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3 Muon production in the atmosphere

High-energy γ-rays produce muons when they interact with the
Earth’s atmosphere. These muons will then traverse down to the
bottom of the sea, producing Čerenkov light that can be detected
by the detector array. This idea of detecting γ-induced showers by
detecting the produced muons has been around for a long time.
However, early calculations performed in the 1960s seem to in-
dicate that γ-induced showers are muon-poor, having only less
than 10% the muon content of proton-induced showers (Stanev,
Gaisser & Halzen, 1985). These calculations are contradicted when
muons were firmly detected at underground detectors, coming
from the direction of Cygnus X-3 (e.g. Marshak et al. 1985). De-
spite the low rates and weak signals, these detections raised the
interest to build large-area detectors that can detect high-energy
muons and thus operate as γ-ray observatory. Stanev, Vankov
& Halzen (1985) then identify two channels in which muons can
be produced in γ showers: photoproduction and direct muon-
pair production. In photoproduction, muons are produced from
the (semi)leptonic decay of pions or kaons produced by the in-
teraction of high-energy photons with the atomic nucleus of the
atmosphere. This is the most important channel to produce mu-
ons in the GeV regime. In direct muon-pair production, muons
are created directly via the channel γ + Z → Z + µ+ + µ−, in
which Z is a nucleus of the atmosphere. Whereas muon produc-
tion through photoproduction dies away with increasing energy,
the cross section for muon-pair production increases with energy
and thus muon-pair production is the dominant muon producing
channel in the TeV regime.

In the following subsections we will describe the necessary for-
mulation to calculate the muon flux generated in gamma-induced
showers. For convenience, all units of length are converted into
radiation lengths in the air λrad, which is taken to be 37.1 g cm−2.
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3.1 The cascade equation: Approximation A

High-energy photons interact with atoms in the atmosphere and
initiate electromagnetic showers of particles that will cascade on
their way through the atmosphere. Through materialization or
Compton collision, pairs of electron-positron will be produced,
which in turn emit additional photons by way of bremsstrahlung.
At each step the number of particles increases but their average
energy decreases (Rossi & Greisen, 1941). Nevertheless these sec-
ondary photons can also produce muons that can be detected by
the detector array, and thus it is important to calculate the total
number of photons produced in such a photon shower.

This problem of counting particles produced in electromagnetic
showers can be solved if we consider only radiation phenom-
ena and electron-pair production, which can be described by the
asymptotic formula for complete screening. This solution is called
Approximation A (Rossi & Greisen, 1941) and allows us to calcu-
late the photon flux at some depth t in the atmosphere, given the
initial photon energy spectrum. If the initial spectrum is in the
form of a power law such as γ(ε) ∝ ε−(b+1), then the resulting
spectrum at depth t is (Rossi & Greisen 1941; Halzen, Kappes &
Ó Murchadha 2009)

γ(ε, t) = γ(ε, t = 0)
(σ0 + λ1)(σ0 + λ2)

λ2 − λ1

×
[

exp(λ1t)
σ0 + λ1

− exp(λ2t)
σ0 + λ2

] (3.1)

In this Equation as well as the in the following calculations, t
is the slant depth in units of radiation length (in the atmosphere,
1 radiation length equals 36.62 g cm−2), σ0 = 7/9 is the proba-
bility per radiation length that an electron pair production will
take place (in a case of complete screening), and λ1,2 are the scale
lengths factor of the shower growth and dissipation in the atmo-
sphere. The formula to calculate λ1,2 as a function of spectral in-
dex b, as well as its tabulation, is given in Rossi & Greisen (1941).
For b < 1, λ1 is positive while for b > 1, λ1 is negative. This
would mean that in the former case the shower would grow as
it penetrates the atmosphere while in the latter it will dissipate.
Thus for a general case of an arbitrary value of b, the photon flux
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can be decomposed into its spectrum at the top of the atmosphere
and its scale factor at depth t, i.e

γ(ε, t) = γ0(ε)γ2(t). (3.2)

Particularly important is the case for b = 1 since λ1 = 0 and
λ2 < 0, and this would make the second exponential term in
Equation 3.1 essentially zero after several radiation length, making
the photon spectrum independent of depth:

γ(εγ, t) = 0.567γ(εγ, t = 0), (3.3)

where the photon spectrum at the top of the atmosphere γ(εγ, t =
0) is as described in Equation 2.62.

3.2 Pion decay

The interaction of high-energy photons with atomic nuclei in
the atmosphere can produce pions through the reaction γ + N →
π + X followed by leptonic decay of pions into a positive muon
and a muon neutrino, or a negative muon and a muon antineu-
trino:

π± → µ± + νµ(νµ), (3.4)

with a probabilty of close to 100% to occur. The formulation to
calculate the muon spectrum from this channel has been calcu-
lated using the linear cascade equation and assuming a power-law
photon spectrum with spectral index b = 1 by Drees, Halzen &
Hikasa (1989), and its generalisation to an arbitrary spectral index
by Halzen, Kappes & Ó Murchadha (2009).

For the case of b 2= 1, this paper will closely follow that of
Halzen, Kappes & Ó Murchadha (2009), which begins by an ansatz
that the differential pion spectrum in the atmosphere can be fac-
torized as

π(ε, t) = γ(ε, t = 0)π2(ε, t), (3.5)

in which π2(ε, t) can be split in two regimes: the high energy
regime where pion interactions dominate over decay, and the low
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energy regime where pion interactions are neglected. The pion
spectrum at high energy is

πHE
2 (t) =

[
exp(λ1t)− exp(−t/Λπ)

(σ0 + λ1)(λ1 +
1

Λπ
)

− exp(λ2t)− exp(−t/Λπ)

(σ0 + λ2)(λ2 +
1

Λπ
)

]

× zγπ

λγA

(σ0 + λ1)(σ0 + λ2)
λ2 − λ1

, (3.6)

while the spectrum at low energy is

πLE
2 (ε, t) =

zγπ

λγA

(σ0 + λ1)(σ0 + λ2)
λ2 − λ1

×
∫ t

0
dt′

(
t′

t

)δ [exp(λ1t′)
σ0 + λ1

− exp(λ2t′)
σ0 + λ2

]
, (3.7)

in which δ = t/dπ , where dπ is the decay length

dπ =
εt cos θ

επ
, (3.8)

here επ = 115 GeV is the pion decay energy constant.
The integral in Equation 3.7 can be expanded into series:

∫ t

0
dt′

(
t′

t

)δ exp(λit′)
σ0 + λi

≈ 1
σ0 + λi

100

∑
j=1

λ
j−1
i tj

(j − 1)!(δ + j)
. (3.9)

In Equation 3.6 and 3.7,

Λπ = 173 g cm−2 = 4.66 radiation lengths (3.10)

is the effective pion interaction length in the atmosphere,

zγπ =
σππ

σγN
= 2

3 (3.11)

is the ratio between cross sections σγ→π and σγN , and

λγA = 446.14 radiation lengths (3.12)

is the interaction length of photons in atmospheric nuclei. These
values are assumed to vary little for different spectral indices and
energy.
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Due to the unavailability of an analytical expression for both
energy regime, taking a smooth transition from one regime to an-
other is difficult. The pion spectrum at all energy regime is then

π(ε, t) = γ(ε, t = 0)min
[
πHE

2 (t), πLE
2 (ε, t)

]
. (3.13)

The muon flux at the surface of the Earth can then be obtained
by using standard 2-body decay kinematics, assuming no muon
decay and energy loss in the atmosphere:

dNµ

dεµ
=

∫ tmax

0
dtBµπ

∫ ε/r

ε

dε′

(1 − r)ε′
π(ε′, t)
dπ(t)

, (3.14)

in which r = (mµ/mπ)2 and Bµπ = 1 is the number of muons
produced for each decaying pion. The maximum depth tmax is
determined using

tmax = λe+e− ln
[

εmax〈x〉γ→µ

ε

]
, (3.15)

where λe+e− = 9/7 is the electromagnetic cascade length and
〈x〉γ→µ = 0.25 is the fraction of γ-ray energy that goes into the
final muon for the case of pion decays.

For the special case of b = 1, we calculate the muon spectrum
using the formulation by Drees, Halzen & Hikasa (1989):

dNµ

dεµ
= γ(εµ, t = 0)

Λπ

λγA
zγπ

Lγ

1 + (Lγ/Hγ)εµεπ cos θ
, (3.16)

where

Lγ =
1 − r2

2(1 − r)
tmax
Λπ

, Hγ =
1 − r3

3(1 − r)

[
1 + ln

tmax
Λπ

]
. (3.17)

The constant terms (Λπ , zγπ , λγA) in the Equations above are the
same as in Equations 3.10–3.12

3.3 Direct muon-pair production
γ

N

γ

N

!−

!+

Figure 3.1: Feynman diagram
for lepton-pair production in
the presence of a nucleus N

The Feynman diagram for direct lepton-pair production γ +

N → N + l+ + l− is pictured in Figure 3.1. This reaction oc-
curs when an impacting photon interacts with a photon within the
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electric field of a nucleus, producing a pair of leptons. The second
photon is necessary to maintain the conservation of 4-momentum,
transferring the required momentum from the nucleus. Lepton-
pair production is related to bremsstrahlung by a substitution rule
and the calculation of the cross section can be done if we know
how to calculate bremsstrahlung by electrons (Tsai, 1974). For the
interaction of a photon with nuclear electrons to produce muon-
pair, the photon energy threshold must then be

εth =
2mµ

me

(
mµ + me

)
, 43.9 GeV, (3.18)

where me is the electron mass and mµ is the muon mass.
To calculate an approximate formula of muon-pair production,

what is usually done is taking the Bethe-Heitler result for electron-
pair production (Bethe & Heitler, 1934) and substitute the electron
mass with that of muon. This generalization would not be correct,
however, because the atomic form factor involved in the calcula-
tion must be integrated over the transferred momentum in which
the upper limit is approximately the mass of the lepton involved
(Halzen, Kappes & Ó Murchadha, 2009).

We will now discuss the necessary calculations to obtain the
accurate formula for the cross section of muon-pair production.

The impacting photon energy will be fully shared by the result-
ing muon-pair according to

εγ = ε+µ + ε−µ , (3.19)

or in terms of fraction of photon energy:

x+ =
ε+µ
εγ

, x− =
ε−µ
εγ

, x+ + x− = 1. (3.20)

To take into account the atomic and nuclear form factors, we
need the differential cross section equation as a function of the
momentum transfer. Since this work concerns very high-energy
photons, we can use the ultrarelativistic approximation written as
(Bethe & Heitler, 1934)

dσ

dx+
= 4αZ2

(
r0

me
mµ

)2 [(
x2
+ + x2

−
)

Φ1(δ) +
2
3

x+x−Φ2(δ)

]
,
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(3.21)

where α is the fine-structure constant, Z is the charge of the nucleus—
for the Earth’s atmosphere Z = 7.37 (Rossi, 1952), r0 is the classi-
cal electron radius, and δ is the screening parameter equal to the
necessary minimum momentum transfer from the nucleus:

δ , qmin =
m2

µ

2εγx+x−
. (3.22)

The functions Φ1,2 are integrals of form factors over transferred
momentum q. Whereas electron-pair production involves only
the atomic form factors, in the case of muon-pair production it
is also necessary to consider the nuclear form factors since the
momentum involved is much larger than the inverse square of the
atomic radius (Tsai, 1974). The functions Φ1,2 would then be

Φ1,2(δ) =
∫ qmax

δ

dq
q3 [Fn(q)− Fa(q)]2 ψ1,2(q, δ), (3.23)

where Fn and Fa are respectively the nuclear and atomic form
factors and ψ1,2 are the wave functions of the nucleus.

Equation 3.23 has been solved with several assumptions. We
take the solution of Kelner, Kokoulin & Petrukhin (1995) in which
a single function Φ(δ) = Φ1 = Φ2 is used for the case of com-
plete screening. By taking the effects of complete screening into
account we consider the fact that atoms are essentially neutral at
large distance. This is because the electric charge of the nucleus
get “screened” by the atomic electrons, i.e. their field are canceled
by opposite electric charge of the atomic electrons, reducing the
effective charge according to distance and thus limiting the maxi-
mum distance at which photons can still interact.

The contribution from inelastic form factors is also considered.
This must also be taken into account since muon bremsstrahlung
occurs on electrons bound in the atom and not on free electrons
(Kelner, Kokoulin & Petrukhin, 1995).

Having considered both elastic and inelastic form factors, Equa-
tion 3.21 then becomes

dσ

dx
(x, εγ) = 4αZ2

(
r0

me
mµ

)2 [
1 − 4

3
x(1 − x)

] [
Φel(δ) +

1
Z

Φin(δ)

]
.
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(3.24)

The elastic contribution Φel(δ) is in the form of

Φel(δ) = ln

[
Φ∞

1 + (Dne1/2 − 2)δ/mµ

1 + BZ−1/3e1/2δ/me

]
, (3.25)

where

Φ∞ =
BZ−1/3

Dn

mµ

me
, δ =

m2
µ

2εγx(1 − x)
, e1/2 = 1.6187 . . .

B = 202.4 Dn = 1.49 for Hydrogen, and
B = 183 Dn = 1.54A0.27 otherwise.

(3.26)

Here A is the atomic number of the nuclei involved. For our case
of the Earth’s atmosphere, A = 14.78 (Rossi, 1952).

The inelastic contribution Φin(δ) is

Φin = ln

[
mµ/δ

mµδ/m2
e + e1/2

]
− ln

[
1 +

1
B′Z−2/3e1/2δ/me

]
, (3.27)

where B′ = 1429. We can see that the differential cross section is
symmetric in x+ and x−, thus we can write

x+x− = x − x2,

where x substitutes either x+ or x− and the other becomes (1− x).
In Figure 3.2 Equation 3.24 for various values of photon en-

ergy εγ is shown. We can see that due to the “screening” effect
the cross section does not increase indefinitely but saturates as εγ

increases. I integrate the differential cross section over x to ob-
tain the total cross section as a function of photon energy and the
result is shown in Figure 3.3. In the figure it is shown that satura-
tion of the cross section occurs when the impacting photon energy
εγ ≈ 10 TeV.

Using the cascade equation, we can calculate the muon-pair
flux at sea level:

dNµ

dεµ
= 2λrad

NA
A

γ0
(
εµ
) ∫ 1

0
dxxb dσ

dx

(
x,

εµ

x

) ∫ tmax

0
dtγ2(t, b),

(3.28)

where NA is the Avogadro number.
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Figure 3.2: Differential cross
section of muon-pair produc-
tion (Equation 3.24) in the
Earth’s atmosphere for vari-
ous values of impacting pho-
ton energy εγ, as a function
of x = εµ/εγ which is the
ratio between the resulting
muon energy and the pho-
ton energy. The atomic and
mass number of the atmo-
sphere is taken to be (A, Z) =
(14.78, 7.37).
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Figure 3.3: Total cross section
of the process γ → µ+µ− in
the Earth’s atmosphere as a
function of impacting photon
energy εγ. Due to screening
effect which limits the maxi-
mum distance in which high-
energy photons can still in-
teract with the nucleus, the
cross section saturates for im-
pacting photon energy εγ !
10 TeV.

3.4 Other channels of muon production

A γ-shower can also produce kaons and the hadronic decay of
kaons can produce a positive muon and a muon neutrino or a
negative muon and a muon antineutrino:

K± → µ± + νµ(νµ). (3.29)

This reaction has only ∼63.5% chance of occuring (Gaisser, 1990).
Furthermore, results from Halzen, Kappes & Ó Murchadha (2009)
showed that the muon yield from kaon decays and other channels
involving kaons can be neglected.

Positrons produced in γ-showers can also produce pairs of
muon by interaction with an atomic electron through reaction
e+e− → µ+ + µ−. However, cross section for this reaction is very
small and peaked at ∼61 GeV and falls rapidly with energy and
is essentially zero for εµ ! 700 GeV (Halzen, Kappes & Ó Mur-
chadha, 2009). Thus this production channel can also be neglected
altogether.

3.5 Cosmic ray-induced muon background

In order to calculate the detection significance of photon-induced
muons, we need to know the amount of the background in our
observation. In our case of photon-induced muons detection, the
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background consists of cosmic-ray induced muons. These muons
are produced mainly through leptonic decay of pions, which is
essentially the same channel discussed in Section 3.2. Leptonic
decay of Kaons is also another channel of muon production albeit
it is less important.

The energy spectrum of cosmic-ray induced muons, as a func-
tion energy and zenith distance, has already been parametrized
by Gaisser (1990) as

dNµ

dεµ
≈ 0.14ε−2.7

µ

[
1

1 + 1.1εµ cos θ
115GeV

+
0.054

1 + 1.1εµ cos θ
850GeV

]
GeV−1 cm−2 s−1 sr−1.

(3.30)

This parametrization overestimates the actual measured muon flux
for energies below 10 GeV because at that energy regime muon de-
cay and muon energy loss become important factors (see Figure
6.1 in Gaisser 1990). However, this will not be our concern since
this is far below the energy regime we are interested in, and Equa-
tion 3.30 fits perfectly well for high-energy regime. This equation
estimates the muon flux at sea level, thus if we want to estimate
the muon background at detector we have to apply the appropri-
ate muon energy loss formula for seawater. We will discuss this
later in Section 3.6.

3.6 Passage of muons through seawater

Upon traversing a medium, energetic muons lose their energy
through ionization and radiative processes. This energy loss can
be treated by taking the standard formula to calculate the average
energy loss (Barrett et al., 1952)

− dε

dx
= a(ε) + b(ε)ε, (3.31)

in which a(ε) is the ionization contribution of the energy loss,
while b(ε) = bp(ε) + bb(ε) + bn(ε) is the radiative contribution
consisting of e+e− pair production (bp), bremsstrahlung (bb), and
photonuclear interaction bn.
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Here I take the approach of Klimushin, Bugaev & Sokalski
(2001) by splitting a(ε) into two separate processes, a(ε) = ac(ε)+

ae(ε), where ac is the classical ionization process sufficiently de-
scribed by the “Bethe” equation (Nakamura & Particle Data Group,
2010) and ae is the e diagrams for bremsstrahlung treated as part
of an ionization process. ac can thus approximated by

ac(ε) = ac0 + ac1 ln
(

Wmax
mµ

)
, Wmax =

ε

1 + m2
µ

2meε

, (3.32)

in which Wmax is the maximum transferable energy to the elec-
tron and mµ,e are respectively the masses of muon and electron.
The coefficients, in units of (10−6 TeV cm2 g−1), are (ac0 , ac1) =

(2.106, 0.0950) for ε ≤ 45 GeV and (ac0 , ac1) = (2.163, 0.0853) for
ε > 45 GeV. For ae, a polynomial approximation is used:

ae(ε) = 3.54 + 3.785 ln ε + 1.15 ln2 ε

+ 0.0615 ln3 ε 10−9 TeV cm2 g−1,
(3.33)

where ε is in units of GeV.
The terms of b are parametrized in a polynomial function in the

form

bi(ε) =
4

∑
j=0

bij lnj ε, where i = p, b, n. (3.34)

Here the energy input ε is also in units of GeV. The values of
coefficients for bij is already calculated by Klimushin, Bugaev &
Sokalski (2001) and is tabulated in their Table II. These formu-
lations of energy loss are expected to still valid for εdetector =

30 GeV − 5 TeV and slant depth (3 − 12) km with errors up to
±(6 − 8)% (Klimushin, Bugaev & Sokalski, 2001).

Taking into account these contributions, the total muon energy
loss in seawater as a function of energy is shown in Figure 3.4.
In this figure we can see that at high energies radiative processes
are more important than ionization. The critical energy at which
the energy loss from ionization and radiative processes are equal
can be calculated by solving εµc = a(εµc)/b(εµc). In the case of
seawater this is εµc ∼ 590 GeV. Below this critical energy the
dominant process is ionization while above this limit the radiative
processes starts to dominate.
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Figure 3.4: The muon en-
ergy loss in seawater as a
function of energy, calculated
from Equations 3.32 to 3.34.
The total energy loss (solid
line) is decomposed into con-
tributions from different pro-
cesses, indicated in the leg-
end. This Figure is made us-
ing the values of Klimushin,
Bugaev & Sokalski (2001).

Figure 3.5: The muon energy
loss by passing a layer of sea
water with vertical depth d =
2475 m is pictured here in the
form of muon energy at the
surface of the sea εsurface as
a function of muon energy at
the detector level εdetector. We
plot the energy loss for differ-
ent zenith distance θ, thus the
path length is R = d/ cos θ.
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If we integrate Equation 3.31 we can obtain the integral equa-
tion

∫ εdetector

εsurface

dε

a(ε) + b(ε)ε
+ R = 0, (3.35)

in which εsurface is the energy at the surface of the sea and εdetector
is the energy at detector level, located at slant depth R = d/ cos θ

where d is the vertical distance of the detector and θ is the zenith
distance from which the source came. The slant depth formula
assumes a plane-parallel layers of the sea which does not take
into account the curvature of the Earth. This is however a good
approximation for zenith distances less than ∼85◦, which is the
range of zenith distances we are interested in.

Solving Equation 3.35, we can obtain εsurface if εdetector is the
input and vice versa. I solve Equation 3.35 to obtain εsurface as a
function of εdetector. The result for ANTARES depth of d = 2475 m
below sea level is shown in Figure 3.5 for several slant depths.

The relation between εsurface as a function of εdetector is particu-
larly useful to obtain the muon flux at detector level:

dN
dεdet

(εdet, R) =
dN

dεsur
(εsur)

dεsur
dεdet

∣∣∣∣
εdet,R

(3.36)

With these in mind, we can now proceed to calculate the muon
spectrum of a GRB based on its observed photon spectrum at the
top of the atmosphere.

3.7 On the multiplicity of downgoing muons

The calculations of muon production developed in this Chap-
ter is a time-averaged model and thus is incapable of predicting
the rate of muon bundles due to the occurence of several mu-
ons produced in a γ-induced shower. It is important, however, to
quantify accurately the rate of downgoing muon bundles, as they
can be misidentified as signals expected from γ-induced muons.

To this end, simulations of muon production from γ show-
ers have been performed with CORSIKA (Heck et al., 1998), a pro-
gram built to simulate in detail extensive air showers initiated by
cosmic-ray particles, including high-energy photons. A number
of showers with primary photons ranging from 1 TeV to 100 TeV
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εγ Nγ Nµ Nµ(εµ ≥ 0.7 TeV) Nµ(εµ ≥ 0.9 TeV)

1 1 × 107 1 647 016 223 (0.014%) 55 (0.003%)

2 1 × 107 3 652 709 1271 (0.035%) 772 (0.021%)

5 1 × 107 10 389 534 3924 (0.038%) 2573 (0.025%)

10 4 × 106 9 119 416 3515 (0.039%) 2228 (0.024%)

50 2 × 106 28 121 835 9802 (0.035%) 6420 (0.023%)

100 6 × 105 18 345 064 6016 (0.033%) 3960 (0.022%)

Table 3.1: A summary of
the γ-induced electromag-
netic shower simulations per-
formed with CORSIKA. All
simulations are performed
with zenith distance θ = 30◦.
Each row summarises the
simulation results for pho-
tons with a given primary
energy εγ. Nγ is the num-
ber of showers simulated; Nµ

is the total number of mu-
ons produced from all sim-
ulations; Nµ(εµ ≥ 0.7 TeV)
and Nµ(εµ ≥ 0.9 TeV) are
the total number of mu-
ons with energies greater or
equal than respectively 0.7
TeV and 0.9 TeV.

is produced (see Table 3.1 for details on the number of showers
produced for each energy of the primary photon). Hadronic in-
teractions in the atmosphere are simulated with the QGSJET model
while the electromagnetic interactions are simulated with the EGS4

package. The photon source is fixed to an assumed position in the
sky, with an azimuth angle of 0◦ (toward the North) and zenith
distance of 30◦.

The result of the simulation can be seen in Table 3.2 and Figure
3.6. Table 3.2 shows the rate of single muon events produced
in each photon shower with given photon energy εγ. For each
primary energies, single muon rates are shown for three different
muon energy threshold: No threshold at all, εµ ≥ 0.7 TeV, and
εµ ≥ 0.9 TeV. For each threshold, two quantities are shown: The
number of showers that produce at least one muon passing the
energy threshold and the number of shower producing only single
muons passing the energy threshold.

Figure 3.6 shows the distribution of the muon multiplicity. For
each shower with given photon energy εγ the distribution of the

Table 3.2: The rate of sin-
gle muons for each shower
with given primary energy
εγ. For each given thresh-
old energy, two quantities are
shown: The number of show-
ers that produce at least one
muon with energy equal or
larger than the given thresh-
old and the number of show-
ers that produce only one
muon passing the given en-
ergy threshold.

εγ [TeV] No threshold εµ ≥ 0.7 TeV εµ ≥ 0.9 TeV
1 792740 529689 (66.82%) 208 208 (100.00%) 55 55 (100.00%)

2 945618 604308 (63.91%) 699 630 (90.13%) 435 415 (95.40%)

5 2181219 1203441 (55.17%) 2135 1914 (89.65%) 1365 1194 (87.47%)

10 1218344 511458 (41.98%) 1602 1409 (87.95%) 1020 905 (88.73%)

50 993949 21334 (2.15%) 3990 3207 (80.38%) 2746 2287 (83.28%)

100 599983 121 (0.02%) 4698 3652 (77.74%) 3215 2559 (79.60%)
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Figure 3.6: The distribution
of muon multiplicity Nµ at
the surface of the sea. Each
curve shows the fraction of
Nµ produced from showers
with given photon-primary
with energy εγ. Photons with
energy εγ ! 10 TeV can
produce large muon bundles.
However, if a certain muon
energy threshold is applied
(middle and bottom plots),
we can see that the majority
of the events are single mu-
ons.
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Figure 3.7: The distribution
of the angular separation ψ
of the original TeV photon
track and the track of muons
produced in the atmosphere.
In addition to the distribu-
tion of ψ for all muons, the
ψ distribution for six differ-
ent muon energy thresholds
are also shown. We can see
that for TeV muons, the angu-
lar separations with the orig-
inal photon tracks are very
small they are practically par-
allel with them.

number of muons Nµ produced in the shower, at the surface of
the sea, is shown. The top plot shows the distribution of Nµ for
muons with any energy. We can see that for photon primaries
with energy εγ " 10 TeV, the majority of the showers produce
no muons at all, with a probability of ∼ 20% producing at least
one muon. At higher primary energies, there is a higher chance
to produce multiple muons within a shower. However, the muons
must penetrate the depth of the sea in order to be detected by
the ANTARES telescope. Thus only muons with sufficiently high
energy are detected. If we only count muons with energy larger
than 700 GeV (middle plot of Figure 3.6) or 900 GeV (bottom plot
of Figure 3.6), it is clear that the majority of events contain a single
muons and that high-energy muon bundles are rare. Table 3.2
shows that in the photon energy range of 2 TeV ≤ εγ ≤ 10 TeV,
at most ∼11% of the muons with εµ ≥ 0.9 TeV arrive in bundles.
The rate of muon bundles is thus rather low.

If the very high energy muon bundles pass through the detec-
tor, it is still possible to reconstruct a track. At this energy, the
muons will travel essentially at parallel angles and could there-
fore be reconstructed as a single muon track. This is due to the
limited two-track resolution of the detector that hinders the abil-
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ity to distinguish multiple muon tracks coming at approximately
the same time (Halzen, Kappes & Ó Murchadha, 2009). From the
CORSIKA simulation, we could calculate the angular separation ψ

of the tracks with respect to the original photon directions. In Fig-
ure 3.7 the distribution of ψ is plotted for muons with any energy
as well as for muons passing a certain energy threshold. Six en-
ergy thresholds are considered, ranging from 590 GeV to 10 TeV.
We can see that for TeV muons, the distribution of ψ is peaked at
around ∼ 0.001◦, which is much smaller than the angular resolu-
tion of the ANTARES detector.

Consequently, the simulations of ANTARES’ sensitivity to down-
going muons can then be performed by generating single muon
tracks. We will discuss this simulation in Chapter 7.


