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4Engineering of two-photonspatial quantum orrelationsbehind a double slit
This chapter demonstrates the engineering of spatially entangled two-photon states

behind a double slit by tailoring the incident pure two-photon state. We experi-

mentally characterize many different two-photon states by measuring their complete

two-photon interference patterns in the far field of the double slit. Spatial entangle-

ment right behind the double slit can reside in either the modulus or the phase of

the two-photon field. The balance between these two types of entanglement is fully

controlled by experimentally utilizing the phase-front curvatures of the pump beam

and the phase-matching profile. We project either a far-field image or a magni-

fied near-field image of the two-photon source onto the double slit. Our theoretical

analysis shows how the two-photon interference pattern behind the double slit ef-

fectively acts as a phase-sensitive probe of the incident two-photon field profile. We

thus present phase-sensitive measurements of the generated two-photon field profile

probed in an image plane of the two-photon source.

W. H. Peeters, J. J. Renema, and M. P. van Exter, Engineering of two-photon

spatial quantum correlations behind a double slit, Physical Review A 79, 043817

(2009)

(Selected for the Virtual Journal of Quantum Information, May 2009)
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT
4.1 Introduction

Two photons are spatially entangled if their spatial degrees of freedom, residing

in the phase space of transverse position and transverse momentum, are quan-

tum correlated. This form of entanglement can be easily generated via the non-

linear process of spontaneous parametric down-conversion (SPDC), where a sin-

gle pump photon splits into a pair of down-converted photons [59, 68]. Spatial

quantum correlations between two photons have played a pivotal role in many

landmark experiments on fourth-order spatial interference [7, 23], ghost imaging

and ghost interference [52, 68, 114, 115], quantum lithography [30, 116], and or-

bital angular-momentum entanglement [16,117]. Other experiments have addressed

wave-particle complementarity [25,29] and duality of one-photon and two-photon in-

terferences [27–29,78]. Identification of spatial entanglement has been demonstrated

via combined position-momentum measurements [118, 119] and a recent violation

of Bell inequalities [120,121].

Spatial entanglement created via SPDC is of a high-dimensional form, and the

spatial Schmidt modes are generally quite complicated [9]. This spatial structure

becomes less complicated by projecting each photon onto an array of holes. Be-

hind a double slit, for example, the spatial entanglement exists between two trans-

mitted photons of which each photon resides in a two-dimensional Hilbert space

spanned by the upper slit and lower slit modes. Two-photon transmission through

a double slit has been demonstrated with both indistinguishable [27, 29] and dis-

tinguishable photons [24–26, 28, 30–35]. Extensions to high-dimensional forms of

entanglement have been realized by using multi-slit apertures [122–125]. Methods

for characterizing spatial entanglement behind a double slit have been demonstrated

in Refs. [32, 33, 35].

To set the stage for further discussion, we restrict ourselves to double-slit illu-

mination schemes that obey mirror symmetry with respect to the optical axis. The

transmitted two-photon state then takes the form

|Ψ2ph〉 = cos (α/2)

( |↑↓〉 + |↓↑〉√
2

)

+ eiϕ sin (α/2)

( |↑↑〉 + |↓↓〉√
2

)

, (4.1)

where | ↑〉 and | ↓〉 represent transmissions through the upper slit and lower slit,

respectively, and where α and ϕ represent the state parameters. In principle, the

above expression covers a large variety of two-photon spatial quantum correlations

behind a double slit.

Experiments so far have addressed only a subclass of all two-photon states rep-

resented by Eq. (4.1). In many papers [24–29,32, 33, 35, 122–125], the double slit is

positioned far away from the two-photon source where transmission is dominated

by photons emerging from opposite slits so that 0 ≤ α ≤ 1
2π. Some of these papers
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4.1. INTRODUCTION
have demonstrated how to control α within this range [28,29,33,125]. The opposite

case, where both photons emerge from the same slit and α = π, has been realized

by positioning the double slit very close to the two-photon source [30,34]. This two-

photon state plays a central role in the field of quantum lithography [116]. Until

now, parameter α has not been tuned within the range 1
2π ≤ α ≤ π. No attention

has been paid to the experimental tuning of ϕ either, and most experiments seem

to operate at ϕ ≈ 0. Yet, it is known that ϕ is highly relevant for the degree and

type of spatial entanglement behind the double slit [33]. One could, for example,

consider a maximally entangled state at α = ϕ = 1
2π where the entanglement re-

sides in the phase rather than the modulus of the two-photon field right behind the

double slit [126].

In this chapter we demonstrate full control over the state parameters α and ϕ.

We achieve this by tailoring the imaging system in between the two-photon source

and a single double slit. We switch between two imaging schemes: the near-field

imaging scheme and the far-field imaging scheme. The near-field imaging scheme

images (a plane close to) the two-photon source onto the double slit. We will call

ϕ the curvature phase because we control this phase by utilizing the phase front

curvatures of both the phase-matching profile and the pump beam profile. We

characterize more than 30 different two-photon states by measuring their complete

two-photon interference patterns in the far field of the double slit. Our theoretical

analysis provides a direct connection between the incident two-photon field profile

and the state parameters α and ϕ. We show that the two-photon interference

pattern behind the double slit effectively acts as a phase-sensitive probe of the

incident two-photon field profile.

In our experiments, we use frequency degenerate SPDC in a periodically poled

crystal where the signal and idler photons have the same polarization (type-I

SPDC). Hence, the obtained spatial quantum correlations exist between indistin-

guishable photons. Our theoretical analysis, however, also applies to type-I SPDC

in a uniform crystal and type-II SPDC in a periodically poled crystal. The analy-

sis in this chapter can thus also be used to engineer spatial quantum correlations

between distinguishable photons.

The chapter is organized as follows. The first theoretical part in Sec. 4.2 de-

scribes how to engineer two-photon spatial quantum correlations behind the double

slit. We describe how parameters α and ϕ depend on the incident two-photon

field for the far-field and near-field imaging schemes. The second theoretical part

in Sec. 4.3 describes one-photon and two-photon interferences behind the double

slit. Section 4.4 describes the experimental apparatus. The experimental results

can be found in Sec. 4.5. The tuning of the two-photon state is illustrated with a

number of measured two-photon interference patterns. The observed one-photon

and two-photon interference patterns are compared with theory. The chapter ends
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT
with a concluding section and a discussion on the possibility to tune two-photon

spatial quantum correlations in a higher-dimensional Hilbert space. The Appendix

discusses the validity of our engineering model for various types of phase matching.

4.2 Theory: Two-photon state engineering

4.2.1 Electromagnetic field behind double slit

The electromagnetic field behind a double slit is considered. We assume the field

to be the response to an incident quasimonochromatic two-photon field in a pure

state. Transmission through the double slit can happen in three ways: either both

photons come through, one photon comes through and the other one is blocked, or

both photons are blocked. The density matrix of the electromagnetic field behind

the double slit can thus be written as

ρ̂out = P0|vac〉〈vac| + P1ρ̂1p + P2|Ψ2ph〉〈Ψ2ph|, (4.2)

where the first term represents vacuum, the second term represents a mixed one-

photon field (one photon blocked), and the third term represents a pure two-photon

field (both photons transmitted). Equation (4.2) emphasizes that experiments in-

volving a single detector depend on both the one-photon component and the two-

photon component.

We now direct our attention to the two-photon part |Ψ2ph〉 of the transmitted

state. Each photon can pass the double slit through either the upper or lower slit.

We will denote these two spatial modes by | ↑〉 and | ↓〉, respectively. The most

general form of the two-photon part of the transmitted state can thus be written as

|Ψ2ph〉 = c1|↑↑〉 + c2|↑↓〉 + c3|↓↑〉 + c4|↓↓〉, (4.3)

where the two Hilbert spaces belong to the two photons. We will now restrict

ourselves to illumination setups that obey mirror symmetry with respect to the

optical axis (see Fig. 4.1). This symmetry implies that c1 = c4 and c2 = c3 so that

reversal of all arrows leaves the quantum state unaltered. With this restriction, the

most general form of the two-photon state becomes

|Ψ2ph〉 = cos (α/2)

( |↑↓〉 + |↓↑〉√
2

)

+ eiϕ sin (α/2)

( |↑↑〉 + |↓↓〉√
2

)

, (4.4)

being a coherent superposition of two states that we will denote as antipaired and

paired. In the antipaired state the two photons emerge from opposite slits. In the

paired state the photons stick together and emerge from the same slit, being either

the upper slit or the lower slit. Figure 4.2 shows how the two-photon state can be
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4.2. THEORY: TWO-PHOTON STATE ENGINEERING
Figure 4.1: Detection part of the double-slit setup supporting the theoretical framework in
Secs. 4.2 and 4.3.

depicted as a point on a two-particle Bloch sphere. We call ϕ the curvature phase

because it depends on the phase-front curvature of the incident two-photon field

(details in Secs. 4.2.2-4.2.5).

The quantum state in Eq. (4.4) represents a spatially entangled qubit pair,

where the quantum information of each photonic qubit is encoded in its spatial

properties. The degree of entanglement within a qubit-pair is often quantified via

the concurrence [127,128]. For our case, the concurrence becomes [33]

C =

√

1 − sin2(α) cos2(ϕ). (4.5)

On the two-qubit Bloch sphere of Fig. 4.2, the concurrence equals the distance from

the point on the sphere to the vertical axis of the sphere. Quantum states on the

horizontal equator (ϕ = ±π/2) are maximally entangled regardless the value of α.

Quite remarkably, until now, hardly any attention has been paid to the experimental

tuning of ϕ. This chapter describes how to tune both α and ϕ.

In our experiments, the two photons are not distinguishable by their energy

or polarization. Probabilistic separation is achieved with a beam splitter behind

the double slit (see Fig. 4.1). The spatial quantum correlations are detected after

post selection on simultaneous clicks of two detectors in the output ports of the

beam splitter. The events in which the photons are reflected or transmitted in pairs

are discarded. The experiments could fairly easily be extended to distinguishable

spatially entangled photons by using type-II SPDC in a periodically poled crystal

(see Sec. 4.2.3).

4.2.2 Quantum state engineering

The main point of this chapter is to demonstrate full control over the two-photon

state behind the double slit as given by Eq. (4.4). We thus need to describe how α

and ϕ depend on the incident quasimonochomatic pure two-photon state |Ψin〉. The
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT

Figure 4.2: Bloch-sphere representation of a two-qubit state |Ψ2ph〉 that is restricted to the
two-dimensional expression shown above. The states |Φ+〉 and |Ψ+〉 are two of the four
maximally entangled Bell states. The indicated two-photon visibilities V12 = cos(α) and
Vcon = sin(α) cos(ϕ) directly relate to the position on the sphere. The concurrence of |Ψ2ph〉
is given by C =

√
1 − V 2

con. The two-qubit state is thus maximally entangled on the horizontal
equator.

incident state is fully characterized by the two-photon field profile in the double-slit

plane,

Aslits(x1, x2) ≡ 〈vac|Ê(+)
slits(x1)Ê

(+)
slits(x2)|Ψin〉. (4.6)

The operator Ê
(+)
slits(x) is the positive frequency electric field operator at transverse

position x in the double-slit plane. The two-photon field profile can be interpreted

as the complex probability amplitude for simultaneous detection of one photon at

position x1 and the other photon at transverse position x2.

The two-photon field profile behind the double slit is just the sampled ver-

sion of the incident two-photon field profile. We now assume that the slits are

narrower than any spatial structure of the incident two-photon field profile. The

transmitted two-photon state is then fully characterized by four complex ampli-

tudes Aslits(±d,±d), where 2d is the slit separation. Because of the assumed mirror

symmetry with respect to the optical axis we have Aslits(d, d) = Aslits(−d,−d) and
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4.2. THEORY: TWO-PHOTON STATE ENGINEERING
Aslits(d,−d) = Aslits(−d, d). The first pair of two-photon amplitudes corresponds

to paired photons, and the latter pair corresponds to antipaired photons. The co-

efficients of the transmitted two-photon state in Eq. (4.4) can thus be associated

with the incident two-photon field profile via

p ≡ eiϕ tan
(α

2

)

=
Aslits(d, d)

Aslits(d,−d)
. (4.7)

Here, we have defined p as the engineering parameter, which fully determines the

transmitted two-photon state. Equation (4.7) plays a central role in this chapter

because it describes the relationship between the incident two-photon field profile

and the two-photon state behind the double slit.

4.2.3 Incident two-photon state

In this section we calculate the incident two-photon field profile for a two-photon

state produced via the nonlinear process of SPDC. We consider frequency degenerate

SPDC in the low-conversion regime with cw pumping along the positive z direction.

The nonlinear crystal has two parallel planar facets in transverse xy planes separated

by length L. We assume the divergence of the pump beam to be small such that the

Rayleigh range is much larger than the crystal length. The pump photon has energy

~ωp, and the signal and idler photons each has approximately energy ~ω0 = 1
2~ωp.

The phase-matching condition is essential for the precise form of the generated

two-photon field profile. All equations derived below are based on noncritical type-

I phase matching. Noncritical phase matching is generally applied in periodically

poled crystals, and it means that the pump beam is orientated along a principal axis

of the crystal. However, in the Appendix we show that our analysis also applies to

noncritical type-II as well as critical type-I phase matching. In the latter case, the

transverse walk-off distance of the pump should be much smaller than the pump

beam diameter, which can be achieved by sufficiently loose focusing of the pump.

The first step toward quantum state engineering is to calculate the two-photon

field profile in the crystal-center plane. Following Ref. [69], we write for the mo-

mentum representation of this two-photon field profile

Ãcrys(q1,q2) ∝ Ẽp(q1 + q2)ξ̃(q1 − q2), (4.8)

where the tilde symbol indicates the spatial Fourier transform, Ẽp(q) is the mo-

mentum representation of the pump profile in the crystal-center plane, and q1,2 are

the transverse wave vectors of the two photons. The phase-matching profile is

ξ̃(∆q) = sinc

(

φ0 +
L|∆q|2
8n0ω0/c

)

, (4.9)
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT
where sinc(x) ≡ sin(x)/x, L is the crystal length, and n0 is the refractive index at

the down-converted frequency. The φ0 term accounts for the phase mismatch in

forward direction.

The second step is to calculate the propagation from the crystal toward the

double slit. The propagation of the two-photon field profile is described via

Aslits(x1,x2) =

∫∫

Acrys(x
′,x′′)h(x1,x

′)h(x2,x
′′)dx′dx′′, (4.10)

where h(x,x′) is the (classical) electric field propagator [129] from the crystal to

the double slit at angular frequency ω0. The two-photon field profile remains fac-

torized after propagation through any paraxial ABCD lens system. Therefore, it

is convenient to think of the pump profile and the phase-matching profile as two

separately propagating profiles. The two-photon field profile at any position z along

the optical axis can thus be written as

A(x1,x2; z) ∝ Ep,z

(

x1 + x2

2
; z

)

ξz

(

x1 − x2

2
; z

)

, (4.11)

where Ep,z(x; z) is the pump beam, ξz(x; 0) ≡ ξ(x), and ξz(x; z) is the phase-

matching profile propagated at angular frequency ωp from the crystal center to

position z.

In the final step, we calculate the engineering parameter p from Eq. (4.7). This

calculation requires a one-dimensional description of the incident two-photon field

profile. Below, we argue why it is allowed to single out one transverse dimension in

Eq. (4.11) for the imaging schemes that we use. It may, however, not be concluded

that a one-dimensional treatment is permitted for any general imaging scheme.

The problem is that the phase-matching profile ξz(x; z) does not factorize in two

functions for the two transverse dimensions. The pump beam Ep,z(x; z), which

we will assume to have a Gaussian profile, nicely factorizes in the two transverse

directions.

In the far-field imaging scheme [see Fig. 4.3(b)], the slit separations that we

use are much smaller than the phase-matching profile. The phase-matching profile

is thus approximately constant in the region of the slits, and the two-photon field

scales with the pump profile. Singling out one dimension is thus allowed for the

far-field imaging scheme.

Our near-field imaging scheme [see Fig. 4.3(a)] is based on an astigmatic form of

imaging, where lens 1 is a cylinder lens and lens 2 is a standard lens. This astigmatic

form of imaging produces only a crystal image in the direction perpendicular to the

slits (x direction), while it retains the far-field image in the direction parallel to the

slits (y direction). The size of the phase-matching profile along the x direction is

now similar to the slit separation, whereas the profile is much more extensive along
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4.2. THEORY: TWO-PHOTON STATE ENGINEERING

Figure 4.3: Two schemes for quantum state engineering. (a) Near-field imaging: a plane inside
or close to the crystal is imaged onto the double slit. The two engineering parameters are the
magnification M ≡ f2/f1 and the longitudinal position ∆z of lens 1. The illustration shows
∆z = 0, where the front focal plane of lens 1 coincides with the crystal center. (b) Far-field
imaging: the far field of the crystal, which is pumped by a Gaussian beam, is imaged onto
the double slit. The two engineering parameters are the pump divergence θp and longitudinal
position of the pump waist s.

the y direction. Furthermore, detection occurs via projection on round detection

modes that are much smaller than the phase-matching profile along y direction in

the double-slit plane (2.1 mm versus 9.2 mm full width at half maximum intensity).

The incident two-photon field profile is thus probed only around qy ≃ 0, and singling

out the x dimension is allowed.

4.2.4 Near-field imaging scheme

Our near-field imaging scheme can produce any two-photon state on the left hemi-

sphere of the two-qubit Bloch sphere (see Fig. 4.2). The working principle is that

the crystal is imaged onto the double slit. For collinear phase matching (|φ0| ≪ π),

the two photons leave the crystal from approximately the same transverse position,

and they arrive in the same way at the double slit [130]. Hence, the two-photon

state behind the double slit is dominated by the paired contribution.

The near-field imaging scheme is shown in Fig. 4.3(a). The pump beam is weakly

focused in the crystal-center plane. A plane close to the crystal center, i.e., within

the Rayleigh range of the pump beam, is imaged onto the double slit with two

lenses. The double slit is positioned in the back focal plane of the second lens;
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT
the corresponding object plane then coincides with the front focal plane of the first

lens. The precise position of the object plane can now be tuned by moving the

first lens longitudinally. We call this displacement the defocus distance ∆z, where

∆z = 0 if the object plane coincides with the crystal-center plane, and ∆z > 0 for

an increased distance between lens and crystal. The magnification of the imaging

system is M ≡ f2/f1, where f1 and f2 are the focal lengths of the first and the

second lens, respectively. The slit separation is 2d.

The profile at the double slit is just the magnified version of the two-photon

field profile in the object plane. The engineering parameter p, which completely

determines the two-photon state behind the double slit via Eq. (4.7), becomes

p =

A

(

+d

M
,
+d

M
; ∆z

)

A

(

+d

M
,
−d

M
; ∆z

) , (4.12)

where A(x1, x2; z) is the two-photon field profile of Eq. (4.11). Note that the object

plane inside the crystal has actually moved over a distance n0∆z. For convenience,

we have used the propagation length ∆z instead of n0∆z. This choice implies that

A(x1, x2; z) must be treated as a two-photon field profile that has propagated over

a distance z through an imaginary medium with refractive index n = 1.

It is important to realize that the phase-matching profile ξz(x; ∆z) is much

narrower than the pump profile Ep,z(x; ∆z). As a consequence, d/M is much smaller

than the waist of the pump beam in the relevant range of operation. Therefore, we

can approximate the engineering parameter via

p =

Ep,z

(

d

M
; ∆z

)

ξz(0; ∆z)

Ep,z(0; ∆z)ξz

(

d

M
; ∆z

) ≈ ξz(0; ∆z)

ξz

(

d

M
; ∆z

) . (4.13)

The argument and the absolute value of p are determined by the phase front cur-

vature of ξz(x; ∆z) and amplitude variations of ξz(x; ∆z), respectively.

By using the expression for the phase-matching profile in Eq. (4.9), we find the

explicit expression

p =

∫

sinc
(

φ0 + x2
)

exp(−ibx2)dx
∫

sinc
(

φ0 + x2
)

exp(−ibx2 − iax)dx

, (4.14)

where sinc(x) ≡ sin(x)/x and φ0 is the phase mismatch. The dimensionless param-
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4.2. THEORY: TWO-PHOTON STATE ENGINEERING
eters

a ≡ 2d

M
√

Lc/(n0ωp)
, (4.15)

b ≡ ∆z

L/(2n0)
, (4.16)

are the scaled slit separation and the scaled defocus distance, respectively. The

two-photon state behind the double slit can be engineered by tailoring parameters

a and b. Unfortunately, there is no simple analytic expression for the integrals in

Eq. (4.14).

We can gain physical intuition for the influence of a and b on parameter p by

considering two general properties of the phase-matching profile ξz(x; z). First, the

phase front of ξz(x; z) is flat at the crystal center. This flatness causes parameter p

to be real valued for ∆z = 0 making the curvature phase ϕ = 0. Second, |p| > 1 at

any ∆z, as the maximum of ξz(x; z) stays at the optical axis during propagation.

Numerical evaluations show that 98% of the left hemisphere of the two-qubit Bloch

sphere is covered by varying a ∈ [0, 8] and b ∈ [−6, 6]. These evaluations also show

that the coverage can be brought arbitrarily close to 100% for larger ranges of a

and b.

4.2.5 Far-field imaging scheme

Our far-field imaging scheme can produce any two-photon state on the right-hand

hemisphere of the two-qubit Bloch sphere (see Fig. 4.2). The working principle

is that the far field of the crystal is imaged onto the double slit. The photons

propagate with approximate opposite transverse momenta, so the photons arrive

at approximate opposite transverse positions in the double-slit plane. Hence, the

two-photon state behind the double slit is dominated by the antipaired contribution.

The far-field imaging scheme is shown in Fig. 4.3(b). The crystal is pumped

with a weakly focused Gaussian beam with divergence θp defined via Ẽp(θωp/c) ∝
exp(−θ2/θ2

p). The waist of the pump beam lies at a distance s in front of the crystal

center. The far field of the crystal is symmetrically imaged onto the double slit by

a lens with focal length f2. The slit separation is 2d.

It is important to realize that the far-field pump profile Ẽp(q) is much narrower

than the far-field phase-matching profile ξ̃(q). As a consequence, d/f2 is much

smaller than the divergence of the phase-matching profile in the relevant range of
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4. ENGINEERING OF TWO-PHOTON SPATIAL QUANTUM CORRELATIONS BEHIND A DOUBLE SLIT
operation. Therefore, the engineering parameter p can be approximated via

p =

Ẽp

(

dωp

f2c

)

ξ̃(0)

Ẽp(0)ξ̃

(

dωp

f2c

) ≈
Ẽp

(

dωp

f2c

)

Ẽp(0)
, (4.17)

where the first equality is found by combining Eqs. (4.7), (4.8), and (4.10).

Insertion of the described pump profile yields the explicit expression

p = exp

[

−
(

d

f2θp

)2 (

1 +
is

zR

)

]

, (4.18)

where zR ≡ 2c/(θ2
pωp) is the Rayleigh range of the pump beam. From this expression

it is clear that any two-photon state with |p| < 1 can be produced by tailoring the

divergence of the pump beam θp and its waist location s. These two-photon states

lie on the right-hand hemisphere of the two-qubit Bloch sphere in Fig. 4.2.

4.3 Theory: Interference behind the double slit

4.3.1 State determination by two-photon interference

This section describes how we analyze the engineered two-photon state. We show

that the two-photon interference pattern in the far field of the double slit serves

as a fingerprint of the quantum state described by Eq. (4.4). Figure 4.1 shows the

geometry of the detection setup. The far field of the double slit is formed in the

back focal plane of a lens with focal length f . The two photons are probabilistically

separated by a beam splitter (see Sec. 4.2.1). Two detectors are positioned in the

far-field planes formed in the two output ports of the beam splitter.

In the limit of narrow slits, the coincidence count rate in the far field of the

double slit becomes [33]

Rcc(x1, x2) ∝ 1 + Vdiff cos (φ1 − φ2)

+Vsum cos (φ1 + φ2)

+Vcon [cos(φ1) + cos(φ2)] , (4.19)

where the interslit phase differences φi relate to the detector positions xi via φi =

2dω0xi/fc, where 2d is the slit separation and ~ω0 is the energy of each photon.
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4.3. THEORY: INTERFERENCE BEHIND THE DOUBLE SLIT
The coefficients are given by

Vdiff = cos2(α/2), (4.20)

Vsum = sin2(α/2), (4.21)

Vcon = sin(α) cos(ϕ), (4.22)

where we call Vsum the visibility in the sum of coordinates and Vdiff the visibility in

the difference of coordinates. Coefficient Vcon relates to the fringe pattern in the sin-

gle count rate conditioned on transmission of the second photon through the double

slit. Therefore, we call Vcon the conditional one-photon visibility. Note that Vcon is

allowed to become negative and that this sign has a clear and measurable physical

meaning. It is just for convenience that we incorporate the sign of sin(α) cos(ϕ) in

what we call the conditional one-photon visibility.

The visibilities in the sum and difference of coordinates obey Vdiff + Vsum = 1.

It is convenient to remove this redundancy and use only one quantity. Therefore,

we define

V12 ≡ Vdiff − Vsum = cos(α), (4.23)

as the two-photon visibility difference. The interference pattern of Eq. (4.19) is now

determined by just two quantities being V12 and Vcon.

The far-field two-photon interference pattern serves as a fingerprint of the two-

qubit state. State parameter α is determined by V12 = cos(α) and state parameter

|ϕ| is then determined by Vcon = sin(α) cos(ϕ). The two-qubit Bloch sphere in

Fig. 4.2 graphically connects these visibilities to the two-photon state: the in-plane

horizontal coordinate is V12 and the vertical coordinate is Vcon. The sign of ϕ,

indicating whether the state is on the front or rear side of the sphere, cannot be

determined from the two-photon interference pattern. This sign, however, has lim-

ited physical meaning as the two-photon interference pattern, anywhere behind the

double slit, is invariant under sign reversal of ϕ.

The experimental visibilities can easily be expressed in terms of the engineering

parameter p, which characterizes the two-photon state behind the double slit via

Eq. (4.7). By combining Eqs. (4.7), (4.22) and (4.23), we find

V12 =
1 − |p|2
1 + |p|2 , (4.24)

Vcon =
p + p∗

1 + |p|2 , (4.25)

enabling us to explicitly predict the outcome of the experiments based on the cal-

culated parameter p.
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4.3.2 Interpretation of the two-qubit Bloch sphere

The two-qubit Bloch sphere in Fig. 4.2 is a graphical representation of a pure two-

qubit state that is restricted to the indicated linear superposition of two Bell states.

All possible two-photon states on this sphere share a common Schmidt basis [33,83].

These Schmidt states are located on the north and south poles of the sphere, being

|η+〉|η+〉 and |η−〉|η−〉, respectively, where |η±〉 ≡ 1√
2

(| ↑〉 ± | ↓〉). The concurrence

C is thus directly related to the vertical coordinate Vcon on the sphere. By combining

Eqs. (4.5) and (4.22) we find [33]

C =
√

1 − V 2
con. (4.26)

The physical interpretation of Eq. (4.26) is simple. If the photon pair is strongly

entangled (C ≃ 1), the spatial state of each individual photon is necessarily mixed

and cannot produce a strong interference pattern on its own (Vcon ≃ 0). In the

opposite case of an approximately nonentangled state (C ≃ 0), the state of each

individual photon is almost pure and produces strong interference (Vcon ≃ 1).

The sphere provides a clear graphical interpretation of a well-known comple-

mentarity relation between between V12 and Vcon. By combining Eqs. (4.22) and

(4.23) it is easily shown that [131,132]

V 2
12 + V 2

con ≤ 1, (4.27)

or, after inserting Eq. (4.26),

V 2
12 ≤ C2. (4.28)

The stronger the entanglement, the larger |V12| is allowed to become. The abso-

lute two-photon visibility difference |V12| determines the correlation strength of the

transverse positions of the photons right behind the double slit. Absence of this

type of correlation, however, does not imply absence of entanglement because the

entanglement could also reside in the phase rather than the modules of the two-

photon field profile [126]. Inequality (4.27) becomes an equality for two-photon

states with zero curvature phase (ϕ = 0).

The two-qubit Bloch sphere also suggests the existence of a third visibility,

Vp ≡ sin(α) sin(ϕ) =
−i(p − p∗)

1 + |p|2 , (4.29)

being the coordinate along the “out of paper” direction. Together with V12 and

Vcon, this third coordinate forms an exact complementarity relation

V 2
12 + V 2

p = C2. (4.30)
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In the fully entangled case, where C = 1 and Vcon = 0, a projective measurement on

photon A provides all quantum information on photon B. The basis in which this

quantum information is obtained depends on the character of the entanglement. At

V12 = ±1 and Vp = 0, a projection of photon A in the slit basis |↑〉, |↓〉 provides full

“which path” information on photon B. At V12 = 0 and Vp = ±1, photon A must

be projected onto the states |↑〉 ± i|↓〉 to obtain which path information on photon

B. It is yet unclear how to experimentally determine the third coordinate Vp.

4.3.3 One-photon interference

We consider the pattern of the total intensity in the far field of a double slit that

is illuminated with a pure two-photon state. The visibility of this fringe pattern

is called the unconditional one-photon visibility Vunc. The unconditional and con-

ditional one-photon visibilities generally differ from each other because Vcon solely

depends on the two-photon component behind the double slit, whereas Vunc also

depends on the one-photon part. The electromagnetic field behind the double slit

is often even dominated by the one-photon part, i.e., P1 > P2 in Eq. (4.2).

For symmetric double-slit illumination, the intensity profile in the far-field plane

of the double slit (see Fig. 4.1) is of the form

I(x) ∝ 1 + Vunc cos(φ), (4.31)

where the interslit phase difference φ relates to the detector position x via φ =

2dω0x/fc. Equation (4.31) implicitly defines the unconditional one-photon visibility

Vunc. The second-order correlation function at the slits determines Vunc via [133]

Vunc =
G(1)(d,−d)

G(1)(d, d)
. (4.32)

The outcome of this equation is real valued due to the assumed illumination sym-

metry of the setup. Like the conditional one-photon visibility, we have defined the

unconditional one-photon visibility such that it can become negative.

To calculate Vunc, we need the second-order correlation function in the plane of

the double slit. The second-order correlation function in a transverse plane can be

calculated via [61]

G(1)(x1,x2; z) ∝
∫

A∗(x1,x; z)A(x2,x; z)dx, (4.33)

where A(x1,x2; z) ≡ 〈vac|Ê(+)(x1; z)Ê(+)(x2; z)|Ψin〉 is the two-photon field profile

and |Ψin〉 is a pure monochromatic two-photon state associated with light propa-

gating along the optical axis. Equation (4.33) has a broader range of validity than
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an alternative method based on the Van Cittert-Zernike theorem [78]. The latter

theorem can only be used beyond the Rayleigh range of the two-photon source, and

the two-photon source should be sufficiently spatially incoherent. The validity of

Eq. (4.33) is retained close to the two-photon source, even for partially coherent

(realistic) two-photon sources.

As a first case, we calculate Vunc for the near-field imaging scheme that is treated

in Sec. 4.2.4 and shown in Fig. 4.3(a). By combining the generated two-photon

field in Eqs. (4.8) and (4.9), the propagation to the double slit [Eq. (4.10)], and the

formulas for the unconditional one-photon visibility in Eqs. (4.32) and (4.33), we

find

Vunc,cr =

∫

sinc2
(

φ0 + x2
)

exp(iax)dx
∫

sinc2
(

φ0 + x2
)

dx

, (4.34)

where sinc(x) ≡ sin(x)/x and a is the (dimensionless) scaled slit separation defined

in Eq. (4.15). Again, we have assumed the pump profile to be much wider than the

phase-matching profile. Unfortunately, there is no simple analytic expression for

the integrals in Eq. (4.34).

As a second case, we consider the far-field imaging scheme that is treated in

Sec. 4.2.5 and shown in Fig. 4.3(b). By combining Eqs. (4.8), (4.10), (4.32), and

(4.33) we find

Vunc,ff = exp

[

−1

2

(

d

f2θp

)2 (

1 +
s2

z2
R

)

]

, (4.35)

where 2d is the slit separation, θp is the pump divergence, and zR ≡ 2c/(θ2
pωp) is

the Rayleigh range of the pump beam. Again, we have assumed the far-field phase-

matching profile to be much wider than the far-field pump profile. For this far-field

imaging case, Eq. (4.35) can also be obtained via the Van Cittert-Zernike theorem.

4.3.4 Duality between unconditional one-photon interference and two-photon

interference

The relationship between unconditional one-photon interference and (conditional)

two-photon interference was studied earlier in Refs. [27–29, 78]. Saleh et al. [78]

theoretically pointed out that there exists a profound duality between the two phe-

nomena if far-field imaging is applied. In this section, we show how this duality

manifests itself in our model. We find new duality relations that apply to our far-

field imaging scheme, and we point out that the precise form of the duality relations

strongly depends on the applied imaging scheme.

We consider far-field imaging [see Fig. 4.3(b)] with a pump beam that is loosely

focused in the crystal-center plane (s = 0). For this specific imaging scheme we find
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that p = V 2

unc,ff by comparing engineering parameter p in Eq. (4.18) with Vunc in

Eq. (4.35). By inserting p into via Eqs. (4.24) and (4.25), we directly find duality

relations

V12 =
1 − V 4

unc,ff

1 + V 4
unc,ff

(4.36)

Vcon =
2V 2

unc,ff

1 + V 4
unc,ff

(4.37)

which strictly correspond to the specified imaging geometry. Equations (4.36) and

(4.37) describe how the unconditional intensity pattern serves as a fingerprint of

the two-photon state.

In other imaging geometries, the duality relations become generally different or

might even be multivalued. For example, the duality between V12 and Vunc,ff was

reported differently in Eq. (3.16) in Ref. [78] because the authors assumed a top-hat-

shaped flat pump profile inside the crystal instead of a Gaussian-shaped flat pump

profile. As another example, no one-to-one duality relations exist for the near-field

imaging scheme [see Fig. 4.3(a)]. If near-field imaging is applied, some values of

Vunc individually correspond to multiple values of V12 and Vcon (see Fig. 4.6).

4.4 Experimental apparatus

4.4.1 General information

A schematic representation of the experimental apparatus is shown in Fig. 4.4.

This apparatus can implement the near-field imaging scheme as well as the far-

field imaging scheme. The working principles of these two imaging schemes are

explained in Secs. 4.2.4 and 4.2.5. The technical details of the apparatus are given

in Secs. 4.4.2 and 4.4.3.

4.4.2 Experimental apparatus in front of double slit

Photon pairs are generated via collinear spontaneous parametric down conversion

(SPDC) in a periodically poled KTiOPO4 (PPKTP) crystal. The conversion is such

that pump, signal, and idler waves have the same linear polarization. We pump the

crystal with a continuous-wave y-polarized Gaussian beam propagating along the z

direction (laser: Kr+, 200 mW at 413.1 nm). We operate in the quasimonochromatic

limit by applying detection behind narrow-band spectral filters (∆λ = 5 nm at

826.2 nm). The crystallographic x axis of the PPKTP is oriented along z direction

(pump direction) and the crystallographic z axis is oriented along the y direction

(poling direction). The crystal is L = 5.09 mm long, 1 mm thick in y direction,
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Figure 4.4: Schematic representation of the experimental apparatus. The down-converted
light propagates from the crystal to the double slit via either the near-field imaging scheme
(with cylinder lens) or the far-field imaging scheme (without cylinder lens). The longitudinal
position of the cylinder lens can be adjusted. The two-photon interference pattern in the far
field of the double slit is measured by scanning the fiber holders transversely. The two fiber
holders are identical and consist of a single-mode (SM) fiber and an objective. The &-symbol
represents the detection of simultaneous photon arrivals.

and 2 mm wide in x direction. The pump beam is absorbed behind the crystal by

a GaP wafer that is antireflection coated for 826 nm.

It is important to know the phase mismatch φ0 because it strongly affects the

engineering parameter p in the near-field imaging scheme [see Eq. (4.14)]. For our

5-mm-long crystal, the temperature dependence of the phase mismatch is measured

to be ∂φ0

∂T = 1.059 ◦C−1 [134]. The phase-match temperature is found to be T0 =

(60.39 ± 0.04) ◦C from measurements of the temperature-dependent spectrum of

the SPDC light in forward direction. All double-slit experiments are performed

at a temperature T = (60.70 ± 0.01) ◦C corresponding to a phase mismatch of

φ0 = 0.33 ± 0.05.

We illuminate the symmetric and centered double slit either with a centered far-

field image of the source using an f-f imaging system (far-field imaging scheme) or a

centered magnified image of the crystal by adding an extra cylinder lens (near-field

imaging scheme). The double slit is positioned at 80 cm from the crystal center, and

the fixed far-field imaging lens with focal length f2 = (400 ± 1) mm is positioned

halfway. The removable cylinder lens with focal length f1 produces a sharp image of

the crystal-center plane only in the direction perpendicular to the slits; the cylinder

lens leaves the imaging in the parallel direction unaffected. The cylinder lens can

be moved further away from the crystal by an amount that we call the defocus

distance ∆z. The y-oriented slits are created by wire electrical discharge machining

in a phosphor bronze plate.

Some size parameters of the experimental apparatus are adjustable in order to
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be able to engineer many different two-photon states behind the double slit. In the

near-field imaging scheme, we adjust the slit separation 2d, the focal length of the

cylinder lens f1, and the defocus distance ∆z. In the far-field imaging scheme, we

adjust the slit separation 2d, the pump divergence θp, and the distance from the

pump waist to the crystal center s.

We have used six double-slit apertures with slit separations of

{313, 510, 600, 758, 950, 1400} µm, all values with ±15 µm uncertainty. The

corresponding slit widths are {138, 150, 193, 135, 235, 225} µm. We used three

different cylinder lenses with focal lengths of 12.7, 19.0, and 25.4 mm, all values

with ±2% uncertainty. The defocus distance is varied between −0.20 and 3.30 mm.

The null position of ∆z corresponds to the point where the front focal plane

coincides with the crystal center. This position is calibrated to a precision of

±0.04 mm by reflecting a reference beam, which is backwardly focused in the

primary focal plane of the cylinder lens on the front and rear crystal facets

(reversed autocollimation). For the far-field imaging experiments with s = 0, we

used three different pump divergences 0.73, 1.31, and 2.27 mrad, all values with

10% uncertainty. Some measurements have been performed with pump waists in

front of the crystal such that s 6= 0.

4.4.3 Experimental apparatus behind double slit

The two photons behind the double slit are probabilistically separated with a beam

splitter behind the double slit. The events where the photons are both reflected or

both transmitted are discarded (see Sec. 4.2.1). A lens with focal length f = 400 mm

is positioned between the double slit and the beam splitter. The lens images the

far field of the double slit onto two intermediate detection planes in the two output

ports of the beam splitter.

Detection occurs via projection onto the mode profiles of two single-mode fibers.

In the double-slit plane, the centered Gaussian detection modes have (loose) waist

diameters of 2.1 mm for each mode (full widths at half maximum intensity). Corre-

spondingly, the detection modes have waist diameters of 70 µm in the intermediate

detection planes (full widths at half maximum intensity). The finite size of the detec-

tion modes does not affect the observed fringe visibility because the field projection

is phase sensitive, and the period of the two-photon fringe pattern is at least 240 µm

which is more than three times larger than the width of the detection modes. The

two-photon interference pattern is measured by scanning two computer-controlled

detection stages transversely. Each detection stage comprises the fiber tip and an

objective with an effective focal length of 8 mm. The detection modes thus only

move in the far field of the double slit, while their intensity profiles remain fixed in

the double-slit plane.

The single-mode fibers are coupled to single-photon counting modules (Perkin-
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Figure 4.5: Various measured two-photon interference patterns in the far field of a double slit.
Measurements (a)-(c) are obtained with the near-field imaging scheme and (d)-(f) are obtained
with the far-field imaging scheme. Measurements (c) and (f) have nonzero curvature phase.
The slit separation is 1.40 mm for measurements (a)-(d), 0.95 mm for measurement (e), and
0.76 mm for measurement (f). The indicated coincidence count rates have been corrected for
accidental coincidences.

Elmer SPCM-AQR-14-FC). Simultaneous photon detections are registered by co-

incidence electronics. The applied gate time of our pulse correlator is τg =

(1.73 ± 0.01) ns. If two photons from different photon pairs are detected within

this time window, it is fallaciously registered as a coincidence count. The count

rate of these so-called accidental counts is

Rac = R1R2τg, (4.38)

where R1 and R2 are the raw single count rates in detector 1 and detector 2, respec-

tively. The “real” coincidence count rate is obtained by subtracting the accidental

count rate from the measured coincidence count rate. In our experiments, the acci-

dental count rate typically accounts for about 10 % to 45 % of the rawly-measured

coincidence count rate. The photon count integration time is 1 s for each pixel of

the measured two-photon interference patterns.
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4.5 Experimental results

4.5.1 General information

In this section we demonstrate the engineering of many different two-photon states

behind the double slit. Each two-photon state is characterized via a measurement of

the two-photon interference pattern in the far field of the double slit. The interfer-

ence patterns provide the conditional one-photon visibility Vcon and the two-photon

visibility difference V12 for each two-photon state. The manner in which these vis-

ibilities relate to the engineered two-photon state is graphically indicated on the

two-qubit Bloch sphere in Fig. 4.2. The intensity fringe patterns are also recorded.

These yield the unconditional one-photon visibility Vunc. The analysis and tuning

of the two-photon interference pattern are discussed in Sec. 4.5.2. Quantitative

comparison with theory is performed in Secs. 4.5.3-4.5.6.

4.5.2 Analysis and tuning of two-photon interference patterns

Six examples of measured two-photon interference patters are shown in Figs. 4.5(a)-

4.5(f). This selection covers a whole range of different double-slit imaging types.

The upper row is measured with the near-field imaging scheme, and the lower row

is measured with the far-field imaging scheme. The left column contains the two

extreme cases where the slit separation is large compared to the coherence width of

the down-converted light at the double slit. The central column is measured with

slit separations similar to the coherence width. The right-hand column is measured

with a certain amount of defocusing, meaning that either ∆z 6= 0 for the near-field

imaging scheme or s 6= 0 for the far-field imaging scheme.

The general form of the two-photon interference pattern, given by Eq. (4.19),

allows for an insightful interpretation of the fringe visibilities. The three visibili-

ties Vsum, Vdiff and Vcon become isolated after projections on the +45◦ diagonal,

the −45◦ diagonal, and the horizontal axis, respectively. Mathematically, these

projections result in

R+45◦(x1 + x2) ∝ 1 + Vsum cos

(

x1 + x2

xs/2π

)

, (4.39)

R−45◦(x1 − x2) ∝ 1 + Vdiff cos

(

x1 − x2

xs/2π

)

, (4.40)

R0◦(x1) ∝ 1 + Vcon cos

(

x1

xs/2π

)

, (4.41)

where xs is the fringe period for coherent light at the down-converted wavelength.

In order not to deform the projection, it is important to select an integer number

of fringe periods in the direction orthogonal to the projection axis. Each fringe
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pattern has been analyzed by fitting these three projections after including the

effect of limited angular diffraction due to the finite slit width [33]. The two-photon

visibility difference is then found via its definition V12 ≡ Vdiff − Vsum. The sum

Vdiff + Vsum = 1 is automatically obeyed if the experimental apparatus is aligned

properly.

In the far-field imaging scheme, the two photons arrive at approximately opposite

positions in the double-slit plane. Hence, two-photon transmission is dominated

by the antipaired two-photon component causing V12 to be positive. One quickly

recognizes that the lower three interference patterns have positive V12 because the

fringes projected on the −45◦ diagonal are more distinct than the fringes projected

on the +45◦ diagonal. The extreme case, where the slit separation is large compared

to the pump divergence, is shown in Fig. 4.5(d). This two-photon state is almost

completely antipaired as we find V12 = (96 ± 1)%. Paired two-photon transmission

can be increased by increasing the pump divergence relative to the slit separation.

Such an increase has been applied to situation (e) where the fringe orientation is

hardly visible and V12 = (25 ± 3)%.

The tuning of V12 in the near-field imaging scheme is analogous. The photons

arrive at approximately equal positions in the double-slit plane. Hence, two-photon

transmission is dominated by the paired two-photon amplitude, causing V12 to be

negative. The extreme case is shown in Fig. 4.5(a), where the slit separation is large

compared to the size of the magnified phase-matching profile. The corresponding

two-photon state is almost completely paired and we determine V12 = −(96 ±
1)%. The antipaired two-photon transmission can be enhanced by increasing the

magnification of the imaging system or reducing the slit separation. In situation

(b), the slit separation is reduced to about the size of the magnified phase-matching

profile ξz

(

x
M ; ∆z = 0

)

resulting in V12 = −(89 ± 1)%.

The conditional one-photon visibility can be interpreted as the fringe visibility

produced by each individual photon of the transmitted pair. By projecting the two-

photon fringe pattern on the horizontal axis, it is easily recognized that patterns (a)

and (d) have Vcon ≈ 0. The conditional one-photon visibility is close to 100% for

pattern (e). Patterns (b) and (f) feature Vcon < 0 because each of these two patterns

has a minimum in the center of the image. The other four patterns have centered

maxima corresponding to Vcon ≥ 0. Calibration of detector positions x1,2 = 0

is performed via measurements of the coincidence count rate without double slit.

Patterns (b) and (f) correspond to two-photon states on the lower hemisphere of

the two-qubit Bloch sphere in Fig. 4.2.

Patterns (c) and (f) are special because they have nonzero curvature phase

ϕ. Such configurations can only be achieved with defocused two-photon imaging,

meaning that ∆z 6= 0 for near-field imaging or s 6= 0 for far-field imaging. The

characterizing feature of defocusing is the emergence of a checkerboardlike pattern.
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Figure 4.6: Measured visibilities obtained with the near-field imaging scheme of Fig. 4.3(a) at
∆z = 0, for various reduced slit separations 2d/M . The theoretical two-photon visibilities V12

and Vcon are calculated via Eqs. (4.24) and (4.25) for the two-photon state with engineering
parameter p from Eq. (4.14). The theoretical curve for the unconditional one-photon visibility
Vunc is calculated via Eq. (4.34). The uncertainty in the theoretical curves, indicated by finite
curve widths, originates from the uncertainty in the phase mismatch φ0 = 0.33 ± 0.05. No fit
parameters are used for the theoretical curves.

This changes the topology of the interference pattern by splitting the dark curves

of zero coincidences into patches of low coincidence counts. A checkerboardlike

pattern reduces the conditional one-photon visibility so that the two-photon state

is brought closer to the horizontal equator of the two-qubit Bloch sphere.

The degree of entanglement is directly related to the conditional one-photon

visibility via Eq. (4.26). Maximum entanglement manifests itself as Vcon = 0 and

a total absence of separability of the interference pattern in horizontal and vertical

directions. Patterns (a) and (d), on one hand, correspond to maximally entangled

states as these have zero conditional one-photon visibility. Pattern (e), on the

other hand, corresponds to an almost nonentangled two-photon state as the pattern

almost factorizes.

The curvature phase is highly relevant for the degree of entanglement. Pattern

(c), for example, has V12 = −0.14 ± 0.01 which is rather close to zero, and, at the

same time, it is strongly entangled with a concurrence of C = 0.906 ± 0.008. Such

combination is only possible if the curvature phase is nonzero. The curvature phase

is |ϕ| = (64.7±1.0)◦ for pattern (c). The entanglement has almost fully “migrated”

from the modulus to the phase of the two-photon field profile right behind the

double slit [126].
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4.5.3 Near-field imaging at ϕ = 0

This section presents the experimental results obtained with the near-field imaging

scheme of Fig. 4.3(a) with zero defocus ∆z = 0. We only vary the reduced slit

separation 2d/M , where M is the magnification of the imaging system. Working

at zero defocus, we expect to engineer two-photon states with zero curvature phase

ϕ = 0. Figure 4.6 depicts the measured visibilities V12, Vcon, and Vunc versus the

reduced slit separation. The vertical error bars are based on the internal errors and

scan resolutions of the two-photon interference patterns. The theoretical curves for

V12 and Vcon are based on Eqs. (4.24), (4.25), and (4.14). The theoretical curve for

Vunc is a plot of Eq. (4.34). We observe good agreement between experiment and

theory.

The three plots in Fig. 4.6 contain a wealth of information. First of all, the shape

of each curve is directly related to the phase-matching profile of the periodically

poled crystal. Our theoretical curves are based on the sinc-shaped phase-matching

profile in momentum representation [see Eq. (4.9)]. The observed agreement be-

tween experiment and theory means that the phase-matching profile is indeed sinc

shaped in its momentum representation. Second, we observe that Vcon and Vunc

are negative for some values of the reduced slit separation. Negativity of these

parameters means that we observe minima instead of maxima in the centers of the

measured interference patterns. Finally, we observe that Vcon and Vunc are different

from each other. For the near-field imaging scheme, there is no one-to-one duality

relation between these visibilities like there is for the far-field imaging scheme [see

Eq. (4.37)]. Interestingly, the experiments prove that Vunc can be zero, while the

two-photon state behind the double slit is not maximally entangled for the same

geometry (Vcon 6= 0).

Closer inspection of Fig. 4.6 indicates that the majority of the measurements

seem to be slightly on the right-hand side of the theoretical curves. We do not

know the origin of this systematic error for certain, but a suspicious parameter is

the phase mismatch φ0. It was determined to be φ0 = 0.33±0.05 from measurements

of the SPDC spectrum. However, if we would plot the theoretical visibilities using

φ0 = 0.65 we would observe excellent agreement between theory and measured

visibilities. This means that a systematic error of only 0.3 ◦C in the phase-matching

temperature would already explain the observed small systematic difference between

experiment and theory.

In Fig. 4.7 the engineered two-photon states are depicted as points in a square

with V12 and Vcon along the axes. The points on the left half plane correspond

to the measurements from the near-field imaging scheme. The measurements are

in excellent agreement with the complementarity relation V 2
12 + V 2

con = 1 that is

predicted for two-photon states with zero curvature phase ϕ = 0.

Previously, of the two-photon states with V12 < 0, only the fully paired two-
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Figure 4.7: Measured visibilities of engineered two-photon states with zero curvature phase
ϕ = 0. The two-photon states on the left side are prepared with the near-field imaging scheme
in Fig. 4.4(a) at ∆z = 0. The two-photon states on the right are prepared with the far-field
imaging scheme in Fig. 4.4(b) at s = 0. The annotated measurements correspond to fringe
patterns in Fig. 4.5. The exterior of the circle is forbidden by the complementarity relation
V 2

con + V 2
12 ≤ 1. Figure 4.2 graphically indicates how Vcon and V12 relate to the engineered

two-photon state.

photon state had been prepared by positioning a double slit with large slit separation

very close to the crystal [30,34,125]. We now demonstrate that the fully paired two-

photon state can also be prepared by imaging the two-photon source onto a double

slit. To the best of our knowledge, two-photon states corresponding to −1 < V12 < 0

or Vcon < 0 have never been prepared before. Our experiments with the near-field

imaging scheme are the first phase-sensitive measurements of the two-photon field

structure in the image plane of the crystal center. Our measurements of Vunc in

this regime are measurements of the second-order coherence function in the image

plane of the crystal center.

4.5.4 Far-field imaging at ϕ = 0

We present the experimental results obtained with the far-field imaging scheme of

Fig. 4.3(b) with zero defocus (s = 0), where we expect to engineer two-photon

states with zero curvature phase ϕ = 0. We only vary the relative slit separation

2d/(2f2θd), where 2f2θd is the diameter of the pump beam in the double-slit plane.
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Figure 4.8: Measured visibilities obtained with the far-field imaging scheme of Fig. 4.3(b)
at s = 0 for various configurations of the slit separation 2d relative to the Gaussian pump
diameter in the double-slit plane 2f2θp. The theoretical two-photon visibilities V12 and Vcon

are calculated via Eqs.(4.24) and (4.25) for the two-photon state with engineering parameter
p from Eq. (4.18). The expected curve for the unconditional one-photon visibility Vunc is
calculated via Eq. (4.35). No fit parameters are used for the theoretical curves.

Figure 4.8 depicts the measured visibilities V12, Vcon, and Vunc versus the relative

slit separation. The horizontal error bars are determined by the 10% uncertainty

in the pump divergence. The vertical error bars are based on the internal error and

scan resolution of the two-photon interference patterns. The theoretical curves for

V12 and Vcon are based on Eqs. (4.24), (4.25), and (4.18). The theoretical curve for

Vunc is a plot of Eq. (4.35).

We observe excellent agreement between theory and the measured visibilities.

For small slit separations we observe that the two-photon visibility difference V12 ≈
0, meaning that the moduli of the paths of the two photons are hardly correlated.

We also observe that these states are approximately nonentangled because Vcon ≈
1. For larger slit separations V12 approaches 1, indicating that the concurrence

increases, and Vcon goes down. Furthermore, we observe that the conditional and

the unconditional one-photon visibilities are different from each other. Interesting

is the observation that the curves for Vcon and Vunc cross each other. This crossing

has neither been predicted nor observed before. It is in agreement with the duality

relation of Eq. (4.37).

Each engineered two-photon state can be depicted as a point in a square with

V12 and Vcon along the axes. This representation is visualized in Fig. 4.7, where the

points on the right half plane correspond to our measurements from the far-field

imaging scheme. The measurements are in excellent agreement with the comple-

mentarity relation V 2
12 + V 2

con = 1 that is predicted for two-photon states with zero
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Figure 4.9: Measured visibilities of two-photon states engineered with the near-field imaging
scheme of Fig. 4.3(a) at increasing defocus ∆z. The series contains measurements at eight
equidistant displacements of the cylinder lens ranging from ∆z = −(0.20 ± 0.04) mm to
∆z = (3.30±0.04) mm at the annotated measurement (c). The theoretical curve is calculated
via Eqs. (4.24) and (4.25) with engineering parameter p from Eq. (4.14). The points on
the theoretical curve (diamonds) relate to the measured points in the indicated order. The
uncertainty of the theoretical curve originates from the phase mismatch ∆φ0 = 0.33 ± 0.05
and a ±3% uncertainty in the reduced slit separation 2d/M . The annotated measurement
corresponds to fringe pattern (c) in Fig. 4.5.

curvature phase ϕ = 0. Previously, an experimental demonstration of complemen-

tarity was performed by Abouraddy et al. [29], albeit with less accuracy.

4.5.5 Near-field imaging at nonzero curvature phase

Two-photon states with nonzero curvature phase have been engineered with the

near-field imaging scheme in Fig. 4.3(a) at nonzero defocus distance ∆z 6= 0. A

plane slightly behind the crystal center is imaged onto the double slit. Due to

the propagation away from the crystal-center plane, the phase-matching profile

ξz(z; ∆z) has developed a certain wave-front curvature. This wave-front curvature

causes the curvature phase ϕ to become nonzero. The curvature phase is highly

relevant for the two-photon interference pattern behind the double slit. The char-

acterizing feature of two-photon states with 0 < |ϕ| < π is that V 2
12 + V 2

con < 1,

implying that these states are located in the interior of the complementarity circle.

The curvature phase is also relevant for the degree of entanglement.
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Figure 4.9 shows the two-photon visibilities V12 and Vcon of eight two-photon

states that are engineered with the near-field imaging scheme at increasing defocus

distance ∆z. For this series, we have used a reduced slit separation of 2d/M =

(44.5±1.3) µm and eight equidistant values of ∆z. We observe that the two-photon

state at ∆z ≈ 0 has approximately zero curvature phase, as this measurement lies

on the complementarity circle V 2
12 + V 2

con = 1. For increasing defocus, we observe

that the two-photon states obtain nonzero curvature phases, as their two-photon

visibilities lie in the interior of the complementarity circle.

The theoretical curve, including its uncertainty region, is calculated from the

engineering parameter p given by Eq. (4.14). The visibilities V12 and Vcon are then

derived via Eqs. (4.24) and (4.25). The wiggly nature of the theoretical curve

in Fig. 4.9 originates from the Fresnel-type integrals in the equation for p. We

observe reasonable agreement between theory and experiment. All the more so, a

strong resemblance is found when considering the relative orientation of two points

within any pair of successive measurement points. This resemblance is striking

because these relative orientations are quite erratic while the defocus distance ∆z

is increased over equidistant values.

The measurements in Fig. 4.9 are the first phase-sensitive measurements of the

two-photon field structure in an image of a plane close to the crystal center, i.e.,

within the Rayleigh range of the phase-matching profile ξz(x; z).

4.5.6 Far-field imaging at nonzero curvature phase

Two-photon states with nonzero curvature phase have also been engineered with

the far-field imaging scheme in Fig. 4.3(b) at s 6= 0. The phase front of the pump

beam in the double-slit plane is curved now because the pump waist is located in

front of the nonlinear crystal. The wave-front curvature of the pump beam in the

double-slit plane causes the curvature phase ϕ to become nonzero. States with

nonzero curvature phase have V 2
12 + V 2

con < 1 implying that such states are located

in the interior of the complementarity circle. The curvature phase is relevant for

the two-photon interference pattern as well as the degree of entanglement.

Figure 4.10 shows the two-photon visibilities V12 and Vcon of six two-photon

states that are engineered with the far-field imaging scheme with s 6= 0. We observe

that the two-photon state behind the double slit has nonzero curvature phase as the

states lie inside the complementarity circle. We also demonstrate that it is possible

to reach the lower hemisphere of the two-qubit Bloch sphere (Vcon < 0 in Fig. 4.2)

by altering the pump beam. Two-photon states on the lower hemisphere have never

been prepared before.
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Figure 4.10: Measured visibilities of two-photon states engineered with the far-field imaging
scheme of Fig. 4.3(b) at pump beam defocus s 6= 0. The annotated measurement corresponds
to fringe pattern (f) in Fig. 4.5.

4.6 Conclusion

This chapter demonstrates the engineering and characterization of spatially entan-

gled two-photon states behind a double slit that is symmetrically illuminated with

a pure two-photon state. Engineering is achieved by tailoring the optical imaging

system in between the two-photon source and the double slit. We have discussed

a near-field imaging scheme where the two-photon source itself is imaged onto the

double slit. The curvature phase ϕ has also been introduced. It is shown that ϕ

is highly relevant for the two-photon interference pattern as well as the degree of

entanglement behind the double slit. State characterization is achieved by perform-

ing measurements of the complete two-photon interference pattern in the far field

of the double slit.

The presented analysis of two-photon state engineering is complete for illumina-

tion systems within the following three restrictions. First, we consider illumination

schemes and double slits that obey mirror symmetry around the optical axis (see

Sec. 4.2.1). Second, we assume slits that are narrower than the transverse coherence

width of the illumination (see Sec. 4.2.2). Third, the two-photon source is based

on any type of SPDC in a periodically poled crystal or type-I SPDC in a uniform

crystal provided that the transverse walk-off of the pump beam is negligible with

respect to its width (see Sec. 4.2.3 and Appendix).
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For a symmetric setup and narrow slits, the two-photon state behind the double

slit becomes a coherent superposition of a paired state, where the photons emerge

form the same slit, and an antipaired state, where the photons appear from opposite

slits. The relative phase between both contributions is the curvature phase ϕ. The

absolute balance between the paired and antipaired components is described by

state parameter α.

It is demonstrated how to engineer any two-photon state in this form. The

paired two-photon component dominates if the near-field imaging scheme is used.

The antipaired two-photon component dominates if the far field of the source is

imaged onto the double slit. The precise balance between the paired and antipaired

components is controlled by tailoring the magnification properties of these imaging

systems. The curvature phase ϕ is fully controlled by utilizing the phase-front

curvatures of the pump profile Ep,z(x; z) and phase-matching profile ξz(x; z). The

phase-matching profile governs the engineered two-photon state in the near-field

imaging scheme. The pump profile governs the engineered two-photon state in the

far-field imaging scheme.

We have shown that the two-photon interference pattern in the far field of the

double slit serves as a fingerprint of the engineered two-photon state. The pattern

directly yields the one-photon visibility Vcon and the two-photon visibility difference

V12. These visibilities conveniently relate to the position on the two-qubit Bloch

sphere that we have presented to graphically depict any engineered two-photon

state. This sphere is also highly convenient to read off the concurrence.

We have engineered and characterized more than 30 different two-photon states.

Good agreement between measurements and theory is observed. Two-photon states

exhibiting strong curvature phase, states with Vcon < 0, and states with −1 < V12 <

0 have never been prepared before. Our experiments with the near-field imaging

scheme are phase-sensitive measurements of the two-photon field structure in an

image of a plane close to the crystal center, i.e., within the Rayleigh range of the

phase-matching profile ξz(x; z).

Using the near-field imaging scheme, we have presented measurements of the

unconditional one-photon visibility Vunc in an image plane of the crystal center. In

the far-field imaging scheme, we have demonstrated the duality between Vcon and

Vunc for Gaussian pump profile that is loosely focused in the crystal-center plane.

The experimental results are in agreement with theory.

4.7 Discussion: tuning in high-dimensional Hilbert space

In this chapter, the tuning range of the engineered two-photon states has been

restricted to a two-dimensional Hilbert space spanned by two out of four maximally

entangled Bell states [see Eq. (4.4)]. However, spatially entangled two-photon states
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generated via SPDC allow for tuning in much higher-dimensional Hilbert space. We

will now discuss some experimental tuning parameters that remained untouched in

this chapter.

The entire four-dimensional Hilbert space of Eq. (4.3) becomes accessible if one

allows asymmetric illumination schemes with distinguishable photons. The coeffi-

cients c1 and c4 become uncoupled by allowing asymmetric illumination schemes.

Such asymmetry could be achieved by applying an asymmetric pump profile or by

moving the double slit transversely to a noncentered position. The coefficients c2

and c3 become uncoupled if one uses distinguishable photons in combination with

an asymmetric illumination scheme. Distinguishable spatially entangled photons

can be produced via type-II SPDC in a periodically poled crystal [31, 34, 115] or

by using two double-slit apertures positioned in the two output ports of a beam

splitter. An experiment where c2 = −c3 has been demonstrated in Ref. [31] by

placing birefringent crystals in front of the double slit.

One can also turn to multidimensionally entangled two-photon states by using

multi-slit apertures [122–125]. To tune between different multidimensionally entan-

gled states, one could use a variable pump profile based on a spatial light modu-

lator. Another interesting tuning parameter is the temperature-dependent phase

mismatch φ0 of the periodically poled crystal. The analysis in this chapter may

serve as a good starting point to make the extension to quantum state engineering

of multidimensionally entangled two-photon states.
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4.9 APPENDIX: Validity of the model for various phase-matching

geometries

The theoretical analysis in this chapter is based on noncritical type-I phase matching

(see Sec. 4.2.3). In this Appendix, however, we show that the analysis also applies

to noncritical type-II as well as critical type-I phase matching. Noncritical phase

matching is generally applied in quasi-phase-matched processes, and critical phase

matching is generally applied in uniform crystals.

We will first give expressions for the two-photon field profile in the crystal-center

plane for various phase-matching geometries. We consider a nonlinear crystal with

two parallel planar facets in transverse xy planes. For the critically phase-matched

cases treated below, the crystallographic optical axis lies in the positive yz plane.
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Following Refs. [69] and [89] we use a generic quasimonochromatic expression for

the two-photon field profile in the crystal-center plane.

Ãcrys(q1,q2) ∝ Ẽp(q1 + q2)sinc
[

1
2L∆kz(q1,q2)

]

, (4.42)

where sinc(x) ≡ sin(x)/x, and the wave-vector mismatch

∆kz(q1,q2) = kz(q1 + q2, ωp, σp) − kz(q1, ω0, σ1)

−kz(q2, ω0, σ2) −
(

2πΛ−1
)

, (4.43)

where kz(q, ω, σ) is the z component of the wave vector of a plane wave with trans-

verse wave vector q, angular frequency ω, and polarization σ. The fourth term

between parentheses does not apply to uniform crystals; it only applies to periodi-

cally poled crystals where Λ is the poling period. All other symbols are defined in

Sec. 4.2.3 of the main text. Equation (4.42) is valid for any type of phase matching

as it is based on a simple plane-wave expansion. The Taylor expansion of Eq. (4.43)

up to second-order becomes approximately

∆kz(q1,q2) ≈ C+
|q−|2

4n0ω0/c
+















0 for noncritical type-I and type-II,

−ρ[q+]y for critical type-I (e → oo),

+ 1
2ρ[q+ − q−]y for critical type-II (o → oe),

(4.44)

where C is the wave-vector mismatch in the forward direction, q± ≡ q1 ± q2, n0

is the refractive index at the down-converted frequency, and ρ is the walk-off angle

for extraordinary-polarized light (ρ > 0 if directed away from the crystallographic

optical axis). We have omitted the relatively small direction, frequency, and polar-

ization dependencies of the refractive index in all second-order terms. We have also

omitted the frequency dependence of the walk-off angle ρ.

In the noncritically phase-matched case, above equations directly lead to

Eqs. (4.8) and (4.9) describing the generated two-photon field profile in the main

text of this chapter. We therefore conclude that the analysis in this chapter ap-

plies to all noncritically phase-matched SPDC processes. For noncritical type-II

phase matching, one can easily add the polarization dependence of the refractive

index to the phase-matching profile in Eq. (4.9) of the main text by substitut-

ing n0 for 2n1n2/(n1 + n2), where n1 and n2 are the refractive indices of the two

down-converted photons.

For critical type-I phase matching, a linear term appears in the wave-vector

mismatch in Eq. (4.44). This linear term can be neglected if the pump beam

is sufficiently loosely focused; loose focusing causes the momentum representation

Ẽp(q+) to become compact such that it over-rules the much broader q+ dependence
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of ∆kz in Eq. (4.42). This criterion is met if the walk-off term 1

2Lρ[q+]y in the

argument of the sinc function is much smaller than a radian at a typical value of

[q+]y = 2/wp, where wp is the width of the Gaussian pump beam in real space

and 2/wp is the width of the pump beam in transverse momentum space. The

loose-focusing criterion thus becomes Lρ ≪ wp for critical type-I phase matching,

simply stating that the transverse walk-off distance Lρ must be much smaller than

the pump beam width. In Sec. 4.2.3, we have already assumed loose focusing

(Rayleigh range pump ≫ crystal length) in order to obtain simple expressions for

the engineering parameters in Eqs. (4.14) and (4.18). The loose-focusing criterion

Lρ ≪ wp for critical type-I phase matching is generally stronger.

For critical type-II phase matching, the linear term cannot be screened by loose

focusing. It is immediately clear from Eq. (4.44) that the linear term in [q−]y
affects Eq. (4.42) even if the momentum representation Ẽp(q+) is very compact.

It is therefore generally not correct to use Eqs. (4.8) and (4.9) for critical type-

II SPDC. Note, however, that even in this critical type-II case, our engineering

description remains valid if the slits are oriented in the y direction; the linear walk-

off term [q−]y becomes irrelevant if the transverse walk-off is directed along the

orientation of the slits.
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