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CHAPTER 6

Efficient sorting of orbital angular momentum states
of light

We present a method to efficiently sort orbital angular momentum (OAM) states of light
using two static optical elements. The optical elements perform a Cartesian to log-polar
coordinate transformation, converting the helically phased light beam corresponding to
OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses
each input OAM state to a different lateral position. We demonstrate the concept ex-
perimentally by using two spatial light modulators to create the desired optical elements,
applying it to the separation of eleven OAM states.
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6. EFFICIENT SORTING OF ORBITAL ANGULAR MOMENTUM STATES OF LIGHT

6.1 Introduction

Nearly 20 years ago it was recognized by Allen et  al. that helically phased light beams,
described by a phase cross section of exp(iℓϕ), carry an orbital angular momentum (OAM)
of ℓℏ per photon, where ℓ can take any integer value [1, 2, 25]. The unlimited range of ℓ
gives an unbounded state space, and hence a large potential information capacity [30,
33]. At the level of single photons, OAM entanglement is a natural consequence of the
conservation of angular momentum in nonlinear optics [48]. This entanglement makes
OAM a potential variable for increased-bandwidth quantum cryptography [49–51], but
only if a single photon can be measured to be in one of many different states.

Generation of helically phased beams with OAM is most usually accomplished using
a diffractive optical element, i.e., hologram, the design of which is a diffraction grating
containing an ℓ-fold fork-dislocation on the beam axis [52, 53]. If the hologram is illumi-
nated by the output from a laser, or single-mode fiber, the first-order diffracted beam has
the required helical phase structure. The same setup, when used in reverse, couples light
in one particular OAM state into the fibre. In this case, the hologram acts as a mode
specific detector, working even for single photons [29]. However, such a hologram can
only test for one state at a time. Testing for a large number of possible states requires a
sequence of holograms, thereby negating the potential advantage of the large OAM state
space. More sophisticated holograms can test for multiple states, but only with an effi-
ciency approximately equal to the reciprocal of the number of states [33, 54]. For classical
light beams, the OAM state can be readily inferred by the interference of the beam with
a plane wave and counting the number of spiral fringes in the resulting pattern [15]. One
can also use the diffraction pattern behind specific apertures to determine the OAM state
of the incoming light beams [27, 55]. All of these approaches again require many photons
to be in the same mode so as to produce a well-defined pattern.

The symmetry of helically phased beams means that their rotation about the beam
axis induces a frequency shift, each OAM component inducing a separate frequency side-
band [56], which could, in principle, be used to measure OAM [30]. However, spinning
a beam about its own axis at a rate sufficient to measure its frequency shift is not tech-
nically possible. This technical challenge is lessened by using a static beam rotation to
introduce an ℓ-dependent phase shift within a Mach-Zehnder interferometer; a cascade
of N − 1 interferometers can measure N different states [13]. Although establishing the
principle for single-photon measurement of OAM, for large N, this cascaded interfero-
metric approach remains technically demanding for inclusion into larger systems.

6.2 Theory

In this chapter we are motivated by the simple example of the discrimination of plane
waves within direction space. A lens is all that is required to focus a plane wave to a spot
in its focal plane, the transverse position depending on the transverse phase gradient of
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6.2. THEORY

the plane wave. This allows multiple plane waves to be distinguished from each other
using a detector array. A requirement for the separation of any two plane waves is an
additional phase change of 2π across the aperture of the lens, resulting in a difference in
spot positions comparable to the Rayleigh resolution limit. This suggests an approach
for separating OAM states, for which a change in mode index of ∆ℓ = 1 corresponds to
an increment in the azimuthal phase change of 2π. The key optical component in this
approach is one that transforms azimuthal position in the input beam into a transverse
position in the output beam, i.e., an optical element that transforms a helically phased
beam into a transverse phase gradient. This corresponds to the transformation of an in-
put image comprising concentric circles into an output image of parallel lines. Mapping
each input circle onto an output line gives the required deviation in ray direction and
hence the phase profile of the transforming optical element. However the resulting vari-
ation in optical path length means that the transformation introduces a phase distortion
that needs to be corrected by a second element. The transforming system therefore com-
prises two custom optical elements, one to transform the image and a second, positioned
in the Fourier plane of the first, to correct for the phase distortion. This transformation
is an example of an optical geometric transformation which has been previously studied
in the context of optical image processing [57]. It was shown that a geometric transfor-
mation can only be implemented by a single optical element if the mapping is conformal.
The optical element performs a mapping (x, y) 7→ (u,v), where (x, y) and (u,v) are the
Cartesian coordinate systems in the input and output plane, respectively. In our approach
v = a arctan(y/x) and the conformal mapping requires u = −a ln(

√
x2 + y2/b), similar to

[58, 59]. The phase profile of the transforming optical element is then given by

ϕ1(x, y) =
2πa
λf

y arctan
( y

x

)
− x ln

 √
x2 + y2

b

 + x
, (6.1)

where λ is the wavelength of the incoming beam, and f is the focal length of the Fourier-
transforming lens. The parameter a scales the transformed image and a = d/2π, where
d is the length of the transformed beam. b translates the transformed image in the u
direction and can be chosen independently of a.

The required phase correction can be calculated by the stationary phase approxima-
tion [59] and is given by,

ϕ2(u,v) = −2πab
λf exp

(
−u

a

)
cos

(v
a

)
, (6.2)

where u and v are the Cartesian coordinates in the Fourier plane of the first element.
Figure 6.1 (a) and (b) show the phase profiles of the transforming and phase-correcting
optical element, respectively. One can see that the transforming optical element contains
a line discontinuity. The end of this line, i.e., the centre of the phase profile, defines the
axis around which the OAM is measured.
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Figure 6.1: Phase profiles of (a) the transforming and (b) the phase-correcting optical element. d is
the length of the transformed beam. In (b) only that part of the phase-correcting element is shown,
that is illuminated by the transformed beam. In the experiment, the phase profiles are displayed on
the spatial light modulators (SLMs) with 2π phase modulation. (c) Schematic overview of the setup.
We use SLMs to both generate Laguerre-Gaussian beams (SLM1) and create the desired phase
profiles for the transforming and phase-correcting optical elements (SLM2 and SLM3, respectively).
L1 is the Fourier-transforming lens and L2 focusses the transformed beams. We use beamsplitters
to ensure perpendicular incidence on the SLMs.
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6.3. EXPERIMENT AND RESULTS

A lens is inserted after the phase-correcting element to focus the transformed beam,
which now has a 2πℓ phase gradient, to a spot in its focal plane. In the plane of this lens,
the transformed beam is rectangular, meaning that the diffraction limited focal spot is
elongated in the direction orthogonal to the direction in which the spot moves. The
transverse position of the spot changes as a function of ℓ and is given by

tℓ =
λf
d ℓ. (6.3)

6.3 Experiment and results

We use diffractive spatial light modulators (SLMs) to create the desired phase profiles.
For monochromatic light, an SLM can be programmed such that any desired phase profile
is applied to the first-order diffracted beam, limited in complexity only by the spatial
resolution of the SLM. Figure 6.1 (c) shows a schematic overview of the optical system.
We use Laguerre-Gaussian (LG) beams as our OAM states. The first SLM, programmed
with both phase and intensity information [51], is used to generate any superposition of
LG modes. Using relay optics and an iris to select the first-order diffracted beam, this
input state is directed onto the transforming element, displayed on the second SLM,
which performs the required geometrical transformation in the back focal plane of the
Fourier-transforming lens. We choose d such that the transformed beam fills 80% of the
width of the phase corrector element in order to avoid diffraction effects at its edges. A
third SLM is used to project the phase-correcting element. The diffracted beam from
this SLM has a transverse phase gradient dependent on the input OAM state. These
direction states are focussed onto a CCD array by a lens and, as discussed above, the
lateral position, tℓ, of the resulting elongated spots is proportional to the OAM state of
the incident beam.

Figure 6.2 shows modeled and observed phase and intensity profiles at various places
in the optical system for a range of OAM states. The modeled data is calculated by plane
wave decomposition. In the second column, one can see that an input beam with circular
intensity profile is unfolded to a rectangular intensity profile with a 2πℓ phase gradient.
As predicted, the position of the elongated spot changes with the OAM input state. We
recorded the output of the mode sorter for input states between ℓ = −5 and ℓ = 5. The
experimentally observed spot positions are in good agreement with the model prediction.
Our system further allows us to identify a superposition of OAM states, as can be seen
in the final row of figure 6.2, where an equal superposition of ℓ = −1 and ℓ = 2 gives two
separate spots in the detector plane at the position of ℓ = −1 and ℓ = 2. We note that
observed spots are slightly broader than the modelled ones, which is due to aberrations
introduced by the optical system.

To directly measure the state of any input beam, we define eleven, equally sized, rect-
angular regions in the detector plane, all centred around one of the expected spot position
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Figure 6.2: Modeled and observed phase and intensity profiles at various planes in the optical sys-
tem. From left to right, the images show the modeled phase and intensity distribution of the input
beam just before the transforming optical element and just after the phase-correcting element, and
the modeled and observed images in the CCD plane for five different values of ℓ. The final row
shows the results for an equal superposition of ℓ = −1 and ℓ = 2. The last two columns are 6×
magnified with respect to the first two columns.
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Figure 6.3: Total intensities in all detector regions for pure input OAM states from ℓ = −5 to ℓ = 5,
for both the (a) modeled and (b) observed results. The regions all have the same size and are chosen
such that they fill the entire aperture. The intensities are shown as a fraction of the total intensity
in the input beam.

for the eleven input modes used in the experiment. By measuring the total intensity in
each of these regions, we can determine the relative fraction of a specific OAM state in
the input beam. Figure 6.3 (a) and (b) show the results for eleven pure input states, both
modeled and observed, as shown in the third and fourth column of figure 6.2, respec-
tively. Since the spots for two neighboring states slightly overlap, some of the light in a
state leaks into neighboring regions, i.e., there is some cross talk between different states.
This cross talk shows up as the off-diagonal elements in figure 6.3. As described before,
our experimental results show slightly broader spots than the modelled data and hence
the off-diagonal elements are slightly larger. It is clearly possible to determine the input
state of the light beam from the position of the output spot in the detector plane.

A commonly used measure to quantify the amount of cross talk between channels is
the channel capacity, which is the maximum amount of information that can be reliably
transmitted by an information carrier [60]. In an optical system, this channel capacity
can be quoted as “bits per photon”. If a photon can be in one of N input states and its
state can be measured perfectly at the output, the channel capacity takes the theoretical
maximum value of log2 N.

Table 6.1 presents the channel capacity of the system for the modeled and observed
results, calculated from the data shown in figure 6.3. A generic approach to minimize
cross talk is to increase the separation between channels. We therefore consider the
cases where we use only every other state, ∆ℓ = 2, and every third state, ∆ℓ = 3. This
approach gives fewer states, but less overlap between different spots. In all cases, due
to the experimental imperfections, the channel capacity for the observed data is slightly
lower than the modeled one, but for ∆l = 3 it approaches the model very closely.
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ℓ N log2 N Modeled Observed
1 11 3.46 2.36 1.96
2 6 2.59 2.10 1.93
3 4 2.00 1.70 1.68

Table 6.1: Channel capacity calculated from the results shown in figure 6.3. The first three columns
show the separation between the channels,∆l, the number of states taken into account, N, and the
theoretical maximum value, log2 N. The last two columns correspond to the data shown in figures
6.3 (a) and (b), respectively.

6.4 Discussion

We note that the optical transformation is only perfect for rays which are normally in-
cident on the transforming element. Helically phased beams are inherently not of this
type, the skew angle of the rays being ℓ/kr [61]. Although this skew angle is small when
compared to the angles introduced by the transforming element, it might introduce a
slight transformation error which increases with ℓ. If the input is a ringlike intensity pro-
file, the skew angle leads to a sinusoidal distortion from the expected rectangular output.
This potential skew ray distortion is reduced by decreasing the propagation distance over
which the transformation occurs, i.e., reducing f.

In its present form, our approach is limited by the fact that the resulting spots are
slightly overlapping. This is because our transformation discards the periodic nature of
the angular variable, using instead only a single angular cycle and producing an inclined
plane wave of finite width, and similarly a finite width of spot. One option for improve-
ment is to modify the transformation to give multiple transverse cycles, which results in
larger phase gradient and thus a larger separation between the spots, albeit at the expense
of increased optical complexity. One approach to implementing this improvement would
be to add a binary phase grating to the transforming elements, producing both positive
and negative diffraction orders. By adjusting the pitch of the grating appropriately, two
identical, adjoining copies of the reformatted image are created in the plane of the phase
corrector.

We further recognise that there is a 70% light loss associated with the two SLMs that
comprise the mode sorter. This loss could, however, be eliminated by replacing the SLMs
with the equivalent custom-made refractive optical elements.

6.5 Conclusion

In conclusion, we have described a novel system comprising of two bespoke optical ele-
ments that can be used to efficiently measure the OAM state of light. We have shown
numerical and observed data to support our method. The method has a limitation due
to the overlap of the spots for different states that could be reduced by applying an addi-
tional diffraction grating to the first surface. The system opens the way to many interest-
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ing investigations ranging from experiments in multiport quantum entanglement [49], to
applications in astrophysics [11] and microscopy [62], all of which make use of the OAM
state basis.
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