
Two-photon interference : spatial aspects of two-photon
entanglement, diffraction, and scattering
Peeters, W.H.

Citation
Peeters, W. H. (2010, December 21). Two-photon interference : spatial
aspects of two-photon entanglement, diffraction, and scattering. Casimir PhD
Series. Retrieved from https://hdl.handle.net/1887/16264
 
Version: Not Applicable (or Unknown)

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/16264
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16264


6Spatial pairing andantipairing of photons inrandom media
We experimentally demonstrate spatial pairing and spatial antipairing of two en-

tangled photons after propagation through a randomly scattering medium. This

two-photon interference phenomenon survives averaging over different realizations

of disorder. Despite the random nature of the scattering process, the labeled pho-

tons have a natural tendency to cluster together or to avoid each other depending

of the symmetry properties of the entanglement. Our experimental results are in

excellent agreement with our scattering model based on the random unitary ma-

trix ensemble. The (anti)-pairing behavior is closely related to particle exchange

symmetries: pairing for bosonic symmetry, antipairing for fermionic symmetry, and

anything in between for anyonic symmetry.
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6. SPATIAL PAIRING AND ANTIPAIRING OF PHOTONS IN RANDOM MEDIA
6.1 Introduction

In the previous chapter, we analyzed the spatial structure in individual two-photon

speckle patterns. These speckle patterns are visible for single realizations of the

scattering medium that is illuminated with a spatially entangled two-photon state.

Thus far, we have not yet discussed the scattered two-photon probability density

after averaging over different realizations of disorder. It is in particular interesting

to study the effect of two-photon particle symmetry A(x1,x2) = A(x2,x1) on the

ensemble-averaged two-photon probability density, since the scattered two-photon

probability amplitude needs to obey this symmetry in each realization of disorder.

To study the essence of the two-photon symmetry, it is desired to have a phys-

ical system that allows tuning of the symmetry properties. In other words, it is

desired that there is no particle exchange constraint to A(x1,x2) at all. To achieve

this, we must design the physical system in which photon 1 and photon 2 are la-

beled, either via their energies or via their polarizations. This labeling relieves the

symmetry constraint because the two spatial coordinates of A(x1,x2) now refer to

distinguishable photons that are individually addressable via their energy or po-

larization. To study how symmetry affects two-photon scattering, the scattering

process should not modify the labeling degree of freedom of the photons, and the

spatial scatter matrix should be identical for the two photons. These constraints

on the scattering process are quite stringent, but, as we shall demonstrate, such a

scattering system is experimentally feasible.

In this chapter, we study the ensemble-averaged spatial density matrix of the

multiply-scattered entangled photon pair. We find that the probability density

contains spatial structure depending on the symmetry properties of the incident

photon pair. The two photons exhibit a tendency to cluster together (pairing)

for bosonic spatial symmetry or to avoid each other (antipairing) for fermionic

spatial symmetry. We use the terminology (anti-)pairing instead of (anti-)bunching,

because the two photons never occupy the same optical mode due to their orthogonal

labels. In Sec. 6.2 we provide a theoretical model based on the random unitary

matrix ensemble. Section 6.3 describes experiments in which photon pairing and

antipairing is observed. Finally, Secs. 6.4-6.5 contain a concluding discussion and a

discussion on potential future research.

6.2 Random unitary scattering of labeled photons

In this section we provide a basic two-photon scattering model describing photon

pairing and antipairing after random unitary propagation. We start with a pure
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6.2. RANDOM UNITARY SCATTERING OF LABELED PHOTONS
quasimonochromatic two-photon state

|Ψin〉 =

M
∑

k=1

M
∑

l=1

Aklâ
†
k b̂†l |vac〉, (6.1)

where â†
i and b̂†i are photon creation operators of photons with identical spatial

profiles i but with orthogonal polarization or energy. The number M ≥ 2 quantifies

the dimensionality of the spatial basis for each photon. The two photons are labeled

via their polarization or energy. Therefore, we may also write state Eq. (6.1) in

particle notation

|Ψin〉 =
M
∑

k=1

M
∑

l=1

Akl|k〉1 ⊗ |l〉2, (6.2)

where |k〉1 denotes the spatial k-state of the photon with label 1, and |l〉2 denotes

the spatial l-state of the photon with label 2. Normalization of the input state

requires
M
∑

k=1

M
∑

l=1

|Akl|2 = 1. (6.3)

The notation chosen in Eq. (6.2) directly shows how |Ψin〉 can be spatially entangled

for properly chosen Akl. State |Ψin〉 is entangled if it is impossible to write Eq. (6.2)

in a separable form.

The incident two-photon state will now undergo a quasimonochromatic, linear,

and lossless scattering process. We put two extra restrictions on this scattering

process:

(1) The spatial scattering process does not affect

the labeling property of the photons.

(2) The spatial scattering matrix is identical for

the two photons.

Under condition (1), the two photons remain distinguishable via their label

throughout the scattering process. By also obeying condition (2), we can use the

same unitary (=energy-conserving) spatial scattering matrix uij for photon 1 and

photon 2. We calculate the scattered output state via a coupling of modes formalism























ĉi =
M
∑

j=1

uij âj

d̂i =

M
∑

j=1

uij b̂j

⇐⇒























â†
j =

M
∑

i=1

uij ĉ
†
i

b̂†j =

M
∑

i=1

uij d̂
†
i

(6.4)

113



6. SPATIAL PAIRING AND ANTIPAIRING OF PHOTONS IN RANDOM MEDIA
where we used unitarity of uij , and where ĉi and d̂i are photon annihilation operators

in the output mode space of photon 1 and photon 2, respectively.

By substituting Eq. (6.4) into Eq. (6.1) we obtain the scattered output state

|Ψout〉 =

M
∑

k=1

M
∑

l=1

M
∑

m=1

M
∑

p=1

Aklumkuplĉ
†
md̂†p|vac〉, (6.5)

The aim is to perform averaging over different realizations of disorder. Therefore, it

is most suitable to describe the ensemble-averaged scattered light as a mixed state

with density operator

ρ̂(out) ≡ |Ψout〉〈Ψout|, (6.6)

where the bar denotes averaging over different realizations of disorder. For nota-

tional convenience we will express the density operator in a density-matrix form

ρ̂(out) =
M
∑

q=1

M
∑

r=1

M
∑

q′=1

M
∑

r′=1

ρ
(out)
qr,q′r′ ĉ

†
q d̂

†
r|vac〉〈vac|d̂r′ ĉq′ (6.7)

ρ
(out)
qr,q′r′ = 〈vac|d̂r ĉq ρ̂

(out)ĉ†q′ d̂
†
r′ |vac〉, (6.8)

where we used the completeness and orthonormality of the two-photon basis states

ĉ†qd̂
†
r|vac〉. By combining Eqs. (6.8), (6.6), and (6.5) we find the density matrix of

the scattered two-photon state

ρ
(out)
qr,q′r′ =

M
∑

k=1

M
∑

l=1

M
∑

k′=1

M
∑

l′=1

AklA
∗
k′l′uqkurlu∗

q′k′u∗
r′l′ . (6.9)

In order to perform ensemble averaging, we must choose an ensemble of unitary

scattering matrices. In many realistic multiple scattering geometries, the matrix

ensemble contains several correlations such as enhanced backscattering [42] and

universal conductance fluctuations [44]. We will however omit all these correlations

by using the random unitary matrix ensemble, also known as the circular unitary

ensemble (CUE)∗. This ensemble is implicitly defined via invariant integration over

the unitary group [147, 148], which means that any integral over the ensemble is

not affected by multiplication of the ensemble with any unitary matrix of choice

(see Eq. (21) in Ref. [148]). In a sense, the random unitary matrix ensemble is the

most random ensemble imaginable, since it remains unchanged after multiplication

by any unitary matrix. At this point, the choice of the CUE is useful because it is

∗ For example, enhanced backscattering is contained in the circular orthogonal ensemble (COE)
for the reflection matrix r, which means that r = UUT with U in the CUE [146]. The circular

orthogonal ensemble obeys |rii|2 = 2|rij |2 for i 6= j.
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6.2. RANDOM UNITARY SCATTERING OF LABELED PHOTONS
likely that any two-photon interference phenomenon surviving this type of ensemble

averaging will also survive in realistic scattering geometries.

By using this additional assumption of the random unitary matrix ensemble, we

have derived explicit expressions (see Appendix) for the ensemble-averaged scat-

tered two-photon density matrix in Eq. (6.9). We find that the two photons have a

tendency to either pair up or to avoid each other, depending on the symmetry prop-

erties of the entanglement. The degree of pairing in the output can be quantified

in a single ratio

F ≡
ρ
(out)
11,11

ρ
(out)
12,12

, (6.10)

which we will call the pairing factor. The pairing factor is the two-photon detection

probability observed with two detectors looking into the same spatial channel di-

vided by the two-photon detection probability observed with two detectors looking

into different spatial channels. The key result of the calculation in the Appendix is

that F ∈ [0, 2] is

F =
1 + S

1 +
1 − S
M − 1

, (6.11)

where the symmetry parameter S ∈ [−1, 1] defined as

S ≡
M
∑

k=1

M
∑

l=1

AklA
∗
lk, (6.12)

quantifies the degree of spatial symmetry in the incident two-photon state. For large

scattering matrices (M ≫ 2) the pairing factor in Eq. (6.11) reduces to F = 1 + S.

It is intriguing that the phenomenon of (anti-)pairing survives averaging over the

random unitary ensemble. The direct dependence of F on S in Eq. (6.11) implies

that the symmetry parameter S is conserved under scattering for any realization of

the unitary matrix. We recall that the photons must retain their labeling parameter

throughout the scattering process and that the scatter matrix should be identical

for both photons. In scattering geometries that do not obey these restrictions, the

photons might bunch into the same mode (same energy and polarization), or the two

photons could encounter different scattering matrices such that S is not conserved

anymore.

We now discuss four classes of symmetry that could be imposed on coefficients

Akl of the incident two-photon state |Ψin〉. These four symmetry classes are listed

in Tab. 6.1. Each symmetry class corresponds to a certain symmetry parameter

S and thus to a certain degree of pairing F via Eq. (6.11). We have denoted the

first three symmetries as bosonic, fermionic and anyonic, because of their clear con-

nection with particle exchange symmetries in bosonic, fermionic and anyonic [149]
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6. SPATIAL PAIRING AND ANTIPAIRING OF PHOTONS IN RANDOM MEDIA
symmetry name restriction on Akl symmetry parameter S

bosonic symmetry Akl = Alk S = 1
fermionic symmetry Akl = −Alk S = −1

anyonic symmetry [149] Ak≥l,l = eiθAlk S = cos(θ)
zero symmetry Ak≥l,l = 0 S = 0

Table 6.1: Definitions of four classes of symmetries, which can exist in the entangled two-
photon state in Eq. (6.1). The symmetry parameter S is defined in Eq. (6.12). This parameter
plays a central role because it is directly related to the pairing factor F in Eqs. (6.10)-(6.11).

quantum fields. This connection becomes clear in the particle notation of |Ψin〉 in

Eq. (6.2). This notation is mathematically equivalent to the first-quantization lan-

guage∗, which can be used for most quantum fields. When using this language for

a certain quantum field, one must manually symmetrize the pre-factors to achieve

the desired particle exchange symmetry [150]. The symmetry rules for bosonic,

fermionic, and anyonic quantum fields, are identical to the restrictions on Akl that

are listed in Tab. 6.1. This justifies the names that we have chosen for the different

kinds of symmetry in Akl.

If bosonic symmetry is imposed, the labeled photons have a tendency to pair

up in the random medium (S = 1 and F = 2). In case of fermionic symmetry,

the labeled photons will never scatter into identical spatial mode profiles (S =

−1 and F = 0). Remarkably, the labeled photons exhibit similar behavior as

true bosons (bunching) or true fermions (antibunching) depending on the imposed

class of symmetry. This similarity arises from the full mathematical equivalence

between the particle notation of the labeled photons in Eq. (6.2) and the first-

quantization language that can be applied to true bosonic and fermionic quantum

fields. Interestingly, our labeled photons allow anyonic symmetry as well. For this

symmetry, we expect behavior somewhere in between full pairing and full antipairing

(−1 < S < 1 and 0 < F < 2). Finally, one could also impose no symmetry at all,

which we call zero symmetry (Ak≥l,l = 0, S = 0, and F = 1). This option mimics

scattering of classical particles, where each particle carries an intrinsic identity label.

6.3 Experiments

6.3.1 Experimental scheme

In this section we describe an experimental scheme for the demonstration of two-

photon pairing and antipairing of multiply-scattered polarization-labeled photons.

∗ The first-quantization language is a quantum-mechanical description of elementary particles in
terms of wave functions for each particle. This language does not use creation and annihilation
operators.
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6.3. EXPERIMENTS
Figure 6.1: Scheme of the experimental process. Polarization-labeled photons are produced via
type-II SPDC. The spatial scatter properties of the diffusers are polarization independent, and
the diffusers do not affect the polarization. Scattered photons are deterministically separated at
a polarizing beam splitter (PBS), detected by independently scanning detectors, and correlated
by coincidence logic. Averaging over different realizations of disorder is achieved by fast rotation
of the diffusers around the optical axis.

The two-photon interference phenomenon of Eq. (6.11) will be demonstrated for

bosonic symmetry (S = 1) and fermionic symmetry (S = −1) in a scattering

geometry with a large dimension (M ≫ 2). The theoretical description is only valid

within certain physical conditions of the scattering process. We will address how

these conditions are implemented experimentally.

Figure 6.1 schematically depicts the scattering process. The photon pairs are

generated via type-II spontaneous parametric down-conversion (SPDC), which pro-

duces pairs of polarization-labeled photons [56, 59, 64, 69]. Spatial correlations be-

tween the photons arise from conservation of transverse momentum in the down-

conversion process. The spatial symmetry parameter S is tuned by inserting bire-

fringent plates in the far field of the SPDC process (see Sec. 6.3.2 for details∗).

In order to demonstrate Eq. (6.11), the scattering process is not allowed to affect

the labeling parameter of the photons, which in our case is the polarization. The

spatial scattering properties must be identical for both photons. These conditions

are met by considering paraxial scattering of diffusers. The random unitary en-

semble is approximated with two diffusers positioned in one another’s far field and

detection in the far field of the second diffuser. Averaging over different realizations

of disorder is achieved by relatively fast rotation of the diffusers (see below). The

photons are deterministically separated at a beam splitter. The two detectors ef-

fectively look at the same spatial profile if the position of detector 2 coincides with

the reflected position of detector 1.

∗ Only the implementation of bosonic and fermionic symmetry is discussed in Sec. 6.3.2. Any-
onic symmetry can be straightforwardly implemented by using different wave plates in the
anti-symmetrizer in Fig. 6.3. Zero symmetry can be implemented by adding a combina-
tion of a polarizer at 45◦ and a λ/4-plate at 0◦ in between the generating crystal and the
anti-symmetrizer.

117



6. SPATIAL PAIRING AND ANTIPAIRING OF PHOTONS IN RANDOM MEDIA
6.3.2 Details of experimental apparatus

The experimental apparatus is schematically depicted in Fig. 6.2. Photon pairs are

generated via type-II collinear spontaneous parametric down-conversion (SPDC) in

a 5-mm-long periodically poled KTiOPO4 (PPKTP) crystal. The orientation of the

crystallographic x, y, and z axes of the PPKTP is indicated in the figure. Down-

conversion is operated with a y-polarized pump beam (200 mW at 413.1 nm); the

down-converted photons are y and z polarized. Periodic poling is applied along

the ±z axis of the crystal with poling period 11.525 µm along the x axis. The

effective nonlinearity, corrected for first-order quasi phase matching, is (2/π)d24 =

2.5 pm/V [111]. This is 4 times less as compared to the nonlinearity in type-I SPDC

where the d33 of KTP is utilized. Collinear degenerate phase-matching is achieved

at T = 16◦C.

Detection occurs behind narrow band color filters with a full-width-at-half-

maximum spectral width of 1 nm around a center wavelength of 826.2 nm. This

optical detection bandwidth is below the phase-matching bandwidth∗ of 1.14 nm.

This is required for obtaining an almost spatially pure post-selected two-photon

field, after having traced out the subpicosecond structure in its t2 − t1 coordi-

nate [64]. Spatial purity is required for the generation of high visibility two-photon

speckle patterns in experiments with nonrotating diffusers [36]. The spatial prop-

erties of the generated two-photon field are practically identical to these of the

two-photon field studied in Chapters 4 and 5 because the crystal length, pump

beam, and refractive indices are almost identical. Similar two-photon fields have

been studied in Refs. [142, 151,152].

The pump beam is loosely focussed in the crystal-center plane such that the

Rayleigh range of the pump beam is much larger than the crystal length (waist

wp = 160 µm and Rayleigh range zR = πw2
p/λ = 20 cm). Two lenses (fa = 200 mm)

in a telescopic configuration directly image the crystal center onto the scattering

system.

The scattering system consists of two diffusers that are positioned in one an-

other’s far field. Each diffuser is positioned off-center (displaced by 1 cm) such that

rotating the diffusers at 15◦/s causes good ensemble averaging within the integra-

tion time of 12 − 14 s. Several hundreds of different two-photon speckle spots are

being averaged within the integration time of the measurement. The full-width-half-

∗ The mentioned phase-matching bandwidth ∆λ = 1.14 nm is much smaller than the phase-
matching bandwidth for type-I SPDC discussed in Chapter 3. This is because the two photons
now have orthogonal polarizations and thus propagate with different refractive indices. In the
type-II case, the phase-matching bandwidth (FWHM) is calculated from ∆λ = λ2

0∆ω/2πc and

the criterion sinc2
[

L∆ω
4

d
dω

[(nz(ω) − ny(ω))ω/c]
ω=ω0

]

= 1
2
, where L is the crystal length,

and λ0 and ω0 correspond to the vacuum wavelength and angular frequency of a down-
converted photon, respectively. The frequency dependent refractive indices of KTP are taken
from the Sellmeier dispersion equations in Refs. [106, 107].
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6.3. EXPERIMENTS
Figure 6.2: Experimental apparatus. Scattered photons are deterministically separated at
a polarizing beam splitter (PBS), collected by single mode fibers, and detected by photon
counters and coincidence logic. The polarization-labeled photons originate from type-II SPDC
having bosonic spatial symmetry. Fermionic spatial symmetry is achieved by adding the anti-
symmetrizer (see Fig. 6.3).

maximum scattering angle of each diffuser is 22 mrad. The focal length fc = 10 mm

of the lens in between the diffusers is chosen such that the irradiated areas on both

diffusers are approximately the same. This is not a strict requirement but merely a

convenient choice in relation to the number of speckles and the expected signal to

noise ratio.

Behind the scattering system, the two polarization-labeled photons are determin-

istically separated with a polarizing beam splitter. Detection occurs via projection

onto single-mode fibers that are coupled to photon counters and coincidence logic

(τgate = 1.73 ns). The far-field plane is located in the focal plane of a lens with focal

length fd = 250 mm. Spatial resolution in the far-field planes is achieved with tight

foci of the detection modes (wdet = 140 µm). When the fiber holders are scanned

transversely, the detection modes move in their far-field planes but remain fixed in

the plane the second diffuser.

An important element of the setup is the “anti-symmetrizer” depicted in Fig. 6.3.

When this element is positioned in the far field of the nonlinear crystal it changes

the spatial symmetry of the two-photon field from bosonic to fermionic. The anti-

symmetrizer consists of two λ/4-plates closely aligned next to each other (gap is

5 − 15 µm), and one plate is rotated 90◦ with respect to the other. The fast and

slow axes of the birefringent plates must be oriented parallel to the y and z axes

of the coordinate system (defined by the nonlinear crystal). As the photons leave

the crystal with approximately opposite transverse momenta, they will generally

pass through opposite sides of the anti-symmetrizer. Anti-symmetrization occurs

because the phase of the two-photon transmission channel “H-photon left, V-photon

right” is 2 × 90◦ = 180◦ different from the phase of the two-photon transmission

channel “V-photon left, H-photon right”. The performance of the anti-symmetrizer

is limited by the imperfect angular correlations between the photons, which in turn
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Figure 6.3: Front view of the anti-symmetrizer present in the experimental setup in Fig. 6.2.
The orientation in the experimental setup is such that the coordinate system in this figure
coincides with the coordinate system in Fig. 6.2.

are limited by the divergence of the pump beam. The probability that both photons

pass through the same side must be sufficiently low; the symmetry is only changed

when the two photons pass though opposite sides. A very rough estimation of the

probability that both photons pass through the same side is 1
2K− 1

2 = 0.05, where

K ≈ 83 is the Schmidt number of the entanglement for our source [10]. This limits

the symmetry parameter to approximately S = 0.95 ×−1 + 0.05 × 1 = −0.90.

The element of the anti-symmetrizer is closely related to experimental tech-

niques employed in Refs. [31, 153, 154]. These references use similar birefringent

plates in which the polarization state of the entangled light is controlled in a

position-dependent fashion. Combining entanglement of two degrees of freedom

has already been addressed in all possible combinations: polarization/energy en-

tanglement [155], polarization/transverse-position entanglement [31,74,76,153], and

energy/transverse-position entanglement [64]. Combining the entanglement in all

three degrees of freedom (polarization, transverse position, and energy) is called

hyperentanglement [156,157].

6.3.3 Experimental results

We have measured the coincidence count rate between two independently-scanning

detectors for 2 × 2 configurations: bosonic and fermionic symmetry, with rotating

and nonrotating diffusers for each symmetry. The four recorded two-photon coin-

cidence patterns are displayed in Figs. 6.4(a)-(d). Each data point is recorded with

an integration time of 12 − 14 s, and each pattern takes typically 22 hours to be

recorded. All displayed coincidence count rates have been corrected for accidental

coincidences, which typically account for 10% of the rawly measured coincidence

count rate.
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Figures 6.4(a) and (c) display two-photon speckle patterns for bosonic symmetry

and fermionic symmetry, respectively. Both patterns show high speckle contrasts,

which indicates that the incident two-photon state is spatially pure [36]. Further-

more, both patterns are symmetric with respect to the s1 = s2 diagonal. This

symmetry indicates that the incident two-photon state obeys exchange symmetry

(bosonic, fermionic, or anyonic), and that the spatial scatter properties of the scat-

tering system is the same for both photons (polarization independent scattering).

We are mainly interested in what happens on the diagonal s1 = s2, where both

detectors are looking at the same spatial profile. On this diagonal, the relative

two-photon speckle intensity is expected to depend on the type of symmetry that is

applied. For bosonic symmetry, the two-photon speckle spots on the diagonal are

expected to be twice as bright as compared to neighboring speckle spots (F = 2).

We indeed observe a couple of remarkably bright two-photon speckle spots on the

diagonal of Fig. 6.4(a). For fermionic symmetry, we expect antipairing; not a single

speckle spot is allowed to occur on the diagonal (F = 0). We indeed observe

complete two-photon darkness on the diagonal of Fig. 6.4(c).

The two-photon interference phenomenon survives averaging over different real-

izations of disorder. The two-photon speckle patterns are washed out in Figs. 6.4(b)

and (d) due to the fast rotation of the diffusers. In the case of bosonic symmetry

in figs. 6.4(b), the two-photon intensity on the diagonal clearly stands out. In the

case of fermionic symmetry in Fig. 6.4(d), the two photons never occur at the same

site.

To quantify the experimental degrees of pairing and antipairing, Fig. 6.5 displays

45◦-projections of the ensemble-averaged two-photon patterns. The peak for bosonic

symmetry and the dip for fermionic symmetry clearly stand out. The experimental

pairing factors are extracted from Gaussian fits through the resulting curves. We

obtain F = 1.89 ± 0.05 and F = 0.10 ± 0.01 for bosonic symmetry and fermionic

symmetry, respectively. Our results clearly demonstrate pairing and antipairing of

photons that have propagated through a random medium.

We do not fully understand the observed small deviation from perfect pairing

(F = 2) and perfect antipairing (F = 0). Imperfect antipairing might be caused by

the fact that a small portion of the photon pairs is transmitted through only one

side of the anti-symmetrizer, which will give S > −1 and F > 0 (see Sec. 6.3.2 for

details). In the pairing geometry, our experimental realization of a random scatterer

(two rotating diffusers) might not correspond to the full ensemble of random matri-

ces, which could cause F < 2. We note that the pairing factor does not depend on

the width of the detection modes because the phenomenon of (anti-)pairing is ex-

pected to appear in any mode basis. It is though very important that the detection

modes of both detectors have practically equal shapes. Any difference between the

mode profiles can have a degrading effect on the observed pairing factor. Although
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Figure 6.4: Four experimental two-photon patterns for four different configurations: (a) Static
random medium and bosonic spatial symmetry. (b) Moving random medium and bosonic spatial
symmetry. (c) Static random medium and fermionic spatial symmetry. (d) Moving random
medium and fermionic spatial symmetry. The dotted rectangles in panels (b) and (d) indicate
the selections that have been used for generating Fig. 6.5.
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Figure 6.5: Experimental demonstration of pairing for bosonic spatial symmetry and antipairing
for fermionic spatial symmetry. This effect has survived ensemble averaging since the random
medium was moving fast during recording. These experimental data are extracted from Fig. 6.4
by performing projection operations along the 45◦ diagonals within the dotted rectangles.

we carefully equalized the sizes of our detection modes in the far-field plane, we

observed up to 10% differences in divergence and astigmatism (probably caused by

limited quality of the fiber tips). This might have had a degrading effect on the

observed pairing factors.

We yet have little physical intuition for the physical processes that determine

the precise shape of the (anti-)pairing curves in Fig. 6.5. For future reference we

note that the FWHM of the peak in the coincidence count rate in Fig. 6.5 is (0.54±
0.03) mm. The fermionic dip is somewhat narrower at (0.40±0.02) mm and exhibits

small shoulders.

6.4 Concluding discussion

Our scattering experiments with labeled photons demonstrate, for the first time, a

(tunable) two-photon interference effect that survives averaging over different re-
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6. SPATIAL PAIRING AND ANTIPAIRING OF PHOTONS IN RANDOM MEDIA
alizations of disorder∗. It is intriguing to see that some spatial structure survives

scattering from rotating diffusers. We have presented a basic theoretical frame-

work underlying the phenomenon. This framework is very effective in explaining

the experimental results and is very useful for understanding which experimental

parameters are essential. Spatial entanglement plays a central role because, within

our theoretical framework, fermionic and anyonic symmetry can not be achieved

without entanglement (see Tab. 6.1). The observed effect of (anti-)pairing is a two-

photon interference phenomenon since it can be tuned via the phases of the complex

two-photon probability amplitudes.

Our scheme provides an experimental toy model that nicely demonstrates the

influence of particle exchange symmetries on two-particle propagation. The spa-

tial symmetry between our polarization-labeled photons can be tuned such that

it is mathematically equivalent to particle exchange symmetries between indistin-

guishable (i.e. unlabeled) quantum particles: bosons, fermions and anyons. Our

experiments demonstrate how two particles with bosonic exchange symmetry have

the tendency to pair up under random unitary scattering. In fermionic symmetry,

the particles never come together. Of course, the two photons do not repel each

other; it is just that propagation of two fermionic particles to the same site never

happens.

Our experiments are closely related to the first observation of spatial antibunch-

ing of photons [31]. An observation of spatial antibunching proves nonclassicality

of light, but, formally, it is not allowed to use a polarizing beam splitter for such an

experiment [31]. We expect that our experimental results would have been quali-

tatively the same with a normal beam splitter (except for a factor 2 reduction in

the coincidence count rate). So if we had used a normal beam splitter, Fig. 6.4(d)

would likely have been another observation of spatial antibunching and a proof of

nonclassicality of light.

6.5 Outlook

Future research on this two-photon interference phenomenon could address several

aspects. First of all, it is desired to get a better understanding of how two-photon

(anti-)pairing is related to the geometry of the scattering medium. Currently, we

have no theoretical prediction for the shape and widths of the peak and dip in

Fig. 6.5. We have little physical intuition for the physical processes that determine

the precise shape of these curves.

∗ Two theoretical papers have recently appeared dealing with two-photon interference effects
that survive averaging over different realizations of disorder [37, 38]. Reference [37] studies
how Anderson localization in a 1D scatter configuration affects the structure in the ensemble
averaged two-photon density for various incident two-photon states. Reference [38] predicts
that a two-photon interference phenomenon should appear by itself for sufficiently long ran-
domly scattering wave guides.
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Future experiments could address anyonic symmetry to observe pairing factors

0 < F < 2. Another interesting option is to observe antipairing with energy-labeled

photons. Such a system is particularly interesting because the photons would retain

their labeling parameter also in 3D scattering random media. Photons from SPDC

are energy-labeled since the total energy of the photon pair is fixed to the photon

energy of the pump beam.

It would be very useful to study the phenomenon in scattering systems in which

either the labeling of the photons is degraded by the scattering process, or the two

photons encounter slightly different scattering matrices. The theoretical formalism

must then be extended to a 2M × 2M unitary scattering matrix; the upper-left

M × M submatrix for the first photon, the lower-right submatrix for the second,

and the two off-diagonal submatrices for the coupling between the subsystems of

the photons.

Finally, it would be interesting to investigate in which way the phenomenon of

two-photon (anti-)pairing is related to one-photon interference phenomena. Well-

known one-photon interference phenomena that survive averaging over different

realizations of disorder are enhanced backscattering and Anderson localization of

light [39, 42, 45, 158]. Recent simulations in 1D scattering systems have already

shown that profound correlations can exist between (one-photon) Anderson local-

ization and ensemble-averaged two-photon propagation [37].
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6.7 APPENDIX: Scattered density matrix

In this appendix we derive explicit expressions for the scattered two-photon density

matrix in Eq. (6.9), recapitulated,

ρ
(out)
qr,q′r′ =

∑

klk′ l′

AklA
∗
k′l′uqkurlu∗

q′k′u∗
r′l′ . (6.13)

The random unitary matrix ensemble will be used for averaging over different real-

izations of disorder. Any unitary integral of the form

ua1b1 ...uanbn
u∗

c1d1
...u∗

cndn

is nonzero if and only if c ∈ P (a) and d ∈ P (b), where P (x) is the collection of all

different permutations of x, [147,148]. Logically, there are four essentially different
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nonzero second-order integrals possible, being [147,148]

α1 ≡ u11u11u∗
11u

∗
11 =

2M

M2(M + 1)
, (6.14)

α2 ≡ u11u12u∗
11u

∗
12 =

M

M2(M + 1)
, (6.15)

α3 ≡ u11u22u∗
11u

∗
22 =

M2

M2(M + 1)(M − 1)
, (6.16)

α4 ≡ u11u22u∗
12u

∗
21 =

−M

M2(M + 1)(M − 1)
, (6.17)

where M is the dimension of the random unitary matrix. When applying this

knowledge to Eq. (6.13) it is found that the density matrix elements can take four

different values

ρ
(out)
qr,q′r′ =







































∑

klk′l′

AklA
∗
k′l′uqkuqlu∗

qk′u∗
ql′ , q = q′ = r = r′

∑

klk′l′

AklA
∗
k′l′uqkurlu∗

qk′u∗
rl′ , (q = q′) 6= (r = r′)

∑

klk′l′

AklA
∗
k′l′uqkurlu∗

rk′u∗
ql′ , (q = r′) 6= (r = q′)

0 , elsewhere.

(6.18)

Now it is a matter of bookkeeping to perform the summation and using the integrals

in Eqs. (6.14)-(6.17). The nonzero contributions in the summations of Eq. (6.18)

are listed in Tab. 6.2. By applying this list to Eq. (6.18) we obtain

ρ
(out)
qr,q′r′ =























α1D + α2(T − D) + α2(S − D) , q = q′ = r = r′

α2D + α3(T − D) + α4(S − D) , (q = q′) 6= (r = r′)

α2D + α4(T − D) + α3(S − D) , (q = r′) 6= (r = q′)

0 , elsewhere

, (6.19)

where we introduced three functionals of the input Akl being

T ≡
M
∑

k=1

M
∑

l=1

AklA
∗
kl (6.20)

D ≡
M
∑

k=1

AkkA∗
kk, (6.21)

S ≡
M
∑

k=1

M
∑

l=1

AklA
∗
lk. (6.22)
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uqkuqlu∗

qk′u∗
ql′ uqkurlu∗

qk′u∗
rl′ uqkurlu∗

rk′u∗
ql′

k = l = k′ = l′ α1 α2 α2

(k = k′) 6= (l = l′) α2 α3 α4

(k = l′) 6= (l = k′) α2 α4 α3

Table 6.2: Listing of nonzero outcomes for the three unitary integrals in Eq. (6.18) for different
combinations of the summation indices k, l, k′, and l′ (note that q 6= r). The coefficients αi

are defined in Eqs. (6.14)-(6.17).

The symbols T , D ∈ [0, T ], and S ∈ [−(T − D), +(T − D)] stand for total power,

diagonal power, and symmetry parameter, respectively.

By substituting Eqs. (6.14)-(6.17) for the unitary integrals αi in Eq. (6.19) we

find

ρ
(out)
qr,q′r′ =







































1

M

( T + S
M + 1

)

, q = q′ = r = r′

1

M(M − 1)

(

MT − S
M + 1

)

, (q = q′) 6= (r = r′)

1

M(M − 1)

(

MS − T
M + 1

)

, (q = r′) 6= (r = q′)

0 , elsewhere

(6.23)

We now make two remarks of mathematical interest. The first remark is that T and

S are functionals of Akl that are conserved under transformation via any unitary

scattering matrix. This can easily be demonstrated by combining the appropriate

elements of ρ
(out)
qr,qr to obtain the average T and S in the output state being

T (out) =
∑

qr

ρ(out)
qr,qr = Mρ

(out)
11,11 + M(M − 1)ρ

(out)
12,12 = T , (6.24)

S(out) =
∑

qr

ρ(out)
qr,rq = Mρ

(out)
11,11 + M(M − 1)ρ

(out)
12,21 = S. (6.25)

The second remark is that the unitary integrals in Eqs. (6.14)-(6.17) are uniquely

determined by stating that T is a conserved quantity for any M and any Akl. In

other words, by combining Eqs. (6.24) and (6.19) one retrieves Eqs. (6.14)-(6.17).

Actually, the unitary integrals are also uniquely determined by stating that S is a

conserved quantity for any M and any Akl. So by combining Eqs. (6.25) and (6.19)

one retrieves Eqs. (6.14)-(6.17) as well.

Finally, we restrict ourselves to T = 1, which corresponds to normalized two-

photon quantum states in Eq. (6.1). Furthermore, we concentrate on the on-

diagonal elements of the scattered density matrix only. The relative strength of
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these elements is given by the ratio

F ≡
ρ
(out)
11,11

ρ
(out)
12,12

=
1 + S

1 +
1 − S
M − 1

, (6.26)

which we will call the pairing factor, where S ∈ [−1, 1] and F ∈ [0, 2]. The pairing

factor is the two-photon detection probability observed with two detectors looking

into the same spatial channel divided by the two-photon detection probability ob-

served with two detectors looking into different spatial channels. Explicit values for

these probabilities are easily retrieved by using

Trρ
(out)
qr,q′r′ = Mρ

(out)
11,11 + M(M − 1)ρ

(out)
12,12 = 1, (6.27)

which is associated with energy-conserving scattering processes.
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