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5Observation of two-photonspekle patterns
We report the observation of speckle patterns in quantum correlations within light

that is scattered by a disordered medium. The random medium is illuminated with

spatially entangled photon pairs, and fourth-order speckle patterns are spatially

resolved by two independently scanning detectors. Spatial entanglement gives two-

photon speckle a much richer structure than ordinary one-photon speckle. Our

experiments demonstrate that two-photon speckle from a surface scatterer and a

volume scatterer look entirely different.

W. H. Peeters, J. J. D. Moerman, and M. P. van Exter, Observation of two-photon

speckle patterns, Physical Review Letters 104, 173601 (2010)
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5. OBSERVATION OF TWO-PHOTON SPECKLE PATTERNS
5.1 Introduction

Optical speckle is the random interference pattern that is observed when coherent

radiation is scattered by a disordered scattering medium. The phenomenon has

been studied widely since the invention of the laser [41]. Textbook studies gen-

erally consider the scattered intensity, which can be regarded as the one-photon

probability density. Recently, the concept of speckle was theoretically extended to

the two-photon probability density, which is observable as the coincidence count

rate between two detectors [36]. The idea is to illuminate a random medium

with spatially entangled photon pairs, produced via spontaneous parametric down-

conversion (SPDC) [56,59,64,69], such that a two-photon speckle pattern is formed

in the coincidence count rate.

Two-photon speckle is of great interest for the research on multiple scattering of

nonclassical waves [36, 135–137]. The coincidence count rate is the key observable

when studying entangled states in random media, and two-photon speckle directly

visualizes the spatial structure of the entanglement in the scattered light. The

subject of two-photon speckle is related to a recent observation of spatial quan-

tum correlations in multiply scattered light [137]. In this observation, however,

only the spatially integrated power was measured. Until now, the structure within

spatial quantum correlations in multiply scattered light has remained unexplored.

Furthermore, two-photon speckle is important for the research on two-photon imag-

ing [52,66,78,114,138–140], in which random media have not been investigated thus

far.

In this chapter we report the experimental observation of two-photon speckle.

Spatially entangled photon pairs are scattered of random media, and quantum cor-

relations in the scattered light are spatially resolved by two independently scanning

detectors in the far field. First, we introduce a theoretical expression for the au-

tocorrelation function of the two-photon speckle pattern. Second, we present ex-

perimental two-photon speckle patterns for surface and volume scatterers, and we

demonstrate in which respect they are different. Finally, we discuss requirements

for the incident light necessary to generate two-photon speckle.

5.2 Theory

Figure 5.1 schematically depicts the experimental setup. A static linear scatter-

ing medium is illuminated with photon pairs that originate from a low-gain SPDC

source pumped by a continuous-wave laser with full spatial coherence. Detection oc-

curs quasimonochromatically in the far field of the scatterer in transmission geome-
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5.2. THEORY
Figure 5.1: Experimental scheme.

try∗. Scattered photons are probabilistically separated at a beam splitter, detected

by independently scanning single-photon counters, and correlated by coincidence

logic.

The transverse spatial properties of a pure spatially entangled photon pair are

described by the two-photon probability amplitude† [56]

A(x1,x2) ≡ 〈vac|Ê(+)(x1)Ê
(+)(x2)|Ψ〉, (5.1)

where Ê(+)(x) is the positive-frequency electric-field operator at transverse posi-

tion x. The profile A(x1,x2) is the complex probability amplitude for simultaneous

detection of one photon at transverse position x1 and the other photon at trans-

verse position x2. The coincidence count rate between two detectors thus scales as

R(x1,x2) ∝ |A(x1,x2)|2. Below, we refer to A(x1,x2) and R(x1,x2) as the two-

photon field and two-photon intensity, respectively. We will express the transverse

coordinates s1,2 in the far-field plane in terms of angles θ1,2 ≡ s1,2/fd, where fd is

the focal length of the far-field imaging lens (see Fig. 5.1).

The formation of two-photon speckle in the coincidence count rate occurs

via quantum interference in the randomly scattered two-photon field (theory in

Ref. [36]). Extending the analysis in Ref. [36], we concentrate on the average two-

photon speckle shape, which depends on both detector displacements in the far-field.

The speckle shape is contained in the autocorrelation function of the two-photon

speckle pattern

C(θ1, θ2; δθ1, δθ2) ≡ RFF

(

θ
−
1 , θ−

2

)

RFF

(

θ
+
1 , θ+

2

)

, (5.2)

∗ By quasimonochromatic we mean that the optical detection bandwidth ∆ν is small in compar-
ison with τ−1

scat, where τscat is the spread in scattering times. The two-photon speckle contrast
is expected to diminish for large bandwidth since the spatial electric-field propagator typically
varies over frequency intervals τ−1

scat .
† The sub-picosecond structure in the t2−t1 coordinate of the two-photon probability amplitude

is left out, because spatial-temporal correlations [64] will be absent within the applied optical
detection bandwidth ∆ν that is much smaller than the phase-matching bandwidth.
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5. OBSERVATION OF TWO-PHOTON SPECKLE PATTERNS
where RFF (θ1, θ2) is the coincidence count rate in the far-field plane, and θ

±
1,2 ≡

θ1,2 ± 1
2δθ1,2. The bar denotes averaging over different realizations of disorder.

To arrive at a nice expression for the two-photon speckle autocorrelation function

C(θ1, θ2; δθ1, δθ2), we make two assumptions. First, we assume the opening angle

of the scattered light to be much wider than the diffraction angles associated with

the average two-photon intensity in the exit plane Rex(x1,x2) (strong-scattering

regime). Second, the scattered two-photon field is assumed to exhibit Gaussian

statistics∗. With these assumptions, Eq. (5.2) can be rewritten as (see appendix 5.8)

C(θ1, θ2; δθ1, δθ2) ≈ RFF(θ1, θ2)
2
[

1 +
∣

∣µ′(δθ−, δθ+)
∣

∣

2
]

, (5.3)

where the speckle shape function µ′(δθ−, δθ+) is expressed in a rotated basis where

δθ± ≡ 1√
2
(δθ1 ± δθ2). The key result is the speckle shape function

µ′(δθ−, δθ+) =
F

[

R′
ex(x−,x+)

]

(

kδθ−, kδθ+

)

F

[

R′
ex(x−,x+)

]

(

0, 0
)

, (5.4)

where F denotes the spatial Fourier transform, and k is the radial wavenumber

of a down-converted photon in vacuum. The average two-photon intensity in the

exit plane of the scatterer R′
ex(x−,x+) is expressed in a rotated basis where x± ≡

1√
2
(x1 ± x2), and x1,2 denote transverse positions of the photons in the exit plane.

The theoretical result in Eqs. (5.3)-(5.4) shows that the average shape of two-

photon speckle spots in the far field is Fourier related to the spatial structure of the

average two-photon intensity in the exit plane. Note that the two-photon speckle

size can be very different along the difference coordinate θ1 − θ2 and the sum

coordinate θ1 + θ2. The size of the speckle spots along the difference-coordinate

is inversely proportional to the distance between the photons in the exit plane,

whereas the size along the sum-coordinate depends on the sum-coordinate of the

photons in the exit plane.

Equations (5.3)-(5.4) have a well-known analog in ordinary one-photon speckle.

The one-photon speckle theorem assumes spatially coherent illumination, and it

states that the shape of one-photon speckle spots in the far field is Fourier related

to the average intensity in the exit plane [41]. The analogy is based on similarities

between the autocorrelation function of the electric-field amplitude E∗(x)E(x′) for

the one-photon case and the autocorrelation function of a pure two-photon proba-

bility amplitude A∗(x1,x2)A(x′
1,x

′
2) for the two-photon case†. The latter function

∗ This assumption is valid for high-dimensional entanglement and becomes approximate for
small Schmidt numbers (see Fig. 2 in Ref. [36])

† This analogy is different from a previously investigated duality between the first-order coher-
ence function and the two-photon probability amplitude [78, 138, 139]
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5.3. EXPERIMENTAL SETUP
is closely related to the two-photon cross-spectral density function [141]. Both

functions mathematically denote two-photon field mixtures, either via a quantum

average (in Ref. [141]) or via different realizations of disorder (in our case).

5.3 Experimental setup

The experimental setup is depicted in Fig. 5.2. Photon pairs are generated via

SPDC in a cw-pumped collinear type-I geometry in a 5-mm-long periodically poled

KTiOPO4 crystal (pump 200 mW at 413 nm). The crystal center is imaged onto

the incident plane of the scatterer. Detection occurs via projection onto single-mode

fibers that are coupled to photon counters and coincidence logic (τgate = 1.73 ns).

Spatial resolution in the far-field planes is achieved with tight foci of the detection

modes (wdet = 140 µm). When the fiber holders are scanned transversely, the

detection modes move in their far-field planes but remain fixed in the exit plane of

the scatterer. The detectors are placed behind narrow band spectral filters such that

the experiment operates in the quasimonochromatic regime (5 nm at 826 nm). The

figures in this chapter show coincidence count rates that are corrected for accidental

coincidence counts. The generated two-photon field for our source is thoroughly

analyzed in Refs. [142, 143]. The Schmidt number of the spatial entanglement,

which quantifies the effective number of independent spatial modes, is K ≈ 83 [10].

Our experiments are designed to demonstrate the importance of the Fourier

relation for the two-photon speckle shape in Eqs. (5.3)-(5.4). Three different scatter

configurations are chosen (see Fig. 5.2). Configurations (a) and (b) represent surface

scatterers involving a single diffuser. Configuration (c) mimics a volume scatterer

comprising two diffusers positioned in one another’s far field. A surface scatterer

does not directly affect the transverse position of an incident photon. Hence, the

two-photon speckle shape will correspond to the strong positional correlations of

the incident light. A volume scatterer, on the other hand, is capable of moving a

photon transversely during the photon’s propagation from the incident plane to the

exit plane. As a consequence, the average positional correlation in the exit plane

will be smeared out, and the two-photon speckle shape is expected to be entirely

different. This is remarkable, since in the case of ordinary one-photon speckle,

speckle spots are identical for surface and volume scatterers [41].
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5. OBSERVATION OF TWO-PHOTON SPECKLE PATTERNS

Figure 5.2: Experimental setup. Scattered photons are probabilistically separated at a beam
splitter, collected by two single-mode (SM) fibers, and detected by photon counters and
coincidence logic. Three scatter configurations can be chosen (a)-(c). The full width at
half maximum scattering angle of each diffuser is 22 mrad. The indicated length scales are
wp = 160 µm, fc = 10 mm, and fd = 250 mm.

Figure 5.3: (a) Measured single count rate in the far field of a diffuser. (b) Measured coinci-
dence count rate in the same experiment. This two-photon speckle pattern is recorded while
keeping the position of detector 2 fixed. Panels (c) and (d) display the reference measurement.
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5.4. EXPERIMENTAL RESULTS
Figure 5.4: Measured two-photon speckle patterns recorded with two independently scanning
detectors. The patterns (a)-(c) directly correspond to scattering configurations (a)-(c) in
Fig. 5.2.

5.4 Experimental results

First, we discuss an experiment with one scanning and one fixed detector. The

experiment is performed in configuration (a) involving a single diffuser. Figures

5.3(a)-(b) show the single count rate and the coincidence count rate, respectively.

It is remarkable that speckle is only observed in the coincidence count rate. Because

of spatial entanglement, projection of the photon in the fixed detector corresponds to

a collapse of the other photon into a speckle pattern. The absence of any ordinary

one-photon speckle is consistent with the multimode character of the entangled

SPDC light. The reference experiment, in the absence of scattering, is displayed in

Figs. 5.3(c)-(d). The sharp peak in the coincidence count rate locates the mirrored

position of detector 2.

Second, we discuss experiments where the positions of both detectors are scanned

independently in a horizontal line (see Fig. 5.4). Only by scanning them both, one

gains knowledge about the size of the two-photon speckle spots along both the dif-

ference coordinate and the sum coordinate. The two-photon speckle patterns in

Figs. 5.4 (a)-(c) correspond to the three scattering configurations in Fig. 5.2. All

patterns obey mirror symmetry with respect to the diagonal due to the indistin-

guishability of the photons. Remarkable is the fact that the three patterns look

entirely different. The two-photon speckle spots are strongly elongated for the sin-

gle diffuser [Figs. 5.4(a) and 5.4(b)] while the spots are almost isotropic for the

volume scatterer [Figs. 5.4(c)].

In configuration (a) the two-photon source itself is imaged onto the diffuser.

The two photons arrive at approximate equal positions on the diffuser since they

are created in that way inside the nonlinear crystal. The two-photon intensity is

thus tight along the difference coordinate in the plane of the diffuser. In agreement

with the Fourier relationship in Eq. (5.4), two-photon speckle in Fig. 5.4(a) appears

elongated along the difference coordinate. In configuration (b) the far field of the
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5. OBSERVATION OF TWO-PHOTON SPECKLE PATTERNS
two-photon source is imaged onto the diffuser, and the photons have approximately

opposite transverse positions. Accordingly, we observe two-photon speckle spots

that are elongated along the sum coordinate in Fig. 5.4(b). In configuration (c)

the second diffuser is illuminated with far-field patterns similar to Fig. 5.4 (a).

The average two-photon intensity is now wide in both x+ and x− directions. In

accordance, we observe two-photon speckle spots in Fig. 5.4(c) that are small along

both diagonal coordinates.

The orientation of the speckle spots in Figs. 5.4(a)-(b) and the isotropy in

Fig. 5.4(c) can be qualitatively understood via the Klyshko picture of two-photon

imaging [52,71]. This interpretation follows one detected photon backwards in time

to be converted into the second forward-propagating photon via a virtual reflection

at the nonlinear crystal. However, a quantitative understanding of the two-photon

speckle size requires detailed knowledge of the spatial and angular limitations of the

generating process [56, 69]; i.e., one needs the explicit expression for the generated

two-photon field for our source [142,143].

We now discuss a quantitative analysis of the two-photon speckle size for con-

figuration (a). Seven experimental speckle patterns yield average speckle sizes of

(0.44 ± 0.05) and (4.4 ± 0.2) mm along the sum diagonal and difference diago-

nal, respectively. The theoretical values are 0.41 and 5.4 mm as calculated from

Eqs. (5.3)-(5.4) and the generated two-photon field [142,143]. The confined dimen-

sion is in excellent agreement with theory while the elongated size is slightly smaller

than expected. We attribute this small disagreement to the fact that our experiment

does not fully operate in the strong-scattering regime assumed in Eqs. (5.3)-(5.4).

5.5 Discussion

Two-photon speckle becomes interesting only if the incident light contains multi-

mode spatial correlations. If the incident light were in a single spatial mode, any

scattered two-photon speckle pattern would factorize into the one-photon intensities

via R(θ1, θ2) ∝ I(θ1)I(θ2). This pattern obviously contains the same information

as the intensity pattern I(θ).

Correlations in thermal light cannot generate the nonfactorizable features in

Fig. 5.4. Thermal correlations are phase insensitive and are not affected by a diffuser

[66]. This is easily understood via the Klyshko-type picture for phase-insensitive

correlations, in which the crystal is replaced by a phase-conjugate mirror instead

of a real mirror [140]. Two-photon speckle is thus essentially different from ghost

imaging because the latter works fine with thermal light [138, 144]. The difference

stems from the fact that in our scheme both photons pass through the sample,

whereas in ghost imaging, one of the photons propagates through an empty reference

arm. The features in Fig. 5.4 require phase-sensitive correlations in the incident
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5.6. CONCLUSION
light [66]. These correlations are commonly generated via the nonlinear process

of SPDC and are not present in thermal light. Our experiments are performed

with nonclassical light where subsequent entangled photon pairs can be temporally

resolved [66].

The presence of the nonfactorizable features in Fig. 5.4 demonstrates that two-

photon speckle has a richer structure than ordinary one-photon speckle. Because

of the spatial entanglement between the photons, projection of one of the photons

corresponds to a full collapse of the other photon into a speckled mode profile [see

Fig. 5.3(b)]. The dimensionality of the entanglement quantifies the effective number

of different projected one-photon speckle patterns. If someone wishes to generate all

these speckle patterns with a coherent laser beam, she or he will have to adjust the

mode profile of the incident beam many times. Spatial entanglement allows one to

obtain many projected one-photon speckle patterns without changing the geometry

of the incident light.

5.6 Conclusion

We have observed two-photon speckle patterns in the far-field of disordered scat-

tering media. Spatial entanglement of the incident light gives two-photon speckle

a much richer structure than ordinary one-photon speckle. Our work paves the

way for future research on multiple scattering of entangled photons. It would be

interesting to establish the connection with universal conductance fluctuations [44]

and enhanced backscattering of light [42].
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5.8 APPENDIX: Derivation of the two-photon speckle autocorre-

lation function

This appendix presents a derivation of Eqs. (5.3)-(5.4) in the main text of this

chapter. Inspired by one-photon speckle analysis [41], we approximate the auto-

correlation function of the two-photon field in the exit plane of the scatterer by

a quasihomogeneous function [145]. In such a form the autocorrelation function

separates into a wide function of the average coordinate and a narrow function of
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5. OBSERVATION OF TWO-PHOTON SPECKLE PATTERNS
the difference coordinate, i.e.,

Γex (x1,x2; δx1, δx2) ≡ A∗
ex

(

x−
1 ,x−

2

)

Aex

(

x+
1 ,x+

2

)

≈ Rex(x1,x2) × fex(δx1, δx2), (5.5)

where x±
1,2 ≡ x1,2 ± 1

2δx1,2, Aex(x1,x2) is the two-photon field in the exit plane

of the scatterer, and Rex(x1,x2) is the average two-photon intensity in the exit

plane. The compact function fex(δx1, δx2) is related to the opening angle of the

scattered light. We associate this approximation with strongly scattering surfaces

with large surface height fluctuations (≫ λ) and a transverse correlation of the

surface roughness that is short as compared to the structure in the average two-

photon intensity (strong-scattering regime).

Next, we propagate Γex to the far-field plane to obtain ΓFF being the two-

photon field correlation function in the far-field plane. Spatial propagation of a two-

photon field is described by applying the electric field propagator to each coordinate

individually, yielding [78]

AFF(s1, s2) =

∫

dx1dx2h(s1,x1)h(s2,x2)Aex(x1,x2), (5.6)

where s1,2 are the transverse positions in the far-field plane and

h(s,x) =
k

2πifd
exp

(

−ik
s · x
fd

)

, (5.7)

is the far-field propagator of the electric field, fd is the focal length of the far-

field imaging lens, and k is the radial wavenumber of a down-converted photon in

vacuum. By combining Eqs. (5.5)-(5.7) one obtains the two-photon field correlation

function in the far-field plane

ΓFF(s1, s2; δs1, δs2) =

(

k

2πfd

)4

F

[

Rex(x1,x2)
]

(

k
δs1

fd
, k

δs2

fd

)

×F [fex(δx1, δx2)]

(

k
s1

fd
, k

s2

fd

)

, (5.8)

where F denotes spatial Fourier transform. This correlation function has a similar

separable form as Eq. (5.5).

Finally, we assume Gaussian statistics of the two-photon field in the far-field of

the scatterer. This assumption requires high-dimensional entanglement of the input

field; it becomes approximate for small Schmidt numbers (see Fig. 2 in Ref. [36]).

The complex Gaussian moment theorem [41] now yields an expression for the desired
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5.8. APPENDIX: DERIVATION OF THE TWO-PHOTON SPECKLE AUTOCORRELATION FUNCTION
coincidence correlation function C in terms of ΓFF

C(s1, s2; δs1, δs2) = RFF(s−1 , s−2 ) × RFF(s+
1 , s+

2 ) + |ΓFF (s1, s2; δs1, δs2) |2

≈ RFF(s1, s2)
2
+ |ΓFF (s1, s2; δs1, δs2) |2, (5.9)

where s±1,2 ≡ s1,2 ± 1
2δs1,2, and where we once more used strong scattering in the

second line.

By inserting Eq. (5.8) for ΓFF we find

C(s1, s2; δs1, δs2) = RFF(s1, s2)
2
[

1 +
∣

∣µ′(δs−, δs+)
∣

∣

2
]

, (5.10)

and δs± ≡ 1√
2
(δs1 ± δs2) and where the shape function

µ′(δs−, δs+) =

F

[

R′
ex(x−,x+)

]

(

k
δs−
fd

, k
δs+

fd

)

F

[

R′
ex(x−,x+)

]

(

0, 0
)

, (5.11)

is Fourier related to the average two-photon intensity in the exit plane R′
ex(x−,x+),

expressed in a rotated basis where x± ≡ 1√
2
(x1 ± x2). Equations (5.10)-(5.11)

become Eqs. (5.3)-(5.4) in the main text after a simple conversion to angles.

In the above derivation of the correlation functions, we neglected the effect of

the symmetry constraint of the two-photon field Aex(x1,x2) = Aex(x2,x1). This

symmetry results in average photon bunching close to the diagonal s1 ≈ s2. The

approximation is allowed since the number of spatial modes is sufficiently large for

the considered case of strong scattering and high-dimensional entanglement. In this

regime, the vast majority of the two-photon speckle spots is located far away from

the diagonal, where s1 6= s2 and the effect of photon bunching is not relevant.
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