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5 Muon event rate and discovery potential from
stacked GRB events

From the results in Chapter 4, we could now investigate how
long do we have to wait before a sufficiently nearby GRB event
takes place, or in another words, how frequent can we observe a
GRB with z " 0.1? Aside from this question, a second aim of this
Chapter is to calculate the integrated muon flux of any number of
simulated GRB events. To do this, a Monte Carlo method to sim-
ulate GRB events is developed, using a distribution functions of
several GRB parameters. These distribution functions are known
collectively as the GRB world model (Butler, Bloom & Poznanski,
2010).

5.1 GRB world model

The study of GRBs distribution functions has been intensified
due to the wealth of data from Swift. The latest data release con-
tains 425 bursts in which 147 of them have a measured redshift.
This data set largely supersedes previous GRB analyses (Butler
et al., 2007; Butler, Bloom & Poznanski, 2010). As shown in Sec-
tion 2.1, given (Lbol, z, b, ∆t, εbk) we can simulate a GRB event.
The distribution functions of these parameters have been deter-
mined. In this Section the form and parameters of these functions
will be described. The data set used for comparison in this sec-
tion is taken from Butler et al. (2007); Butler, Bloom & Poznanski
(2010). For all cases a criterion of signal-to-noise ratio of S/N > 10
is applied. In cases where redshift information is needed (e.g.
Luminosity function, redshift distribution), the redshift data are
further selected using the criteria suggested by Jakobsson et al.
(2006). These criteria select only redshifts measured under favor-
able conditions such that the distance is reliably measured. These
criteria include the public availability of X-ray positioning within
12 hours; low Galactic foreground, i.e. AV < 0.5; the burst took
place no less than 55◦ from the Sun; no nearby bright star; and the
burst should not be located at a polar declination, i.e. |δ| < 70◦.
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A catalog of GRBs1 passing these redshift measurement criteria 1 Available at http:
//www.raunvis.hi.is/
~pja/GRBsample.html.

is then used to select Swift measurements. At the end of this se-
lection procedure, 89 GRBs with high-quality measurements and
redshift information is obtained.

5.1.1 GRB luminosity function

The GRB luminosity function φ(log L) is traditionally defined as
the probability to find a GRB in a luminosity interval between
log L and log L + d log L. This function is usually assumed to be
of the form of a smoothly broken power law:

φ(log L) =
dN

d log L
=






(
L

Lpk

)−aL
for L ≤ Lpk,

(
L

Lpk

)−bL
for L > Lpk.

(5.1)

This function is normalized to the interval from zero to infinity.
Recent results from Swift indicates that the bolometric luminos-
ity function is well-described by the indices (aL, bL) = (0.27, 3.46)
and the peak luminosity log Lpk = 52.95 (Butler, Bloom & Poz-
nanski, 2010). Figure 5.1 shows the luminosity function compared
to a histogram of 89 Swift GRBs with measured redshift (Butler
et al., 2007; Butler, Bloom & Poznanski, 2010). The bolometric lu-
minosity Lbol is calculated using Equation 9 in Butler, Bloom &
Poznanski (2010).

5.1.2 The distribution of burst duration T90

The commonly used definition for the burst duration is T90, de-
fined as the time interval in which the background-substracted
integrated counts from the GRB increase from 5% to 95% of the
total counts (Kouveliotou et al., 1993, 1996). Based on this parame-
ter, Kouveliotou et al. (1993) found a bimodality in the distribution
of log T90 and thus introduced two distinct groups of GRBs: The
short and the long duration GRBs, with T90 shorter or longer than
2 seconds.

Further analysis using the BATSE 3B catalog (Meegan et al.,
1996), however, exhibit a possibility that the distribution of log T90

can also be well-fitted using a trimodal Gaussian thus indicat-
ing the existence of a third, intermediate, class of GRB (Horváth,

http://www.raunvis.hi.is/~pja/GRBsample.html
http://www.raunvis.hi.is/~pja/GRBsample.html
http://www.raunvis.hi.is/~pja/GRBsample.html
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Figure 5.1: The top graph
shows the luminosity proba-
bility density function while
the bottom graph is the
cumulative probability func-
tion. Red curves represent
the best-fit GRB world model
for the luminosity function
(Butler, Bloom & Poznanski,
2010), compared to 89 se-
lected Swift data with mea-
sured redshift (Butler et al.,
2007; Butler, Bloom & Poz-
nanski, 2010) and passing the
redshift measurement crite-
ria suggested by Jakobsson
et al. (2006). The left side
of the vertical axis is the ac-
tual number of data in each
bin while the right side is the
value of the probability func-
tion.

1998). Various statistical methods applied to different data sets
from different satellites (e.g. BATSE (Horváth et al., 2006), Bep-
poSAX (Horváth, 2009), Swift (Horváth et al., 2008)) seem to in-
dicate that this third class is real and not an artifact or bias from
one particular satellite. While the short and long GRB can be ex-
plained as two distinct physical phenomena, the third class is still
lacking any physical interpretation.

A trimodal Gaussion function is used to model the distribution
function of log T90:

dN
d log T90

= ∑
k=s,l,i

wk

σk
√

2π
exp

[
−

log2(T90/ log µT90,k)

2σ2
k

]
, (5.2)

in which (s, l, i) is the notation for respectively the short, long, and
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Figure 5.2: The red curve is
the T90 distribution function
from Horváth et al. (2008)
compared to 345 T90 mea-
surement by Swift (Butler
et al., 2007; Butler, Bloom &
Poznanski, 2010) with signal-
to-noise ratio larger than 10.
The parameters for the distri-
bution function is shown in
Table 5.1.

Terms k subscript µT90,k σk wk
short s -0.473 0.48 0.073
long l 1.903 0.32 0.582
intermediate i 1.107 0.35 0.345

Table 5.1: The parameters for
the trimodal Gaussian dis-
tribution function of log T90
(Horváth et al., 2008).

intermediate duration GRB, wk is the weight of the Gaussian func-
tion where ws + wi + wl = 1 applies, µT90,k is the mean in log T90

and σk is the standard deviation. We use the parameters calcu-
lated by Horváth et al. (2008) for the Swift data, shown in Table
5.1. In Figure 5.2 the distribution function is shown alongside the
T90 data measured by Swift. There are 345 Swift GRB measure-
ment with signal-to-noise ratio S/N > 10. The lack of a physical
interpretation for the intermediate class should not be a concern
because the aim of this study is to accurately simulate the obser-
vational features and not to deduce any physical interpretation of
these features.

5.1.3 The instrinsic peak energy εpk∗ distribution

The intrinsic peak energy εpk∗ is the energy in which the ν fν

spectrum peaks. It is calculated by performing a spectral fit to the
measured energy spectrum of a GRB. What one obtains from this
procedure is the observed peak energy εpk. For the Band spectrum
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Figure 5.3: The logarithm
of intrinsic peak energy εpk∗
histogram of 89 Swift GRB
with measured redshift (But-
ler et al., 2007; Butler, Bloom
& Poznanski, 2010). The
histogram is compared to a
best-fit Gaussian function in
log εpk∗.

(Equation 2.52), the peak energy is related to the break energy εbk
through

εbk =
b − a
1 − a

εpk. (5.3)

The distribution function of εpk∗ can be modelled reasonably
well by the normal distribution in log εpk∗:

dN
d log εpk∗

=
1√

2πσ2
εpk∗

exp

[
−

log2(εpk∗/εpk∗,0)

2σ2
εpk∗

]
. (5.4)

The mean and variance of the distribution is found to be (log εpk∗,0,
σεpk∗) = (2.58 ± 0.05, 0.50 ± 0.03). The corresponding function is
shown as the red curve in Figure 5.3.

5.1.4 The redshift distribution of GRBs in the universe

The redshift distribution function is calculated using the phys-
ical model formulated by Le & Dermer (2007), which includes the
effects of beaming by incorporating a distribution function for the
jet opening angle. This model sets out by assuming a GRB energy
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spectrum νFν = ε2N(ε) in the form of a broken power law, i.e.

νFν ≡ fεpk



H(εpk − ε)

(
ε

εpk

)α

+ H(ε − εpk)

(
ε

εpk

)β


 , (5.5)

where α(> 0) and β(< 0) are the spectral indices of the energy
spectrum, εpk is the peak energy, and H(x) is the Heaviside func-
tion. Using this energy spectrum, just as in Equation 2.54, we can
calculate the bolometric fluence of the GRB:

F =
∫ ∆t

0
dt

∫ ∞

0
dε

νFν

ε
= λbol fεpk ∆t, (5.6)

where the bolometric correction λbol in this is case is simply λbol =

(α−1 − β−1). Following Le & Dermer (2007), here the bolometric
correction is always taken to be λbol = 5 to simplify the situation.

Taking into account beaming effects, which means that the burst
is collimated to a bipolar jet with opening angle θj, the beaming-
corrected energy release Lγ∗ is given by

Lγ∗ = 4πr2
L(1 − cos θj)

F
1 + z

, (5.7)

where rL is the luminosity distance, related to the comoving dis-
tance as rL = (1 + z)rc. Inserting Equation 5.6 into Equation 5.7,
the peak flux is then given by

fεpk =
Lγ∗

4πr2
L(z)(1 − cos θj)∆t∗λbol

. (5.8)

The number of GRB events per unit redshift per unit solid angle
with spectral flux greater than fεpk can then be calculated using
the formula

dN(> fεpk)

dΩdz
=

c
H0

Θ(z)
nc(z)r2

L(z)
(1 + z)3

√
ΩΛ + Ωm(1 + z)3

, (5.9)

where Θ(z) is the jet opening angle distribution integrated over
all possible opening angle:

Θ(z) =
∫ cos θj,min

cos θj,max
d cos θj g(cos θj)(1 − cos θj). (5.10)
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The form for the jet opening angle distribution g(cos θj) is un-
known, but Le & Dermer (2007) consider the form

g(cos θj) = g0(1 − cos θj)
sH(cos θj; cos θj,max, cos θj,min), (5.11)

where s is the power-law index of g(cos θj) and H(x; a, b) is the
Heaviside function such that it is H(x; a, b) = 1 when a ≤ x ≤ b
and zero elsewhere. This distribution is normalized to unity, thus

g0 =
1 + s

(1 − cos θj,max)1+s − (1 − cos θj,min)1+s . (5.12)

The final form of the GRB rate per unit redshift per spatial
opening angle is then (Le & Dermer, 2007)

dN(> fεpk)

dΩdz
=

cg0
H0(2 + s)

nc(z)r2
L(z)

(1 + z)3
√

ΩΛ + Ωm(1 + z)3
×

{[
1 − max(µ̂j, µj,min)

]2+s − (1 − µj,max)
2+s

}
,

(5.13)

here µj = cos θj and

µ̂j ≡ 1 − Lγ∗

4πr2
L(z)∆t∗ f̂ε̄λbol

, (5.14)

where f̂ε̄ is the νFν flux threshold sensitivity of Swift, taken to be
f̂ε̄ = 10−8 erg cm−2 s−1.

The function nc(z) is the comoving star formation rate from
Hopkins & Beacom (2006) which is in the form of

nc(z) =
1 + (a2z/a1)
1 + (z/a3)a4

, (5.15)

where a1 = 0.015, a2 = 0.10, a3 = 3.4, and a4 = 5.5 are the best-fit
parameters (Le & Dermer, 2007).

The unknown parameters in Equation 5.13 can be calculated
by performing a fit of the function to the observed GRB redshift
distribution. Le & Dermer (2007) obtained a best-fit values of
Lγ∗ = 4 × 1051 ergs, θj,min = 0.05 rad, θj,max = 0.7 rad, and
s = 1.25. The form of the function with the best-fit values is shown
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Figure 5.4: The GRB redshift
distribution compared to the
distribution function of Le &
Dermer (2007). The best-fit
values of Lγ∗ = 4× 1051 ergs,
θj,min = 0.05 rad, θj,max =
0.7 rad, and s = 1.25 are
used.

in Figure 5.4, as compared to the observed redshift distribution.

With this distribution function, we can estimate the probability
to observe a GRB of redshift z " 0.1. Figure 5.5 shows a more
detailed view of Figure 5.4 in low-redshift area. Le & Dermer
(2007) estimated that the probability to observe a GRB of redshift
z " 0.1 is P(z ≤ 0.1) ∼ 7× 10−5, and that P(z ≤ 0.2) ∼ 6.5× 10−4.
Assuming that 1 GRB is detected per day by any satellites, from
these number we can expect to observe 1 GRB with z ≤ 0.1 every
∼40 years and 1 GRB every ∼4.2 years to have a redshift of z ≤ 0.2.
The second number is still within the expected operation time of
neutrino telescopes, which is approximately 5–10 years.

Despite these discouragingly low numbers predicted by theo-
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Figure 5.5: A more detailed
view of the GRB redshift
distribution function of Le
& Dermer (2007) for low-
redshift area.

retical calculations, in the last 14 years we have observed at least
6 GRBs with z ≤ 0.1 and 12 GRBs with z ≤ 0.2 within the same
time period2. These facts alone show us the still-uncertain na- 2 From the GRB

index of GRBox,
http://lyra.berkeley.edu/grbox,
retrieved on August 30 2012.

ture of the GRB redshift distribution and that this venture is still
worth-pursuing.

5.2 GRB event generation and muon flux calculations

Generations of GRB events are performed for several data tak-
ing period (in years) nyr = {1, 2, 3, 5, 10} yr. It assumed that 1 GRB
is detected per day, thus making the number of GRBs generated
to be nGRB = 365 × nyr. For each data taking period, each GRB
is generated by randomly generating the six parameters using
the inverse-transform method (Nakamura & Particle Data Group,
2010). The zenith distance cos θ of each GRB is randomly gen-
erated assuming an isotropic spatial distribution in the sky. The
azimuth angle is not generated as it does not have any effect on
the resulting muon spectrum.

Only GRBs above the horizon are then selected for further cal-
culations. the six parameters (Lbol, z, b, ∆t, εbk, θ) is then used to
calculate the muon spectrum at detector depth d = 2475 km, fol-
lowing the prescriptions described in Chapters 2–3.
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The on-period of each GRB observation is defined to be equal
to T90 and the off-period is taken to be 1 hour before the GRB took
place, at the same zenith distance as the observed GRB. The num-
ber of expected event at detector depth could then be calculated,
and the number of expected background during the off-period.

The total number of events from GRBs above the horizon dur-
ing the observation period are then summed, thus stacking all
observed sources as if they are a single observation. The signifi-
cance S of the observation during the data-taking period is then
calculated using the Li & Ma (1983) significance formula written
in Equation 4.2.

Due to the stochastic nature of GRB events, this simulation is
repeated 106 times in order to analyze the distribution of the sig-
nificance and to estimate the discovery potential.

5.3 Result and conclusions

The result of the simulation is shown in Figure 5.6. Each panel
in the Figure describes the probability do make a detection with
significance greater than any given S, for 4 different detector size
(i.e. Aeff

µ = {10−3, 10−2, 0.1, 1} km2) and for 5 different data-taking
period.

The result in Figure 5.6 indicates that an ANTARES-sized de-
tector of Aeff

µ = 10−2 km2 is still too small make a discovery. Even
a sub-km3 detector with Aeff

µ = 0.1 km2 still has very little chance
to make a discovery with at 3σ significance, as it has only 5%
probability of making a 3σ discovery or better (for a data-taking
period of 5 years).

A km-sized detector can have a better chance of making a 3σ

detection. After an operation of 5 years, it has ∼50% probability
to detect TeV photon signals with 3σ significance or better, and
∼25% probability for a 5σ detection or better.

From these results it can be safely concluded that a neutrino
telescope that can be taken seriously must have an instrumented
volume of at least 1 km3, which enables it not only to detect astro-
physical high-energy neutrinos but also plays its secondary role
as a VHE γ-ray observatory.
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Figure 5.6: The distribution
of the detection significance
S of stacked GRB observa-
tions, here plotted for four
different detector size and 5
different data-taking period.
The larger the detector size,
the better the chance to detect
events with 3σ and 5σ signif-
icance or better, as indicated
by the dashed vertical lines.


