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3Opti
al 
hara
terization ofperiodi
ally poled 
rystals
We demonstrate how the Maker fringes that are observable in spontaneous para-

metric down-conversion (SPDC) give a direct visualization of the poling quality of

a periodically poled crystal. Identical Maker fringes are observed in the optical

spectrum of collinear SPDC and the temperature dependence of second harmonic

generation. We analyze these Maker fringes via a unified treatment of the tuning

curve in crystals with small and slowly varying deformations of the poling struc-

ture. Our theoretical model, based on a Fourier analysis of the poling deformations,

distinguishes between duty-cycle variations and variations of the poling phase. The

analysis indicates that the poling phase is approximately fixed, while the duty-cycle

typically varies between 36% and 64%.

W. H. Peeters and M. P. van Exter, Optical characterization of periodically poled

KTiPO4, Optics Express 16, 7344 (2008)
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3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS
3.1 Introduction

Phase matching is required for an efficient operation of second-order nonlinear op-

tical processes such as second harmonic generation (SHG) and spontaneous para-

metric down-conversion (SPDC). In uniform crystals, phase matching is achieved

by utilizing the modal dispersion resulting from the crystal’s birefringence. Another

method called quasi phase matching (QPM) relies on the fabrication of a ferroelec-

tric domain structure with periodically inverting polarization. QPM allows for a

larger choice of optical frequencies and allows access to more, and potentially larger,

elements of the nonlinear χ(2) tensor. An extensive discussion on the tuning and

tolerances of QPM can be found in an article of Fejer et al. [89]. Different poling

techniques are discussed in Refs. [90, 91].

The quality of the fabricated poling structure is generally characterized via imag-

ing of the domain boundaries at the crystal surface. Important techniques comprise

surface-charge selective etching [92], electrostatic force microscopy [93], secondary-

electron microscopy [94], and piezoresponse-assisted atomic force microscopy [95].

Another way to characterize the poling quality is by studying the phase-matching

conditions of a second-order nonlinear process like SHG or SPDC. Common tech-

niques in this category use the wavelength dependence of the conversion efficiency of

SHG [96,97]. A three-dimensional characterization of the poling duty-cycle has been

demonstrated using ultrashort pulses and SGH [98]. A third technique characterizes

the crystal structure by mapping the angle-frequency distribution of radiation that

is generated via SPDC [99].

In this chapter we present high quality measurements and a detailed analysis of

the ring-shaped angular SPDC pattern, generated in a periodically poled KTiOPO4

crystal (PPKTP). Our analysis is very different from earlier results presented by

Kitaeva et al. [99], as these authors analyze the large scale angle-frequency distri-

bution of the SPDC pattern, whereas we concentrate on the fine structure close to

phase matching. We also demonstrate that the same fringe pattern is present in

the optical spectrum in collinear SPDC and the temperature dependence of SHG.

We denote the observed patterns as Maker fringes, as the typical sinc-type intensity

dependence was first discussed by Maker et al. [100]. We perform a meticulous

comparison between the measurements and our theoretical predictions of the fringe

shape, hereby using up to date knowledge of KTP’s material properties. Finally,

we analyze the observed fringe patterns in terms of small and slowly varying defor-

mations of the periodic poling structure.

The paper is organized as follows. Section 3.2 gives a theoretical description

of the temperature, angle, and wavelength dependence of the phase-matching con-

dition in periodically poled crystals. Section 3.3 describes the three experimental

setups that are used for (A) the measurement of the angular SPDC pattern, (B)

the spectrum of SPDC light, and (C) the temperature dependent conversion effi-
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3.2. PHASE MATCHING IN A PERIODICALLY POLED CRYSTAL
ciency in SHG. Sections 3.4.1, 3.4.2, and 3.4.3 discuss the Maker fringes that are

experimentally obtained via the three above-mentioned methods. In Sec. 3.5, we

analyze the observed deviations from the ideal sinc-shaped Maker fringes in terms

of small and slowly varying deformations of the poling structure. We hereby use

a theoretical treatment, given in Sec. 3.5.1, that is based on a Fourier analysis of

small and slowly varying deformations of the poling structure.

3.2 Phase matching in a periodically poled crystal

We consider the nonlinear processes of second harmonic generation (SHG) and spon-

taneous parametric down-conversion (SPDC) in a periodically poled crystal. For

both processes, we assume loosely focussed cw-pumping (Rayleigh range pump ≫
crystal length) in the low conversion efficiency limit. The crystal is periodically

poled along its crystallographic z axis in domains perpendicular to the crystallo-

graphic x axis. The pump beam is z polarized and propagates along the x axis. We

consider the crystal to be infinite in the transverse directions. In the SHG configu-

ration, we pump the crystal at angular frequency ω so that the up-converted wave

has angular frequency 2ω. In the SPDC configuration, we pump the crystal at 2ω

so that the angular frequencies of the down-converted signal and idler waves can be

written as ωs = ω + Ω/2 and ωi = ω − Ω/2.

The SPDC process can be seen as the inverse process of SHG, when considering

the same spatial and spectral modes. The conversion efficiencies of both processes

(per spatial and spectral mode) are thus described by the same tuning curve, which

is the conversion efficiency as a function of wave vector mismatch ∆k along the x

direction of the crystal. The tuning curve depends on the precise position-dependent

nonlinear coefficient d(x). More specifically, the conversion efficiency as a function

of ∆k is proportional to the absolute value squared of the Fourier transform of

d(x) [89].

An ideal periodically poled crystal has a square-wave-shaped nonlinear coef-

ficient d(x) with amplitude ±deff , where the effective nonlinearity deff is a fixed

material property. The Fourier transform of a square-wave-shaped d(x) contains

odd-m harmonics of the form k±
m = ±2πm/Λ0, where Λ0 is the poling period of the

crystal. Hence, the conversion efficiency will become peaked around any wave vec-

tor mismatch ∆k = k±
m. The mismatch parameter φm, defined as the accumulated

phase mismatch over half the crystal length with respect to quasi-phase-matching

order m, is

φm =
L0

2

[

∣

∣∆k
∣

∣f(T ) − 2πm

Λ0

]

, (3.1)

where the crystal length L0 and the poling period Λ0 are specified at a certain

reference temperature T0. The function f(T ) is the temperature-dependent mate-
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3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS
rial expansion factor which is defined to equal unity at the reference temperature.

The conversion efficiency in the neighborhood of some m-order quasi phase match

condition now becomes [89]

ηm(φm) ∝
(

2

πm

)2

sinc2(φm), (3.2)

where the prefactor denotes the relative conversion efficiency, compared to the hy-

pothetical case of a perfectly phase matched uniform crystal with an identical ef-

fective nonlinearity. The sinc function in Eq. (3.2) results from the Fourier trans-

form of the hat-shaped crystal outline. In this chapter, we will restrict our anal-

ysis to quasi-phase-matching order m = 1, and we will drop the subscripts of φm

and ηm. In accordance with Ref. [89] we normalize η̂(φ) to its peak value via

η̂(φ) = η(φ)/η(φ = 0).

In order to calculate the mismatch parameter φ from Eq. (3.1), we must calculate

the wave vector mismatch ∆k along the x direction. The wave vector mismatch is

defined as the wave vector of the ‘blue’ photon minus the wave vectors of the two

‘red’ photons. For the SHG configuration, this wave vector mismatch becomes

∆kSHG = k(2ω, T )− 2k(ω, T ), (3.3)

where k(ω, T ) is the temperature-dependent dispersion relation of z polarized light

in the crystal. Eq. (3.3) shows that the wave vector mismatch in SHG can be tuned

in two different ways: via wavelength tuning and via temperature tuning. The

wavelength and temperature dependence are often separated via

∆kSHG = k(2ω, T0) − 2k(ω, T0)

+
2ω

c

[

∆nz(2ω, T )− ∆nz(ω, T )
]

, (3.4)

where ∆nz(ω, T ) ≡ nz(ω, T ) − nz(ω, T0) is a shorthand notation for the change in

refractive index caused by a deviation from the reference temperature T0 = 25 ◦C

[101,102].

The SPDC configuration differs from the SHG configuration in two ways. First

of all, the signal and idler wave may have components in transverse directions.

Secondly, any frequency difference Ω ≡ ωs −ωi between the signal and idler photon

is allowed. Therefore, the wave vector mismatch in SPDC can be tuned in not just

two, but four different ways: via wavelength tuning, via temperature tuning, via

tuning of the detection angle, and via tuning of the detection wavelength. The wave

vector mismatch in the SPDC configuration can be written as

∆kSPDC = k(2ω, T )− [ks,x + ki,x], (3.5)
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3.3. EXPERIMENTAL APPARATUSES
where ks,x and ki,x are the x components of the wave vectors of the signal and idler

waves in the crystal, respectively. Explicitly writing out the angle detuning and

frequency detuning in the small angle and small frequency-detuning limit, yields

∆kSPDC = k(2ω, T )− 2k(ω, T )

+k(ω, T )

[

θ2
y +

(

nz

nx

)2

θ2
z

]

− ∂2k

∂ω2

∣

∣

∣

∣

ω,T

(

Ω

2

)2

, (3.6)

where θ = (θy, θz) is the emission angle inside the crystal, and nz and nx are short-

hand notations for the refractive index of z and x polarized light, respectively. The

nz/nx factor in front of θz originates from the fact that down-converted light with

a certain transverse kz component carries a polarization with a small x component

too. The angle dependence of the refractive index is found by using the index ellip-

soid for our polarization. The latter term in Eq. (3.6) is obtained by performing a

Taylor expansion around zero frequency detuning.

Throughout the article we will regularly use Eqs. (3.1)-(3.6) to compare our ex-

perimental results with existing literature on KTP’s material properties. These

properties involve Sellmeier dispersion equations [103–107], temperature depen-

dence of the refractive index [101, 107, 108], and thermal expansion coefficients

[101,102]. We will use the most recent and mutually most compatible literature val-

ues: the z component of the refractive index from Ref. [106], the x and y component

of the refractive index from Ref. [107], the temperature dependence of the refractive

index from Ref. [101], and the thermal expansion coefficients from Ref. [102].

3.3 Experimental apparatuses

Figure 3.1 shows the three experimental setups that we used for the characterization

of the poling quality, either via SPDC [Figs. 3.1(a) and 3.1(b)] or SHG [Fig. 3.1(c)].

In this section we will give the experimental details of these three setups.

The pump part of the SPDC setups in Fig. 3.1(a) and Fig. 3.1(b) are identical. A

cw krypton-ion laser (Coherent Innova 300) emits 220 mW at a vacuum wavelength

of 413.1 nm in a TEM00 mode. This pump beam is mildly focussed (w0 = 190 µm

is the radius at e−2 of maximum irradiance) into a PPKTP crystal. The crystal

is manufactured by Raicol Crystals Ltd. with low temperature periodic electrical

poling, based on the application of a pulsed electric switching field to a patterned

electrode [109]. The crystal has a length of 5.09 mm in the x direction, a thickness

of 1 mm in the z direction and a width of 2 mm in the y direction. The pump beam

propagates along the crystallographic x axis and is z polarized, allowing us to use
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3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS

Figure 3.1: Three different experimental setups that are used to measure Maker fringes of a
periodically poled KTiOPO4 crystal (PPKTP). Setup A and B utilize the nonlinear processes of
spontaneous parametric down-conversion, while setup C uses second harmonic generation. The
indicated coordinate system corresponds to the crystallographic axes of the PPKTP crystal.
Setup A: The far field of a narrow spectral band of the down-converted light is projected onto
an intensified CCD camera (ICCD). Setup B: The spectral decomposition within a small angle
(selected by the aperture) of the down-converted light is measured by placing an ICCD camera
behind a spectrometer. Setup C: The power of the up-converted light is measured with a
photodiode, while the crystal temperature is varied.

the large nonlinear d33 coefficient of KTP. The pump beam is centered on the crystal

facets. The poling period of the crystal is specified to be Λ0 = 3.675 µm which is

designed for first-order quasi phase matching at 413.1 nm ↔ 826.2 nm. The crystal

is thermally contacted along the full crystal length to a bulky Aluminum mount via

a 100 µm thick Indium layer. The temperature is stabilized to ∆T < 0.1 ◦C using

a Dale 1T1002-5 thermistor, an ILX-Lightwave LDT5910 controller and a Peltier

element. The thermometer system is calibrated to an accuracy of ±(0.5%+0.2 ◦C)

by using a commercial ATAL RTD407907 thermometer. Phase matching in forward

direction is achieved at a temperature of 60.7 ◦C.

The detection part of Fig. 3.1(a) contains a lens with focal length of 10 cm in

an f -f geometry to project the far field onto an intensified CCD camera (ICCD)

of Princeton Instruments (I-MAX-512-T,18). A narrow-band color filter selects a

∆λ = 5 nm band around λ = 826 nm. This bandwidth is much smaller than the full

width of the main Maker fringe in the spectral domain (see Fig. 3.5). The bandpass

filter removes all angle-frequency correlations from the down-converted light.
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3.3. EXPERIMENTAL APPARATUSES
The detection part of Fig. 3.1(b) contains an aperture that is positioned at large

distance (≃ 0.5 m) in the far field of the sample. The aperture selects a cone-shaped

solid angle of 42 mrad2 in the forward direction. The selected solid angle is much

smaller than the solid angle of the main central Maker fringe (≈ 300 mrad2), so

that all angle-frequency correlations are removed. The light is then focussed onto

the input slit of a spectrometer (Jobin Yvon 320) and the output is projected on an

ICCD camera of Princeton Instruments (I-MAX-512-T,18). The dispersion of the

spectrometer is 570 µm per nanometer. The width of the ICCD chip is 12.8 mm

which corresponds to a full spectral width of a single image of ∆λ = 22 nm. The

center of the detected wavelength interval can be adjusted with a knob on the

spectrum analyzer. The spectral response of the ICCD camera and spectrometer

was calibrated by using a white light source and a non-intensified CCD with a well-

specified spectral response. The spectrometer’s offset was calibrated by using the

826.45 nm line of Argon.

The SHG setup in Fig. 3.1(c) is straightforward. A cw Ti:sapphire laser (Co-

herent 899 Ring Laser) emits 270 mW at a vacuum wavelength of 825.9 nm in a

TEM00 mode. The beam is mildly focussed into the center of the same PPKTP

crystal. The Rayleigh range of the beam is (14 ± 2) mm corresponding to a beam

radius at e−2 of maximum irradiance of w0 = (61 ± 4) µm. The pump propagates

along the x direction of the crystal and is z polarized. The PPKTP crystal, the

crystal mount and the temperature control part are the same as in the SPDC setup.

The intensity of the SHG light is measured with a photodiode (HUV1100BQ), a

homemade amplifier, and a voltmeter.

We have experimentally compared the peak conversion efficiencies of the 5-mm-

long PPKTP crystal and a 1-mm-long β-BaB2O4 crystal (BBO). The conversion

efficiency for both SPDC and SHG is expected to be much higher for PPKTP

than for BBO. At a cutting angle θc = 29.2◦, the effective nonlinearity of BBO

in type-I phase matching is expected to be deff = −d22cosθc = 2.0 pm/V, based

on data from Ref. [110]. For PPKTP, the effective nonlinearity corrected for first-

order quasi phase matching is expected to be (2/π)d33 = 9.8 pm/V, based on

data from Ref. [111]. When comparing crystals of equal length, it is thus expected

that PPKTP yields (9.8/2)2 = 24 times higher conversion efficiencies than BBO.

In our case, the PPKTP crystal is 5 times longer than the BBO crystal, so we

expect a conversion that is 52 × 24 = 600 times more efficient. We observe that the

SHG process is approximately 575 times more efficient than the BBO crystal. In

the inverse process of SPDC we observe an enhancement factor of approximately

700. Both observations are in reasonable agreement with the expected enhancement

factor of 600. We conclude that the quality of the periodically poled crystal must

be very good with a duty-cycle close to 50%.
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3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS

Figure 3.2: Measured angular intensity pattern of light generated via spontaneous parametric
down-conversion in a 5-mm-long periodically poled KTP crystal. The detection bandwidth
is much smaller than the inverse angular dispersion of the Maker fringes. The color scale
represents the logarithm (log10) of the intensity divided by the maximum intensity of the three
images. The full width and full height of each image is 96 mrad. The three images are taken
at different crystal temperatures: (a) 53.5 ◦C, (b) 60.7 ◦C, and (c) 72.0 ◦C. Phase matching
in forward direction is achieved in situation (b). The sixth and ninth fringe stand out and are
marked with triangles in each image. The same PPKTP crystal is used in Figs. 3.4, 3.3, 3.5,
and 3.6. The fringe patterns are slightly elliptical.

Figure 3.3: Measured SPDC ring pattern observed for pumping at two different positions on
the crystal. The conditions are similar to those described in Fig. 3.2. The crystal temperature
is now 69.7 ◦C and the image size is 90 x 90 mrad2. The pump positions on the crystal
are separated by 1.4 mm in the y direction. The images are very much alike. For instance,
the sixth and ninth fringe stand out and are marked with triangles in both images. Only
minor differences are visible. The patterns do not change upon a pump displacement in the z
direction. The same PPKTP crystal is used in Figs. 3.2, 3.4, 3.5, and 3.6.
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3.4. EXPERIMENTAL RESULTS
3.4 Experimental results

3.4.1 Maker fringes in angular intensity pattern of SPDC light

The angular intensity pattern of light generated via SPDC in a 5-mm-long periodi-

cally poled KTP crystal is measured with the setup in Fig. 3.1(a). The details of the

experimental apparatus are given in Sec. 3.3. Three images, taken at three differ-

ent temperatures are presented in Fig. 3.2. The images contain Maker fringes [100]

caused by the angle dependence of the phase-matching condition [see Eq. (3.6)]. We

observe continuous expansion of the fringe pattern upon reduction of temperature.

Several important aspects of the images will now be discussed. First of all,

the spacing between the successive rings decreases at large angles in such a way

that I ∝ sinc2(AΘ2 + B), where Θ is the detection angle outside the crystal. The

quadratic relation between detection angle and mismatch parameter is expected

from Eqs. (3.6) and (3.1). Secondly, we observe that the ring pattern in Fig. 3.2

is slightly elliptical. This effect is due to a difference in the refractive index of z

and x polarized light. Down-converted light with a certain kz component has a

polarization with a small x component, which causes the fringes to be elliptical

[nz 6= nx in Eq. (3.6)]. A third aspect concerns the peculiar deviations from the

ideal sinc-like fringe structure. The sixth and ninth fringe, for example, are standing

out with respect to neighboring fringes. These deviations are caused by small and

slowly varying deformations of the poling structure. This experiment thus provides

a simple and direct visualization of slowly varying deviations from perfect poling.

In order to quantify the ellipticity, we have performed some image processing.

The image is first transformed from Cartesian coordinates to polar coordinates

around the approximate center. Fourier analysis of this transformed image gives

components of the form fl(r) exp (ilϕ). The Fourier coefficients of this expansion

depend strongly on the chosen position of the center. We have determined the

optimal position of the center by minimizing the l = 1 coefficient. The ellipticity

is now linked to the l = 2 coefficient of the Fourier expansion around this best

center. We have accurately determined this ellipticity by stretching the image in

the z direction until the l = 2 coefficient is minimized. This procedure is applied to

25 images taken at different temperatures between 45 ◦C and 72 ◦C. The resulting

ellipticity is nz/nx = 1.056 ± 0.002 where all the 25 different values are within

the specified confidence region. Our measured value is in excellent agreement with

existing literature giving nz/nx = 1.0551 [106,107].

No ellipticity is left after the above-mentioned image stretching operation. This

allows for rotational averaging which results in a single curve as a function of Θ2
y for

each image. A composite curve, shown in Fig. 3.4, is generated by cutting, shifting,

and pasting 25 rotationally averaged images taken at different temperatures. The

main peak is shifted such that it coincides with the null of the Θ2
y axis. The result-
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3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS

Figure 3.4: Composite plot of the measured angular intensity pattern of light generated via
spontaneous parametric down-conversion in a 5-mm-long periodically poled KTP crystal. The
plot is obtained by combining 25 images of Maker fringes, like the ones shown in Fig. 3.2,
photographed at different crystal temperatures ranging from 45 ◦C to 89 ◦C. The horizontal
axis represents the square of the far field angle at a crystal temperature of 60.7 ◦C. The
intensity values of the nodes have limited quantitative meaning (see text for details). The
sixth and ninth fringe stand out and are marked with arrows. The same PPKTP crystal is used
in Figs. 3.2, 3.3, 3.5, and 3.6.

ing Θ2
y axis now relates without offset to the mismatch parameter φ in Eq. (3.2).

Unfortunately, the node intensities in Fig. 3.4 have limited quantitative meaning

as these intensities depend on the presence or absence of nearby bright fringes (see

below).

The average distance between subsequent side lobes in Fig. 3.4 is measured

to be ∆Θ2
y = (325 ± 8) mrad2. The angular dependence of the phase-matching

condition is theoretically described by Eq. (3.6). The measured external angle

corresponds to the internal angle in Eq. (3.6) via Θy ≈ nzθy. The expected distance

between subsequent side lobes thus becomes ∆Θ2
y = 2πcnz/Lω = 299 mrad2 using

the refractive index of Ref. [106]. We tentatively attribute the small discrepancy

between the measured and the expected value for ∆Θ2
y to an unintended but possibly

present 5% magnification in the imaging system.

Quite surprisingly, the minima in Fig. 3.2 do not go to zero, although all images

have already been corrected for dark counts and stray light. The images in Fig. 3.2

and the curve in Fig. 3.4 have an offset of about 10−2.85 ≈ 0.15% of the peak

intensity. The divergence of the pump laser of 0.7 mrad is too small to explain this

observation. Additionally, we have observed that the intensity in a node is strongly

reduced if we let a nearby bright fringe disappear from the image by increasing the

temperature. For example, the intensity in the first minimum drops from 2.72% at
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3.4. EXPERIMENTAL RESULTS

Figure 3.5: Spectrum of light generated via spontaneous parametric down-conversion in a
5-mm-long periodically poled KTP crystal. The crystal is pumped by a mildly focussed beam
at a wavelength of 413.1 nm. This spectrum is measured within a cone-shaped solid angle of
42 mrad2 in forward direction. The crystal temperature is 60.7 ◦C at which phase matching
is achieved in forward direction [see Fig. 3.2(b)]. The sixth fringe stands out and is marked
with an arrow. The same PPKTP crystal is used in Figs. 3.2, 3.4, 3.3, and 3.6.

T = 60.7 ◦C (collinear phase matching) to 0.56% at T = 63.6 ◦C, where the first

minimum is in the forward direction. It thus seems that the intensity in a node is

enhanced under the influence of nearby (bright) fringes. This effect can possibly

be explained by a small degree of scattering from the crystal, predominantly in

near-forward directions.

Characterization of the poling structure via the shape of the generated SPDC

rings, is ideally suited for rapid inspection. We have applied this technique not

only at the crystal center, but also over the full 1 mm x 2 mm cross-section of the

crystal. This inspection reveals a large uniformity in both transverse directions.

The observed ring patterns are almost identical at any position of the pump beam,

including the prominent appearance of the sixth and ninth ring. The minor variation

that we do observe occurs upon displacement in the 2 mm wide y direction and not

in the 1 mm thick z direction. Two fringe patterns, corresponding to two pump

positions that are 1.4 mm separated from each other along the y direction, are

shown in Fig. 3.3. These images show the largest differences that we have observed,

and even these are very small. The peak conversion efficiency (at phase-matching

temperature) varies at most 2.5% over the y direction and only 1% over the z

direction. We conclude that the observed deviations from perfect poling are present

over the full cross-section, and show minor variations along the y direction.

53



3. OPTICAL CHARACTERIZATION OF PERIODICALLY POLED CRYSTALS

Figure 3.6: Red curve: measured temperature dependence of the conversion efficiency in SHG
in a 5-mm-long periodically poled KTP crystal that is pumped by a weakly focussed beam
(w0 = 61±4 µm) at a wavelength of 825.9 nm and a pump power of 270 mW. The nonlinear
temperature dependence of the mismatch parameter φ is indicated by the nonequidistant
markers on the φ axis on top of the figure. The sixth and ninth fringe stand out and are
marked with arrows. The same PPKTP crystal is used in Figs. 3.2, 3.4, 3.3, and 3.5. Black
curve: plot of the ideal non-deformed tuning curve of Eq. (3.2).

Figure 3.7: Red curve: measured temperature dependence of the conversion efficiency in
SHG in a (different) 5-mm-long periodically poled KTP crystal that is pumped by a weakly
focussed beam (w0 = 61±4 µm) at a wavelength of 826.4 nm and a pump power of 270 mW.
The nonlinear temperature dependence of the mismatch parameter φ is indicated by the non-
equidistant markers on the φ axis on top of the figure. Black curve: plot of the ideal non-
deformed tuning curve of Eq. (3.2).
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3.4. EXPERIMENTAL RESULTS
3.4.2 Maker fringes in spectrum of SPDC light

The spectrum of the down-converted light of the same PPKTP crystal is measured

with the setup depicted in Fig. 3.1(b). We have tuned the temperature to 60.7 ◦C so

that phase matching is achieved in forward direction. Nine different spectral images

between 760 nm and 890 nm have been recorded, each having a spectral width of

∆λ = 22 nm. We have combined these images into a singe curve in Fig. 3.5 which

thus represents the spectrum of the down-converted light. The observed spectrum

contains Maker Fringes [100] as the curve’s shape is governed by the phase-matching

condition in the crystal.

The wave vector mismatch, given by Eq. (3.6), scales as the square frequency

detuning (Ω/2)2. If we convert the λ axis into a (Ω/2)2 axis we find, as expected, a

sinc-shaped tuning curve. The central peak is neatly centered around zero detuning

which corresponds to a wavelength of 826.2 nm, being twice the pump wavelength.

The spacing between subsequent side lobes is ∆(Ω/2)2 = (4.7±0.1)×1027 rad2/s2,

which is in excellent agreement with the literature value of 4.69 × 1027 rad2/s2

derived from the Sellmeier equation in Ref. [106]. The fact that the mismatch

parameter increases with the square of the frequency detuning causes the spectrum

to be very wide, having a FWHM of about 34 nm even for a 5-mm-long crystal.

Again, we observe that the sixth side lobe is standing out with respect to the

neighboring side lobes. This deviation is caused by small and slowly varying de-

formations of the poling structure. Finally, we observe that the Maker fringes on

the red side are weaker than the fringes on the blue side. We tentatively attribute

this unbalance to imperfections in the calibration of the spectral response of the

spectrometer and the intensified CCD camera.

3.4.3 Maker fringes in temperature dependence of SHG

The temperature-dependent conversion efficiency of the SHG process in the same

PPKTP crystal is measured with the setup in Fig. 3.1(c). The obtained result,

shown in Fig. 3.6, contains Maker Fringes [100] as the curve’s shape is again governed

by the phase-matching condition in the crystal. The spacing between the subsequent

side lobes decreases at large temperatures due the nonlinear relationship between

temperature and refractive index of KTP [101]. Again, the sixth and ninth side lobe

are standing out with respect to the neighboring peaks. These non-sinc-like features

are caused by small and slowly varying deformations in the poling structure. We

now achieve phase matching at a temperature of 54.1 ◦C, hereby using a pump

wavelength of 825.9 nm. Phase matching in the SPDC experiments (see Fig. 3.2)

was achieved at a different temperature of 60.7 ◦C because of the slightly longer

relevant SPDC wavelength of 826.2 nm.

It is preferred to plot the measured Maker fringes as a function of mismatch
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parameter φ rather than temperature. In order to make this conversion, accurate

knowledge of the temperature dependence of the refractive index is needed. The

temperature-dependent wave-vector mismatch in Eq. (3.4) is well described with

two coefficients c1 and c2, defined via

∆nz(2ω, T )− ∆nz(ω, T ) = c1[T − T0] + c2[T − T0]
2, (3.7)

because of the approximate quadratic temperature dependence of KTP’s refractive

index [101].

We have determined c1 and c2 from the measured tuning curve η(T ) by using

the following procedure. The peaks and nodes of the measured tuning curve serve as

markers for the mismatch parameter: φ = ±(n + 1/2)π at the peaks and φ = ±nπ

at the nodes. These markers yield the mismatch parameter φ at a number of

temperatures. Coefficients c1 and c2 are obtained from a parabolic fit of Eq. (3.1)

to the obtained set of mismatch parameters, after substituting Eqs. (3.7) and (3.4)

into Eq. (3.1). In order to obtain reliable values for c1 and c2, we have applied

this fitting method to five different PPKTP crystals. The tuning curve of one of

these crystals is shown in Fig. 3.7. It closely resembles the ideal sinc2-shape, thus

showing that the poling structure of this second 5 mm long crystal is almost without

any deformation. This curve is measured at a slightly longer pump wavelength of

826.4 nm instead of 825.9 nm causing phase matching to occur at 63.7 oC instead

of 54.1 oC.

Our resulting coefficients are c1 = (24.0 ± 0.2) × 10−6 ◦C−1 and c2 = (4.8 ±
0.3) × 10−8 ◦C−2 at an approximate pump wavelength of 826 nm and a reference

temperature of T0 = 25 ◦C. The influence of the thermal expansion [102] on φ is

only small (∼ 4%) compared to the influence of the change in refractive index. The

obtained coefficients are used to add a φ axis at the top of Fig. 3.6 and Fig. 3.7. The

conversion from the measured η(T ) to the preferred form of η(φ) is now completed.

We will use η(φ) for further analysis in Sec.3.5.

We now compare our values for c1 and c2 with existing literature. Reference [101]

gives an explicit expression for ∆nz(ω, T ) between vacuum wavelengths of 532 nm

and 1585 nm. From this expression we calculate c1 = 23.56 × 10−6 ◦C−1 and

c2 = 8.6× 10−8 ◦C−2. The c1 coefficient is in reasonable agreement with our value,

but there is a distinct discrepancy between the values for c2. We conclude that it

is inappropriate to extrapolate the expression for ∆nz(ω, T ) in Ref. [101] to our

pump wavelength of 413 nm. This wavelength is needed to calculate ∆nz(2ω, T ) in

Eq. (3.7).

Finally, we have measured the temperature dependence of SHG in five different

PPKTP crystals of various lengths: 2 mm, 5 mm (two crystals), 10 mm, and 20 mm.

The results of the two 5-mm-long crystals have already been presented in Figs. 3.6

and 3.7. For the three other crystals, the period of the sinc-pattern is inversely
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proportional to the length of the crystal, as expected from Eq. (3.1). All crystals

are of very high quality as the observed deviations from the ideal sinc-shape are

even weaker than the features visible in Fig. 3.6.

3.5 Interpretation of Maker fringes in terms of poling quality

3.5.1 Fourier analysis of small and slowly varying deformations of the poling

structure

An ideal periodically poled crystal has a sinc2-shaped tuning curve. In practice,

however, small deformations of the poling structure are often present, and such

deformations reveal themselves as non-sinc-like features in the tuning curve η̂(δ∆k).

Fejer et al. [89] have analyzed the effects of various types of deformations on the

tuning curve. In this subsection, we extend their treatment to a Fourier analysis

of small and slowly varying deformations of the poling structure along the crystal.

Faster deformations on a length scale of only a few lattice periods go unnoticed,

as they are associated with very high harmonics that fall outside the experimental

range of the observed Maker fringes. We make a clear distinction between slowly

varying deformations of the poling phase and slowly varying deformations of the

poling duty-cycle.

We consider second harmonic generation (SHG) and spontaneous parametric

down-conversion (SPDC) under the conditions described in Sec. 3.2. The crystal

length L0 and the number of domains N relate to the design value of the poling

period via Λ0 = 2L0/N . The tuning curve is peaked at any wave-vector mis-

match ∆k0 obeying |∆k0| = 2πm/Λ0, where m can be any odd-valued quasi-phase-

matching order. The positions of the domain boundaries required for perfect poling

are xn,0 = nΛ0/2.

Our analysis is restricted to imperfect positioning of the domain boundaries, i.e.,

to poling functions d(x) that occupy two discrete levels ±deff . We specify the spatial

deformations via the position error δxn ≡ xn − xn,0 of the nth domain boundary

and introduce the phase error at the domain boundaries for fixed ∆k = ∆k0 as

Φn ≡ ∆k0δxn. (3.8)

Note that our definition of Φn only contains the effects of the poling deformation.

This definition differs from the one used by Fejer et al. [89], as their Φn also includes

the accumulated phase due to the wave-vector mismatch δ∆k ≡ ∆k − ∆k0.

The conversion efficiencies of SHG and SPDC are affected by the poling defor-

mations. The up-converted electric field in the process of SHG, normalized to the
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field in case of perfect poling is [89]

Ê(δ∆k) ≡ E(δ∆k)

Eperfect
=

1

N

N
∑

n=1

e−iδ∆kxe−iΦn . (3.9)

Next, we note that the poled crystal contains N/2 “building blocks” each consisting

of two domains with opposite poling. Each building block is characterized by its

length, being approximately equal to Λ0, and its composition, i.e., the duty-cycle

of the poling. The variations in these two quantities are related to the sum and

differences of Φn and Φn+1. By introducing a slowly varying phase function Φ(x)

and amplitude function A(x) as

Φ(x̄n,0) ≡ 1
2 (Φn + Φn+1), (3.10)

A(x̄n,0) ≡ cos
[

1
2 (Φn − Φn+1)

]

, (3.11)

where x̄n,0 ≡ (n + 1
2 )Λ0/2, we can rewrite Eq. (3.9) as

Ê(δ∆k) ≈ 1

L

∫ L/2

−L/2

A(x)e−iΦ(x)e−iδ∆kxdx. (3.12)

The complex amplitude A(x) exp [−iΦ(x)] basically isolates the Fourier components

of the two-level poling function d(x) close to wave vector ∆k0. The phase function

Φ(x) quantifies the displacement of the building blocks, whereas the amplitude func-

tion A(x) is related to the duty-cycle of these blocks via A(x) = sin(π×dutycycle).

The tuning curve, defined as the normalized conversion efficiency, is

η̂(δ∆k) = |Ê(δ∆k)|2. (3.13)

Equations (3.12) and (3.13) also apply to the SPDC process (per spatial and spectral

mode), for which the wave-vector mismatch is calculated via Eq. (3.5).

Equation (3.12) exhibits the following symmetries. Deformations that are re-

stricted to duty-cycle variations only, thus having Φ(x) = 0, yield Ê(δ∆k) =

Ê∗(−δ∆k) and a symmetric tuning curve. Turning the crystal around corresponds

to the operations Φ(x) ⇒ −Φ(−x), A(x) ⇒ A(−x), and hence Ê(δ∆k) ⇒ Ê∗(δ∆k).

Therefore, a measurement of the tuning curve η̂(δ∆k) can not distinguish between

the two possible crystal orientations. Symmetrically deformed crystals have real-

valued Ê(δ∆k).

For further analysis we expand the phase function Φ(x) and the amplitude func-
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tion A(x) in Fourier series as

Φ(x) − a0

2
=

∞
∑

n=1

an cos

(

2πnx

L

)

+ bn sin

(

2πnx

L

)

, (3.14)

A(x)

A0
− 1 =

∞
∑

n=1

cn cos

(

2πnx

L

)

+ dn sin

(

2πnx

L

)

, (3.15)

where an, bn, cn, and dn are real-valued coefficients and 0 ≤ A0 ≤ 1 is the real-

valued average amplitude. Any nonzero a0 can be interpreted as a longitudinal

displacement of the crystal, which is obviously neither an internal crystal property

nor a parameter that influences the detected tuning curve. We shall assume small

deformations Φ(x) ≪ 1, so that a first-order Taylor expansion of exp[−iΦ(x)] ≈
1− iΦ(x) can be made. By inserting the Fourier decompositions in Eq. (3.12), and

hereby neglecting second-order terms with amplitudes like ancn, we find

Ê(φ)

A0
≈ sinc(φ) +

∞
∑

n=1

cn − ian + bn + idn

2
sinc(φ + nπ)

+

∞
∑

n=1

cn − ian − bn − idn

2
sinc(φ − nπ), (3.16)

where φ ≡ 1
2δ∆kL is the mismatch parameter. The dependence of the generated

field on the wave-vector mismatch δ∆k is thus found to comprise a series of shifted

sinc-functions with relative weights that contain essential information on the slow

(= large scale) variations of the poling period. The tuning curve η̂(φ) is symmetric

with respect to φ = 0 if at least all bn = 0 in combination with either all dn = 0 or

all an = 0.

We will now calculate the values of the tuning curve at the positions of the peaks

and nodes of the non-deformed sinc-function, as these give a good impression of the

poling deformation. Inserting Eq. (3.16) into Eq. (3.13) we find

η̂(φ = ±nπ) ≈ A2
0

∣

∣

∣

∣

∣

α̃n ∓ β̃n

2

∣

∣

∣

∣

∣

2

, (3.17)

η̂
(

φ = ±
[

s − 1
2

]

π
)

≈ A2
0

∣

∣

∣

∣

∣

1

(s − 1
2 )π

+
ζ̃s ∓ ξ̃s

2

∣

∣

∣

∣

∣

2

, (3.18)

for the nodes and peaks, respectively. The complex α̃n, β̃n, ζ̃s, and ξ̃s are linked to
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the deformation coefficients as

α̃n ≡ (−1)n [cn − ian], (3.19)

β̃n ≡ (−1)n [bn + idn], (3.20)

ζ̃s ≡ 2

π

∞
∑

n=1

α̃n

[

1

2(s − n) − 1
+

1

2(s + n) − 1

]

, (3.21)

ξ̃s ≡ 2

π

∞
∑

n=1

β̃n

[

1

2(s − n) − 1
− 1

2(s + n) − 1

]

. (3.22)

The {ζ̃s, ξ̃s} coefficients are uniquely determined by the deformation coefficients

{α̃n, β̃n}. The inverse transformations

α̃n =
2

π

∞
∑

s=1

ζ̃s

[

1

2(s − n) − 1
+

1

2(s + n) − 1

]

, (3.23)

β̃n =
2

π

∞
∑

s=1

ξ̃s

[

1

2(s − n) − 1
− 1

2(s + n) − 1

]

, (3.24)

and the following constraint
∞
∑

s=1

ζ̃s

2s − 1
= 0, (3.25)

can be derived from Eqs. (3.21) and (3.22). A sketch of this derivation and the

physical interpretation of the coefficients are discussed in the final paragraph of

this section. The fact that the inverse transformations exist, implies that both the

{α̃n, β̃n}-set and the {ζ̃s, ξ̃s}-set individually contain all information on the poling

deformations.

Equation (3.17) shows that the nth node at each side of the main sinc-peak

is determined by the α̃n coefficient and β̃n coefficient only. This is because the

maxima of the shifted sinc-functions in Eq. (3.16) coincide with the minima of

the fundamental and all other shifted sinc-functions. The α̃ coefficient affects both

nodes in a symmetric way, whereas the β̃ coefficient can create an unbalance between

the nodes. Equation (3.18) shows that the sth side maximum at each side of the

main sinc-peak is determined by the ζ̃(s+1) coefficient and ξ̃(s+1) coefficient only.

The reason being that ζ̃(s+1) and ξ̃(s+1) are the coefficients of sinc functions that

are shifted by (s + 1/2)π, thus exchanging the role of minima and maxima. The ζ̃

coefficient affects both side lobes in a symmetric way, whereas the ξ̃ coefficient can

create an unbalance between the side lobes.

The transformation from the {α̃n, β̃n} coefficients to the {ζ̃s, ξ̃s} coefficients

is related to a transformation from the Fourier basis {cos[2πnx/L], sin[2πnx/L]}
to an alternative basis comprising the shifted harmonic functions {cos[2π(s −
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1
2 )x/L], sin[2π(s− 1

2 )x/L]}. Apart from sign conventions, Eqs. (3.21)-(3.24) corre-

spond to projections between those two function bases with an imposed zero-offset

constraint. The explicit relation between the {ζ̃s, ξ̃s} coefficients and the poling

deformations is

Φ(x) − a0

2
=

∞
∑

s=1

{

(−1)sIm(ζ̃s) cos

[

2π
(

s− 1
2

)

x

L

]

+(−1)s+1Re(ξ̃s) sin

[

2π
(

s− 1
2

)

x

L

] }

, (3.26)

A(x)

A0
− 1 =

∞
∑

s=1

{

(−1)s+1Re(ζ̃s) cos

[

2π
(

s− 1
2

)

x

L

]

+(−1)s+1Im(ξ̃s) sin

[

2π
(

s− 1
2

)

x

L

] }

. (3.27)

The constraint in Eq. (3.25) ensures that the averages of the right-hand sides of

Eq. (3.26) and Eq. (3.27) are zero.

3.5.2 Analysis of Maker fringes in terms of poling quality

As a typical experimental example we will analyze the measured tuning curve shown

in Fig. 3.6 in a quantitative way. The poling quality of this crystal is very high as

its tuning curve almost perfectly resembles the sinc2-shape as given by Eq. (3.2).

However, small deviations from the ideal curve are clearly visible, as, for example,

the sixth and ninth side lobes are standing out with respect to the neighboring peaks.

These non-sinc-like features are caused by small and slowly varying deformations

in the poling structure that cover hundreds of poling periods. The reason is that

the measured φ range covers about 20 sinc-nodes only, whereas the total amount

of sinc-nodes in between two phase-matching orders, like m = 1 and m = 2, equals

the number of domains which is about 2L0/Λ0 = 2770.

An important ingredient of the Fourier analysis presented in Sec. 3.5.1 is the

subdivision of the crystal into “building blocks”, each block comprising two consec-

utive domains with opposite poling. The analysis distinguishes between variations

of the poling phase, i.e., the longitudinal displacement of the building blocks, and

variations of the poling duty-cycle that are related to the composition of the build-

ing blocks. The Fourier coefficients {an, bn}, defined in Eq. (3.14), correspond to

poling phase variations and the coefficients {cn, dn} in Eq. (3.15) correspond to

duty-cycle variations. We compare the experimental observations with our Fourier-

model by first considering the effects of solely poling phase variations and afterwards

considering the effects of solely duty-cycle variations.

We start by considering the effects of solely poling phase variations, mathemat-
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ically corresponding to cn = dn = 0. This assumption is inspired by the fact that

this category of deformations has a first-order effect on the tuning curve, whereas

duty-cycle variations are only visible in second-order [see Eqs. (3.10) and (3.11)].

The symmetry with respect to φ = 0 observed in Fig. 3.6 indicates that bn ≈ 0. The

most prominent features are observed in the ±6th and ±9th side lobes (one outside

figure). The tuning curve at the ±6th peaks is measured to be η̂ = 0.54%, whereas

the expected value is only η̂ = 0.24%. From these values and the assumption of

an approximate constant duty-cycle, we find ζ̃7 ≈ ±0.11i. The associated phase

function Φ(x) = ±0.11 cos(6 1
2 × 2πx

L ) corresponds to a periodic displacement of the

domain boundaries by only 0.11Λ0/2πm = 64 nm over a typical period of 1/6 1
2 of

the crystal length. This calculation shows that even very small variations in the

poling phase have the potential to strongly enhance the intensities of the side lobes.

The assumption of an approximately fixed duty-cycle is however incompatible

with the observation that the ±3rd and ±8th side lobes are lower than the expected

peak height at both sides of the central peak. Equation (3.18) shows that a pair of

side lobes can be lowered symmetrically, only if ℜ(ζ̃) < 0. Any nonzero real part

of ζ̃ is formed by nonzero cn coefficients and thus by variations of the poling duty-

cycle. We therefore conclude that the observed non-sinc-like features in Fig. 3.6 can

not be caused by slowly varying deformations of the poling phase alone.

Next, we consider the effects of solely duty-cycle variations, mathematically

corresponding to an = bn = 0. This assumption is inspired by the fact that the

observed tuning curve is almost perfectly symmetric, which is automatically the case

when solely duty-cycle variations are assumed. Equation (3.18) gives the height of

the side lobes, and it indicates that a real-valued ζ̃s has a first-order effect on

the side lobe strength, whereas an imaginary-valued ξ̃s has only a second-order

effect. Therefore, it is possible to make a good estimate of {ζ̃s} from the measured

side lobe strengths alone. For example, from the measured ±6th side lobes in

Fig. 3.6, it is found that ζ̃7 ≈ 0.049, corresponding to the amplitude function

A(x) = A0[1 + 0.049 cos(6 1
2 × 2πx

L )]. Assuming an average duty-cycle of 50%, the

9.8% variation in the amplitude function A(x) corresponds to a duty-cycle variation

between 36% and 64%. We thus find that the potential effect of duty-cycle variations

on the tuning curve is relatively weak compared to the potential effect of poling

phase deformations.

One might wonder whether or not it is possible to retrieve all deformation coef-

ficients from a measurement of the tuning curve η̂(φ). In general, it is not possible

to do this inversion. For example, a sign-flip of all an and dn coefficients will not

change the outcome of the measurement. The large number of free parameters in

the deformation model possibly limits the amount of retrievable information even

further. Under some assumptions on the nature of the deformations, like the ones

on duty-cycle variation discussed above, more stringent requirements on the ampli-
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tudes of the deformations apply. Whatever the assumptions, the observed tuning

curve always corresponds to a Fourier analysis of the amplitude function A(x) and

the poling phase function Φ(x). Non-sinc-like features in the tuning curve η̂(φ)

around the nth side minimum must correspond to variations in A(x) and Φ(x) with

a typical period of L/n.

Finally, we summarize the above-described analysis on the nature and strength

of the poling deformations. The approximate symmetry in Fig. 3.6 indicates that

all bn ≈ 0. The measurement also proves that some cn coefficients must be nonzero

as some pairs of side lobes are lowered symmetrically at both sides of the main

peak. In order to fully explain the observed symmetry in the tuning curve, it is also

needed that either all an ≈ 0 or all dn ≈ 0. We assume that an ≈ 0, as we suppose

that any realistic duty-cycle deformation mechanism would not distinguish between

the cn and dn coefficients. We thus conclude that the poling deformations in the

investigated PPKTP crystal comprise duty-cycle variations only. The stronger sixth

side lobes in Fig. 3.6 correspond to a periodic 9.8% peak-to-peak variation in the

amplitude function A(x) = sin(π × dutycycle).

It is likely that the origin of the variations of the duty-cycle lies in the fabrica-

tion process of PPKTP. The process for the fabrication of the domain pattern is

based on electric field poling [112]. An important issue during the patterning pro-

cess is domain broadening [109, 113]. The amount of domain broadening directly

determines the duty-cycle, and hence domain broadening is likely to be the origin

of the small deformations that we observe. Our observation in Sec. 3.4.1, that the

poling deformations are the same at any z position of the pump beam, is consis-

tent with the observation of Rosenman et al. [113], that domain broadening occurs

dominantly in the first few microns close to the electrical contacts needed for the

poling production.

3.6 Conclusions

We have demonstrated three different methods to measure the tuning curve of a pe-

riodically poled KTiOPO4 crystal (PPKTP), utilizing the processes of spontaneous

parametric down-conversion (SPDC) and second harmonic generation (SHG). The

three methods concern a measurement of the angular intensity pattern of collinear

SPDC light, the spectrum of SPDC light, and the temperature-dependent conver-

sion efficiency in SHG. We have shown that the three methods are fully consistent,

and that the outcomes are in agreement with current knowledge of KTP’s material

properties. We refer to the observed fringe pattern in the tuning curve as Maker

fringes [100]. The angular intensity pattern of SPDC light directly visualizes the

Maker fringes. We therefore consider this method to be an ideal tool to quickly

characterize the poling quality.
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The observed angular intensity pattern in SPDC exhibits two interesting as-

pects. First, we have observed that the fringe pattern is slightly elliptical, which is

caused by the birefringence of KTP. The observed ellipticity of 5.5% is in excellent

agreement with current knowledge of KTP’s birefringence. Secondly, we observe

that the images exhibit a small degree of fringe blurring and an offset intensity of

about 0.15%. These two observations can possibly be explained by a small degree

of scattering from the crystal, predominantly in near-forward directions.

Our measurements of the Maker fringes contain essential information about

slowly varying deformations of the poling structure. These large scale imperfections

of the poling structure manifest themselves as deformations of the tuning curve close

to the point of perfect phase matching. We have developed a Fourier analysis for

these deformations. An important ingredient of the analysis is the subdivision of

the crystal into “building blocks”, each block comprising two consecutive domains

with opposite poling. The Fourier analysis distinguishes between variations of the

poling phase, i.e., the longitudinal displacement of the blocks, and variations of the

poling duty-cycle that are related to the composition of the building blocks. We give

explicit expressions for the tuning curve, depending on the Fourier coefficients of

the deformations. Our measurements of the tuning curve exhibit small non-sinc-like

features. It is proven that these deviations can not be explained by slowly varying

deformations of the poling phase alone. We show that the observed features are

probably caused by variations of the poling duty-cycle alone. A specific feature in

the observed tuning curve corresponds to a variation of the duty-cycle between 36%

and 64%.

We have measured the angular intensity pattern of SPDC light for various pump

positions on the crystal. The measurements reveal a uniformity in both transverse

directions, as some prominent features in the fringe pattern are present at any

pump position. Closer inspection, however, reveals a very small variation of the

fringe pattern along the y direction of the crystal. We do not observe any variation

of the fringe pattern along the z direction. The ferroelectric poling structure is

fabricated via low temperature electrical poling, by applying a periodic electrode

pattern on one of the polar z surfaces of the crystal. We conclude that the poling

deformations must originate from close to the electrodes and remain uniform along

the z direction of the crystal.
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