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CHAPTER 5

Quantitative mapping of the optical vortices in a
speckle pattern

In previous chapters, we have demonstrated that a multi-pinhole interferometer can be
used to measure the topological charge of an optical vortex. We further showed that
this method can be used to find the optical vortices in a speckle pattern. Here, we show
that a multi-pinhole interferometer can also be used to make a two-dimensional map of
an optical field in terms of radially independent optical vortex components, exp(imϕ),
where m is an integer. From these maps, we can not only determine the position and
topological charge of the optical vortices in the field, but also their anisotropy and their
orientation. We present results for an isotropic optical vortex and a speckle pattern con-
taining several vortices. The results from the latter case can serve as the starting point to
experimentally study the statistics of the anisotropy and orientation of optical vortices
in a speckle pattern.

G. C. G. Berkhout, Y. O. van Boheemen, M. P. van Exter, and M. W. Beijersbergen, in
preparation for publication.
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5. QUANTITATIVE MAPPING OF THE OPTICAL VORTICES IN A SPECKLE PATTERN
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Figure 5.1: Phase of the field for (a) an isotropic ℓ = 1 optical vortex and (b) an anisotropic ℓ = 1
optical vortex. The black lines indicate equal phase lines and are spaced π/4 radians apart. In (b)
the lines are more closely spaced around the y axis, showing the anisotropic character of the vortex.
In addition, the dashed lines indicate lines of constant intensity. For an isotropic optical vortex,
the lines of constant intensity are circles, while for an anisotropic optical vortex they are ellipses.

5.1 Introduction

Optical vortices are of great importance in optics, both for their fundamental properties
and their connection to the orbital angular momentum of light [1, 25], as well as for their
applications in optical communication [30, 33] and coronography [21].

Optical vortices are associated with phase singularities in an optical field. Isotropic
or pure optical vortices are characterised by a complex amplitude whose azimuthal be-
haviour is characterised by, A(ϕ) ∝ exp(iℓϕ), where ℓ is the topological charge, i.e., the
integer number of multiples of 2π that the phase of the field increases in a full turn around
the vortex. For an isotropic optical vortex, this phase increase goes linear with the az-
imuthal coordinate, ϕ. However, in general, this phase increase does not have to be linear,
in which case the vortex is called anisotropic (see figure 5.1 for a comparison). Not only
does the phase increase in a nonlinear fashion around an anisotropic vortex, also the in-
tensity profile around it is anisotropic, meaning that the lines of constant intensity are
ellipses [44], which is indicated by the dashed lines in figure 5.1. Describing the azimuthal
behaviour of the field around an anisotropic optical vortex requires more than one pure
optical vortex mode, such that the field can be decomposed in the orthogonal basis of
pure vortex modes

A(ϕ) =
∑

m

λm√
2π

eimϕ, (5.1)

where the factor 1/
√

2π ensures normalization. The coefficient λ0 is related to the local
intensity of the field, while the coefficients λ−1 and λ1 are related to the derivatives of the
field. In the case of an isotropic optical vortex, λm = δm,ℓ, where δi,j is the Kronecker
delta.

Anisotropic optical vortices occur in speckle patterns, which arise naturally from the
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5.2. THEORY

interference of a large number of more or less random plane waves. At particular places
in a speckle pattern the amplitude of the field vanishes, causing the phase to be singu-
lar. Around these phase singularities an optical vortex is formed, whose exact form is
determined by the local interference of the plane waves. Several parametrisations have
been proposed to characterise the behaviour of the field around such a vortex. In [9],
Freund introduced two parameters to describe the field, which he called the anisotropy
and skewness. However, the division between anisotropy and skewness depends on the
overall phase of the optical field. This was pointed out by Schechner and Shamir [45],
who claimed that the parameters introduced by Freund are inconvenient as ”they are
not functionally independent of each other.” The true independent parameters are the
anisotropy of the vortex and the orientation of the major semi-axis of the ellipse shown
in figure 5.1 (b). A detailed description of these parameters is given in [32, 44, 46]. In
[44], the statistical distributions of the anisotropy and orientation in a speckle pattern
are given. Experimental verification of the distribution of the anisotropy has been shown
in [38].

A convenient way to find the optical vortices is to interfere the speckle pattern with
a reference beam [8, 38, 47], which allows reconstruction of the phase around the phase
singularity. From this phase reconstruction, the topological charge, anisotropy and ori-
entation of the optical vortex can be determined.

In previous chapters we have described a different method to measure the topological
charge of an optical vortex using a multi-pinhole interferometer (MPI). In chapter 4, we
have shown that this method also works for finding optical vortices in a speckle pattern.
Here, we demonstrate that we can use an MPI to map a field in terms of its pure optical
vortex components, in other words, that we can find the coefficients λm for each position
in the field. From these coefficients, we can determine the position of the optical vortices
and their topological charges as well as their anisotropy and orientation.

We present results for an isotropic optical vortex with ℓ = −1 and a speckle pattern.
The latter case can serve as a starting point for studying the statistics of the anisotropy
and orientation of the optical vortices in a speckle pattern.

5.2 Theory

A general MPI consists of N pinholes with diameter b, positioned equidistantly on the
circumference of a circle with radius a. Provided that the pinholes do not overlap, the
transmission function of the MPI, T(x, y), is given by

T(x, y) =
N−1∑
k=0

circ(x − xk, y − yk), (5.2)
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where
circ(x, y) =

{
1 if

√
x2 + y2 ≤ b/2

0 if
√

x2 + y2 > b/2 , (5.3)

and (xk, yk) = (a cosαk, a sinαk) is the centre of the k-th pinhole with αk = 2πk/N. The
diffraction pattern behind the MPI is given by

I(u,v) ∝
∣∣∣F {A(x, y)T(x, y)}

∣∣∣2 , (5.4)

where A(x, y) is the complex field incident on the MPI, and F denotes the Fourier trans-
form. If the pinholes are small compared to the scale of the fluctuations in the incident
field, the amplitude and phase of this field can be considered to be constant over the area
of a pinhole, and the diffraction pattern can be written as (see [27, 41])

I(u,v) ∝

∣∣∣∣∣∣∣∣
N−1∑
k=0

AkF {circ(x − xk, y − yk)}

∣∣∣∣∣∣∣∣
2

, (5.5)

where Ak = |Ak| exp(iϕk) is the complex amplitude of the field incident on the k-th pin-
hole and |Ak| and ϕk are the amplitude and phase respectively. If the MPI is illuminated
with an optical vortex, the observed diffraction patterns depend in a qualitative way on
the topological charge of the vortex [27]. A more quantitative analysis of the diffrac-
tion patterns is presented in [41]; this analysis is based on taking the numerical Fourier
transform of the diffraction patterns, which is given by

g(x, y) ∝ F −1{I(u,v)} (5.6)

∝
N−1∑
k,l=1

PklAkA∗l , (5.7)

where ∗ denotes the complex conjugate and

Pkl(x, y) =
∫

circ(α − xk, β − yk)circ(α − xl − x, β − yl − y)dαdβ, (5.8)

and the integral is taken over the entire area of the image. Although the input of the
Fourier transform is a real-valued intensity image, I(u,v), its output g(x, y) is complex
valued. Moreover, g(x, y) is the convolution of the complex field just after the MPI with
its complex conjugate. In the special case that the MPI consists of an odd number of
pinholes and the diameter of the pinholes is not more than half the separation between
them, g(x, y) consists of a number of discrete peaks that are located at (xk − xl, yk − yl) and
given by

g(xk − xl, yk − yl) ∝ AkA∗l , (5.9)
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Figure 5.2: Graphical representation of equation 5.9 for an N = 5 multi-pinhole interferometer
illuminated with an on-axis and centred ℓ = 1 optical vortex. Each of the 20 spots corresponds to
a cross-product, AkA∗l . In addition, the central peak is given by S = ∑N−1

k=0 |Ak|2. As a guide to the
eye, N = 5 dashed pentagons are drawn, which will be used in the analysis described in section 5.3.

where Ak and Al are the complex amplitudes at the k-th and l-th pinhole, respectively.
Interestingly, each peak corresponds to a single product of the amplitudes at two pin-
holes. Figure 5.2 shows a typical example of equation 5.6 for N = 5. Because the input
signal of the Fourier transform, I(u,v), is real valued, g∗(x, y) = g(−x,−y) which can be
clearly seen in the figure.

From the set of cross-products, AkA∗l , the amplitude of the field at each of the pin-
holes can be determined (details of this analysis are provided in section 5.3). Once the
complex amplitudes are determined, these can be rewritten in the basis of radially inde-
pendent optical vortex modes

Ak =

(N−1)/2∑
m=−(N−1)/2

λm√
2π

eim(2πk/N). (5.10)

As explained in chapter 2, an MPI with and odd number of pinholes N can only detect N
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different vortex modes and hence the summation in equation 5.10 runs from m = −N−1
2

to m = N−1
2 . We further define γm ≡ |λm|2.

Once we have decomposed the field in the aforementioned basis, we can use the re-
sults to calculate the anisotropy and orientation of the optical vortex using the equations
given in [44]

s3 =
γ1 − γ−1

γ1 + γ−1
. (5.11)

Finally, we can calculate the orientation of the optical vortex by

ϕ0 =
1
2 (arg λ1 − arg λ−1). (5.12)

5.3 Analysis

To extract the complex amplitudes at the pinholes from the diffraction patterns behind
an MPI, we apply the following analysis steps:

1. Centre the diffraction patterns on the CCD-image and crop the image;

2. Calculate the inverse discrete Fourier transform (IDFT);

3. Determine the complex peak amplitudes of all N(N − 1) + 1 peaks in the IDFT
image;

4. Derive the complex amplitudes, Ak, at the pinholes;

5. Rewrite these amplitudes in terms of the radially independent vortex modes (coef-
ficients λk);

6. Calculate the anisotropy and orientation of the optical vortex.

Below we describe these steps in more detail.
Due to the fact that the MPI moves, while the CCD-camera is fixed, the diffraction

pattern moves across the CCD-camera as the stage moves, which affects the Fourier
transform of the image. To avoid this, we first determine the centre of the diffraction
patterns by making use of the Bessel function amplitude envelope, caused by the diffrac-
tion at the individual pinholes. We do so by convoluting the diffraction pattern with the
Bessel pattern expected from a single pinhole and determining the maximal overlap be-
tween the two images, which corresponds to the centre of the diffraction pattern. Once
the centre of the diffraction pattern is determined, the pattern is shifted such that its
centre coincides with the centre of the image, by circularly rotating the pixels in both
the x and y direction. The original image has 768×512 pixels. After centring, the image is
cropped to 512×512 pixels, by removing 128 columns of pixels on either side of the image.

We take the complex discrete Fourier transform of this centred and cropped image,
which returns an image as described by equation 5.9. Due to the fact that we use a discrete
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Fourier transform, the position, (xkl, ykl), and diameter, s, of all N(N − 1) + 1 peaks in the
Fourier transformed image is scaled and given by

(xkl, ykl) =
nd
λz (xk − xl, yk − yl), (5.13)

s = nd
λz b, (5.14)

where a and b are the dimensions of the multi-pinhole interferometer, z = 0.1 m is the
distance between the MPI and the CCD, λ = 633 nm is the wavelength, n = 512 is the
number of pixels, and d = 9.0 µm is the pixel size. For convenience, we define Skl ≡ AkA∗l
and use the positions given in equation 5.13 as a starting point for finding the peak am-
plitudes |Skl|. The absolute value of the complex amplitude around these peaks, |g(x, y)|
around these peaks is described by the convolution between two pinholes which is de-
scribed by

|g(x, y)| = c
√

(x − xkl)2 + (y − ykl)
2 + |Skl|, (5.15)

where c is a negative constant. We fit this function to the amplitude of the transformed
image around each of the peak positions (xkl, ykl) and find the peak amplitudes |Skl|. The
phase can be directly determined from the phase of g(x, y), which can be combined with
|Skl| to give the complex value of Skl. In addition, we determine the peak amplitude of
the central peak in the Fourier transform, S. To do this, we perform a fitting routine
similar to the one described in equation 5.15, but remove the central pixel of the Fourier
transform, since this pixel alone contains all the background offset of the original image.

From this set of Skl, we can determine the complex amplitude of the field at the pin-
holes. For each fixed value of l, we can apply the following analysis. For demonstration
purposes, we take l = 0 and use

AkA∗0 ≡ Sk0, (5.16)

for k = 1 . . .N − 1. In addition, the intensity of the central peak of the Fourier transfor-
mation is given by

S =

N−1∑
k=0
|Ak|2

= |A0|2 +
N−1∑
k=1

∣∣∣∣∣∣Sk0

A0

∣∣∣∣∣∣2 , (5.17)

where we used equation 5.16 to get to the second part of this equation. Equation 5.17 can
be solved for A0

|A0| =

√
1
2

(
S −

√
S2 − 4S0

)
, (5.18)
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Figure 5.3: Schematic overview of the setup used to measure a map of the pure vortex modes
in a complex field, and thereby the position, charge, anisotropy and orientation of the vortices
contained in the field. We use the setup to study the far-field of a fully developed speckle pattern,
which is generated by illuminating a light shaping diffuser (LSD) with a helium-neon (HeNe) laser
beam. The LSD can be replaced by a fork hologram, which produces isotropic optical vortices.
Two mirrors (M1 and M2) and a filter wheel (FW) are used to steer and attenuate the beam. The
MPI is mounted on a translation stage (TS) that can moved in the x- and y-direction. An iris (D)
is used to shield the MPI from any stray light. The far-field diffraction pattern behind the MPI is
recorded with a lens (L) and a CCD-camera, which is fixed to the optical table.

where S0 =
∑N−1

k=1 |Sk0|2. Since we can determine the field up to an overall phase, we choose
the phase of A0 to be 0. From equation 5.16 and the obtained values for Sk0 we can now
determine Ak for k = 1 . . .N − 1. This analysis can be repeated for l = 1 . . .N − 1, which
reduces the noise in the determined amplitudes.

Finally we rewrite the obtained complex amplitudes in the basis of radially indepen-
dent optical vortex modes using equation 5.10 and calculate the anisotropy and orienta-
tion of the vortex using equations 5.11 and 5.12, respectively.

5.4 Experiment

To experimentally measure a map of the pure vortex modes in a complex field, and
thereby the position, charge, anisotropy and orientation of the vortices contained in the
field, we use the setup shown in figure 5.3. In this particular experiment we use an MPI
with N = 5, a = 100 µm and b = 50 µm. The stage is used to scan the MPI through
the far-field of a fully developed speckle pattern that is generated by illuminating a light
shaping diffuser with a helium-neon laser (see figure 5.3 and its caption for more details).
The diffuser can be replaced by a fork hologram which generates isotropic optical vor-
tices. For each position of the translation stage the diffraction pattern is captured using
the CCD-camera; the image is analysed directly as described above, to avoid storage of
large amounts of data.
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5.5 Results

To demonstrate the validity of our method, we first analyse the far-field of a fork holo-
gram, which contains an isotropic optical vortex in each of its diffraction orders, except
for the zeroth order. We choose the diffraction order that contains a vortex with ℓ = −1.
This vortex is studied with the setup presented previously, where we scanned the MPI
in 20 by 20 steps of 20 µm. The results of the analysis are shown in figure 5.4, were we
show γm ≡ |λm|2, for m = 0,±1,±2. As expected, only the γ−1 shows a contribution in
the centre of the beam. At the beams edges, the beam starts resembling a flat wave front
and, indeed, the γ0 components becomes dominant.

From the above results, we can derive the anisotropy and orientation of the optical
vortices. For the case of the isotropic ℓ = −1 vortex, we obtain

s3 = 1.00, (5.19)
ϕ0 = −0.441π, (5.20)

which proves that our system gives the expected result.
Subsequently, we study a speckle pattern which is scanned with 200 by 200 steps of

20 µm (see figure 5.5). Following the same method, we can calculate the anisotropy and
orientation of the vortices in the speckle patterns. The γ0 components is proportional
to the locally averaged intensity of the field and it indeed resembles the intensity of a
speckle pattern. One can see several optical vortices of both charge ℓ = −1 and ℓ = 1,
which show up as bright spots in the γ−1 and γ1 images, respectively. The results from this
analysis serve as a starting point for a statistical analysis of the anisotropy and orientation
of optical vortices in a speckle pattern.

5.6 Conclusion

We have demonstrated that an MPI can be used to map a field in terms of its optical
vortex components. These maps can not only be used to find the positions and topo-
logical charges of the optical vortices in the field, but also to determine their anisotropy
and orientation. We have presented results for a field with an isotropic optical vortex,
which proves the validity of the analysis. In addition, we have shown the optical vortex
maps for a speckle pattern, which contains several optical vortices. By studying a large
number of these optical vortices, one can determine the statistics and the anisotropy and
orientation of these vortices; this is subject for further study.
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Figure 5.4: Coefficients of the radially independent optical vortex modes in an isotropic ℓ = −1 op-
tical vortex. As expected only the γ−1 is present in and around the centre of the beam. Further away
from the centre of the beam, the wave front becomes flatter and γ0 gives the highest contribution.
All images are normalised to the peak of the γ0 image.
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Figure 5.5: Coefficients of the radially independent optical vortex modes in a speckle patterns.
The γ0 is proportional to the locally averaged intensity and indeed resembles an image of a speckle
pattern. Several optical vortices, both of topological charge ℓ = −1 and ℓ = 1, can be seen as bright
spots in the γ−1 and γ1 images, respectively. Detailed study of the area around each vortex will yield
the anisotropy and orientation of each of the vortices.
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