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CHAPTER 8

Towards applications based on measuring the orbital
angular momentum of light

Efficient measurement of the orbital angular momentum (OAM) of light has been a long-
standing problem in both classical and quantum optics. In this thesis, we have presented
two ways to solve this problem, thus opening the way for applications based on the OAM
of light. In previous chapters, we have identified large bandwidth optical communication
and the detection of OAM in astrophysics as potential applications. The application of
OAM generation and detection will, in general, involve more complex types of light than
the monochromatic, coherent laser light that we used to test our detection methods. In
this final chapter, we take the first steps towards the development of such applications
by addressing two important aspects of detecting OAM in real applications. First we
study the response of both detection systems to polychromatic and (partially) incoherent
light. Secondly, we study the orthogonality of the output states in one of our detection
systems, the mode sorter, and its response to single photons, which are both relevant for
applications in large bandwidth optical communication. These first assessments reveal
important properties of the OAM detection systems, that, amongst many other aspects,
have to be studied in more detail in the development of applications.
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8. TOWARDS APPLICATIONS BASED ON MEASURING THE ORBITAL ANGULAR MOMENTUM
OF LIGHT

8.1 Introduction

Ever since it was found in 1992 that light can carry orbital angular momentum [1], many
efforts have been made to measure this quantity, both for beams of light as well as for
single photons. A number of different measurement schemes has been described in the
literature. It was, for instance, already known before 1992, that one can find wave front
dislocations, or optical vortices, in a speckle pattern by interfering the pattern with a flat
wave front, such that the optical vortices show up as a characteristic fork-like interference
pattern [8]. The OAM of a Laguerre-Gaussian beam is directly linked to the topological
charge of the optical vortex at its centre and the interference method can therefore be
used to measure this OAM [53]. It does, however, require many photons to be in the same
OAM state to build up the interference pattern. Another way to measure the OAM of a
light beam is to use special apertures like the multi-pinhole interferometer (MPI) [27] or
a triangular aperture [55], that create qualitatively different diffraction patterns for light
in different OAM states. Again this requires many photons to be in the same state. One
can also use specific holograms to sort orbital angular momentum states spatially [33, 54],
but only with an efficiency that is approximately equal to 1/N, where N is the number of
detected states and one again needs many photons to be in the same state.

There are also methods to measure the OAM of a single photon. One of these meth-
ods is to test if a single photon is in a specific state or not, by means of a hologram and
a single mode fibre [29]. By repeating this test with a series of different holograms, one
can build up a statistical average of the OAM states of the input photons. For a single
photon, this measurement discriminates between two states and does not benefit from
the infinite nature of the OAM state space. The first measurement to discriminate be-
tween more than two OAM states for a single photon was described by Leach et al. [13],
who used a Mach-Zehnder interferometer combined with a Dove prism to spatially sort
photons based on their OAM. The experiment showed the sorting of four OAM states.
In order to sort more states, interferometers have to be added to the setup. To sort N
different states, one needs N− 1 Mach-Zehnder interferometers, which is experimentally
very challenging. In chapters 6 and 7 of this thesis, we have presented a different scheme
to sort OAM states, that is much easier to set up since it consists of only two custom op-
tical elements and two lenses. This mode sorter converts N different input OAM states
into N spatially separated output spots, where N is limited only by the accuracy of the
optics. The only disadvantage of this system is that the output spots slightly overlap,
which limits the accuracy by which one can determine the OAM of a single photon. This
can, however, be overcome by modifying the design of the two custom optical elements,
an example of which has been given in chapter 6.

The MPI and the mode sorter presented in this thesis have made measuring the OAM
of a light beam experimentally much more feasible; in the case of the mode sorter it even
works for single photons. This opens the way towards applications of the OAM of light.
So far, we have only treated the case of coherent, monochromatic light. Several times
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however, we have hinted at the possiblity of detecting OAM in light from astrophysical
sources and the possibility of astrophysical sources generating light with orbital angu-
lar momentum has been treated elsewhere [11, 26, 71]. Light from astrophysical sources
will, in general, not be monochromatic and coherent. It is therefore crucial to study the
response of both the MPI and the mode sorter to polychromatic and (partially) inco-
herent light. The idea that partially coherent light can carry OAM has been described
extensively in literature [72–76]. It has also been shown that a special class of partially
incoherent light beams can, perhaps surprisingly, still produce diffraction patterns with
true intensity zeros behind a MPI [18, 42].

A second application of the OAM of light mentioned in this thesis, is its use for high
dimensional communication schemes, which has been discussed in the literature [30, 33].
Our mode sorter can form a key part of this application, provided the different OAM
states can be separated sufficiently well. In this chapter, we study the channel separation
and the response of the mode sorter for single photons.

This chapter provides calculations for relatively simple examples of polychromatic
and (partially) incoherent light and is organised as follows. We treat the MPI and the
mode sorter in section 8.2 and section 8.3, respectively. In the latter section, we also
study the channel separation of the mode sorter and its response in the quantum regime,
with concluding remarks in section 8.4.

8.2 Multi-pinhole interferometer

8.2.1 Response to polychromatic light

All results presented in previous chapters were obtained with a helium-neon laser, that
has a wavelength λ = 632.816 nm. Due to thermal expansion of the laser cavity this fre-
quency can vary by only ∆λ = ±0.001 nm, being limited by the small spectral width of the
optical gain. This has a very minute effect on the diffraction pattern behind a multi-point
interferometer (MPI), as can be easily seen by considering an N = 2 MPI, which is Young’s
double slit experiment with the slits replaced by pinholes. The far-field diffraction pat-
tern behind the N = 2 MPI is given by bright bands on a dark background separated by
a distance ∆x, which is given by

∆x =
λz
2a , (8.1)

where z is the distance from the MPI to the detector and a is the distance from the
pinholes to the centre of the MPI. It should be noted that the diffraction pattern scales
with λz.

The diffraction patterns behind a general MPI have been extensively discussed in
chapter 2 and 3. For N ≥ 4, they contain information on the topological charge of an im-
pinging optical vortex. These diffraction patterns can be analysed qualitatively by look-
ing at their numerical Fourier transform [41]. This Fourier transformed image shows 2N
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copies of the MPI, that are scaled with respect to the original. For odd N, one can directly
determine the relative phase of the incident optical field at each pinhole by determining
the phase of the Fourier transformed image at the vertices of one of these copies of the
MPI. In addition we can also derive the relative amplitudes of the fields at the individual
pinholes, as shown in chapter 5. The radius of the MPI in the Fourier transform, r, and
the size of the pinholes, s, are given by

r =
nda
λz , (8.2)

s = ndb
λz , (8.3)

where n is the number of pixels in the original image, d the pixel size, a and b the sep-
aration and the diameter of the pinholes in the MPI respectively, λ the wavelength and
z the propagation distance. In [41], Guo et  al. state that the phase of the field can be
unambiguously determined if the separation between the pinholes is at least two times
their diameter. This can be easily understood from the above equation, since for smaller
separations the pinholes will overlap in the Fourier transformed image and the phase
cannot be unambiguously determined.

As can be seen from equation 8.2, the positions and sizes of the pinholes in the Fourier
transformed image not only depend on the separation and diameter of the pinholes in
the MPI, but also on the wavelength. If the field impinging on the MPI contains light
of multiple wavelengths, the Fourier transformed image will be the addition of images of
the pinholes for different wavelengths.

In order to demonstrate this point, we simulated the diffraction pattern behind an
MPI for several different input fields. The patterns are shown in figure 8.1 and were
recorded behind the same N = 5 MPI with a = 200 µm, b = 50 µm, recorded at z = 0.1 m.
We have simulated the diffraction pattern for three different wavelengths, λ = 633 nm,
λ = 700 nm and λ = 780 nm, and superpositions thereof. To be able to more clearly
distinguish the individual modes in the superpositions, we gave the modes a different
topological charge. Although this is somewhat artificial, it simulates a superposition of
wavelengths and modes and therefore helps to illustrate our point more clearly.

As in previous chapters, we analyse the diffraction patterns by calculating the numer-
ical Fourier transform of the diffraction patterns. Figure 8.2 shows the absolute value of
this Fourier transform for the diffraction patterns shown in figure 8.1. As explained be-
fore, one can see 10 pentagons in the Fourier transform, where some of the points are
shared between two pentagons. The size of these pentagons decreases when the wave-
length increases (compare figure 8.2 (a) and (b)). As expected, a superpositions of the
patterns for two wavelengths results in the superposition of the two Fourier transformed
images. In figure 8.2 (c) these two patterns can still be distinguished, but in figure 8.2 (d),
where the wavelengths are closer together, the points start overlapping.
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Figure 8.1: Diffraction patterns behind an N = 5 MPI. The parameters for the MPI are the same
for all four images, but the wavelength of the light is varied. (a) λ = 633 nm with ℓ = 0, (b) λ = 780
nm with ℓ = −1, (c) a superposition of (a) and (b), and (d) a superposition of (a) and λ = 700 nm
with ℓ = −1.
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Figure 8.2: Absolute value of the numerical Fourier transform of the diffraction patterns shown in
figure 8.1.
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Figure 8.3: Phase of the numerical Fourier transform of the diffraction patterns shown in figure
8.1.

Figure 8.3 shows the phase of the Fourier transform and illustrates the overlap even
better. One can clearly see that the phase is equal at all the pinholes for figure 8.3 (a) and
increases from 0 to 2π in figure 8.3 (b). In figure 8.3 (c), one can still distinguish the two
different wavelengths, but this is impossible in figure 8.3 (d), where the different pinholes
overlap and the phase is blurred.

It depends on the exact source that is studied, how stringent the requirement on the
wavelength is. If the source emits a spectrum that consists of several frequency lines that
are not related, the vorticity can only be determined if the resulting peaks in the Fourier
transform do not overlap. The required wavelength separation is then given by

∆λ

λ
=

2b
4a sin(π/N) − b . (8.4)

The size of the pinholes should be kept as small as possible to allow for a large wavelength
range to be detectable. If the MPI is illuminated by a spectrum of different wavelengths,
the analysis will return a blurred Fourier transformed image. If all different wavelengths
contain a vortex, or in other words, if the input field is a white light vortex [77], the
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analysis will still return this vorticity and the method is adequate. In other cases, one has
to be careful in interpreting the image.

8.2.2 Partial coherence

As mentioned before, it has been show that partially coherent light can still contain op-
tical vortices and possess orbital angular momentum [72–76]. The aim of this section is
to find out if an MPI is able to detect the vorticity in such a field. Intuitively, one would
think that this is not the case, since the interference patterns is washed out by the (par-
tial) incoherent character of the beam. However, Gbur et  al. show that special types of
partially coherent beams can generate diffraction patterns with true intensity zeroes [18].
Below we give an analysis that is based on the one presented by Gbur, but for a single
wavelength. The interference pattern behind N pinholes is given by

I(x, y) ∝ r(N)†M(N)r(N), (8.5)

where

r(N) =


A1eiϕ1

A2eiϕ2

. . .

ANeiϕN

 , (8.6)

with Aj the amplitude of the optical field at the j-th pinhole and ϕj ≡ kRj is the phase
introduced by the distance Rj between the pinhole and the observation point (x, y). The
matrix M(N) is given by

M(N) =


1 µ12 . . . µ1N
µ∗12 1 . . . µ2N
...

...
. . .

...

µ∗1N µ∗2N . . . 1

 , (8.7)

where

µjk =
⟨A∗j Ak⟩√

IjIk
(8.8)

is the spectral degree of coherence and Ij would be the intensity observed if only the j-th
pinhole would be open and the average is taken over an ensemble of space–frequency
realizations of the field. The important parameter is the matrix M(N), which describes
the degree of coherence between each of the pinholes. The case of fully coherent beams,
i.e. µjk = 1 for all j, k has been described extensively in previous chapters. If not all µjk
are equal to 1, the diffraction pattern will be partly washed out. In the case N = 2, this
results in a pattern that does not contain any intensity zeroes. Gbur shows that for N > 2
and special classes of partially coherent beams, the intensity patterns will still contain
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Figure 8.4: Diffraction patterns behind an N = 5 MPI for different types of input beams. (a)
Coherent beam l = 0, (b) coherent beam ℓ = −1, partially incoherent beam ℓ = 0 satisfying
equation 8.9 and (d) partially incoherent beam ℓ = −1 satisfying equation 8.9. All other parameters
are equal for all images.

intensity zeroes. One of these special cases is the case where all µjk are real and equal for
j , k and µjj = 1 and

µ = − 1
N − 1 . (8.9)

By comparing the diffraction patterns with the diffraction patterns obtained in pre-
vious chapters, one can see that these patterns are in fact equal, but with the colours
inverted (see figure 8.4).

We also study intermediate cases by varying µ between 1 and − 1
N−1. Figure 8.5 shows

diffraction patterns for several values of µ. We believe that it is justified to conclude that,
except for the fully incoherent case, all patterns contain a remainder of the pattern for
the fully coherent case. This can be understood by the idea that a partially coherent
beam can be considered as having a fully coherent part and a fully incoherent part. The
fully coherent part will result in a diffraction pattern as studied in chapter 2 and the
incoherent part will result in a uniform background. Applying the Fourier analysis, as
described before, shows that this idea is justified. The Fourier transformed images are
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Figure 8.5: Diffraction patterns behind an N = 5 MPI for beams with different coherence. (a)
Fully coherent beam µ = 1, (b) µ = 1

N−1 , (c) incoherent beam µ = 0 and (d) µ = − 1
N−1 . All other

parameters are equal for all images.

comparable to the ones presented, for instance, in figure 8.2 and 8.3 (a) and (b), the only
noticeable difference being that the central pixel has a larger amplitude due to the fact
that all incoherent contributions end up in this pixel. The only exception is the case
that µjk = 0, or, in other words, the case of fully incoherent light, where the diffraction
pattern is completely washed out.

8.3 Mode sorter

8.3.1 Monochromaticity

The OAM mode sorter that is extensively described in chapters 6 and 7 separates optical
vortex states by transforming them to inclined plane waves, which are in turn focussed
to different positions on a detector by a standard lens. The two custom optical elements
that are needed to perform the transformation are created using two spatial light modu-
lators (SLMs). The main advantage of SLMs is their flexibility to add any desired phase
profile to an incoming beam. The phase profiles of the aforementioned custom optical
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components are described by (see chapter 6)

ϕ1(x, y) =
2πa
λf

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (8.10)

ϕ2(u,v) = −2πab
λf exp

(
−u

a

)
cos

(v
a

)
. (8.11)

In addition, the SLMs can be used to compensate for any aberrations or misalign-
ment in the optical setup. The SLMs used in chapter 6 and 7 are reflective devices and
their main disadvantage is their low reflectivity. Especially when combined with the
beam splitters, that are used to ensure perpendicular incidence on the SLMs, the overall
throughput of the mode sorter is low, typically about 1%. An alternative is to make the
two custom components out of a transparent material like glass or plastic. The thickness
profiles of the optical components then needs to be of the following form

t1(x, y) =
λϕ1(x, y)

2π(n − 1)
, (8.12)

t2(u,v) =
λϕ2(u,v)
2π(n − 1)

, (8.13)

where n is the refractive index of the material. In other words

t1(x, y) =
a

f(n − 1)

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (8.14)

t2(u,v) = − ab
f(n − 1)

exp
(
−u

a

)
cos

(v
a

)
. (8.15)

Conveniently, these thickness profiles are independent of the wavelength of the input
light, provided that the dispersion of the glass is negligible, which can be achieved with
special types of glass over a fairly large range of wavelengths. The fact that the optics
can operate at different wavelengths makes them extremely suitable for applications in
high-dimensional optical communication.

8.3.2 Partial coherence

The orbital angular momentum of partially coherent light is still well defined and each
photon has a well defined orbital angular momentum when measured. Since the mode
sorter focusses individual photons to a position on the detector depending on the orbital
angular momentum of the photon, the mode sorter still works for partially coherent light.
The mode sorter can therefore be used to measure OAM spectrum of a partially coherent
light beam.
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8.3.3 Orthogonality

One disadvantage of the OAM mode sorter is the fact that the spatially separated output
spots slightly overlap for different OAM states. In this section we further study this lack
of orthogonality or separability, which introduces cross-talk between the states.

In the mode sorter based on spatial light modulators that is described in chapter
6 and 7, the output aperture of the mode sorter is square and completely filled by the
transformed beam. As explained in chapter 7, there is no information about the OAM
state in the one of the two transformed axes, so we will treat this problem as being one-
dimensional. If we assume that the lens that focusses the transformed OAM states is
much larger than the output aperture of the mode sorter, the focussed spots will have a
intensity profile, I(α), determined by this square aperture

I(α) ∝
(

sin(α)
α

)2
, (8.16)

where α = kd
2f (t−tℓ), k = 2π

λ
is the wavenumber,λ the wavelength, d the aperture size, f the

focal length and tℓ = λf
d is the central position of the ℓ-th peak. The focussed peaks will

slightly overlap, which is inherent to the optical design. One could argue that increasing
the size of the aperture d would decreases the width of the spots. This does however also
decreases the separation between the spots and the overlap will remain the same. The
same reasoning holds for changing the focal length of the final lens. To further support
this argument we present a numerical study of this system.

The most convenient way to use a mode sorter in a communication scheme would be
to define regions of interest in its focal plane. If a photon hits the detector in a specific
region, we can link this position to an orbital angular momentum. We define the ℓ-th
region such that its centre coincides with the peak position for the ℓ-th mode. The
width of one region is given by the separation of the two peaks and so

tℓ −
λf
2d < t ≤ tℓ +

λf
2d . (8.17)

Since sin(α)/α cannot be integrated analytically, we numerically evaluate the problem.
First of all, we calculate the intensity in each of the defined regions for an input beam
with ℓ = 0. About 80% of the intensity ends up in the correct beam while the other 20%
is spread out over the other bins, mostly the neighbouring ones.

To determine whether the overlap indeed does not depend on f or on d, we have
calculated the intensity in all regions for several values of these parameters. As expected
there is indeed no dependence.

As shown in the previous chapter, the mode sorter is sensitive to superpositions of
modes. In addition the relative phase between modes is preserved. This relative phase
does, however, alter the exact intensity distribution and therefore the intensity recorded
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Figure 8.6: Intensity in each of the regions when illuminated with a pure ℓ = 0 optical vortex.

in the defined bins. To study the effect of this relative phase, we have numerically studied
an equal superposition of two modes, ℓ = −1 and ℓ = 0, where we vary the relative phase.
Figure 8.7 shows the intensity in one of the regions, the one corresponding to either ℓ = −1
or ℓ = 0, which are equal since the problem is symmetric. As expected the intensity in
the regions depends on the relative phase between the modes.

The variation is significant, about 20% of the peak value and this is something that
needs to be taken into account, since it can affect the outcome of the measurements.
The relative phase is also affected by the exact angular orientation of the mode sorter. A
possible solution to this dependence on the relative phase is to use only pure modes and
keep their relative phase fixed.

8.3.4 Quantum optics

Decreasing the intensity of the input beam does not change the working principle of the
mode sorter and thus it should able to sort individual photons. The restriction that the
spatially separated output spots slightly overlap leaves some inaccuracy in the determi-
nation of the OAM value of the photon. This can be resolved by modifying the opti-
cal design by adding a binary grating to the first optical element of the mode sorter and
changing the second custom element accordingly. This will create a number of diffraction
orders, all containing the same phase ramp. By changing the periodicity of the grating,
these phase ramps can be connected to form a higher phase ramp, thereby increasing the
separation between the final spots. Implementing this, does increase the overall optical
complexity of the system.

In an optical communication scheme, one could also use only every second, third or
even fourth mode. The latter option reduces the overlap between different output states
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Figure 8.7: Intensity in the ℓ = 0 region for an equal superposition of ℓ = −1 and ℓ = 0, A ∝
e−iϕ + eiβ as a function of relative phase between the modes, β.

to below the 1% level.
As the orbital angular momentum states are spatially separated in the focus of the

mode sorter, this allows us to perform operations on the individual modes in a spectrum,
like changing the relative phase and amplitudes. This can also have applications in more
fundamental studies of OAM.

One could use the same mode sorter, but inverted, to generate OAM states and su-
perpositions thereof.

8.4 Conclusion

For almost twenty years, efficient measurement of the orbital angular momentum of light
has been experimentally challenging. In this thesis we have presented two novel methods
to solve this measurement problem, which open the way for use of the OAM of light
in applications. These applications will bring new challenges like measuring the OAM
of polychromatic and (partially) incoherent light. In this final chapter we have shown
with some initial calculations that the multi-pinhole interferometer is able to detect the
OAM of an incoming light beam with a limited wavelength range and that it still works
for partially incoherent light. In addition, we have shown that the mode sorter works for
both polychromatic and partially coherent light. Finally, we have shown that the inherent
cross-talk in the mode sorter can be reduced by changing the optical design. All these
aspects of the applications of orbital angular momentum detection are very interesting
and the initial calculations presented here can serve as a starting point for more detailed
study.
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