difference with the original

instrumentation is that statement 1’s control variable C$1 is changed into an array of

N elements, where N is the splitting factor. The control variable array is indexed

using a processing resource selection variable pr$. At the start of each iteration, this

variable is set to the identifier of the processing resource to which the iteration is

assigned.

As detailed further in Section 5.1.1, a process iteration domain can be split in dif-

ferent ways. We distinguish between modulo unfolding and plane cutting transfor-

mations. The assignment to pr$ depends on the chosen transformation. At line 2 in

Figure 4.13, we assign i%N to analyze a modulo unfolding transformation. At line 3

in Figure 4.13, we assign i / ((9-0)/N to analyze a plane cutting transformation.

Setting the pr$ variable effectively selects the control variable that is used for the

iteration. The instrumentation statements for the read, execute, and write stages then

work on this control variable according to the method described in Section 4.6.4.

In Figure 4.14, we show the execution profiles obtained after instrumenting the code

of Figure 4.10 such that a modulo unfolding transformation on func1 is modeled.

We assume N = 3, which results in three partitions of the func1 statement. For each

partition, we maintain separate statement execution profiles, to which we append an

n suffix, with 0 ≤ n ≤ 2 identifying the partition. The execution time is reduced

to 33 time units, compared to 41 time units for the untransformed case. The number

of idle cycles for the sink statement is reduced from 8 to zero, which means it now

receives data at a fast enough rate. As a result, the processing resource executing

sink is now fully utilized. However, the three processing resources executing func1

are now underutilized, because each exhibits 10 idle cycles.

4.6.7 Instrumentation Overhead

A program instrumented by cprof exhibits two forms of overhead: performance

degradation and an increased memory footprint. Performance degradation is caused

by the instrumentation statements that update the shadow variables, control variables,

and execution profiles. These profiling primitives are updated at each statement ex-

ecution using a few inexpensive addition instructions. However, these instructions

result in significant performance degradation when dealing with large function laten-

cies Λ, because the number of instrumentation instructions depends on the latency.

The memory footprint of the instrumented program may easily be twice the mem-

ory footprint of the original uninstrumented program. This large memory footprint

is mainly caused by two instrumentation primitives: shadow variables and statement
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Figure 4.14: Execution profiles obtained by executing the code of Figure 4.10, with

statement 1 subject to a modulo unfolding transformation with splitting factor N = 3.
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Aspect RTL sim. SystemC MCM cprof

Analytical 8 8 4 8

Functional validation 4 4 8 4

Runtime min-hrs minutes seconds seconds

Accuracy very high high medium high

Effort medium high small small

Buffer sizes 4 4 4 8

Reordering 4 8 8 4

Interconnect type 4 4 8 8

Intra-process overlap 4 4 8 4

Table 4.2: Characteristics of different estimation methods.

execution profiles. For each scalar variable or array element a shadow variable is

instantiated. Thus, programs that contain many variables or large arrays result in pro-

grams with many shadow variables, increasing the memory footprint. The statement

execution profiles mainly affect the memory footprint depending on the execution

time. Thus, the memory footprint increases as the execution time of a program in-

creases.

4.7 Comparison

We have discussed four performance estimation methods in the previous sections.

How do these four methods compare to each other? In this section, we compare nine

different aspects for the four estimation methods in Table 4.2. Below, we discuss

each aspect in more detail.

Only the MCM method is analytical. This means it does not rely on actual exe-

cution of (a simulation model of) the PPN, but computes a performance estimate by

analytical means. The other three methods rely on execution of the PPN. That is,

each firing of each process is simulated during the estimation. As such, a functional

validation can be performed with little additional effort, which allows a designer to

verify functional correctness.

The running time of each method varies from minutes or hours for RTL simulation,

to seconds for the MCM and cprof methods. The difference in running times is caused

by the difference in the level of detail of the estimation method. For example, the RTL

simulation method works at the level of logical gates and registers, while the cprof

method works at the level of process firings. For most systems, the number of logical
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gates and registers is a few orders of magnitude higher than the number of processes.

As such, the RTL simulation method needs to update more simulation primitives per

time step than the cprof method, which leads to a longer running time. Because the

MCM method is analytical, its running time is independent of the process domain

sizes and latencies. In contrast, the non-analytical methods are dependent on these

factors, since they simulate every time unit of the system execution.

The accuracy of the RTL simulation method is very high, since the method uses

the same RTL code that is used for implementation of the system. The accuracy of

the SystemC and cprof methods is lower than the accuracy of the RTL simulation

method, because low-level details of for example communication delays are omitted

in the SystemC and cprof methods. Nevertheless, both approaches have a comparable

accuracy, because they use the same characterization of process execution times. The

MCM method only has high accuracy for PPNs with uniform dependence distances

and without reordering communication. For PPNs with non-uniform dependence

distances or reordering communication, the MCM method’s accuracy decreases.

The effort for the designer to obtain a throughput estimate varies significantly be-

tween the four methods. The generation of an RTL simulation project is highly auto-

mated in ESPAM’s ISE backend. Because the RTL simulation uses the same RTL that

is also used for synthesis, no custom simulation models have to be developed. Still,

some effort is required from the designer, such as integrating custom IP cores into the

system. A SystemC simulation requires considerably more effort, in particular if the

system contains custom processing or communication components for which no Sys-

temC model exists. In such a case, the designer has to develop a SystemC model for

the unsupported components before a SystemC simulation can be performed. The

MCM and cprof methods are both fully automated and require no effort from the

designer.

The cprof method currently does not take the finite buffer sizes of a PPN into ac-

count, as explained in Section 4.6.2. The other three methods do take buffer sizes

into account, such that a blocking write resulting from a full FIFO buffer may result

in a smaller throughput estimate.

Reordering channels are currently only supported by the RTL simulation and cprof

methods. Reordering support for the RTL simulation method is provided by the syn-

thesizable reordering buffer presented in Section 3.6. Reordering support for the

SystemC simulation method requires development of a SystemC reordering buffer

model. Reordering support for the MCM method requires further investigation. Re-

ordering support for the cprof method is provided because tokens are not stored in a

channel model, but are stored in shared random access memory instead.

The MCM and cprof methods assume fixed-latency communication between pro-

cesses and do not take the interconnect type into account. In contrast, SystemC and
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Name Type #processes #channels (OO) cyclic

mns10 kernel 4 3 (0) no

grid kernel 4 5 (0) self

oddeven-sort kernel 4 13 (0) yes

dv97ex4 kernel 4 7 (2) self

qr kernel 8 15 (0) yes

mmm kernel 8 10 (0) self

mvt kernel 7 11 (1) self

sobel kernel 5 15 (0) no

mp3dec application 28 58 (0) yes

mrvd-qrd application 43 110 (0) yes

mjpeg-enc application 6 6 (0) no

H.264dec application 11 24 (0) yes

Table 4.3: Characteristics of benchmarks used in experiments.

RTL simulation may include any type of communication component, such as a FIFO

buffer or Network-on-Chip (NoC). However, the designer needs to develop a Sys-

temC model to use a new interconnect type in a SystemC simulation.

The RTL simulation, SystemC simulation, and cprof methods support intra-process

overlapped execution of subsequent iterations of a process. The MCM analysis

method does not support overlapped execution of subsequent iterations, because it

assumes sequential execution of all iterations when determining the execution times

of the throughput modeling graph nodes.

4.8 Experimental Results

To assess the feasibility and accuracy of the four performance estimation methods

presented in this chapter, we have performed experiments on twelve different ap-

plications. The first eight applications are small kernels, whereas the remaining six

applications perform a larger amount of work per process. In Table 4.3, we list for

each application the number of processes; the total number of channels; the number

of out-of-order channels; and whether the PPN is cyclic, acyclic with selfloops, or

truly acyclic. For example, application dv97ex4 consists of 4 processes, and 7 chan-

nels of which two are out-of-order, and contains selfloops but no cycles involving

multiple nodes.

Not all aspects are covered by each of the four throughput estimation methods. To
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Figure 4.15: Accuracy of throughput estimation methods.

enable a comparison across the four methods, we make the following four assump-

tions. First, we assume buffer sizes are large enough to avoid performance penalties

due to blocking write operations on full channels. That is, increasing any buffer size

by any amount does not result in a higher throughput of the PPN. Second, we as-

sume a fixed latency Λf for each firing of a function f . Third, we explicitly exclude

overlapped execution between iterations of a process by setting each function II f to

Λf + c, where c equals the number of cycles to read and write a single token. As

such, no overlap occurs between the read, execute, and write stages of a process.

Fourth, we assume that all read operations of an iteration happen in parallel in one

cycle according to the LAURA execution model. Similarly, we assume that all write

operations of an iteration happen in parallel in one cycle.

4.8.1 Accuracy

We show the accuracy of each of the four methods for our set of twelve applications

in Figure 4.15. On the vertical axis, we show the percentual deviation from the actual

throughput value. We assume that RTL simulation gives a fully accurate assessment,

and thus use the RTL simulation as the baseline for comparing accuracy of the Sys-

temC simulation, MCM, and cprof methods.

As can be seen in Figure 4.15, only the accuracy of the MCM method exhibits

significant deviations. The inaccuracy of qr and H.264dec is caused by incorporating
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non-uniform dependences in the MCM modeling graph. The inaccuracy of dv97ex4

and mvt is caused by out-of-order communication in the application. We cannot

define tight bounds on the inaccuracy of the MCM method, nor whether the method

overestimates or underestimates the actual throughput.

The SystemC and cprof methods deliver highly accurate results for all applications.

The difference in reported throughput with RTL simulation is at most on the order

of tens of clock cycles, which can be attributed to (re)initialization of components.

SystemC simulations are missing for the dv97ex4 and mvt applications, because ES-

PAM’s current SystemC backend does not support reordering communication.

Using any of the four methods described in this chapter, the period of a PPN can be

obtained. This period is expressed as a number of clock cycles. However, to obtain

the absolute execution time of a PPN period, the number of clock cycles should be

multiplied by the clock cycle length. This clock cycle length depends on factors such

as combinational path lengths and routing delays. These factors are known only after

place-and-route of the PPN’s RTL implementation. Thus, none of the four methods

allow obtaining throughput assessments expressed in absolute time.

4.8.2 Running Time

We have measured running times of the different estimation methods on an Intel Core

2 Duo system running at a 2400 MHz clock frequency and having 4 GB of RAM

available. The running time for RTL simulation includes scripted Xilinx ISE 13.1

project creation, simulation model compilation using Xilinx Fuse 0.40d, and simula-

tion model execution. The running time for SystemC simulation includes compilation

and execution of the simulation model. The running time for MCM analysis includes

generation of the model and execution of the SDF3 MCM analysis tool [SGB06].

The running time for cprof includes generation, compilation, and execution of the

instrumented code. For all estimation methods, we disable generation of waveforms

or traces, to eliminate tracing overhead from the results.

We show the running times of each of the four methods for our set of twelve ap-

plications in Table 4.4. The running times for RTL simulation vary from tens of

seconds for applications with small function latencies and small domains, to hours

or even days for applications with large function latencies or large domains such as

mjpeg-enc. The running times for SystemC simulation vary from seconds to minutes,

making SystemC simulation a few orders of magnitude faster than RTL simulation.

The running times for the MCM method are in all but two cases well below one sec-

ond. Exceptions are mp3dec and mrvd-qrd, where the large number of edges and

cycles in the PPN results in a large number of cycle means to be computed. The run-

ning times for cprof are in most cases below one second. Exceptions are mjpeg-enc
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Application RTL sim. (s) SystemC (s) MCM (s) cprof (s)

mns10 46 2.6 0.1 0.3

grid 34 2.7 0.1 0.3

oddeven-sort 36 2.7 0.1 0.3

dv97ex4 46 n/a (OO) 0.1 0.3

qr 38 3.0 0.1 0.3

mmm 37 2.9 0.1 0.3

mvt 35 n/a (OO) 0.1 0.3

sobel 320 33 0.1 0.3

mp3dec 63 1.2 1.2 0.4

mrvd-qrd 64 4.6 140 0.4

mjpeg-enc 248433 220 0.1 6.4

H.264dec 13771 91 0.1 2.7

Table 4.4: Running times of different estimation methods.

and H.264dec, which have large function latencies on the order of thousands of clock

cycles. These long latencies result in many updates to the execution profiles, which

increases the total running time of cprof. In contrast, the running time of the MCM

method does not depend on actual function latency values due to the analytical nature

of the MCM method.

4.9 Conclusion and Summary

In this chapter, we have evaluated four different performance estimation methods for

PPNs. The first is RTL simulation, which is often not attractive or feasible due the

amount of time required to obtain a performance estimate for a given system. The

second is SystemC simulation, which yields accurate results in significantly less time

compared to RTL simulation. The third is a novel analytical approach for PPNs based

on MCM analysis. Our MCM method is able to deliver accurate results for a subset

of PPNs. However, we cannot define tight bounds on the inaccuracy of the MCM

method, nor whether the method overestimates or underestimates the actual through-

put. This model is theoretically attractive and gives insight in the behavior of a PPN,

but is impractical because of the lack of accuracy bounds. The fourth is a novel

profiling-based approach for PPNs, named cprof. This allows one to obtain accurate

results, often in less than one second, without deriving a PPN. Moreover, cprof also

allows assessment of the amount of parallelism in the application, and allows early
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performance assessment of transformed versions of the applications without the need

to actually transform the application.

Each performance estimation method works at a different level of the design phase,

providing different tradeoffs between estimation time, effort, and accuracy. In partic-

ular the cprof method that works at the sequential code provides a fast, robust, and

scalable performance assessment method. Given the characterization using Defini-

tion 3.1, cprof can deliver a very accurate performance estimate of a possibly hetero-

geneous system. As a result, the designer can perform the design iteration depicted

in Figure 1.3 in significantly less time.



CHAPTER 5
APPLICATION TRANSFORMATION

In the previous chapter, we have presented different methods for fast performance

evaluation of applications modeled as a PPN. In this chapter, we present how the re-

sults of such evaluations can be used to obtain alternative application instances. These

alternative application instances are functionally equivalent, but differ in performance

and resource cost characteristics. In Section 5.1, we discuss four transformations that

we consider to automatically obtain alternative application instances from a given

application specification. In Section 5.2, we present heuristics to select when and

with which parameters the four transformations should be applied. In Section 5.3,

we summarize this chapter.

5.1 Transformations

In the Daedalus design flow, the application is specified as a sequential program. By

default, a single PPN process is constructed for each function call in the sequential

program. The PPN obtained can easily be transformed in another PPN by transform-

ing the sequential program such that a functionally equivalent PPN with different per-

formance and resource cost characteristics is obtained. In this section, we consider

the following four transformations: splitting (Section 5.1.1), merging (Section 5.1.2),

stream multiplexing (Section 5.1.3), and scheduling (Section 5.1.4).

5.1.1 Splitting

To increase the amount of potential parallelism in an application modeled as a PPN,

a designer can increase the number of processes. An established way to achieve this

is by applying a process splitting transformation [SKD02, MNS09].
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Definition 5.1 (Process Splitting Transformation).

A splitting transformation with factor N on a PPN process p generates N copies of p
that are identified as p0, p1, . . . , pN−1. These copies are referred to as the partitions

of p. The original process iteration domain Dp is split into disjoint subdomains Dp0
,

Dp1
, . . . , DpN−1

. The original process p is removed from the PPN.

Each partition executes the same function as the original process p, but for dif-

ferent iterations. The splitting transformation resembles a loop unrolling transfor-

mation in which a loop body is duplicated a number of times, or a loop splitting

transformation in which a loop is split into multiple loops that each iterate over a

subset of the iteration points of the original loop [Muc97, Chapter 17]. The original

purpose of these loop transformations in a compiler is to increase instruction-level

parallelism, whereas the purpose of process splitting in this dissertation is to in-

crease the amount of coarser-grained task-level parallelism in an application. The

process iteration domain of a process can be split using different systematic ap-

proaches to obtain different distributions of the points in the original process iter-

ation domain [Ste04, SKD02]. In this chapter, we consider two different systematic

approaches: modulo unfolding and plane cutting.

Definition 5.2 (Modulo Unfolding).

A modulo unfolding splitting transformation, specified as unfold(p, d, N), splits a

process p into N partitions on dimension d. The process iteration domain of each

instance pi becomes

Dpi
= {x | x ∈ Dp ∧ xd mod N = i}.

Our unfold transformation is defined for a single dimension d, whereas the UNFOLD

procedure of Stefanov et al. is defined for multiple dimensions [Ste04, Chapter 3.3].

This merely serves to simplify our definition of unfold , motivated by our observation

that unfolding transformations are often applied on a single dimension only. The

behavior of Stefanov’s UNFOLD procedure can always be obtained by applying unfold

on the partitions created by a previous unfold transformation.

Definition 5.3 (Plane Cutting).

A plane cutting splitting transformation, specified as planecut(p, H), splits a pro-

cess p using a set of hyperplanes H = h0, h1, . . . , h|H|−1. The hyperplanes divide

process domain Dp into N subdomains, where N depends on the actual hyperplanes

specified. For each subdomain x, a partition px with domain Dpx = x is created.

Process domains and dependence relations exhibit a regular structure when they

are derived from static affine nested loop programs that have repetitive and regular

behavior. As a result, the hyperplanes cutting such domains are closely related to
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1 for (i = 0; i < 4; i++)

2 P1(&x[i));

3

4 for (i = 0; i < 3; i++)

5 P2(&(y[i]) );

6

7 for (i = 0; i < 4; i++)

8 for (j = 0; j < 3; j++)

9 F(x[i], y[j], &x[i], &y[j]);

10

11 for (i = 0; i < 4; i++)

12 C(x[i]);

Figure 5.1: Sequential C code on which we demonstrate transformations.

each other. Therefore, we present an alternative way of specifying a plane cutting

transformation, by specifying a single hyperplane h and a factor N instead of a set of

hyperplanes H:

Definition 5.4 (Plane Cutting (alternative)).

Alternatively, a plane cutting transformation specified as planecut(p, h, N) splits a

process p into N instances using hyperplanes parallel to hyperplane h. A set of par-

allel hyperplanes H that divide Dp into N subdomains with comparable cardinalities

are obtained by searching as explained by de Zwijger [Zwi12, Algorithm 1]. The

process iteration domain of each instance pi becomes

Dpi
= {x | x ∈ Dp ∧ hi ≤ x < hi+1}.

Examples

In Figure 5.2a, we show the PPN derived from the C program shown in Figure 5.1.

In Figure 5.2b and 5.2c, we show the PPNs after applying modulo unfolding and

plane cutting transformations on process F. We assume splitting factor N = 2 for

both transformations, such that two partitions F1 and F2 are obtained.

The original domain of process F is shown in Figure 5.3a. It consists of twelve

points, corresponding to the twelve iterations of the for-loops at lines 7–8 in Fig-

ure 5.1. In Figure 5.3b, we show the two subdomains obtained after applying a mod-

ulo unfolding transformation unfold(F, i, 2). The subdomain of F1 consists of the six

points in the original domain DF for which i mod 2 = 0. The subdomain of F2 con-

sists of the remaining six points in the original domain DF for which i mod 2 = 1.

In Figure 5.3c, we show the two subdomains obtained after applying a plane cutting

transformation planecut(F, {i = 2}, 2). The subdomain of F1 consists of the six
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P1

a) Original.

P2

F

C

b) After modulo unfolding. c) After plane cutting.

P1 P2

F1

C

F2

P1 P2

F1

C

F2

Figure 5.2: A PPN and two transformed instances of the same PPN, obtained by

splitting process F by a factor of two on its outermost dimension.

a) Original. b) Modulo unfolding.
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Figure 5.3: Process domains obtained after splitting by a factor of two.

points in the original domain DF for which i < 2. The subdomain of F2 consists of

the remaining six points in the original domain DF for which i ≥ 2.

Position in Tool Flow

Splitting transformations not only affect the process being split, but also processes

and channels adjacent to this process. For example, in the transformed PPNs shown in

Figure 5.2b and 5.2c, process P1 has two outgoing channels, whereas it has only one

outgoing channel in the original PPN shown in Figure 5.2a. The precise implications

for the adjacent processes and channels depend on the applied transformations. In the

example shown in Figure 5.2, modulo unfolding results in one selfloop on process F1,

whereas plane cutting results in two selfloops on process F1.

If we would apply the unfold and planecut operations on the PPN, then we should

also update the adjacent processes and channels accordingly. Instead, we apply the

unfold and planecut operations on the intermediate PDG that does not yet contain

dependence information in the PNGEN tool flow [Zwi12]. Different from the ap-
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PDG

+dep
PDGC pn2adg PPNpnc2pdg

trans

Figure 5.4: Application of splitting transformations in the PNGEN tool flow of Fig-

ure 2.9.

proach of Stefanov et al. [SKD02] that operates on the sequential code, we operate

directly on polytopes. This is depicted by the trans block in Figure 5.4. Thus,

we effectively apply transformations on an intermediate representation of the input

program. The advantage of this approach is that the transformation only needs to

operate on the process being split and its partitions. Adjacent processes and channels

that result from the transformation are updated naturally by the PN tool, without any

additional development effort needed for the trans block or the PN tool.

5.1.2 Merging

The splitting transformations discussed above increase the number of processes in

a PPN. Assuming a separate processing resource is instantiated for each process,

splitting transformations increase resource costs of PPN implementations. Comple-

mentary to splitting, the merging transformation combines processes into a single

process, thereby decreasing resource costs.

Definition 5.5 (Process Merging Transformation).

Application of a merging transformation on a set of PPN processes P results in a new

compound process pc which executes all firings originally executed by the processes

in P . The original processes in P are removed from the PPN.

The domain cardinalities of the different processes in P are not necessarily equal.

Thus, some processes in P should fire more often than others. Moreover, data depen-

dence relations may exist between processes in P . The firings of these processes in

the compound process should be scheduled such that these data dependence relations

are not violated. We use the schedule computed by PNGEN to schedule the firings

of the merged processes in the compound process, because this schedule includes all

firings of all processes and respects data dependence relations. We refer to the work

of Stefanov for further details on the merging transformation [Ste04, Chapter 3.6].

The merging transformation has been implemented in the ESPAM tool, where it can

be applied by assigning multiple processes to the same processing resource in the
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mapping specification. However, ESPAM only supports merging for programmable

processing resources such as MicroBlaze processors. Merging LAURA processors

is not supported in the current version of ESPAM. A workaround is possible if the

compound process domain can be expressed as a convex polyhedral set. In such a

case, the merged processes should be replaced by a compound process at the source

code level. This form of merging is applied in Chapter 6.

5.1.3 Stream Multiplexing

For acyclic PPNs, the splitting transformations discussed above enable a designer to

increase the throughput of a PPN. However, these splitting transformations may not

yield any throughput increase for PPNs containing one or more cycles. This happens

when the processes involved in a cycle depend on the output of a previous firing of

its predecessor process, also known as a recurrence or feedback. As a result, the

processes in a cycle may fire entirely sequentially, thereby preventing overlapped ex-

ecution among the processes. Since the processes spend most of their time waiting

for data in a blocking read state, their processing resources are idle for a considerable

amount of time. A common solution to make use of these idle times is to process

independent data streams. This can be done using a stream multiplexing transforma-

tion:

Definition 5.6 (Stream Multiplexing Transformation).

Applying a stream multiplexing transformation with a factor N to a process p extends

process domain Dp with an innermost dimension containing N points. For each value

of N , process p operates on data that is not accessed for other values of N . This

transformation is applied on all processes involved in a cycle of a PPN.

A stream multiplexing transformation neither increases nor decreases the latency or

throughput of a single execution of the PPN. Only when multiple executions of the

PPN are considered, the average period at which PPN executions finish is decreased,

yielding an increase in throughput.

The stream multiplexing transformation resembles the software pipelining tech-

nique for programmable processors in which instructions from subsequent iterations

of a loop are executed in an overlapping fashion [PD76, Lam88]. However, software

pipelining works at the level of individual instructions, whereas our stream multiplex-

ing transformation works at the level of coarser-grained tasks. Another difference

is that software pipelining operates on the iterations of a given loop, whereas the

stream multiplexing transformation introduces a new loop. Generation of a software

pipelined loop for a programmable processor requires a sophisticated scheduling al-

gorithm such as modulo scheduling. In contrast, applying the stream multiplexing
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1 src(&v);

2 for (i = 0; i < 3; i++) {

3 P1(v, &v);

4 P2(v, &v);

5 P3(v, &v);

6 }

Figure 5.5: Sequential C code resulting in a PPN containing a feedback loop.

transformation on a PPN does not require any scheduling algorithm because of the

self-scheduling semantics of the PPN model.

A technique closely related to stream multiplexing is C-slowing The C-slowing

technique is often used in conjunction with register retiming to improve through-

put of synchronous digital circuits [LRS93]. C-slowing replaces each register in a

circuit with a sequence of C registers, such that C independent data streams can be

in processed in an overlapped fashion. Retiming then tries to balance combinational

path lengths by moving these registers through the combinational logic. As a result,

the clock frequency and throughput may increase, at the expense of a higher latency

caused by the additional registers. The C-slowing technique is closely related to the

stream multiplexing transformation, as both add independent streams to overcome

feedback in a design. However, the main purpose of C-slowing is to increase the

clock frequency of a circuit, whereas the main purpose of stream multiplexing is to

increase throughput of multiple executions of a PPN.

Zissules et al. conducted a case study on a QR decomposition algorithm for which

they increased the number of independent streams [ZKD04]. This was done in an ad-

hoc fashion, whereas our stream multiplexing provides a more systematic approach

to accomplish the same goal.

Example

In Figure 5.5, we show a C program for which the corresponding PPN, shown in

Figure 5.7a, contains a feedback loop involving P1, P2, and P3. In each execution of

the PPN, processes P1, P2, and P3 fire in sequence three times. Because each firing

of these processes requires the output of the previous process through variable v, no

overlapped execution occurs. This is depicted in Figure 5.8a.

In Figure 5.8b, we depict the firings of P1, P2, and P3 after applying stream mul-

tiplexing with a second independent data set. That is, process P1 starts operating on

the first data “set” v1 at time t = 0, and process P1 starts operating on the second

data set v2 at time t = 2. As a result, two executions of the PPN complete in only
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1 for (t = 0; t < F; t++)

2 src(&v[t]);

3 for (i = 0; i < 3; i++) {

4 for (t = 0; t < F; t++)

5 P1(v[t], &v[t]);

6 for (t = 0; t < F; t++)

7 P2(v[t], &v[t]);

8 for (t = 0; t < F; t++)

9 P3(v[t], &v[t]);

10 }

Figure 5.6: Applying stream multiplexing by a factor F to the program of Figure 5.5.

P1 P2 P3

a) Original PPN. b) Corresponding PPN modeling graph.

src P1 P2 P3src

Figure 5.7: PPN and PPN modeling graph derived from the C code in Figure 5.5.

slightly more time than needed for a single execution of the PPN. In Figure 5.6, we

show the equivalent C program implementing a stream multiplexing transformation

by a factor F. The transformation consists of applying a scalar expansion on all vari-

ables and adding a loop of F iterations. The scalar expanded variables are indexed

using the iterator of the newly added loop.

After applying a stream multiplexing transformation of a factor two, each process

is still idle for one third of the time, as shown by the gaps between the filled boxes

in Figure 5.8b. This means applying a stream multiplexing transformation of a factor

three would still not increase the latency of a single execution of the PPN but increase

throughput of multiple executions. After stream multiplexing by a factor three, no

processes are idle, which means three is the maximum stream multiplexing factor that

does not increase latency for the given PPN. A stream multiplexing factor of four or

higher would increase the latency of a single execution, because at time t = 6 process

P1 would start processing the fourth data set v4, while output from P3 belonging to

the first data set is also available for processing by P1. In such a case, the splitting

transformations can be considered to further increase throughput, because the cycle

no longer limits throughput.
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a) Without stream multiplexing. b) With stream multiplexing by a factor 2.

0 5 10 15
t

P1
P2
P3

0 5 10 15
t

v v1 v2

Figure 5.8: Flat execution profiles for the C code of Figure 5.5 and Figure 5.6.

5.1.4 Scheduling

In the previous chapters, we have assumed that each process in a PPN traverses its

process iteration domain in the lexicographical order. Depending on the presence

of data dependence relations between iterations, alternative execution orders of the

points in the process iteration domain may exist that preserve all data dependence

relations. Some of these alternative execution orders may yield a higher throughput

when the iterations are executed in a pipeline fashion on for example a LAURA pro-

cessor, which we show in an example below. We change the order in which the points

of a process iteration domain are executed by applying a scheduling transformation.

Definition 5.7 (Process Scheduling).

A process scheduling transformation on a process p, specified as schedule(p), mod-

ifies the execution order of iterations such that independent iterations are grouped

together and executed in sequence.

We distinguish between two types of schedules in a PPN: local schedules and global

schedules. A local schedule defines the execution order of different iterations of

an individual process. A global schedule defines the firing order of the different

processes in a PPN. The scheduling transformation solely affects the local schedules

of processes.

Motivating Example

We illustrate the process scheduling transformation using the PPN shown in Fig-

ure 5.2a, which was derived from the C code shown in Figure 5.1. Data dependences

require that iteration (0, 0) executes before iterations (0, 1) and (1, 0). Similarly,

(0, 1) should execute before (0, 2).
When executing the iterations according to the original lexicographical order, we

do not achieve the highest degree of overlapped execution. When implementing F

using a P -stage pipeline and following the lexicographical order, execution of the

first four iterations takes 3P + 1 clock cycles, as depicted in Figure 5.9. However,
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Time (clock cycles)

(0, 0)A

(0, 1)B

(1, 0)D

(0, 2)C

(0, 0)A

(0, 1)B

(0, 2)C

(1, 0)D

3P

3P+1

P

Original

schedule:

New

schedule:

Figure 5.9: Pipeline behavior for two different schedules of the PPN shown in Fig-

ure 5.2a.

if we execute the first four iterations in the order (0, 0), (0, 1), (1, 0), (0, 2), we

still respect data dependences but execution takes only 3P cycles. Although in this

simplified scenario the gain is only one clock cycle, we have observed that changing

the iteration execution order may increase throughput up to 2.7× for applications

such as QR decomposition [HK12].

Previous works have found that applying a skewing transformation to source code

and then converting the transformed source code to a PPN may increase throughput

of the PPN [SKD02, ZKD04, HK09]. A skewing transformation on the appropriate

loop results in the same throughput increase for our motivating example. Thus, skew-

ing is an effective way to increase overlapped execution, and consequently, improve

pipeline utilization. However, identifying the skewing transformation parameters,

such as the loop to skew, requires thorough studying of the application. Therefore,

we present an automated approach to find an alternative execution order of process

iterations that yields better pipeline utilization.

Scheduling PPN Processes

When applying a scheduling transformation, we use affine schedules to compactly

define an execution order on the points of a process iteration domain:
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Definition 5.8 (Affine Schedule).

An affine schedule is a polyhedral map that assigns a positive time stamp to each

point i of a process iteration domain. In this chapter, we denote an s-dimensional

affine schedule as 1

θ =
{

i → i′ | i′ = H · i + h
}

,

where i is an n-dimensional iteration vector, i′ is an s-dimensional time stamp vector,

H is an n × s matrix, and h is a vector of size s.

For a given iteration i ∈ Dp, computing θ(i) yields a time stamp at which iteration i

can execute. These time stamps should not be interpreted as absolute time, but rather

as a partial order on the iterations in Dp. We assume that execution of an iteration

takes one time unit and that sufficient processing resources are available to execute

all iterations with the same time stamp simultaneously. Two affine schedules θp and

θq for two dependent processes p and q are valid if for all pairs of dependent write

and read operations (w, r), the schedules enforce that the write operation is executed

before the read operation. That is, when a write operation w of p produces data for

a read operation r of q, then θp(w) ≺ θq(r) should hold. In the remainder of this

chapter, we only consider valid schedules.

As an example, consider the affine schedule

θ = {(i, j) → i + j}. (5.1)

For iteration (1, 2), the schedule yields 3 which means the iteration can execute at

time 3. For iteration (2, 1), the schedule also yields 3. This means that both itera-

tions can execute at the same time and, assuming that the schedule is valid, that both

iterations can execute in parallel.

If a schedule is multidimensional, that is, s > 1, then execution times are ordered

according to the lexicographical order. For example, a schedule

θ = {(i, j) → (i + j, j)} (5.2)

yields θ(1, 2) = (3, 2) and θ(2, 1) = (3, 1). Because (3, 1) ≺ (3, 2), iteration (2, 1)
should execute before iteration (1, 2).

A PPN process traverses its process domain in a sequential fashion according to the

lexicographical order, which is a total order. That is, for any two iterations i1 and i2,

the lexicographical order defines which iteration is executed first. To comply with the

1In literature, e.g., [Fea92a], an affine schedule is often denoted alternatively as

θ(i) = H · i + h,

where i, H , and h follow those of Definition 5.8.
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PPN process semantics, we should consider only those affine schedules that define a

total order on the iterations of a process domain. The one-dimensional schedule of

Equation (5.1) yields the same time stamp for different iterations, which implies it

does not define a total order. Extending this schedule to the two-dimensional schedule

of Equation (5.2) results in a schedule that yields a unique time stamp for each possi-

ble pair of positive values (i, j). This property allows us to use the two-dimensional

schedule of Equation (5.2) in a process scheduling transformation. A schedule is said

to be bijective if it assigns a unique time stamp to each distinct iteration vector.

To apply a scheduling transformation on a process p, we modify the process domain

Dp to reflect the order given by an affine schedule θp. That is, we transform the

process domain Dp into a new domain D′
p. For bijective schedules, each point in

Dp has exactly one corresponding point in D′
p. The new domain D′

p is obtained by

polyhedral map application of the schedule to the process domain:

D′
p = θp(Dp). (5.3)

The resulting domain D′
p is again traversed according to the lexicographical order.

Example Application of a Schedule

We illustrate application of a schedule using the PPN shown in Figure 5.2a. We apply

a new schedule on process F of this PPN. The domain of this process is extracted from

the for-loops in the sequential code of Figure 5.1 as

DF =

{

(i, j) ∈ Z2

∣

∣

∣

∣

∣

0 ≤ i ≤ 3 ∧

0 ≤ j ≤ 2

}

.

By applying the two-dimensional schedule of Equation (5.2), we obtain a new domain

D′

F
=

{

(i′, j′) ∈ Z2

∣

∣

∣

∣

∣

j′ ≤ i′ ≤ j′ + 3 ∧

0 ≤ j′ ≤ 2

}

.

In Figure 5.10, we show the original and the transformed process domains. Both

domains have the same cardinality because each point shown in Figure 5.10a has

a counterpart in Figure 5.10b that can be obtained by applying the schedule to the

point. To indicate the correspondence between points in the original and transformed

domains, we have labeled seven points with a letter. For example, the counterpart of

point (1, 1) labeled ‘E’ is (2, 1). The same labels are used in Figure 5.9. Traversal

of the original domain according to the lexicographical order results in the execution

order A, B, C, D, . . . . Traversal of the transformed domain according to the lexico-

graphical order results in the execution order A, D, B, . . . , C, . . . . This corresponds
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a) Original. b) After scheduling.
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Figure 5.10: Process domains of F of Figure 5.2a before and after application of

the schedule in Equation (5.2). A data dependence from one iteration point of F to

another is indicated by an arrow.

to the new schedule depicted in the bottom part of Figure 5.9 in which ‘D’ is moved

forwards to execute in a pipeline fashion with ‘B’. Thus, by applying the schedule of

Equation (5.2), we achieve the desired overlapped execution. Below, we discuss how

to obtain a schedule for a given PPN.

Determining a Schedule

The chosen schedule affects the degree of overlapped execution between process it-

erations that is achievable by a scheduling transformation. Finding a schedule that

maximizes overlapped execution is a non-trivial optimization problem. A natural

way to overlap execution of process iterations is to perform loop parallelization. This

is a well-studied field in compiler technology, in which various loop parallelization

algorithms have been proposed. Existing algorithms differ in the way they repre-

sent the data dependence relations of nested loop programs. For example, Allen and

Kennedy’s algorithm [AK87], Wolf and Lam’s algorithm [WL91], and Darte and

Vivien’s algorithm [DV97] take as input an approximation of the dependence graph.

Such an approximation restricts the ability of the algorithms to reveal all available

parallelism [DRV01]. On the other hand, Feautrier’s algorithm [Fea92a, Fea92b]

takes the exact dependence graph as input and is therefore more powerful than the

other algorithms. Also, Feautrier’s algorithm will find the optimal schedule if it can

be expressed as an affine mapping of the iteration space. Lim and Lam’s algorithm

takes a similar input representation as Feautrier’s algorithm, but maximizes paral-

lelism while minimizing the number of synchronizations [LL98].

Feautrier’s algorithm is employed by e.g. the MMAlpha tool [GQR03] to gener-

ate hardware from algorithms specified in the Alpha language. Feautrier’s algorithm

has a high computational complexity, which motivated Feautrier to apply the algo-
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rithm to sets of communicating regular processes [Fea06]. Unfortunately, Feautrier

does not elaborate on the implications of the new schedule for the communication

channels between processes. Later in this section, we show that these implications

cannot always be ignored. Another way to address the computational complexity of

Feautrier’s algorithm and control flow overhead of the resulting schedules is by lim-

iting the possible schedule coefficients [PBCC08]. This results in simpler schedules,

at the expense of more scheduling dimensions, which may counteract the benefits of

simpler schedules.

Applying Feautrier’s Scheduling Algorithm to PPNs

Feautrier’s multidimensional scheduling algorithm takes as input a Generalized De-

pendence Graph (GDG) represented as G = (V, E,D,R), where

• V is a set of vertexes representing statements,

• E is a set of edges representing data dependences,

• D is a set containing a polyhedral set for each vertex, and

• R is a set containing a polyhedral map for each edge.

Given a GDG, the algorithm constructs a multidimensional schedule for each state-

ment in a greedy fashion. In each step, the algorithm constructs a linear program

to find an affine function with minimum latency that satisfies as many dependence

relations as possible. The dependences that are not satisfied are considered in a sub-

sequent recursive step. Each recursive step leads to a new dimension in the schedule

being constructed. The algorithm terminates when all dependences are satisfied, or

when no affine schedule can be found.

We are interested in Feautrier’s algorithm for two reasons. First, Feautrier’s algo-

rithm finds the optimal schedule if it can be expressed in the affine form of Defini-

tion 5.8. That is, no other affine schedule exists that yields a lower execution latency.

This implies that Feautrier’s algorithm includes all transformations that can be ex-

pressed using an affine mapping of an iteration domain, such as loop interchange

or loop skewing [Fea92b, Viv02]. Second, we do not have to perform any addi-

tional analysis to run Feautrier’s algorithm on a PPN because all input needed for

Feautrier’s algorithm is already made available by the exact data dependence analy-

sis step of PNGEN.

To apply Feautrier’s scheduling algorithm to a PPN, we relate statements to pro-

cesses and dependences to channels. That is, for each process p, we add a vertex

representing p to V and we add the process domain Dp to D. For each channel c, we

add an edge representing e to E and we add the channel relation Mc to R. Feautrier’s

algorithm computes an affine schedule for each vertex. We apply the schedule of
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each vertex to the corresponding process domain according to Equation (5.3). As a

result, all processes of a PPN execute their iterations in the optimal order found by

Feautrier’s algorithm, potentially increasing overlapped execution.

Extension to a Bijective Schedule

The schedule returned by Feautrier’s algorithm is not necessarily a bijective schedule.

In fact, the schedule is only bijective if no overlap between any pair of iterations

is possible, which occurs only if an application is entirely sequential. When two

iterations may execute in parallel, then the schedule yields the same time stamp for

both iterations. To comply with the PPN process semantics, we should extend the

schedule with one or more dimensions such that for each iteration the schedule yields

a unique time stamp.

We use the default algorithm of isl [Ver08] to extend the schedule found by Feau-

trier’s algorithm to a bijective schedule. This default algorithm minimizes the depen-

dence distance over the dependences, using an approach similar to Pluto’s [BBK+08].

For our running example schedule of Equation (5.1), extending the schedule using

isl gives the schedule of Equation (5.2) in which a second dimension containing j
has been added.

Impact of Scheduling

The schedule computed by Feautrier’s algorithm does not necessarily enforce in-

order communication of data between processes. Thus, after applying the schedule,

the order in which tokens are produced by the producer process may be different from

the order in which tokens are consumed by the consumer process, and vice versa.

This requires us to perform a reordering test [TKD07] on each channel after apply-

ing a scheduling transformation. Some channels may be classified as out-of-order

after scheduling, and thus these should be implemented using a reordering buffer to

preserve the functional behavior of the original application.

Existing reordering buffer designs were shown to have a considerable negative im-

pact on both performance and resource usage [TKD03]. To avoid counteracting the

performance benefits of a better schedule because of possible reordering communi-

cation, we use the reordering buffer that was presented in Section 3.6. Read and write

operations on this reordering buffer take only one clock cycle. This means that re-

placing a FIFO buffer with a reordering buffer increases resource usage, but does not

introduce additional delay cycles. As a result, we avoid counteracting the benefits of

a better schedule.
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1 for (i=0; i<=5; i++) {

2 for (j=max(0,i-3); j<=min(2,i); j++) {

3 F(x[i], y[j], &x[i], &y[j]);

4 }

5 }

Figure 5.11: Code to traverse the transformed iteration space of Figure 5.10b in the

lexicographical order.

Another consequence of the scheduling transformation is the complexity of the eval-

uation logic blocks of a LAURA processor. The complexity of iterating through a

rescheduled domain typically increases. To illustrate this using our running example,

we show the code which iterates over the rescheduled process domain in the right

part of Figure 5.11. This code is more complicated than the code iterating over the

original process domain, because loop bounds of the j-loop are now max and min ex-

pressions involving i. This increases the combinational path lengths in the RTL for

the evaluation logic blocks of the read and write units shown in Figure 2.12, affecting

both resource usage and the maximum achievable clock frequency. From experi-

ments, we found that control overhead induced by a scheduling transformation may

reduce the clock frequency by 50%, potentially negating the benefits of increased

overlapped execution. To avoid that control overhead counteracts the benefits of a

better schedule, a designer may for example choose to consider the evaluation logic

optimization techniques described in Section 3.5.2.

5.2 Transformation Efficacy Analysis

In the previous section, we have discussed four different transformations that can be

applied on a PPN. Many combinations of these transformations are possible to obtain

design points that provide different tradeoffs between circuit area and performance.

Deciding which transformations to apply to obtain a particular design point is not

trivial. In this section, we present how the results of PPN throughput analysis can be

applied to assess the efficacy of transformations. That is, for the transformations that

we consider, we discuss the conditions when a particular transformation should be

applied to obtain a particular change on PPN throughput.

5.2.1 Splitting

Throughput of a PPN can often be increased by applying one of the splitting trans-

formations discussed in Section 5.1.1 on a process. To apply a splitting transforma-
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Figure 5.12: Statement execution profile for function F of the program shown in

Figure 5.1. Empty cells represent zero.

tion, the designer should select a splitting method such as modulo unfolding or plane

cutting, and the splitting factor. Selection of the splitting method was discussed ex-

tensively by Meijer et al. [MNS09]. However, Meijer’s algorithm still requires the

designer to specify a splitting factor. We therefore present heuristics to find a splitting

factor in this section.

An obvious upper bound on the splitting factor of a process is the cardinality of the

process domain. If the splitting factor for a process is chosen higher than the domain

cardinality, then some partitions resulting from the splitting transformation contain

zero iterations, meaning that a lower splitting factor would suffice as well.

Maximum Iteration Overlap

Another upper bound on the splitting factor of a process is the maximum iteration

overlap. We define iteration overlap as the number of process iterations that can

execute simultaneously at a given time, assuming a sufficient number of processing

resources is available. The maximum iteration overlap thus represents the maximum

number of process iterations that can execute simultaneously during the entire exe-

cution of the PPN. We propose two different methods to obtain this upper bound: by

profiling or by analytical means.

Profiling-based Determination of Maximum Iteration Overlap

For the profiling-based method we employ cprof to obtain the maximum iteration

overlap. We profile the sequential application code on a hypothetical ideal machine

with an infinite number of processing resources as described in Section 4.6.3. We

can extract the iteration overlap at a given time t from the statement execution profile

of a process using Equation (4.6). By ranging t between the process start and finish

times we obtain the maximum iteration overlap.

In Figure 5.12, we show an execution profile obtained using cprof for function F of

the program shown in Figure 5.1. The first iteration (0, 0) of the process derived from
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the function call to F starts at time 2. Since F takes two input arguments, two read

operations are executed which execute in parallel on the ideal machine. At time 3, the

function executes and at time 4, the two output arguments are written. Considering

the entire execution profile E$F in the range [2, 20), at most three iterations of F exe-

cute in parallel. Thus, the maximum iteration overlap for the program of Figure 5.1

equals three.

Analytical Determination of Maximum Iteration Overlap

For the analytical method we employ Feautrier’s multi-dimensional scheduling al-

gorithm. Recall from Section 5.1.4 that for each process iteration i, we can use

Feautrier’s algorithm to compute the earliest timestamp t = θp(i) at which i can ex-

ecute. This earliest timestamp is solely determined by the data dependences of the

application. Feautrier’s algorithm assumes no processing resource contention occurs,

resembling an ideal machine. For iterations that execute in parallel, the schedule

yields the same timestamp. To find out the maximum iteration overlap for a given

schedule, we compute the maximum number of iterations executing at the same time-

stamp.

The iterations executing in parallel at a given timestamp t are given by the inverse

of the schedule

θ−1
p (t), where t is in the range of θp(i),∀i ∈ Dp.

That is, we only consider timestamps t at which one or more points in the domain

execute. A piecewise quasipolynomial that gives the number of iterations executing

in parallel at a time t can be found by computing the cardinality using the barvinok

library. The upper bound on this piecewise quasipolynomial represents the maximum

number of iterations executing in parallel, and is given by

max
∣

∣

∣θ−1
p (t)

∣

∣

∣ . (5.4)

This upper bound can be found using the barvinok library.

We illustrate the analytical method using the schedule of Equation (5.1) for the

function call to F of the program shown in Figure 5.1. The iterations executing at a

timestamp t are given by the inverse polyhedral map

θ−1(t) = {t → (i, t − i) | 0 ≤ i ≤ 3 ∧ i ≤ t ≤ i + 2},

which can be obtained using isl. For example, computing θ−1(1) tells us that itera-

tions (0, 1) and (1, 0) can execute in parallel at t = 1. This can be verified by looking

at Figure 5.10a: iterations B and D only depend on A, since B and D only have an

incoming arrow from A. Thus, once A has been executed, both B and D can execute.
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The number of iterations that can execute at a given time t is given by the piecewise

quasipolynomial

|θ−1(t)| =















t + 1 if 0 ≤ t ≤ 2,

6 − t if 3 ≤ t ≤ 5,

0 otherwise.

The upper bound of this piecewise quasipolynomial equals 3, implying that at most

three iterations can execute in parallel in the program of Figure 5.1. This is in agree-

ment with the value found by means of profiling-based determination of maximum

iteration overlap: at most three iterations execute simultaneously, as shown by profile

E$F in Figure 5.12.

Average Iteration Overlap

Using both the profiling-based and analytical approaches discussed above, we found

that at most three iterations execute in parallel in the program of Figure 5.1. Thus, an

upper bound on the splitting factor is three. However, only during two out of six oc-

casions, three iterations actually execute in parallel, and in four out of six occasions,

a third processor would be idle.

Using the maximum iteration overlap as a splitting factor then results in a system

in which some processors are used only during these few points in time. This may

result in a high area overhead while a slightly lower throughput could be achieved

with significantly less processors. Therefore, the average number of process iter-

ations executing simultaneously may provide a better tradeoff between throughput

and resource cost, as proposed by Eager et al. [EZL89]. We propose two different

methods to obtain the average iteration overlap: by profiling or by analytical means.

Profiling-based Determination of Average Iteration Overlap

To determine the average iteration overlap by profiling, we again leverage cprof’s

application analysis method presented in Section 4.6.3. We extract the average itera-

tion overlap from the statement execution profile of a process by dividing the process

domain cardinality by the number of non-zero entries in E$.

Using Figure 5.12, we find the average iteration overlap for function F in the pro-

gram of Figure 5.1. The process domain of F consists of twelve points. The execu-

tion profile E$F consists of six non-zero entries. Thus, the average iteration overlap

is 12
6 = 2.
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Analytical Determination of Average Iteration Overlap

To determine the average iteration overlap analytically, we again leverage Feautrier’s

algorithm. Instead of computing the maximum number of iterations using Equa-

tion (5.4), we compute

∑

t∈Θp

∣

∣

∣θ−1
p (t)

∣

∣

∣

|Θp|
, where Θp = {θp(i) | i ∈ Dp} . (5.5)

That is, we evaluate the piecewise quasipolynomial at every timestamp and sum these

evaluations, which can be done using the barvinok library [Ver03a]. We then divide

by the total number of timestamps to obtain the number of iterations executing in

parallel on average.

For function F in the program of Figure 5.1, Equation (5.5) evaluates to

1 + 2 + 3 + 3 + 2 + 1

6
= 2.

Thus, the average iteration overlap is two.

Depending on design constraints, different upper bounds on the process splitting

factor may be considered. If maximum performance is required regardless of re-

source cost, then the maximum iteration overlap should be used as an upper bound.

If a less expensive solution is required, then the average iteration overlap provides an

upper bound that provides a good balance between resource cost and performance,

as shown by Eager et al. [EZL89].

5.2.2 Merging

Meijer et al. investigated applying the merging transformation on programmable pro-

cessors such as the MicroBlaze [MNS10]. In this section, we investigate application

of the merging transformation on LAURA processors. In the general case of LAURA

processor merging, resource cost savings are limited, because the IP cores imple-

menting each process’ functionality should still be provided. These IP cores often

account for the greater part of the LAURA processor cost. However, when LAURA

processors execute the same function, then a merging transformation can reduce re-

source cost by resource-sharing the IP core among the processes in the compound

process.

The processes merged onto the same LAURA processor compete for the same IP

core of the LAURA processor. This may cause a decrease in throughput if at least one

of these processes is in the critical path. Therefore, two LAURA processors should

only be merged if they do not execute at the same time. This can be determined by
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inspecting statement execution profiles obtained from cprof. For example, assume

the arrays E$1_0, E$1_1, and E$1_2 in Figure 4.14 represent the execution profiles

of three separate LAURA processors. That is, these arrays indicate when the IP core

of the LAURA processor is active during the execute stage of a process iteration. At

most one of the three E$-arrays contains a one at any time, meaning that at most one

of the three LAURA processors is active at any time. Therefore, we conclude that

merging these three LAURA processors into a single LAURA processor would not

affect throughput.

5.2.3 Stream Multiplexing

The stream multiplexing transformation aims to increase throughput of multiple exe-

cutions of a PPN containing a feedback loop. A stream multiplexing transformation

can still be beneficial when the cycle mean of the feedback loop cannot be decreased

by other transformations of processes in the feedback loop, such as for example a

splitting transformation, or by replacement of a programmable processor with a dedi-

cated hardware IP core. We first identify two conditions when a stream multiplexing

transformation can be beneficial. We then discuss how to determine the maximum

stream multiplexing factor such that the latency of a single PPN execution is not

increased.

Efficacy Conditions

A first condition is that a complete execution of the PPN is independent of the previ-

ous execution of the PPN, to enable interleaving of multiple executions. This is often

the case for the streaming applications that we consider, as the PPN often works on

discrete and independent units of the incoming data stream such as video frames.

A second condition is that the PPN should have a feedback loop that limits through-

put of a single execution of a PPN. Such a feedback loop can be detected using the

MCM analysis technique presented in Section 4.5. Computing the cycle means of a

PPN reveals which parts of a PPN prevent meeting a target throughput τ . The cycle

means that are greater than T = 1
τ

represent parts of the PPN that prevent meeting

throughput τ . The cycle means are the result from three different classes of cycles

that occur in the PPN modeling graph:

1. cycles involving only one process;

2. cycles resulting from feedforward edges; and

3. cycles resulting from feedback edges.

These three cycle classes stem from the three channel classes identified for the con-

struction of edges in the PPN modeling graph that is discussed in Section 4.5.3.
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Cycle Cycle mean Class Feedback loop?

src → src 3 first no

P1 → P1 9 first no

P2 → P2 18 first no

P3 → P3 24 first no

src → P1 → src 6 second no

P1 → P2 → P3 → P1 51 third yes

Table 5.1: Cycles in the PPN modeling graph for a PPN derived from Figure 5.5.

Cycles of the first class always originate from the selfloop added to the PPN mod-

eling graph to eliminate auto-concurrency of a process. If the corresponding cycle

mean is greater than T , then a period of T time units cannot be achieved due to

sequential execution of all process iterations on a single processing resource. A limi-

tation of the MCM analysis technique is that pipelined execution of multiple process

iterations cannot be captured, because the MCM analysis technique does not incor-

porate the II value of a process. The actual execution time of a process may be lower

than reported by the MCM technique if II < Λ such that pipelined execution of pro-

cess iterations is possible. The actual execution time of a pipelined process depends

on the presence of selfloops in the original PPN. Such selfloops represent a feedback

loop in which an iteration depends on the output of a previous iteration. We therefore

consider a cycle of the first class as a feedback loop if the original PPN contains a

selfloop for the process in the cycle.

Cycles of the second class originate from the backedges added to model finite buffer

sizes. If the corresponding cycle mean is greater than T then the cycle represents

a buffer whose size is too small to sustain period T . These cycle means can be

prevented from being the maximum cycle mean by enlarging buffer sizes such that

they do not affect performance. In Section 4.5.3, we have described how initial tokens

on backedges can be chosen such that cycles of this second class never have the

maximum cycle mean. We therefore ignore cycles of the second class when analyzing

the PPN for feedback loops.

Cycles of the third class originate from cycles present in the original PPN. If the

corresponding cycle mean is greater than T then the cycle represents a bottleneck

inherent in the application. We therefore always consider a cycle of the third class as

a feedback loop.

As an example, we consider the PPN shown in Figure 5.7a. The PPN modeling

graph constructed from this PPN is shown in Figure 5.7b. The cycles in the PPN
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Figure 5.13: Flat execution profiles for the code of Figure 5.5.

modeling graph are listed in Table 5.1. All four cycles of the first class are not con-

sidered as a feedback loop, because the original PPN does not contain a selfloop for

any of the processes in these cycles. As discussed above, cycles of the second class

are never considered as a feedback loop. The PPN modeling graph contains one cycle

of the third class, which is considered a feedback loop. We therefore conclude that

a stream multiplexing might be beneficial and proceed to determine the maximum

stream multiplexing factor.

Maximum Stream Multiplexing Factor

The maximum stream multiplexing factor is the maximum number of PPN executions

that can be interleaved without increasing the latency of a single PPN execution. We

illustrate how the maximum factor can be found using the flat execution profiles

shown in Figure 5.13. These flat execution profiles are obtained by profiling the code

of Figure 5.5 using cprof with the II and Λ values for each process shown in the

left part of Figure 5.13. The factor is determined by the depth of the feedback loop

and the II of the process functions involved in the feedback loop. We represent a

feedback loop as a set of PPN channels C ⊆ E .

The depth of a feedback loop C is the number of clock cycles since the start of

the first process in the feedback loop until the next firing of the first process in the

feedback loop. The feedback loop depth can be determined from the flat execution

profiles obtained using cprof. For the flat execution profiles shown in Figure 5.13,

we find that the feedback loop depth is 17 clock cycles. Alternatively, the feedback

loop depth can be determined by analysis of the PPN. The dependence distance of

a channel (a → b) represents the distance between process a and b as an iteration

count. We use the channel size as a scalar approximation of the dependence distance,

as motivated in Section 4.5.3. The sum of the dependence distances of the channels

in the feedback loop gives the feedback loop depth expressed as an iteration count.

To obtain the feedback loop depth depth(C) expressed in terms of clock cycles, we

multiply the size of each channel c ∈ C with the latency of the process that writes to
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c:

depth(C) =
∑

c∈C

Sc · Λσ(c),

with Sc being the size of channel c.

After determining the feedback loop depth, we compute the number of PPN execu-

tions that can be interleaved by dividing the feedback loop depth by the maximum

II of all processes in the feedback loop. For the example of Figure 5.13, the max-

imum II of all processes is two because of process P3. Dividing the maximum

feedback loop depth by the maximum II gives the number of independent executions

of the feedback loop that can be interleaved. For the example of Figure 5.13, divid-

ing 17 by 2 gives 8.5, which we round down to eight complete executions. Thus, a

stream multiplexing transformation with a factor of eight can be applied to increase

the throughput of multiple executions of the PPN, without increasing the latency of a

single execution of the PPN.

5.2.4 Scheduling

Processes containing deeply pipelined IP cores may suffer from pipeline underutiliza-

tion which limits throughput. Such underutilization is caused by a data dependency

of the current iteration on a previous iteration that is still in the pipeline. Using the

scheduling transformation presented in Section 5.1.4, the distance between dependent

iterations can be altered, such that a higher throughput may be obtained. However,

a scheduling transformation only increases throughput under certain circumstances,

while it increases the control overhead of a LAURA processor in many cases. We

therefore identify the following four criteria to assess the efficacy of a scheduling

transformation on a process.

1. The purpose of a scheduling transformation is to increase pipeline utilization.

Thus, the processor onto which a process is mapped should allow pipelined

execution of process iterations. In terms of our implementation model of Defi-

nition 3.1, this means that II < Λ.

2. The process should have sufficient “room” for overlapped execution. Applying

a scheduling transformation to a process which inherently executes its itera-

tions in a fully sequential fashion will not improve performance.

3. The process should exhibit significant idling because of data dependences,

causing the pipeline to be underutilized. Applying a scheduling transforma-

tion to a process that already yields full pipeline utilization will not improve

performance.

4. The control overhead resulting from the new schedule should not cancel out
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the performance gain of the new schedule.

Criterium 1 implies that the scheduling transformation is only effective for pro-

cesses mapped onto LAURA processors. Overlapped, pipelined execution of process

iterations is not possible on the programmable processors supported by ESPAM, such

as the MicroBlaze, because their single-threaded instruction pipeline is too short to

allow overlapped execution of process iterations.

Criterium 2 requires analysis of the application. The maximum iteration overlap

that was introduced in Section 5.2.1 gives an upper bound on the number of iterations

that can execute in an overlapped fashion. A maximum iteration overlap of one means

that none of the iterations may execute in a partially overlapped fashion because

the application is inherently sequential. In such a case, a scheduling transformation

cannot improve overlapped execution, and thus should not be applied.

Criterium 3 can be evaluated in two ways: by analyzing the application code using

cprof (cf. Section 4.6), or by analyzing a scheduled version of the application code

using cprof. The first method is less accurate than the second, but is easier to perform

because no changes to the application code have to be made.

To get a rough assessment of whether a scheduling transformation improves over-

lapped execution using the first method, we evaluate the original application code

using cprof on both a real machine and an ideal machine. We assume a pipeline

depth of four, that is, ΛF = 4 and II F = 1, meaning that up to four iterations can

be active simultaneously. In Figure 5.14, we show the flat execution profile for the

program of Figure 5.1 on the real and ideal machine. We observe that on the real

machine, only one iteration is active for most of the time. On the ideal machine,

on average two iterations are active. In both cases, the pipeline is underutilized,

because a maximum iteration overlap of four dictated by the pipeline depth is not

achieved. A scheduling transformation increases the average utilization from one to

two simultaneously active iterations. We have verified using RTL simulation that a

scheduling transformation on the program of Figure 5.1 indeed increases overlapped

execution. As another example, consider the flat execution profiles of a 1D Jacobi

kernel [BBK+08] in Figure 5.15. On the real machine, on average 7 iterations are

active simultaneously. On the ideal machine, 29 iterations are active simultaneously.

Although more overlapped execution occurs on the ideal machine, the average itera-

tion overlap of seven on the real machine is already sufficient to keep the five-stage

pipelined IP core of the application fully utilized. We have verified using RTL simu-

lation that a scheduling transformation does not increase overlapped execution of the

Jacobi application.

Alternatively, to get a more accurate assessment of the impact of scheduling on

throughput using the second method, we evaluate a scheduled version of the appli-

cation code using cprof. The scheduled application code can be obtained in a semi-
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Figure 5.14: Flat execution profile for function F of the program shown in Figure 5.1.

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400  450

A
ct

iv
e 

it
er

at
io

n
s

Time (cycles)

a) Real machine

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200  250  300  350  400  450

A
ct

iv
e 

it
er

at
io

n
s

Time (cycles)

b) Ideal machine

Figure 5.15: Flat execution profile for the Jacobi application.

automated way using for example CLooG [Bas04] or isl [Ver08]. By comparing the

execution time of the original application code with the execution time of the sched-

uled application code, we quantify the effect of a scheduling transformation. For the

example of Figure 5.14, we measure a decrease in execution time of 29%. For the

example of Figure 5.15, we measure an increase in execution time of 56%, which

means the scheduling transformation degrades performance. As a result of the analy-

sis, we chose to apply the scheduling transformation for the example of Figure 5.14,

but not for the example of Figure 5.15.

Criterium 4 is difficult to address at compile time, because the effects of the new

schedule on control overhead are not known until time-consuming low-level synthesis

and place-and-route steps have been performed. To avoid time-consuming synthesis

steps, we use a heuristic to quickly determine if a particular schedule is likely to

result in significant control overhead. A non-unit coefficient in a schedule leads to

“gaps” in the transformed domain. For example, consider the polyhedral map of

Equation (2.1) which has a coefficient of two for j1. By applying this polyhedral

map to the polyhedral set of Figure 2.2b, we obtain the transformed polyhedral set

shown in Figure 2.3. Because of the non-unit coefficient, the transformed polyhedral

set contains gaps in dimension j. To handle such gaps in the LAURA processor,
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a division by the coefficient is required in the evaluation logic blocks. This is not

a problem for coefficients that are a power of two, since division by such values

can easily be implemented in RTL using bit shifts. For coefficients that are not a

power of two, the resulting division may severely limit the maximum achievable

clock frequency. Therefore, when Feautrier’s algorithm computes a schedule with

coefficients that are not a power of two, a scheduling transformation is not likely to

yield higher throughput.

5.3 Conclusion and Summary

We have discussed four PPN transformations in this chapter: process splitting, pro-

cess merging, stream multiplexing, and scheduling. We have presented how each of

these transformations can be applied to a PPN in an automated fashion in the Dae-

dalus tool flow. This enables a designer to quickly obtain functionally equivalent

implementations of the same application that differ in performance and resource cost

aspects.

Deciding when to apply any subset of the discussed transformations to obtain an

implementation meeting a particular performance requirement is a nontrivial task

for a designer. We leverage two techniques introduced in Chapter 4 to guide the

designer in selecting the appropriate transformations and transformation parameters:

the analytical MCM analysis technique and the profiling-based cprof technique. This

enables a designer to systematically obtain an implementation that best matches a

performance constraint.
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CHAPTER 6
INDUSTRIAL CASE STUDY

In this chapter, we study the design process of an industrially relevant sphere de-

coder application used in wireless mobile communications. We take a sequential

C specification of this application as a starting point. Our goal is to automatically

obtain an RTL implementation in VHDL or Verilog from the sequential C specifi-

cation. We compare two tool flows to achieve this goal: the commercial AutoESL

high-level synthesis tool [Xil11] 1 and the open-source Daedalus system-level design

tool flow [Lei08]. AutoESL is a state-of-the-art high-level synthesis environment

that combines heuristics with designer input to obtain design points that satisfy de-

sign constraints. We want to compare the Daedalus-based approach discussed in this

dissertation with the AutoESL approach to gain insight in the effectiveness of our

approach.

We introduce the application in Section 6.1. We review a reference implementation

of the application in Section 6.2. We describe an implementation using AutoESL

in Section 6.3, and describe an implementation using Daedalus in Section 6.4. We

compare the different implementations in Section 6.5 and conclude in Section 6.6.

6.1 Sphere Decoding

The application that we study in this chapter implements part of the WiMAX stan-

dard [FK08]. WiMAX (Worldwide Interoperability for Microwave Access), based

on the IEEE 802.16e-2005 standard, refers to a new generation of (mobile) wire-

less broadband access networks. WiMAX employs Multiple Input, Multiple Output

1AutoESL is currently known as Xilinx Vivado HLS [Xil13].
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Transmitter Receiver
Sphere

Decoding... ...m n

Figure 6.1: An m × n MIMO system that uses sphere decoding to reconstruct the

transmitted symbols.

(MIMO) antenna configurations, meaning that both the transmitter and the receiver

use multiple antennas, as illustrated in Figure 6.1. All transmitter antennas transmit

at the same frequency, but each antenna transmits data from a different data stream.

This results in multiple parallel data streams that share the same frequency channel,

referred to as spatial multiplexing. Spatial multiplexing increases bandwidth effi-

ciency, but comes at the cost of increased computational demands at the receiver

side, where advanced techniques are required to separate the different data streams.

Different techniques exist to separate data streams at the receiver side. Decod-

ing the data from the different antennas using a Maximum Likelihood (ML) detector

yields the optimal Bit Error Rate (BER) performance [BBW+05]. However, the com-

putional complexity of an ML detector grows exponentially with the number of an-

tennas and the choice of modulation scheme, making an ML detector implementation

cost-prohibitive for high-data rate systems with large numbers of antennas. Alterna-

tively, channel decoding can be realized using a sphere decoder, whose implementa-

tion is less expensive while still achieving a BER performance comparable to that of

an ML detector [ACDR09]. The actual sphere decoding step is preceded by a chan-

nel preprocessing step, which prepares a channel matrix that characterizes the MIMO

antenna system. In this chapter, we focus on the channel preprocessor of the sphere

decoder system that was described in [DTD+09]. The considered sphere decoder sys-

tem implements a receiver for the most demanding case of the IEEE 802.16e-2005

standard, namely a 64-QAM system with 4 transmitter and 4 receiver antennas.

In Figure 6.2, we show the block diagram of the sphere decoder system that we

consider. Before the actual sphere detecting takes place, the channel matrix prepro-

cessor prepares the channel matrix. Inside the channel matrix preprocessor, channel

estimation [BSE04] is used to determine the complex-valued 4×4 channel matrix.

To improve BER performance, channel reordering is applied to this matrix. The

resulting matrix is reorganized into an 8×8 real-valued matrix by the Modified Real-

Valued Decomposition (M-RVD) block. This real-valued matrix is then converted to

an upper-triangular matrix using QR Decomposition (QRD). Next, the sphere detec-

tor is applied to produce a stream of detected QAM symbols. Subsequent decoding
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Figure 6.2: Sphere decoder block diagram.

of these symbols then yields the original transmitted bits.

In this chapter, we focus on the Modified Real Value Decomposition (M-RVD) and

QR Decomposition (QRD) blocks of the sphere decoder. These two blocks are com-

bined into a single block that we refer to as the M-RVD QRD block. Implementing

these blocks to meet the application throughput requirements, while minimizing re-

source usage and latency through the receiver is a challenging design task because of

the presence of recurrences in the application.

6.2 Reference Implementation

As a reference implementation, we consider the sphere detector described by Dick

et al. [DTD+09]. This reference implementation has been implemented in Xilinx

System Generator which is a high-level block-based design tool. The reference im-

plementation is essentially a manually built structural RTL design, containing explicit

instantiation of memory and computation primitives and explicit control structures.

The reference implementation targets a mid-speed grade Xilinx Virtex-5 FPGA with

a clock frequency of 225 MHz. To conform to the WiMAX throughput targets, the

design processes 360 data subcarriers in 102.9 µs. The channel matrix is recomputed

for every data subcarrier, which implies the channel matrix preprocessor needs to

process a new matrix every

102.9 µs / 360

1/225 MHz
≈ 64 clock cycles. (6.1)
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1 for (j=0; j<8; j++)

2 for (m=0; m<8; m++)

3 for (t=0; t<15; t++) {

4 X[j][0][t] = diagonal(X[j][0][t], ...);

5 for (n=1; n<8; n++) {

6 if (n < 7-m)

7 R[m][n-1][t] = offdiagonal(R[m][n][t], ...);

8 }

9 }

Figure 6.3: Top-level structure of the 8×8 M-RVD QRD C code. Additional code for

the time division multiplexing refactoring is underlined.

To meet this high throughput requirement, all blocks in Figure 6.2 operate in a

pipeline fashion, which is common for wireless receiver applications. The matrix

elements are represented using 18-bit fixed point data types throughout the design.

Data is communicated from one block to the next using FIFO buffers and double

buffered and dual-ported memories, implementing a streaming system [NV08]. Each

block operates on only a few kilobytes of data at a time, which means the sizes of

the communication memories are relatively small. Therefore, all memories are im-

plemented using on-chip block memory primitives, that is, no external memory is

required for inter-block communication.

The QR decompositions used in the M-RVD QRD block are based on Givens Rota-

tions [SM93]. This method consists of two stages, which we refer to as the diagonal

and off-diagonal cells. The diagonal cell computes an angle such that the leading

matrix element is rotated to zero. That angle is subsequently used by the off-diagonal

cells to apply the rotation to the remaining nonzero elements of the same matrix row.

The top-level structure of the M-RVD QRD C code is shown in Figure 6.3.

6.3 AutoESL

In this section, we describe implementing the M-RVD QRD block of the sphere de-

coder using the AutoESL tool. AutoESL (formerly known as AutoPilot) has been

developed since 2006 by AutoESL Design Technologies, Inc. as a commercial-

ization of the xPilot tool from UCLA [CFH+06], and was acquired by Xilinx in

2011 [Xil11]. AutoESL accepts code written in a synthesizable subset of the C,

C++, or SystemC language as input. We focus on C++ design entry, with the goal

of leveraging C++ template classes to represent arbitrary precision integer types and

template functions to represent parameterized components. For the remainder of this
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Figure 6.4: High-Level Synthesis design flow.

section, we refer to the high-level language code as “C code” without elaborating on

these details.

6.3.1 Design Flow

The overall design process we have followed is shown in Figure 6.4. We start from

a functional specification in the C language and a corresponding test bench. The C

specification is a reimplementation of the MATLAB model that was used for the ref-

erence implementation made with System Generator. By using the test bench and a

representative set of test vectors, the C specification is then repeatedly refactored to

reflect the desired architecture, while preserving the functionality. This refactoring

process makes use of two different interpretations of the C specification. The func-

tional interpretation represents the conventional semantics of the C code, describing

the sequential and functional behavior. The architectural interpretation represents

the HLS semantics of the C code, describing the RTL architecture at a high level.

The designer makes sure that the functional interpretation of the refactored C code

is still identical to that of the original C code, while the architectural interpretation

is changed to satisfy non-functional requirements like resource cost and throughput.

Manipulation of the architectural interpretation focuses on the coarse-grained archi-

tectural aspects, such as memory porting, parallelism, and resource sharing. Fine-

grained architectural aspects, such as RTL pipelining details, are handled automat-

ically by the HLS tool by means of predefined characterization data of the target

FPGA device.

The throughput resulting from the architectural interpretation can be analyzed stat-

ically or dynamically as an output of the HLS compilation. Resource cost estimates

are reported after HLS compilation as well. If the various cost and performance met-

rics satisfy the design requirements, the resulting RTL is synthesized using platform-

specific low level synthesis tools. Since HLS tools do not have precise knowledge

about e.g. routing delays, metrics reported by the HLS tool typically differ to some
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extent from the actual timing characteristics and resource costs obtained after RTL

synthesis.

At all times in the development process, the source code of the design is fully func-

tional and can be verified using the C test bench using a regular C compiler and

debugger. This is very different from a traditional RTL design flow, where a fully

functional version of the design source code becomes available only after weeks or

even months of labor. This RTL source code is developed independently of the orig-

inal reference code, thereby requiring an extensive validation phase. In contrast,

obtaining functionally correct design source code that successfully passes through

the HLS tool is only a matter of days or even hours. This means an early function-

ally correct RTL implementation can be obtained quickly, although it is unlikely to

already meet resource cost and throughput constraints.

6.3.2 Design Entry

Modern HLS tools like AutoESL and PICO (semi-)automatically leverage a wide

range of compiler optimization techniques such as common subexpression elimina-

tion and loop unrolling, and computer architecture techniques such as pipelining and

resource sharing to improve cost and performance aspects of a design. For some of

these techniques, the effectiveness is highly dependent on the structure of the appli-

cation. Therefore, the decision when and how to apply a particular technique often

has to be made by the designer. Some techniques can be applied or controlled with a

tool pragma, while other techniques must be reflected in the way the algorithm is de-

scribed. In this section we describe the techniques applied for the M-RVD QRD block

of the sphere decoder application. In particular, we have applied a combination of

time division multiplexing, loop unrolling, array partitioning, and case-specific opti-

mizations. All of these techniques have been applied by modifying C code only such

that a different architectural interpretation is obtained, while the functional interpre-

tation is preserved.

Time Division Multiplexing

For designs without feedback, an HLS tool is generally able to instantiate regis-

ters freely to increase clock frequency and throughput. However, in pipelines that

are part of a feedback loop, registers cannot be inserted freely without introduc-

ing pipeline stalls. Hence, feedback loops, also known as recurrences, in a design

are the key limiter of throughput [Pap91]. For example, Figure 6.3 shows the high

level structure of the 8×8 M-RVD QRD loop nest. Although there are several recur-

rences in the application, the critical recurrence in this code occurs when the result
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X[j][0] of the diagonal function call is used as an argument to the next diagonal

call. Synthesis of the diagonal function results in a 14-stage pipeline. As a result,

each diagonal call has to wait 14 cycles until the result of the previous call be-

comes available, which means the pipeline is highly underutilized. To accommodate

the recurrence without introducing pipeline stalls, we use the wait cycles to process

independent data streams, by applying Time Division Multiplexing (TDM) over 15

datasets. The underlined parts in Figure 6.3 explicitly reflect time division multiplex-

ing or c-slowing [LRS93] over separate datasets through the inner t-loop.

We observe several characteristics of this design. First, the code accurately reflects

the order in which data is processed in the reference design. Second, the TDM refac-

toring is expressed entirely at the C code level. This means it can be seamlessly ported

to any HLS tool that supports the used C constructs, such as multi-dimensional ar-

rays. Third, the number of datasets to iterate over, that is, the TDM depth, cannot be

determined without knowing the sizes of the critical recurrences. Although AutoESL

does not compute the number of datasets automatically, the HLS process does an-

alyze the source code for recurrences and reports to the designer where recurrences

are not satisfied. The designer can use this information in a subsequent AutoESL run.

In the sphere decoder application, since 360 independent data subcarriers have to be

processed for each frame, TDM is a straightforward way to handle the critical recur-

rence while incurring small increases in resource cost and latency. The resource cost

increase stems from additional buffering for the fifteen time multiplexed data subcar-

riers. The processing latency of the M-RVD QRD block for a single data subcarrier is

945 clock cycles, or 4.2µs.

Loop Unrolling

Application throughput constraints translate directly or indirectly into parallelism re-

quirements on the RTL architecture. For example, the code in Figure 6.3 processes

a block of 15 subcarriers. As shown in Equation (6.1), every 64 cycles a new sub-

carrier must be processed to meet application throughput requirements. As a result,

the loop nest in Figure 6.3 must start executing a new block of 15 subcarriers every

15×64 = 960 cycles. Because the outer loops together comprise 960 iterations, this

implies that the body of the t loop must be pipelined with an initiation interval II t of

1. As a result, the inner n loop must be unrolled to perform all off-diagonal computa-

tions in parallel, which is possible in this application since the calls to offdiagonal

in the inner loop are independent. We specify the pipelining and unrolling as pragma

directives to AutoESL, thereby minimizing rewriting of the code and preserving code

readability and maintainability. These pragmas are shown in Figure 6.5. AutoESL

currently requires unrolled loops to have constant loop bounds, hence the need to ex-
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1 #pragma AP ARRAY PARTITION variable=R complete dim=2 partition

2 for (j=0; j<8; j++)

3 for (m=0; m<8; m++)

4 for (t=0; t<15; t++) {

5 #pragma AP PIPELINE ii=1

6 X[j][0][t] = diagonal(X[j][0][t], ...);

7 for (n=1; n<8; n++) {

8 #pragma AP UNROLL

9 if (n < 7-m)

10 R[m][n-1][t] = offdiagonal(R[m][n][t], ...);

11 }

12 }

Figure 6.5: Applying loop unrolling (line 8), pipelining (line 5), and array partition-

ing (line 1) to the M-RVD QRD C code.

plicitly move the conditional statement into the loop body. During the HLS process,

AutoESL automatically attempts to compute the number of cycles the loop nest takes

to execute, taking into account constant loop bounds and pipeline latencies. This

enables a designer to quickly interpret the achieved throughput.

Array Partitioning

After unrolling, the seven off-diagonal cells need to be fed with new data every clock

cycle. One of the data sources is a three-dimensional array R that is mapped onto

a block memory primitive of the FPGA. These block memory primitives have only

two memory access ports, which means at most two accesses to array R can take

place every clock cycle. However, every clock cycle seven different elements need

to be read from R, since the loop iterator n of the unrolled loop appears in the array

index expression. This means shortage of memory ports now limits throughput. To

overcome this problem, we apply array partitioning to partition the array into sub-

arrays [CJLZ09], again directed by pragma directives. We show such a pragma on

line 1 of Figure 6.5 to partition the second dimension of array R. Each subarray is then

mapped onto a separate block memory primitive, effectively providing two memory

ports dedicated to each subarray and thereby solving the array bandwidth limitation.

Again, memory port limitations are analyzed during the HLS process and AutoESL

reports when shortage of memory ports prevents achieving the requested pipelining.
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1 template <int Wa, int Wb, int Wc>

2 ap_int<Wa+Wb> MADD(ap_int<Wa> a, ap_int<Wb> b, ap_int<Wc> c) {

3 #pragma AP INLINE self off

4 #pragma AP LATENCY max=3

5 #pragma AP INTERFACE ap_none port=return register

6 return a*b+c;

7 }

Figure 6.6: C++ code for the MADD function.

Case-specific Optimizations

As an example of a case-specific optimization we consider a non-obvious source of

multiplications in the C language, namely multi-dimensional array accesses. Since an

array is eventually mapped to a memory with a single-dimensional address space, the

multi-dimensional array index has to be converted into a linear address. For exam-

ple, consider an M×N array defined in C as a[M][N]. The address of array element

a[i][j] is computed with the expression i · N + j. The cost of evaluating this ex-

pression varies greatly with the value of N . For example, when M = 8 ∧ N = 15,

computing the address requires a multiplication by fifteen, which cannot be imple-

mented using only a single shift operation because it is not a power of two. When

the array dimensions are interchanged, thus M = 15 ∧ N = 8, the multiplication

by fifteen is replaced by a multiplication by eight which can be implemented using a

single shift operation.

Function and Class Templates

The M-RVD QRD block is specified entirely in the C++ language. To illustrate how

function and class templates from C++ can be used, we show the code of the Mul-

tiply/Add (MADD) function which is part of a library used by the diagonal cells of

the M-RVD QRD block. We provide the C++ code of this function in Figure 6.6.

Throughout the design we use arbitrary precision integer (ap_int) data types. To

allow effective use of library functions, we have designed these functions to sup-

port different argument bit widths using C++ templates, as illustrated in line 1 of

Figure 6.6 for the MADD function.

Resource Sharing

In many embedded signal processing applications, maximizing throughput is often

not as important as minimizing resource usage for a given throughput. In these cases,
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effective resource sharing is an important design goal. Some resource sharing is

implicit when a loop is pipelined rather than unrolled, since consecutive iterations of

the loop execute on the same datapath generated from the body of the loop. In this

section, we focus on achieving additional resource sharing.

AutoESL employs heuristics to decide which function calls are inlined. The MADD

in Figure 6.6 was inlined in our design study. When an inlined function is called in

two different places, the entire implementation of this function appears twice in the

RTL. To enable sharing of resources in such cases by AutoESL, we disable inlining

using the pragma in line 3 of Figure 6.6.

User-Influence on the Generated RTL

AutoESL provides means to influence aspects of the RTL at the source code level.

The use of such means turned out to be inevitable to obtain a design competitive with

hand-written RTL for the M-RVD QRD block. Because AutoESL’s default timing

characterization prevented timing closure of RTL resulting from multiplications in

the C code, we have enforced the correct characterization by means of the pragmas

shown in lines 4 and 5 in Figure 6.6. Line 4 enforces a latency of three clock cycles

and line 5 enforces an output register of the MADD RTL block. Such pragmas allow

a designer to “correct” suboptimal decisions of the HLS tool for a particular part of

the design. The need for such manual corrections should diminish over time as HLS

tools are further improved.

6.3.3 Design Productivity

To compare design times of the HLS and reference implementations, we have re-

constructed the approximate amount of working time on the designs. Design times

for the reference implementation have been estimated by the original implemen-

tors [DTD+09] as 4.5 weeks. Design times for the HLS implementation have been

extracted from source code version control logs as 5 weeks. We observe that the de-

sign times to reach an optimized implementation are approximately the same for the

HLS implementation and the reference implementation. However, the RTL design

flow yields only a single design point, while the HLS design flow yields many design

points with different performance and cost tradeoffs.

The effects of the refactoring-based design process for the M-RVD QRD block can be

seen in Figure 6.7. On the left vertical axis, we show the overall application through-

put determined from static clock cycle count analysis of AutoESL, combined with

post-place and route timing closure information. On the right vertical axis, we show

the corresponding post-place and route LUT and flipflop usage. For comparison, the
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Figure 6.7: Performance and resource usage of the M-RVD QRD block plotted as a

function of development time.

horizontal lines represent the target application throughput and resource usage of the

reference implementation. After obtaining a “clean” algorithmic C model, it took

about a day to get the code through AutoESL for the first time. This required rewrit-

ing of several nonsynthesizable constructs such as non-analyzable pointers. This first

implementation exploits little parallelism as it executes almost entirely sequentially.

By performing continual refactoring, the throughput and cost are improved with full

functional verification at each refactoring step. The bulk of the architectural refac-

toring was completed in about ten working days. The remaining time has been spent

tuning the design to reduce resource usage and to improve timing closure in place

and route. Below we summarize the design process for the M-RVD QRD block.

• Day 1: The C code is accepted by the HLS tool, and a functional hardware

implementation is already available. However, the total processing time is off

by two orders of magnitude.

• Day 3: After becoming more familiar with the tool and applying basic refac-

toring techniques such as enabling pipelining using a single C preprocessor

pragma, the processing time is reduced significantly.

• Day 6: Because of code restructuring such as loop unrolling, the resource us-

age increases considerably. This limits the achievable clock frequency, effec-

tively increasing the processing time again. However, the design source code
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is now in a shape that enables further optimizations.

• Day 11: C integer data types are replaced by fixed point data types and opti-

mized primitive blocks (e.g., the MADD function) are introduced in the design.

This significantly reduces resource usage. A pipeline II of one is now feasible.

However, during RTL synthesis the design does not achieve timing closure,

which means throughput constraints can still not be met.

• Day 17: By optimizing the code of the data paths (e.g., by applying the case-

specific optimization described in Section 6.3.2), latencies and resource usage

are further reduced. As a result, the RTL now achieves timing closure, so at

this point an implementation meeting throughput requirements is available.

• Day 25: Further optimizations including algorithmic optimizations have been

applied to reduce the resource usage of the design.

In this work we had the advantage that the reference implementation was already

available to us. Thus, we knew the high-level application architecture that had to be

constructed to meet throughput requirements. Hence, we have been fully concentrat-

ing on getting a similar architecture out of the HLS tool initially. After obtaining a

design point meeting throughput requirements, the goal was changed to reducing re-

source cost to the level of the reference implementation. Again, we had the advantage

of knowing detailed resource cost statistics for the reference implementation, thus by

comparing with the HLS implementation we knew what parts could be optimized fur-

ther. Many different design points can be implemented using HLS in a short amount

of time, as each design point in Figure 6.7 is a fully functional design with different

performance and cost aspects. On the other hand, the RTL design process has yielded

only one design point in approximately the same amount of time.

6.4 Daedalus

We have implemented the M-RVD QRD block of the sphere decoder also using the

Daedalus tool flow. We have followed the same refactoring-based design process as

with the AutoESL design, with the only difference that the “HLS” step of Figure 6.4

now consists of running Daedalus instead of AutoESL. We have started from the

same C code that was also used as starting point for the AutoESL design. Obtaining

an RTL implementation from C code consists of two steps, as depicted in Figure 1.1.

The first step is to convert the M-RVD QRD C code into a PPN specification using

PNGEN, which we describe in Section 6.4.1. The second step is to synthesize an

RTL implementation from the PPN specification using ESPAM, which we describe in

Section 6.4.2.
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6.4.1 Design Entry

We distinguish between two classes of refactorings in a Daedalus design flow. Refac-

torings of the first class transform the source code into a form suitable for Daedalus.

Refactorings of second class are similar to the architectural refactorings in the Au-

toESL design flow. That is, they serve to alter the architectural interpretation of the

source code. The first two refactorings discussed below are of the first class, whereas

the remaining refactorings are of the second class.

Compatibility Restructurings

PNGEN requires that the sequential C code is a static affine nested loop program (cf.

Section 2.3). The sequential C code for the M-RVD QRD block already conforms to

this requirement, such that meeting the SANLP requirement requires no effort. To

ease integration of IP cores in LAURA, we rewrite the sequential code such that be-

sides for- and if-statements, only function calls and plain copy assignment statements

are exposed in the top level function given to PNGEN. This means other statements

containing arithmetic operations have to be embedded into function calls. For exam-

ple, the following statement

in_diag = -mat_im[i];

is rewritten as

negate(mat_im[i], &in_diag);

with negate being a new function that writes the negation of its first argument to its

second argument.

Introduction of Source and Sink Processes

Each PPN should have at least one source and one sink process that represent the

input and output interfaces of the system. In a physical implementation, these source

and sink processes exclusively communicate with the environment. For example, a

source process may represent a video capture device, whereas a sink process may rep-

resent a display device. The remaining non-source and non-sink processes perform

the actual data processing.

In the current implementation of PNGEN, source and sink processes have to be ex-

plicitly specified in the C input, using function calls that have only output arguments

and only input arguments, respectively. Any arguments to the top level function,

such as im on line 1 of Figure 6.8, are currently ignored by PNGEN. The M-RVD

QRD reference code communicates input and output data via array arguments of the
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1 void mrvdqrd(int im[4][4][15], ...) {

2 #pragma AP ARRAY_PARTITION variable=im complete dim=1 partition

3 ...

4 }

Figure 6.8: Input arguments to the top-level M-RVD QRD function.
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diag
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vec

Figure 6.9: Initial PPN for the M-RVD QRD block.

top level function, as shown in Figure 6.8. This means we have to translate the top

level function argument list into source and sink processes. For every input argument,

we introduce a function and a loop nest such that all elements of the array are written

exactly once. We illustrate this for the im input argument in Figure 6.11. The input

argument is removed from the function header and defined as a local variable. The

order in which the elements are written should match the order in which the elements

are read for the first time by any subsequent processes. This ensures communication

can be implemented using regular FIFO channels instead of more expensive reorder-

ing buffers. In a similar way, for every output argument, we introduce a function and

a loop nest such that all elements of the array are read exactly once.

We are able to reuse the original test bench by making additional modifications to

the C code. First, we modify the test bench to read and write test vectors from and to

global variables. Next, we make the source and sink processes stateful by introducing

an internal counter that is incremented upon every invocation of the particular func-

tion. Using this counter, the corresponding array elements are read from or written to

the global test vectors. Although these changes assist us in verifying the functional-

ity after each C code transformation, they have no implications for the final hardware

implementation, since the source and sink processes are typically replaced by the

interfaces they represent.
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Figure 6.10: Flat execution profiles of diagonal and off-diagonal cell resources.

Initial PPN

After the source code refactorings discussed so far, a first PPN can be obtained using

PNGEN, which is shown in Figure 6.9 This initial PPN contains one diagonal cell

and one off-diagonal cell, since the diagonal and off-diagonal cell calls appear only

once in the C code of Figure 6.3. An architecture with only one off-diagonal cell

cannot achieve the throughput demanded by the application requirements. This can

be observed using the flat execution profiles shown in Figure 6.10 obtained using

cprof. The execution time for a single execution of the PPN is about 10000 clock

cycles, which is more than ten times the desired execution time of 960 clock cycles.

Splitting

The AutoESL and reference implementations contain one diagonal cell and eight off-

diagonal cells to meet the throughput requirements of the sphere decoder application.

We have applied loop unrolling to the innermost loop to obtain eight off-diagonal

cells in the AutoESL design. HLS tools such as AutoESL provide a pragma to unroll

a loop while keeping the code compact and maintainable. To obtain the same archi-

tecture, we apply a plane cutting transformation to the PPN with a factor 8 on the

innermost dimension n of the offdiagonal process, specified as:

planecut(offdiagonal, n, 8)

This results in eight offdiagonal processes, which resembles the architecture of the

reference implementation.

After splitting the off-diagonal cell, the source processes also have to be split to

ensure all eight off-diagonal cells receive data at a fast enough rate. This is similar to

partitioning an input array in the HLS context, effectively increasing the bandwidth of

that array. For example, for an input array im, representing the imaginary components

of the complex-valued channel matrix, we apply a pragma in AutoESL to partition

this array. This is shown by the pragma in Figure 6.8. The pragma splits im into four

distinct subarrays im_0[4][15], im_1[4][15], im_2[4][15], and im_3[4][15]. We

have removed the input and output arguments to the top-level function by introducing
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1 void mrvdqrd() {

2 int im[4][4][15];

3 for (j=0; j<4; j++)

4 for (m=0; m<4; m++)

5 for (c=0; c<15; c++)

6 initmatrix( &im[j][m][c] );

7 }

Figure 6.11: Source process for input argument im of Figure 6.8.

source and sink processes as discussed above. The code in Figure 6.11 implements

a source process for input matrix im. After splitting the off-diagonal cell, we need

to split the initmatrix process as well to make sure data from mat_im is delivered

at a fast enough rate. This is done by applying a plane cutting transformation with a

factor 4 on the j dimension of initmatrix. As a result, we obtain four initmatrix

processes that deliver data to four out of eight off-diagonal cells. The other four

off-diagonal cells require the real components of the complex-valued channel matrix,

which is stored in an array re. We apply the same plane cutting transformation to the

source process for this array.

A similar relation exists between sink process splitting in PPNs and output array

partitioning in HLS, to ensure that data produced by the off-diagonal cells is con-

sumed at a fast enough rate.

After the splitting transformations, we again use cprof to evaluate the performance

of the new PPN. The technique described in Section 4.6.6 allows us to evaluate the

splitting transformations at the sequential code level, without the need to apply the

transformations to the sequential code. The resulting flat execution profiles are shown

in Figure 6.12. The execution time is now reduced to about 960 clock cycles, which

means the PPN meets the application throughput requirements.

Process Merging

Similar to the AutoESL and the reference implementations, the PPN implementa-

tion now consists of one processing resource for the diagonal and eight processing

resources for the off-diagonal cell computations. This allows the PPN to meet the

throughput demands of the application. We now ask ourselves if we can reduce the

resource cost of the implementation while satisfying the throughput constraints. For

this purpose, we analyze the utilization of the eight off-diagonal cell LAURA pro-

cessors using the flat execution profiles obtained by cprof. The number of simul-

taneously active iterations on each off-diagonal cell LAURA processor over time is
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Figure 6.12: Flat execution profiles of off-diagonal cell resources after splitting by a

factor eight.
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1 for (n=1; n<8; n++) {

2 if (n < 7-m) {

3 if (n == 1) pr$ = 1;

4 if (n == 2) pr$ = 2;

5 if (n == 3 || n == 8) pr$ = 3;

6 if (n == 4 || n == 7) pr$ = 4;

7 if (n == 5 || n == 6) pr$ = 5;

8

9 // Offdiagonal cell profiling instrumentation ...

10 }

11 }

Figure 6.13: Evaluating merging transformations using cprof.

shown in Figure 6.12. The maximum number of simultaneously active iterations on

a processor is given by the processor’s pipeline depth, which is 11 cycles. From Fig-

ure 6.12, we observe that the utilization of the first off-diagonal cell processor (OD 1)

is almost 100%, because the pipeline is fully occupied by eleven iterations for most

of the time. On the other hand, the last off-diagonal cell processor (OD 8) is active

for only 1
8 of the time, which means the utilization is approximately 12%.

Our goal is to merge the processors with low utilization, such that resource cost is

reduced while throughput is not affected. Off-diagonal cell 1 determines the overall

throughput, as it has the longest execution time according to Figure 6.12. By looking

at this figure, we expect that merging off-diagonal cells 3 and 8 should lead to a

combined execution time that is still shorter than the execution time of OD 1. A

similar expection holds for merging OD 4 and 7, and OD 5 and 6. This would lead to

an implementation with only five off-diagonal cell processors instead of eight.

To evaluate whether this merging transformation is beneficial, we consider the two

conditions for a merging transformation described in Section 5.2.2. The first condi-

tion is that the processes that are merged execute the same function. This condition

is met, since each process executes the same off-diagonal cell function. The second

condition is that the overall throughput should not be affected by the merging. We

use cprof to assess if this condition is met. We leverage the technique of Section 4.6.6

to evaluate the merging transformation at the sequential code level. Recall that this

technique employs a variable pr$ which selects the processing resource on which an

iteration executes. We assign iterations of the n-loop to pr$ according to the merg-

ing transformation, as shown in Figure 6.13. For example, off-diagonal cell 1 is not

merged with any other off-diagonal cell, and is therefore assigned exclusively to pro-

cessing resource 1 on line 3. Offdiagonal cells 3 and 8 are merged, and are therefore

both assigned to processing resource 3 on line 5. The resulting flat execution profiles
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Figure 6.14: Flat execution profiles of off-diagonal cell resources after merging cells

3 & 8, 4 & 7, and 5 & 6.

are shown in Figure 6.14. The total execution time of the merged version is identical

to the execution time of the unmerged version. We therefore conclude that the pro-

posed merging transformation would be worthwhile to apply for further evaluation at

the implementation level.

6.4.2 Synthesis

After obtaining a process network with the desired throughput characteristics, we

generate an RTL implementation using the ESPAM tool. Because the Daedalus tool

flow does not provide means to synthesize data paths, we have reused the IP cores

for the diagonal and off-diagonal cell functions from the AutoESL implementation.

These IP cores can easily be integrated into the execute units of the generated LAURA

processors that implement the processes. Since the source and sink processes repre-

sent interfaces of the application, we do not synthesize LAURA processors for these

processes. The interface to the PPN consists of the FIFO buffers that connect the

interior processes of the PPN to the source and sink processes.

To achieve the highest clock frequency currently possible for LAURA processors,

we have used the optimization described in Section 3.5.1. Despite this optimization,

the RTL for the eight-off-diagonal-cell implementation achieves a clock frequency of

176 MHz, whereas 225 MHz is required to meet the application throughput demands.

The alternative implementation with only five off-diagonal cells was not imple-

mentable by ESPAM, because merging of LAURA processors is not supported in the

general case as explained in Section 5.1.2. An alternative with seven off-diagonal
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Design LUT FF DSP BRAM Fmax

SysGen [DTD+09] 5082 5699 30 19 225

AutoESL [CLN+11, NNH+11] 3862 4931 30 19 225

Daedalus-8OD 6506 5235 30 38 176

Daedalus-7OD 6672 5309 27 70 172

Daedalus-5OD 21

Table 6.1: M-RVD QRD post-place-and-route implementation statistics.

cells, obtained by merging the last two off-diagonal cells, was implementable, be-

cause the compound process has a convex polyhedral set as its domain.

6.5 Comparison

In Table 6.5, we compare resource usage statistics for the M-RVD QRD block of a

reference RTL design [DTD+09], the AutoESL design, and the Daedalus design. To

obtain accurate comparisons, we have reimplemented the reference design using the

Xilinx ISE 12.1 tools targeting a Virtex-5 VLX110T-2 FPGA. The AutoESL design

has been developed using AutoESL AutoPilot 2010.07.ft and has also been imple-

mented using ISE 12.1 targeting the same FPGA. The Daedalus designs have been

developed using PNGEN 0.10-93-g73a41d1 and ESPAM 2011.10, and have been im-

plemented using ISE 12.1 targeting the same FPGA. Verification of the RTL was

performed using a manually written testbench in VHDL that used the same test vec-

tors as the testbench for the SysGen and AutoESL designs.

The SysGen, AutoESL, and Daedalus-8OD designs all employ the same architec-

ture containing one diagonal and eight off-diagonal cells. This is reflected in the DSP

resource cost, which is the same for all three designs. The AutoESL design has lower

LUT and FF cost mainly because the off-diagonal cell was more optimized than the

off-diagonal cell of the SysGen design. The Daedalus-8OD design has higher LUT

cost than the SysGen design because of the logic implementing the LAURA proces-

sors and channels. The Daedalus-8OD design has lower FF cost than the SysGen

design, because the Daedalus-8OD design was not optimized for the target clock fre-

quency of 225 MHz, and thus lacks careful insertion of more FF primitives to meet

the target clock frequency. The Daedalus-8OD design requires twice the amount of

block memory (BRAM) primitives as the SysGen and AutoESL design, to allow suf-

ficiently large channel sizes that do not degrade the throughput. The Daedalus-7OD

design contains only seven off-diagonal cells, which is reflected in a saving of three
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DSP primitives. This comes at the expense of slightly higher LUT and FF cost, and

almost a doubling in BRAM cost. The increase in BRAM cost is caused by larger

buffer sizes needed to avoid blocking writes that degrade throughput. The Daedalus-

5OD design was not implementable, as explained in Section 6.4.2. We know that an

off-diagonal cell requires three DSP primitives. Eliminating three off-diagonal cells

thus leads to a reduction of nine DSP primitives. Estimating the other cost character-

istics of the Daedalus-5OD is not trivial, because these characteristics depend on the

interplay of many factors. Therefore, these characteristics are left empty in Table 6.5.

We did not succeed in obtaining an architecture with less than eight off-diagonal

cells using AutoESL. Attempts to express such architectures in the C code resulted

in implementations that did not satisfy the throughput requirements.

In Section 6.3.3, we have compared the design times of the SysGen and AutoESL

designs. Comparing the design times of the Daedalus and AutoESL designs is dif-

ficult for the following three reasons. First, the AutoESL design time includes time

needed to study the application and the SysGen reference design. Second, the blocks

implementing the diagonal and off-diagonal cells were already available during the

Daedalus design, whereas these had to be developed and optimized during the Au-

toESL design. Third, we needed to debug and adapt the Daedalus tools, as the appli-

cation revealed corner cases that were not correctly handled by the tools. A design

time estimate would thus be blurred because of these three reasons. Making an ed-

ucated guess nonetheless, we expect that we could reproduce the architecture of the

SysGen and AutoESL designs using Daedalus in about two weeks.

6.6 Conclusion and Summary

We were able to achieve an RTL implementation from sequential C code for an in-

dustrially relevant application using both the commercial AutoESL and academic

Daedalus tools. The AutoESL design was competitive to the manually built ref-

erence implementation. The architecture employed by the AutoESL and reference

designs could be replicated using Daedalus, although the Daedalus design did exhibit

higher resource cost and a lower clock frequency. We attribute this to Daedalus be-

ing a primarily a research environment, in which the limited development power is

invested in research aspects rather than competition with commercial products. We

expect that more competitive designs can be obtained using Daedalus with additional

engineering effort, as we do not see fundamental limitations.

The use of synthesis techniques and optimizations presented in Chapter 3, the cprof

analysis technique presented in Chapter 4, and the transformations presented in Chap-

ter 5 proved essential in obtaining the architecture of the sphere decoder reference
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design. Moreover, the cprof technique allowed us to quickly evaluate performance

of alternative application instances at the sequential code level. We therefore con-

clude that the work presented in this dissertation are essential contributions to handle

industrially relevant applications in Daedalus.



CHAPTER 7
CONCLUSIONS

In this dissertation, we presented techniques that allow a designer to implement MP-

SoCs using the Daedalus system-level design methodology, while taking into account

design constraints on system performance. The techniques presented in this disser-

tation leverage the Daedalus methodology to provide a forward synthesis flow that

bridges the specification and implementation gaps. However, the Daedalus method-

ology did not yet provide a satisfactory solution to satisfy the performance constraints

of a designer. In the conventional forward synthesis flow, the designer knows only

after a time-consuming forward synthesis step if performance constraints are met. In-

stead, the designer should obtain feedback faster, possibly at the expense of reduced

accuracy, allowing him to avoid a time-consuming forward synthesis step if he knows

a design will not satisfy his constraints. We identified three central research problems

in Section 1.2. We presented techniques to address these three central problems in

Chapters 3, 4, and 5.

The first central problem we addressed was the synthesis problem. We found that the

current forward synthesis flow lacked support for RTL implementations for particu-

lar classes of input programs and application characteristics that the PNGEN compiler

could already process. Our solution to this problem in Chapter 3 consists of four con-

tributions. The first contribution is a characterization of function implementations,

which allows us to reason about performance of systems. The second contribution

incorporates novel optimizations that were performed by the PNGEN tool, but which

were not yet incorporated in the generated RTL architecture, into ESPAM. This al-

lows us to handle a broader class of input programs. The third contribution comprises

optimizations for the LAURA processor model’s evaluation logic blocks. These op-

timizations involve pipelining of expression data paths and storage of compile-time
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evaluated expressions in ROMs. Pipelining of the evaluation logic blocks enables

a LAURA processor to run at a higher clock frequency, which may be required to

meet application design constraints. The use of ROMs enables a LAURA processor

to handle more complex domains that may result from transformations. The fourth

contribution consists of a novel reordering buffer design. This allows Daedalus to

generate RTL implementations for applications that exhibit out-of-order communi-

cation. The reordering buffer was designed such that replacing a regular FIFO with a

reordering buffer does not increase the latency in cycles of read and write operations

to the buffer. As a result, transformations that introduce out-of-order communica-

tion no longer cause an increased communication latency. The reordering buffer thus

enables performance gains of such transformations.

The second central problem we addressed was the performance estimation problem.

We found that no applicable performance estimation methods existed that could han-

dle polyhedral process networks implemented using LAURA processors. Estimating

the performance of pipelined execution of process iterations was lacking. Such per-

formance estimations are essential to reason about design constraints on system per-

formance. We have investigated and presented performance estimation techniques at

four different levels in the Daedalus design flow in Chapter 4. The first performance

estimation technique is RTL simulation, which works on the RTL implementation

that is the final output of Daedalus. Instead of prototyping this RTL implementation

on an FPGA, we simulate the RTL that implements the system. We found that RTL

simulation is not feasible for systems containing programmable processors, because

of long simulation times. The second performance estimation technique is SystemC

simulation, which works at the mapped model of the system. SystemC simulation

is faster than RTL simulation, but less accurate. The third performance estimation

technique is MCM analysis, which works on the parallel model of the application.

The MCM analysis technique is analytical, which has the advantage that estimation

time does not depend on the application workload. This leads to performance esti-

mation times that are shorter than SystemC or RTL simulation times. However, we

cannot define tight bounds on the inaccuracy of the MCM method, nor whether the

method overestimates or underestimates the actual throughput. This model is theoret-

ically attractive and gives insight in the behavior of a PPN, but is impractical because

of the lack of accuracy bounds. The fourth performance estimation technique is a

novel profiling-based approach for PPNs, named cprof, which works directly on the

sequential code. This allows one to obtain accurate results, often in less than one

second, without deriving a PPN.

The third central problem we addressed was the transformation problem. We found

that it is not trivial for a designer to select a set of transformations and transforma-

tion parameters such that a design constraint on performance is met. We have pre-
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sented four PPN transformations (i.e., splitting, merging, stream multiplexing, and

scheduling) in Chapter 5. For each transformation, we analyzed factors that affect

the efficacy of the transformation. This aids the designer to select the appropriate

transformations needed to satisfy performance constraints. The first transformation

is splitting, which duplicates a process such that throughput may be increased at the

expense of increased resource cost. We have proposed analytical and profiling-based

strategies to select the splitting factor. The second transformation is merging, which

combines multiple processes such that resource cost is reduced, potentially at the ex-

pense of decreased throughput. We have identified a special case in which merging of

LAURA processors can reduce resource cost while not affecting throughput. The third

transformation is stream multiplexing, which increases throughput of multiple PPN

executions. We have identified criteria to assess when a stream multiplexing transfor-

mation is beneficial, and have presented how to select the stream multiplexing factor

such that the latency of a single PPN execution is not affected. The fourth trans-

formation is scheduling, which reorders iterations of a process to increase pipeline

utilization. We have identified criteria to assess when a scheduling transformation

can be applied to achieve improved pipeline utilization and, consequently, higher

throughput.

To validate our solutions to the three central problems, we have conducted a case

study using an industrially relevant application used in wireless communication re-

ceivers. We compare the extended Daedalus tool flow with the commercial AutoESL

high-level synthesis tool in Chapter 6. Specifically, we have focused on a channel

matrix preprocessor subblock of a sphere decoder. A manually crafted RTL refer-

ence design was available to us. Using a continuous refactoring-based design flow,

we were able to replicate the architecture of the reference design using both Au-

toESL and Daedalus. Refactorings in the AutoESL flow consist primarily of pragma

annotations. Refactorings in the Daedalus flow consist primarily of source code re-

structurings and transformations discussed in Chapter 5. We were able to meet the

tight performance design constraint using AutoESL, but not using Daedalus as low-

level clock frequency aspects have not been engineered out in the Daedalus tools.

Nonetheless, we were able to replicate the architecture of the reference design using

Daedalus, which means Daedalus can handle industrially relevant applications. The

cprof technique and transformations presented in this dissertation proved essential

to obtain the desired architecture of the application in the Daedalus design flow in a

short amount of time. Moreover, the cprof technique allowed evaluating alternative

design points at the sequential code level.

By addressing the three research problems, we have established a powerful system-

level design flow capable of solving industrially relevant design problems, as the

designer knows if his design will satisfy his performance constraints. This makes
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it worthwhile to explore various transformations of the system, still at the sequen-

tial code level. When finding a satisfactory design point, the designer commits to

the time-consuming forward synthesis flow, knowing that the design will satisfy his

performance constraints.



SAMENVATTING

Deze dissertatie beschrijft methodes die het ontwerpproces van applicatiespecifie-

ke multiprocessorsystemen vereenvoudigen voor de ontwerper. Dit ontwerpproces

wordt in toenemende mate ingewikkelder, vanwege toenemende complexiteit, toe-

nemende vraag naar rekenkracht en tijdsdruk van de markt. Om het ontwerpproces

voor toekomstige generaties van multiprocessorsystemen behapbaar te houden, dient

het ontwerpproces op systeemniveau plaats te vinden. Hiertoe gebruiken wij de Dae-

dalus methodologie. We introduceren de Daedalus methodologie in Hoofdstuk 1. De

Daedalus methodologie voorziet in een voorwaarts ontwerpproces van systeemni-

veau naar FPGA implementatie. Echter, de Daedalus methodologie voorziet nog niet

in een ontwerpproces waarin een FPGA implementatie met door de ontwerper be-

paalde prestatiekenmerken wordt afgeleid vanuit een systeemniveau ontwerp. Deze

dissertatie levert daartoe een bijdrage.

De Daedalus methodologie maakt gebruik van het Polyhedrale Proces Netwerk

(PPN) model, welke een belangrijke rol speelt in het vervolg van de dissertatie. We

introduceren het PPN model alsmede enkele gerelateerde modellen in Hoofdstuk 2.

In Hoofdstuk 3 presenteren we uitbreidingen op bestaande technieken om PPN’s te

implementeren in FPGA-technologie. Deze uitbreidingen zijn noodzakelijk om indu-

strieel relevante applicaties te kunnen implementeren in de Daedalus methodologie.

In Hoofdstuk 4 behandelen we vier verschillende methodes om de prestaties van een

applicatie gemodeleerd als PPN te bepalen. De eerste techniek omvat simulatie op

registerniveau. De tweede techniek omvat simulatie op systeemniveau middels Sys-

temC modelering. De derde techniek omvat het analytisch bepalen van het maximale

lus gemiddelde. De vierde techniek omvat instrumentatie van de sequentiële code.

In Hoofdstuk 5 behandelen we vier transformaties om de prestaties van PPNs te

beı̈nvloeden. De eerste transformatie omvat het splitsen van een proces. De tweede

transformatie omvat het samenvoegen van twee processen. De derde transformatie

omvat het verhogen van de doorvoer middels het toevoegen van onafhankelijke da-

tastromen. De vierde transformatie omvat het verhogen van de doorvoer middels het

wijzigingen van de volgorde waarin procesiteraties worden uitgevoerd. We geven
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richtlijnen om aan hand van applicatie analyse transformaties and transformatiepara-

meters te selecteren zodat door de ontwerper bepaalde prestatiekenmerken behaald

worden.

In Hoofdstuk 6 behandelen we het ontwerpproces van een industrieel relevante ap-

plicatie gebruikt in draadloze communicatie. We vergelijken een ontwerpproces mid-

dels een commerciële C-naar-RTL methode met de Daedalus methode. Met beide

methodes zijn we in staat om de gewenste architectuur te verkrijgen.

Het werk beschreven in deze dissertatie omvat een systeemniveau ontwerpproces

waarbij in een vroeg stadium rekening gehouden wordt met prestatie-eisen van het te

ontwerpen systeem. Hiermee kan een designer beoordelen of een gegeven prestatie-

eis haalbaar is, alvorens een tijdrovend syntheseproces op te starten.



CURRICULUM VITAE

Sven van Haastregt was born in Rijpwetering, the Netherlands, in 1985. He obtained

his gymnasium diploma at Visser ’t Hooft Lyceum, in Leiden, the Netherlands, in

June 2003. In September 2003, Sven enrolled in the Computer Science track at

Leiden University, the Netherlands. He received his BSc degree (with honors) in

September 2006, and the MSc degree (with honors) in August 2008. After obtain-

ing the MSc degree, Sven started his PhD research at the Leiden Embedded Research

Center (LERC), part of the Leiden Institute of Advanced Computer Science (LIACS),

Leiden University. He was involved in the MEDEA SoftSoC project on metamod-

eling of Hardware-dependent Software (HdS) and conducted research on high-level

synthesis and performance estimation and optimization of polyhedral process net-

works. During his research, Sven (co-)authored various peer-reviewed conference

and journal articles. He also contributed to the open-source PNGEN and ESPAM

tools, and initiated the PNTOOLS software. From January 2010 to April 2010, Sven

was a guest researcher at Xilinx Research Labs, in San Jose, California, United States

of America. Besides his work as a researcher, Sven was involved as a teaching assis-

tant in the Compiler Construction, Operating Systems, and Challenges in Computer

Science Seminar courses which are part of the Computer Science bachelor program

of Leiden University. The research culminated in the writing of this PhD dissertation

in 2013. As of March 2013, Sven is working as a software engineer at ARM.





ACKNOWLEDGMENTS

Back in 2006, when I was still an MSc. student, Sjoerd Meijer lured me into the Lei-

den Embedded Research Center (LERC). Unknowingly at the time, Sjoerd laid the

foundation towards this dissertation, and for this I am very grateful. In addition, I

would like to thank all present and former members of LERC for providing an inspir-

ing working atmosphere. In particular I want to mention Todor Stefanov and fellow

PhDs Teddy Zhai, Mohamed Bamakhrama, and Ana Balevic for the many interesting

discussions that we had. I also acknowledge all other colleagues from the Leiden

Institute of Advanced Computer Science (LIACS). In particular I want to mention
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Co-simulation, 57

Compound process, 105

Conditional synchronization, 56

Connected component, 28
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Cyclo-Static Data Flow, 25
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Data dependence, 80

Data reuse, 40

Data reuse channel pair, 32

Deadlock, 23

Delay (HSDF), 22

Dependence, see data dependence
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Plane cutting, 102

Platform specification, 33

PNgen, 30

Polyhedral map, 19

application, 19

Polyhedral Process Network, 27

Polyhedral set, 18

Process

operational semantics, 29

scheduling, 109

Production rate, 24

Profiling, 76

Pure function, 28

Q
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