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CHAPTER 3

Using a multipoint interferometer to measure the
orbital angular momentum of light

Recently it was shown that the orbital angular momentum of light can be measured using
a multipoint interferometer, a system in which the light from several point measurements
is interferometrically combined. This system has important applications in optics but
could also be employed to detect astrophysical orbital angular momentum. Until now,
the response of a multipoint interferometer to an on-axis, normally incident Laguerre-
Gaussian beam has been studied by visual inspection. In this paper we present an al-
gorithm to determine the orbital angular momentum of the impinging beam from the
obtained interference patterns. Using this algorithm we extend our study to general op-
tical vortices and a superposition of optical vortices.
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3. USING A MULTIPOINT INTERFEROMETER TO MEASURE THE ORBITAL ANGULAR
MOMENTUM OF LIGHT

3.1 Introduction

Since its discovery, the orbital angular momentum (OAM) of light has been studied in-
tensively [1, 25]. The fact that light carries angular momentum that, under given cir-
cumstances, can be separated into spin and orbital angular momentum is nowadays well
known. Recently the possibility that light from astronomical sources possesses OAM
was suggested [11, 26]. Detection of this OAM may have interesting implications for as-
trophysics, since it is known that the OAM of light can be transferred to small particles
or atoms (for a recent review, see [25]). A method for detecting OAM in low-frequency
radio beams has been proposed recently [12]. Since this method relies on a coherent
measurement of the local field vector it cannot be applied to optical wavelengths. In this
paper we describe the details of the method that was proposed in [27], based on a so-
called multipoint interferometer. The main advantage of this method lies in the fact that
it relies on only a finite number of point measurements, making it possible to measure
OAM on, in principle, arbitrarily large length scales.

The simplest class of light fields carrying OAM are the so-called optical vortices. A
general optical vortex has a complex field amplitude of the form ∝ exp(iℓϕ), resulting in a
phase singularity at its centre. At the position of this phase singularity, the intensity drops
to zero. As one makes a full turn around the singularity in counterclockwise fashion, the
phase increases by 2πℓ, where ℓ is the vorticity. Away from the singularity the intensity
increases until, for an isolated optical vortex, it consequently drops outside a bright ring
of radius proportional to ℓ. The exact form of the intensity profile depends on the origin
and propagation of the optical vortex and the presence of other optical vortices. Optical
vortices can be created, for example, using a spiral phase plate [5] or a fork hologram
[6, 7], but they also occur in more generic fields, such as in speckle patterns [8, 28].

Several methods exist to detect optical vortices. A method that is often used is inter-
fering the optical vortex with a flat wave front. The resulting interference pattern reveals
information on the vorticity, the position and the anisotropy of the optical vortex [8].
One can also convert an optical vortex to a Gaussian beam using holographic techniques
and detect its intensity using a monomode fibre or pinhole [29]. Both methods require
the coveragd of an extended region around the optical vortex in order to detect the vor-
ticity.

So far no quantitative analyses of the expected optical vortices from astronomical
sources have been presented. The only reasonable assumption one can make is that the
associated intensity profile will fluctuate on large scales due to the large propagation dis-
tances of the light coming from these sources. It will therefore be virtually impossible to
cover a sufficient part of the intensity profile using a single detector, making it impossi-
ble to measure the vorticity using interference with a flat wave front. This is illustrated
by figure 3.1. One can place the detector near the centre of the optical vortex where the
phase varies rapidly, but the amplitude is very low. Alternatively one can place the de-
tector in regions of higher intensity, but hardly any phase change is present there. In a
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Figure 3.1: A Laguerre-Gaussian ℓ = 1 beam (see text for details). Colours indicate phase, while
intensity shows amplitude. This figure shows the intrinsic difficulty in measuring the orbital angular
momentum of light if only a small part of the beam can be covered using a single detector (shown
as grey squares). In the centre there is hardly any intensity, while in the outer parts there is hardly
any phase change.

previous paper [27] we discussed an interferometric method based on a so-called multi-
point interferometer, where the light of several points, roughly separated by the typical
length scale of the intensity fluctuations around the optical vortex, is interferometrically
combined. From the resulting interference patterns the vorticity of the impinging vor-
tex can be determined. We experimentally realised the multipoint interferometer by a
multi-pinhole interferometer, where we used the diffraction of the light at the pinholes
to overlap the light from the different points. Theory and experiment using laser beams
prove to be in excellent agreement.

It is possible to scale a multipoint interferometer to, in principle, arbitrary sizes by re-
placing the pinholes by telescopes and using beam combiner optics to interferometrically
combine the light from the different telescopes. This technique could already be imple-
mented at existing telescope arrays, where one has to take into account the non-circular
arrangement of the telescopes.

A convenient basis for describing a light beam possessing OAM are the Laguerre-
Gaussian beams which have a complex field amplitude given by

upℓ(r, ϕ, z) ∝ rℓLℓ
p

(
2r2

w2

)
exp

(
− r2

w2

)
exp(−iℓϕ), (3.1)

where w is the waist size of the beam, Lℓ
p(2r2/w2) is the associated Laguerre polynomial,

p is the radial mode index and ℓ is the vorticity.
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Figure 3.2: Geometry and notation of a generic multipoint interferometer consisting of N points,
uniformly distributed over a circle of radius a in the xy plane. The points are indicated by open
dots and the angular coordinate of the n-th point is αn = 2πn/N.

A general multipoint interferometer consists of N points, uniformly distributed over a
circle of radius a as shown in figure 3.2. The azimuthal angle of each point is given by αn =

2πn/N. The far-field interference pattern behind a general multipoint interferometer is
given by the Fourier transform of the field distribution in the aperture plane. In the
case of an on-axis, normally incident Laguerre-Gaussian beam, the interference pattern
is given by

IN
ℓ (x, y, z) ∝

∣∣∣∣∣∣∣
N−1∑
n=0

exp (−iℓαn) exp
(
i
ka
z

(x cosαn + y sinαn
))∣∣∣∣∣∣∣

2

. (3.2)

Results of this equation are shown in [27] and in figures 3.3 and 3.4.
In any real system the points will be replaced by apertures and the observed interfer-

ence pattern will be convoluted by the diffraction pattern of an individual aperture. As
long as the diameter of the aperture is small compared to the separation of the apertures,
the interference pattern can be observed in the central lobe of the diffraction pattern.

Equation 3.2 gives the interesting result that the interference pattern behind a mul-
tipoint interferometer of N points is the same for an impinging beam with ℓ = m and
ℓ′ = m + N for N ≥ 4. This effect can be explained by comparing the phases of the
impinging fields at the different points for both ℓ states. The number of distinguishable
l states is therefore equal to N and the observed patterns are periodic in ℓ.

It is also observed that the patterns for ℓ = −|m| and ℓ = |m| are the same but mirrored
in the x axis. For an even number of points N, the observed interference patterns are
symmetric about the x axis and it is in this case impossible to distinguish between ℓ =
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Figure 3.3: Far-field intensity patterns behind an multipoint interferometer of N points illuminated
by a Laguerre-Gaussian beam with vorticity ℓ, calculated from equation 3.2. The patterns for ℓ =
−|m| and ℓ = |m| are mirrored in the x axis. For an odd number of points N, one can differentiate
between the patterns for even and odd values of ℓ; for even N one cannot.

−|m| and ℓ = |m|, reducing the number of distinguishable ℓ states to N/2 + 1. Figure 3.3
shows this behaviour for N = 5 and N = 6. This behaviour is already explained in [27],
but is shown here for the sake of completeness.

In a real application one has to take these effects into account in selecting the number
of points. It is for instance known that in all observed speckle patterns only optical
vortices with ℓ = −1 and ℓ = 1 occur [8]. In this case a multipoint interferometer with
N = 5 would suffices.

For a large number of points N, the multipoint interferometer converges to an annular
aperture and the resulting interference pattern is described by the well know Bessel func-
tion. The order of the Bessel function depends on the l state of the impinging Laguerre-
Gaussian beam since

lim
N→∞

IN
ℓ (x, y, z) ∝ J|ℓ|

(
kar

z

)
. (3.3)

In this limit one cannot distinguish between clockwise and counterclockwise vortices
of the same vorticity. Figure 3.4 illustrates that the convergence can already be seen for
relatively small number of points, in this case N = 16.

So far we have only considered the response to an on-axis, normally incident Laguerre-
Gaussian beams, studied by visual inspection. In this paper we will describe an algorithm
that can be used to determine the vorticity based on the interference patterns. Using this
algorithm we will generalise our findings to general optical vortices.
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Figure 3.4: Far-field intensity patterns behind an multipoint interferometer of N = 16 points illu-
minated by a Laguerre-Gaussian beam with vorticity ℓ. The intensity patterns hint at the fact that
the patterns converge to a Bessel function in the limit that N→ ∞ as described by equation 3.3.

3.2 Characterising interference patterns

A general optical field can be decomposed on a bases of Laguerre-Gaussian beams, see
e.g. [30]

u(r, ϕ, z) ∝
∞∑

ℓ=−∞
cℓupℓ(r, ϕ, z), (3.4)

where cℓ is a weighting coefficient and upl(r, ϕ, z) are the pure Laguerre-Gaussian modes as
described by equation 3.1. As it turns out from the simulations, the interference pattern
behind a general multipoint interferometer for this general wave front can be described
by

IN =

N+m−1∑
ℓ=m

cℓIN
ℓ , (3.5)

where m indicates an arbitrary integer and IN
ℓ are the interference patterns behind a

general multipoint interferometer for a pure Laguerre-Gaussian mode as described by
equation 3.2. Note that the summation runs over N terms only since the interference
patterns for ℓ = m and ℓ = m + N are the same and hence we can only distinguish N
different cℓ. In case N is even the summation runs over N/2 + 1 terms only. m can be
chosen arbitrarily since the interference patterns are periodic in ℓ. The surprising fact
is that the intensity patterns form an orthogonal basis for describing the interference
patterns.

In practise the weighting constants cℓ can be found by performing a 2D convolution
algorithm to the interference patterns calculated by

cℓ = IN ∗ ∗IN
ℓ (0,0) = F −1

{
F

{
IN

}
∗ F

{
IN
ℓ

}}
(0,0), (3.6)

where ∗∗ denotes convolution, F and F −1 2D Fourier transform and 2D inverse Fourier
transform respectively and (0,0) the central pixel of the convolution. In the following
analyses this algorithm is used to determine the weighting factors cℓ. This algorithm
requires knowledge of the response of a multipoint interferometer, but as can be seen in
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equation 3.2 this response is determined by the number of points and the separation of
the pinholes only. For any real optical system the diffraction of the light at the apertures
has to be taken into account, but as stated above this will only introduce an envelope on
the observed interference pattern.

3.3 General optical vortices

3.3.1 Tilt

In general the singularity axis of an impinging optical vortex will not coincide with the
axis of to the multipoint interferometer, which will have an effect on the observed inter-
ference patterns. We have studied the effect of a tilt of the optical vortex with respect
to the multipoint interferometer.

As can be seen from figure 3.5, a tilt of the impinging optical vortex results in a shift
of the observed interference patterns, as is expected since these are far-field interference
patterns. In order to determine the vorticity of the optical vortex one first has to shift
the pattern to remove the shift introduced by the tilt. This is possible since the centre
of the interference pattern is unique for N ≥ 5, except for N = 6. For N = 4 and N = 6,
the centre of the pattern is not uniquely determined but centring at any of the repeating
unit patterns will work in this case. In the case of a real detection system, the observed
interference pattern is convoluted by the diffraction pattern of a single aperture, which
makes it more difficult to find the centre of the interference pattern. Before applying
the algorithm described above, one has to make sure that there are enough periods of the
interference pattern in the central lobe of the diffraction pattern.

3.3.2 Displacement

A displacement of the beam with respect to the multipoint interferometer results in a
blurring of the observed interference patterns as can be seen in figure 3.6. The displace-
ment is quantified by a vector r0 = (x0, y0,0). In order to analyse these blurred patterns
we use the algorithm that is described above to determine the coefficients cℓ. In the simu-
lations we capture only a finite part of the infinite interference patterns, which introduces
a certain amount of error in the values cℓ. For consistency with the previous part of this
paper, we choose the same pinhole separation as used above. However, we note that the
error in the determination of cℓ can be minimised by increasing the pinhole separation.

We calculated the normalised overlap with the different modes for a optical vortex
that is displaced over r0 = (x0,0,0). To avoid effects coming from the intensity profile of
the optical vortex, we only consider the phase of the optical vortex and set the intensity
to be uniform. As explained before the intensity fluctuations for large optical vortices are
expected to be on large scales and the intensity between the different points or apertures
will not vary much. The results are shown in figure 3.7. As expected, for an on-axis beam,
the coefficient cℓ equals one for ℓ = 1 and is zero elsewhere. As the beam is displaced,
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Figure 3.5: Far-field intensity patterns behind an multipoint interferometer of N = 5 illuminated by
a Laguerre-Gaussian beam with vorticity ℓ. The propagation axis of the impinging beam is tilted
with respect to the normal of the multipoint interferometer over θ and ϕ, which are the azimuthal
and polar angles respectively. The tilt results in a shift of the observed interference pattern as is
indicated by the white arrows.

N=6

N=5

ℓ=0 ℓ=1 ℓ=2

Figure 3.6: Far-field interference patterns behind a multipoint interferometer with N = 5 illumi-
nated by an optical vortex of uniform intensity with its centre displaced over r0 = (0.5a,0,0). The
displacement results in a blurring of the interference patterns.
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Figure 3.7: (a) Decomposition (see equations 3.5 and 3.6) for a displaced optical vortex with uniform
intensity and vorticity ℓ = 1. The position of the singularity is displaced over distance r0 = (x0,0,0).
In the limit that the singularity is far from the multipoint interferometer, the wave front that is
sensed by the multipoint interferometer becomes essentially flat. (b) Same calculation, but for an
optical vortex with ℓ = 2.

the distribution broadens, but still peaks at ℓ = 1 of the impinging optical vortex. For
even larger displacements there is more and more overlap with the ℓ = 0 state. Once the
singularity moves out of the circle transcribing the pinholes, the ℓ = 0 component dom-
inates. Further simulations show that this switching behaviour happens very fast. The
fact that the distribution converges to a pure ℓ = 0 state can intuitively be understood,
since the wave front that is sensed by the multipoint interferometer effectively becomes
flat as the singularity is far away from the centre of the multipoint interferometer.

For an impinging optical vortex with ℓ = 2, we observe the same behaviour, but in two
steps. The resulting interference pattern first shows a strong peak at ℓ = 1 mode before
it finally converges to an ℓ = 0 state. These simulations confirm the fact it is possible to
determine the vorticity of an optical vortex as long as the singularity axis is within the
circle through the points of the multipoint interferometer.

3.3.3 Anisotropic optical vortices

Many optical vortices that occur in more generic systems, for instance speckle patterns,
are anisotropic, meaning that the phase does not increase linearly with the azimuthal an-
gle around the phase singularity (see figure 3.8). These anisotropic optical vortices can
be described by a set of Stokes parameters, using a single parameter α to describe the
anisotropy [31, 32] where 0 ≤ α ≤ π. We analysed the performance of the multipoint
interferometer impinged by an anisotropic optical vortex for varying α in terms of its
decomposition on the different pure modes. In the simulations we used the same pa-
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Figure 3.8: (a) Phase profile of an anisotropic optical vortex. The color coding is the same as in
figure 3.1. Lines indicate phase contours separated by π/4. (b) Mode decomposition as a function
of α obtained by applying the algorithm as described by equation 3.6.

rameters as above and again only consider the phase of the optical vortex and assume
a uniform intensity. One can see that the system is able to determine the vorticity of
the impinging beam, except in the region around α = π/2 where the vortex reduces to
an edge dislocation and the vorticity is not defined. The width of the region in which
the vorticity is determined is dependent on the experimental error and depends on the
real application. As before we note that the error is strongly dependent on the distance
between the points, and that the simulations are not optimised for reducing the error.
One can see that the vortex changes sign as the anisotropy goes through α = π/2 since
the orientation of the zero field lines of the real and imaginary part changes sign here.

3.3.4 Superposition of optical vortices

It is possible to generate a superposition of Laguerre-Gaussian beams using, for instance,
a fork hologram [29, 33]. For communication purposes it would be interesting to be able
to decompose this superposition on a basis of pure modes. A general superposition is
described by equation 3.5. As described above one can use only N different pure modes
when using a multipoint interferometer of N points. Figure 3.9 (a) shows the interference
pattern for behind a multipoint interferometer with N = 5 for a randomly chosen set of
superposition coefficients shown in figure 3.9 (b) as input. Figure 3.9 (b) also shows the
output coefficients cℓ determined using the algorithm described above. The difference
between the input and output values is caused by fact that there is some error in the
output coefficients cℓ because of the fact that only a finite part of the interference pattern
is captured. This can be improved by capturing a larger part of the pattern, for instance
by increasing the separation between the points in the multipoint interferometer. This
parameter has not been optimised in these simulations.

These simulations show that it is possible to decompose a superposition of optical
vortices with different ℓ modes onto a basis of pure ℓ modes using a multipoint interfer-
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Figure 3.9: (a) Far-field interference pattern behind a multipoint interferometer with N = 5 illu-
minated by a randomly chosen superposition of Laguerre-Gaussian modes. (b) Input randomly
chosen superposition coefficients cℓ versus output coefficients as determined by using the method
described above.

ometer. It requires however several Fourier transforms to perform this decomposition,
which cost valuable computation time, making it not very useful for fast communication
purposes as opposed to the method proposed by [33] that returns the coefficients cℓ with-
out calculation. The multipoint interferometer can however be useful in cases where the
beam is strongly diverging, which might occur in long range communication.

3.4 Conclusion

We described an algorithm to characterise the response of a multipoint interferometer
and used it to study this response in the case of a general optical vortex and a superposi-
tion of optical vortices. This showed that in most cases it is possible to measure the vor-
ticity of the optical vortex. We also showed that a multipoint interferometer can be used
to decompose a superposition of Laguerre-Gaussian modes, which is potentially useful
for application in free space communication, albeit that the analysis is time consuming.
We conclude that a multipoint interferometer is a useful tool for measuring the vorticity
of a general vortex of, in principle, arbitrary sizes as are expected to be associated with
OAM in astrophysics.
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