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1Introdution
1.1 Interference in optics

1.1.1 Young’s experiment: interference of waves

Around 1801, the British scientist Thomas Young demonstrated that light prop-

agates like a wave. Light waves, in contrast to light rays, can form interference

patterns. Young illuminated a mask with two parallel slits with monochromatic

spatially coherent light and projected the transmitted light onto a screen. He ob-

served a periodic intensity pattern of bright and dark lines, which he explained as an

interference pattern. Figure 1.1 illustrates a simulation of a wave passing through a

mask with two slits. The two waves that emerge from the slits expand in a circular

manner such that they cross each others path. In the low-intensity regions, the

phases of the two waves are opposite, and the waves interfere destructively at any

instant of time. In the high-intensity regions, both waves interfere constructively

yielding a larger detected intensity.

Later, in 1865, James Clerk Maxwell theoretically showed that the electric field

and the magnetic field, together, can form a wave that propagates at exactly the

speed of light [1]. Ever since, light is understood as a wave of the electromagnetic

field. Classically, the state of the electromagnetic field is determined by the electric

field E(r, t) and the magnetic field B(r, t). The time evolution of these fields is

described by Maxwell’s equations. [2].
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1. INTRODUCTION

Figure 1.1: (a) Simulation of a wave propagating through a mask with two slits. The grey
scale represents the wave displacement at some instant of time. (b) An interference pattern is
formed in the time-averaged intensity profile behind the mask. Around 1801, Thomas Young
demonstrated that light produces such intensity pattern. He visualized this interference pattern
by projecting the transmitted light onto a screen.

1.1.2 One-photon and two-photon interference

The quantum theory of light describes the quantum state |Ψ〉 of the electromagnetic

field [3,4]. Formally, this theory is obtained by applying a procedure called canonical

quantization to the classical theory of the electromagnetic field. The foundation of

multiphoton interference within quantum optics was laid by Glauber in 1963 in his

influential work on quantum optical coherence [5]. The quantum theory replicates

the occurrence of the classical interference patterns of the intensity similar to the

one shown in Fig. 1.1(b). Additionally, Glauber’s analysis makes clear that quantum

interference can occur in n-fold intensity correlations between n separate detectors.

This type of optical interference is now referred to as n-photon interference.

Young’s classical interference pattern in Fig. 1.1 is a one-photon interference

phenomenon. One-photon interference refers to a structure in the photon detection

rate in a single detector. The photon detection rate is [5]

R(1)(r, t) ∝ 〈Ψ|Ê−(r, t)Ê+(r, t)|Ψ〉, (1.1)

where Ê±(r, t) are the positive and negative frequency electric-field operators at

position r and time t. A one-photon interference pattern can in principle be formed

by a single photon only. So if one would perform Young’s experiment with a single

photon, the probability of where the photon can be absorbed corresponds to the

intensity pattern obtained from the classical wave theory [see Fig.1.1(b)].

Two-photon interference refers to a structure in the coincidence rate between
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1.1. INTERFERENCE IN OPTICS
two detectors. Glauber argued that this coincidence rate is [5]

R(2)(r1, t1; r2, t2) ∝ 〈Ψ|Ê−(r1, t1)Ê
−(r2, t2)Ê

+(r2, t2)Ê
+(r1, t1)|Ψ〉, (1.2)

where r1,2 and t1,2 are space and time coordinates of the two detectors. It may not

be obvious from Eq. (1.2) how two-photon interference can occur. Let us therefore

construct the two-photon state∗

|Ψ〉 =
1√
2

∫

dk1dk2 φ(2)(k1,k2)â
†(k1)â

†(k2)|vac〉, (1.3)

where φ(2)(k1,k2) = φ(2)(k2,k1) without loss of generality, |vac〉 is the continuous-

mode vacuum, and â†(k) is the continuous-mode photon creation operator with

momentum k. For our interest in simplicity, we have restricted ourselves to one po-

larization only. Let us also specialize to paraxial light where φ(2)(k1,k2) is nonzero

only for k vectors that are oriented paraxially. By combining Eqs. (1.2) and (1.3),

we find the two-photon interference pattern†

R(2)(r1, t1; r2, t2) ∝
∣

∣

∣

∣

∣

∫

dk1dk2 φ(2)(k1,k2) exp (ik1 · r1 − i|k1|ct1)

× exp (ik2 · r2 − i|k2|ct2)
∣

∣

∣

∣

∣

2

, (1.4)

where c is the speed of light. The absolute square operation directly reveals the

interference mechanism behind two-photon interference. The expression between

|..|2 is the two-photon wave packet, which is a complex (rotating) amplitude as a

function of two coordinates. Each coordinate is propagated according to the scalar

wave equation of light.

Two-photon interference is especially interesting if the two photons in Eq. (1.3)

are entangled. In the entangled case, the two-photon amplitude does not factorize

in two functions‡, i.e.,

φ(2)(k1,k2) 6= f(k1)f(k2).

∗ We use the continuous-mode formalism with usual commutation relations and field op-
erators given by Eqs. (10.10-1)-(10.10-4) in Ref. [3]. Normalization then corresponds to
∫

dk1dk2|φ(2)(k1, k2)|2 = 1, where we have imposed φ(2)(k1, k2) = φ(2)(k2, k1) without
loss of generality since any asymmetry drops out of Eq. (1.3).

† We adjusted the electric-field operator in Eq. (1.2) to a similar operator related to the square
root of the photon density (the continuous-mode version of equation (12.3-1) in Ref. [3]).

The expression for this adjusted field operator (in single-polarization form) is V̂ +(r, t) =
√

(2π)−3
∫

dk â(k) exp[ik · r − i|k|ct].
‡ It is debatable whether inseparability also implies entanglement. For example: is it correct to

call φ(2)(k1, k2) = f(k1)g(k2) + f(k2)g(k1) entangled? We will refer to this two-mode form
of inseparability as entanglement between indistinguishable photons (see chapter 4).
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1. INTRODUCTION
Figure 1.2: Experimental geometry for the operation of spontaneous parametric down-
conversion. The down-converted light is spatially multimode (indicated by the arrows). Each
down-converted photon pair is spatially entangled due to conservation of transverse momentum
in the down-conversion process.

If this function would factorize, the two-photon interference pattern would become

a trivial multiplication of the one-photon interference patterns, i.e.,

R(2)(r1, t1; r2, t2) ∝ R(1)(r1, t1)R
(1)(r2, t2) [if φ(2)(k1,k2) factorizes].

If the two-photon amplitude does not factorize, the one-photon interference pattern

generally gets washed out, but, at the same time, the two-photon interference pat-

tern retains its high visibility. Two-photon interference occurs most prominently

in a two-photon state. The presence of a three-photon component (or more pho-

tons) will lower the visibility of the two-photon interference pattern if φ(2)(k1,k2)

is not factorizable. Therefore, one requires two-photon states to study interesting

two-photon interference phenomena with high visibility.

1.1.3 Spontaneous parametric down-conversion: a source of pairs of entangled

photons

Nowadays, two-photon interference experiments are commonly performed with pho-

ton pairs produced by the nonlinear χ(2) process of spontaneous parametric down-

conversion (SPDC). The process is operated by directing a coherent pump laser

through a nonlinear crystal (see Fig. 1.2). SPDC refers to the occasional sponta-

neous splitting of a pump photon into two photons of lower energy (see Sec. 1.3 for

details). These photon pairs can be observed as simultaneous clicks by two single

photon detectors, as was first observed in 1970 [6]. Most interestingly, the photons

within a pair are spatially entangled resulting from the conservation of transverse

momentum in the down-conversion process. Loosely speaking, each photon is inco-

herently emitted in many spatial modes, but, at the same time, the pair as a whole

is pure and has the well defined transverse momentum distribution of the pump

beam. Section 1.3 describes how the down-converted stream of photon pairs can

be identified with a two-photon wave packet similar to Eq. (1.3). The photon pairs

produced by SPDC are thus excellent candidates for the research on two-photon
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1.2. RESEARCH TOPICS IN THIS THESES
Figure 1.3: Generic scheme of the two-photon interference experiments discussed in this
thesis. Two-photon interference phenomena are experimentally observed via the coincidence
count rate in the plane of the detectors.

interference. Two-photon interference was first observed in 1987 by Ghosh, Hong,

Ou, and Mandel [7, 8].

1.2 Research topics in this theses

1.2.1 Two-photon interference: three themes

The research in this thesis addresses spatial aspects of two-photon interference. The

work is mainly experimental although our experiments are supported by theoretical

models. The research can be divided into three research themes: We address (1)

orbital angular momentum entanglement, (2) two-photon diffraction from a double

slit, and (3) two-photon scattering of a random medium.

Despite their diversity, all themes are strongly related to one another. This is

because two-photon interference and spatial entanglement play dominant roles in

all themes. A generic scheme of all interference experiments is displayed in Fig. 1.3.

Pairs of spatially entangled photons are emitted by the SPDC source and propa-

gate through the experimental setup before being detected by two single-photon

detectors. The propagation part is different for each experiment depending on the

addressed research theme. Figure 1.4 illustrates the three setups that correspond to

the three research themes. These research themes are discussed below in Secs. 1.2.2-

1.2.4.

1.2.2 Theme 1: Orbital angular momentum entanglement

The spatial entanglement in the down-converted photon pair is of a high-dimensional

form [9,10]. This aspect is attracting a lot of attention because of its potential ap-

plicability in the field of quantum information processing [11–14]. The best studied

basis of the spatial entanglement involves the orbital angular momentum (OAM)

eigenstates [15–19]. If one photon is detected with OAM +~l then the other photon
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1. INTRODUCTION
must collapse into a spatial profile with −~l. This is because the pump beam is

just a Gaussian l = 0 beam, and OAM is conserved in the down-conversion process.

The quantum state of the photon pair can thus be tentatively written as∗

|Ψ〉 ∼
∞
∑

l=−∞

√

Pl

∣

∣ + l~
〉

1
⊗

∣

∣ − l~
〉

2
[omitting radial properties],

where the probabilities Pl = P−l correspond to the distribution over the orbital

angular momentum spectrum.

The distribution of the Pl coefficients can, in principle, be determined from the

incoherent OAM distribution of just one of the photons [20, 21]. Such a measure-

ment does, however, not depend on whether the photons are really entangled or not.

The photons could equally well be a pair of independent incoherent photons with

some OAM spectrum. In the literature, it was argued that the OAM distribution

could also be determined via two-photon interference involving both entangled pho-

tons [22]. The experimental technique for this experiment is illustrated in Fig. 1.4

(theme 1). The orbital-angular momentum spectrum is contained in the visibility of

the multimode Hong-Ou-Mandel dip as a function of the rotation angle of the image

rotator [22]. In this thesis, we have used this challenging technique to determine

the OAM distribution of the entangled photons. We also consider several special

cases and provide a more detailed theoretical analysis supporting the experiment.

1.2.3 Theme 2: Two-photon diffraction from a double slit

Starting from 1994, a lot of experiments have addressed two-photon diffraction from

a double-slit [23–35]. So why would one still want to study this topic? The reason

is that the diversity of possible two-photon interference patterns behind a double

slit has, we believe, not been widely appreciated. In fact, most of the possible forms

of spatial entanglement behind the double slit have remained unexplored so far.

The most general two-photon state behind the double-slit (under symmetric

two-photon illumination) can be written as

|Ψ〉 = cos (α/2)

( |↑↓〉 + |↓↑〉√
2

)

+ eiϕ sin (α/2)

( |↑↑〉 + |↓↓〉√
2

)

, (1.5)

where | ↑〉 and | ↓〉 represent transmissions through the top and bottom slit, and

parameters α and ϕ determine the quantum state. This state can be recognized as

a superposition of two maximally entangled Bell states. The first Bell state cor-

responds to photons going through opposite slits; the second term corresponds to

∗ The full Schmidt decomposition also involves the radial properties of the mode profiles (see

Ref. [9] and chapter 2): |Ψ〉 =
∞
∑

l=−∞

∞
∑

p=0

√

Pl,p |l~, p〉1 ⊗ | − l~, p〉2.
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1.2. RESEARCH TOPICS IN THIS THESES

Figure 1.4: Three themes addressing two-photon interference in this thesis. The illustrations
represent the propagation-boxes that can be inserted into Fig. 1.3.
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1. INTRODUCTION
photons choosing the same slit. So far, no attention has been paid to the experi-

mental tuning of the phase ϕ. However, this phase is extremely important for the

degree and type of entanglement. One could, for example, consider the maximally

entangled state at α = ϕ = 1
2π. In this form of entanglement, the path of photon

1 is quantum correlated with the state | ↑〉 ± i| ↓〉 of photon 2, while path-path

correlation is absent.

In comparison to other experiments on the two-photon double slit, our research

is novel in three different ways. First, we demonstrate how to engineer the spatial

entanglement with full control over state parameters α and ϕ. Secondly, our anal-

ysis provides a deeper understanding of the spatial structure in the entanglement

between down-converted photons. We address, for the first time, phase-sensitive

aspects of the two-photon field in the near-field of the generating crystal. Finally,

we measure entire two-photon diffraction patterns in the far-field of the double

slit with unprecedented quality. Our experiments reveal, in a very pure manner

(namely: double-slit diffraction), the large diversity of two-photon interference pat-

terns.

1.2.4 Theme 3: Two-photon scattering

This theme is the most advanced. Until now, the propagation of entangled photon

pairs through a random medium has never been investigated experimentally. Only

recently, a few theoretical papers have appeared [36–38]. Why would one want to

study such a topic? The reason is simple. One-photon interference effects in ran-

dom media are widely studied and have proven to be extremely interesting and di-

verse [39,40]. Interesting phenomena within one-photon scattering are speckle [41],

enhanced backscattering [42, 43], universal conductance fluctuations [44], and An-

derson localization of light [43, 45–47]. Can we discover similar phenomena for

two-photon interference in the case of two-photon scattering?

There are thus enough interesting questions to ask about two-photon scattering.

How does two-photon speckle look like? How does scattering affect the entanglement

between the photons? In which way does the scattered two-photon state contain

information about the scattering medium? Do there exist two-photon interference

phenomena that survive averaging over different realizations of disorder? In this

thesis, all the above questions are, to a large extent, answered and experimentally

demonstrated.
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1.3. QUANTUM DESCRIPTION OF SPDC LIGHT
1.3 Quantum description of SPDC light

1.3.1 Motivation

In the previous section, we presented an overview of the topics that are investigated

in this thesis. Despite the diversity, all experiments address the same observable: the

time-averaged coincidence count rate in continuous-wave (cw) pumped, low-gain∗

SPDC light. For each experiment, we have made a theoretical model providing a

solid understanding of the experimental results. All models are based on a quantum

description of SPDC light. More specifically, the models are based on a single

concept called the two-photon field. As the two-photon field plays a central role

in this thesis, we have devoted Secs. 1.3.2-1.3.5 to a discussion of the theoretical

foundation of this concept.

1.3.2 Two approaches to describe SPDC light

The description of SPDC light requires a quantum-mechanical treatment of the

SPDC process†. There is a substantial amount of literature on the theory of

SPDC [3,4,49,51–65]. The treatments can be divided into two categories depending

on the approach.

The first approach uses the quantized version of the input-output relations of

a parametric amplifier [3, 4, 49, 60–62, 64]. The light in the output channels is de-

scribed as a noisy signals exhibiting quantum Gaussian noise [49,58]. This approach

is suitable for both the low-gain and high-gain regime of SPDC and has gained pop-

ularity in the last decade [50,60,62,64,66]. Most papers just analyse a two-channel

parametric amplifier (signal and idler), although spatially multimode SPDC has

also been treated in this way [60, 61, 67].

The second approach is based on a first-order perturbative analysis of the time-

evolution operator [3, 51, 53–55, 57, 59, 63, 65, 68]. This approach only works in the

low-gain regime since a first-order perturbation analysis yields at most a single pho-

ton pair. All spatial and temporal correlations between the photons are contained

in the resulting quantum state. As all experiments in this thesis are performed in

∗ Parametric gain corresponds to the strength at which the signal and idler fields are amplified
due to parametric interaction with the strong pump beam. Low gain means that a generated
photon pair has low probability (≪ 1) to stimulate the generation of another pair (thus
creating four photons) during transmission through the crystal.

† Other χ(2) processes like second harmonic generation and sum/difference frequency generation
can be understood classically. These processes can be described as radiation emitted by a
classically oscillating polarization of the nonlinear medium. This is not possible for the SPDC
process. Besides, high-visibility two-photon interference phenomena can not be understood
classically either. One can, in theory at least, construct classical signals that exhibit some
form of two-photon interference with a strongly reduced visibility. The maximum visibility
that can be constructed classically is a rather complicated issue [48–50].
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1. INTRODUCTION
the low-gain regime, we use a description of the SPDC light that is based on the

perturbative approach (see Sec. 1.3.3).

1.3.3 Two-photon field

Based on the perturbative approach, the concept of the two-photon field was put

forward in Refs. [54, 56] by Rubin, Klyshko, Shih, and Sergienko. In the first-order

perturbation method, the quantum state of the generated SPDC light is calculated

as [3, 53–55,59, 65, 68]

|Ψ(τ)〉 ≈ |vac〉 − i

~

τ
∫

0

dt ĤI(t)|vac, 〉 (1.6)

where τ is the interaction time, and ĤI(t) is the interaction Hamiltonian of the χ(2)

nonlinear process driven by a classical, paraxial, and monochromatic pump beam

E(r, t) [3, 53, 59]. The interaction Hamiltonian contains two photon creation oper-

ators and depends linearly on the driving field of the pump beam, the interaction

volume, and the second-order nonlinear susceptibility χ(2) of the crystal.

The second term in Eq. (1.6) is a two-photon component. The norm of this

component grows linearly with the interaction time∗. Intuitively, state |Ψ(τ)〉 is

only experimentally meaningful if the norm of the two-photon component stays

way below unity even for interaction times τ much greater than the transmission

time through the crystal (which implies the low-gain regime). Then, the interaction

time for which this norm equals unity corresponds to the average time between

successive down-conversions†. The quantum state |Ψ(τ)〉 contains all spatial and

temporal correlations between the down-converted photons and is thus effective in

describing multimode two-photon interference experiments [51, 68, 69].

The normalization of |Ψ(τ)〉 breaks down dramatically for large interaction

times [3]. Nonetheless, this normalization issue is often ignored in the literature; in

many papers, the interaction time is simply taken to infinite yielding [54,57,59,63,68]

|Ψ∞〉 ≡ |vac〉 − i

~

∞
∫

−∞

dt ĤI(t)|vac〉. (1.7)

The normalizability of |Ψ∞〉 breaks down on account of the first-order perturbation

method, the infinite interaction time, and the infinite duration of the driving cw

pump beam (thus 〈Ψ∞|Ψ∞〉 = ∞). Quite remarkably, this normalization issue

is hardly ever discussed; it is, to the best of our knowledge, only addressed by

∗ See equations (22.4-23) to (22.4-25) in Ref. [3].
† Compare equations (22.4-25) and (22.4-31) in Ref. [3].
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1.3. QUANTUM DESCRIPTION OF SPDC LIGHT
Shapiro et al. in Refs. [50, 62]. Mathematically, the state |Ψ∞〉 contains only two

photons. In the laboratory, however, a typical SPDC source produces millions of

photon pairs per second.

The two-photon field is defined as [54, 56]

A(x1, t1,x2, t2; z) ≡ 〈vac|Ê+(x2, t2; z)Ê+(x1, t1; z)|Ψ∞〉, (1.8)

where Ê+(x, t; z) is the positive frequency electric-field operator at transverse posi-

tion x, time t, and longitudinal position z. In the paraxial and narrow-band regime

(∆ω ≪ ω), the electric field operators can be expressed∗ in units of
√

photons/m2s.

The two-photon field then acquires units (m2s)−1. The divergence of |Ψ∞〉 is also

present in the two-photon field in a sense that it is not square integrable over all

positions x1,2 and times t1,2. The reason is that the two-photon field stretches out

over an infinite amount of time. Nevertheless, its square amplitude in the time

domain is finite and relates to the photon flux [54, 55, 62]. The two-photon field

should thus be regarded as an unnormalizable two-photon wave packet† for which

its amplitude in the time domain is related to the photon flux.

Based on Refs. [54, 56], the time-averaged coincidence count rate between two

detectors at transverse positions x1 and x2 becomes

Rcc(x1,x2; z) ∝
(

1

2
×

)
∫

A1

d2x′
1

∫

A2

d2x′
2

+ 1

2
τg

∫

− 1

2
τg

dt′
∣

∣

∣
A(x1 + x′

1, t,x2 + x′
2, t + t′; z)

∣

∣

∣

2

, (1.9)

where A1,2 are the transverse integration areas of the two detectors and τg is the

gating time window of the coincidence logic. In typical experiments, the gate time

τg is much larger than the spread in arrival times of the photons. Therefore, the

integral over dt′ can be taken over an infinite interval without changing the outcome

of the integral. The factor 1
2 between parentheses applies to type-I SPDC and is

absent in type-II SPDC. This is because in type-I SPDC, the electric field operators

in Eq. (1.8) have the same polarization and sense both photons in the two-photon

state. In type-II SPDC, the electric field operators in Eq. (1.8) are assumed to have

orthogonal polarizations and individually address only one of the photons, which

are now distinguishable instead of indistinguishable. The square absolute value

operation in Eq. (1.9) directly reveals the two-photon interference mechanism.

∗ The expression for the electric-field operator in units of square-root photon flux is Ê+(r, t) =
√

c/(2π)3
∫

dk â(k) exp[ik · r − i|k|ct].
† For type-I SPDC, the identification with the symmetrized paraxial two-photon amplitude

φ(2)(k1,k2) in Eq. (1.3) becomes:

A(r1, t1, r2, t2) = c
√

2
(2π)3

∫

dk1dk2 φ(2)(k1,k2) exp [ik1 · r1 + ik2 · r2 − i|k1|ct1 − i|k2|ct2].
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1. INTRODUCTION
Spatial propagation of the two-photon field from z = 0 to z = zd is described by

applying the Maxwell electric-field propagators to each of the electric-field operators

in Eq. (1.8). Naturally, spatial propagation is written down after a temporal Fourier

transform, i.e,

A(x1, ω1,x2, ω2; zd) =

∫

d2x′
1d

2x′
2 h(x1, zd,x

′
1, 0; ω1)h(x2, zd,x

′
2, 0; ω2)

×A(x′
1, ω1,x

′
2, ω2; 0), (1.10)

where h(xf , zf ,xi, zi; ω) is the electric field propagator for any forward-propagating

frequency-conserving optical system (see for example Ref. [70]). In principle, with

the tools presented in this section, one can describe any low-gain two-photon inter-

ference experiment in the form of Fig. 1.3.

The absence of an equality sign in Eq. (1.9) is rather unfortunate. Although

Rubin et al. [54,56] actually use an equality sign there, they state that their equation

“defines” rather than calculates the coincidence count rate [54]. From our point of

view, an analysis of the relationship between the photon flux and the unnormalizable

two-photon state |Ψ∞〉 is not clearly present in the literature∗. We conjecture,

however, that the proportionality sign can be replaced by an equality sign (assuming

high detection efficiency). Our argument is that if one would plug in a normalized

paraxial two-photon state in Eq. (1.8), one would precisely get a single coincidence

count when integrating
(

1
2×

)

|A(x1, t1,x2, t2; z)|2 over coordinates x1,2 and t1,2.

The norm of |Ψ(τ)〉 in Eq. (1.6) can be interpreted as the expected number of

photon down-conversions and grows linearly with interaction time τ . Therefore,

it seems reasonable to assume that the proportionality sign in Eq. (1.9) can be

replaced by an equality sign.

1.3.4 Expression for the two-photon field

Based on the treatments in Refs. [51, 69], and assuming the crystal to be infinitely

wide in both transverse directions, the Fourier-transformed two-photon field of

Eq. (1.8) is

A(q1, ω1,q2, ω2; 0) ∝ δ[ωp − (ω1 + ω2)]Ep(q1 + q2; z = 0)

×sinc

[

L

2
∆kz(q1, ω1,q2, ω2)

]

, (1.11)

where δ(ω) is the Dirac-delta function, sinc(x) ≡ sin(x)/x, q1,2 are transverse

momenta of the two-photon field, ωp is the angular frequency of the pump beam,

L is the crystal length, and Ep(q; z = 0) is the complex amplitude of the cw pump

∗ Wong et al. [62] get rather close, although, eventually, a quantitative comparison between
|Ψ∞〉 and their quantum Gaussian noise description is absent.
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1.3. QUANTUM DESCRIPTION OF SPDC LIGHT
beam in momentum representation (in the crystal-center plane). The function

∆kz(q1, ω1,q2, ω2) ≡ kz(q1 + q2, ωp) − kz(q1, ω1) − kz(q2, ω2), (1.12)

is the wave vector mismatch along the z direction of the crystal. Here, kz(q, ω) is the

z component of the wave vector of a plane wave inside the crystal with transverse

momentum q and angular frequency ω. The proportionality in Eq. (1.11) contains

a linear dependence on the effective nonlinearity and the length of the crystal. The

two-photon field in Eq. (1.11) contains all you need to know to describe spatial and

temporal effects in two-photon interference experiments. It is also very general as it

applies to all cw-pumped, low-gain SPDC processes in any kind of phase-matching

geometry: type-I (same polarization), type-II (different polarizations), and quasi

phase matching∗.

Let us discuss some properties of the generated two-photon field in Eq. (1.11).

First, the delta function δ[ωp−(ω1+ω2)] ensures conservation of energy of the down-

converted photons. The delta function also demonstrates that the two-photon field

is unnormalizable since it spreads out infinitely long in the time domain. Secondly,

the spread in the total transverse momentum of the down-converted photon pair

is limited by the spread in momentum of the incident beam E(q1 + q2). Third,

the phase-matching condition in Eq. (1.12) limits the spread along the (q1 − q2)

and (ω1 − ω2) coordinates. The spread in the arrival time difference between the

two down-converted photons is inversely proportional to the phase-matching band-

width, i.e., the spread in the (ω1 − ω2) coordinate. For type-I phase matching, the

symmetry of the two-photon field under sign reversal of (ω1 − ω2) implies that the

average arrival time difference between the photons is zero. Finally, and maybe most

importantly, the two photons are entangled because Eq. (1.11) does not factorize

into two functions of the individual coordinates.

1.3.5 Klyshko picture

The Klyshko picture provides a very intuitive interpretation of spatial correlations

between down-converted photons [48, 52, 71]. This interpretation follows one de-

tected photon at x1 backwards in time to the generating crystal where is is con-

verted into the second forward propagating photon via a virtual reflection at the

(possibly curved) pump beam profile. The spatial profile of the coincidence rate

Rcc(x1,x2) is now given by how well the two detectors “see each other” via this

∗ We note that the phase matching condition in Eq. (1.12) needs to be adjusted somewhat
to properly describe type-II SPDC and quasi phase-matched processes. For type-II SPDC
one must impose different functions kz(q, ω) for photon 1 and photon 2. For quasi phase-
matched processes one must compensate the wave-vector mismatch with the poling period
(see for example chapters 3 and 4).
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reflecting path. The Klyshko picture is very convenient in use and will often provide

a good first guess of what can be expected in two-photon coincidence experiments.

Nevertheless, the Klyshko picture has severe limitations as it does not involve

aspects of phase matching. The phase-matching condition generally confines the

angular spread of down-converted light and causes spectral and spatial aspects of

the two-photon field to be correlated. The two-photon field in Eq. (1.11) can be

adapted to a Klyshko-picture form by simply removing the sinc-function part, i.e.,

A(q1, ω1,q2, ω2; 0) ∼ δ[ωp − (ω1 + ω2)]Ep(q1 + q2; z = 0) [Klyshko picture].

The Klyshko picture works well in the thin-crystal limit where L → 0 in Eq. (1.11).

Phase-matching aspects are very important in this thesis. Therefore, the

Klyshko picture is generally insufficient to understand our experimental results.

In chapter 4, we utilize near-field aspects of the two-photon field, which result from

the phase-matching condition. In chapter 5, the phase-matching condition limits

the dimensionality of the entanglement and the size of the two-photon speckle spots.

In chapter 6, we use type-II down-conversion where the allowed optical detection

bandwidth is drastically reduced by the phase-matching condition as compared to

type-I phase matching. Chapter 3 is entirely devoted to a detailed investigation of

the phase-matching condition in our crystals.

1.4 Thesis outline

This thesis contains four published papers (chapters 2-5) and one yet unpublished

work (chapter 6) on two-photon interference. All works can be read independently.

You might wish to read only a few of them. Below, we have provided a catchy

description of each chapter to facilitate your choice.

• Chapter 2: It is well known that light can carry orbital angular momentum.

The down-converted photons in SPDC light are entangled via their orbital

angular momentum. If one of the photons is detected with orbital angular

momentum +l~ then the other collapses into −l~ since the total amount of

orbital angular momentum is conserved in the down-conversion process. In

chapter 2, we experimentally determine the Schmidt coefficients of

the OAM eigenstates via two-photon interference.

14
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• Chapter 3: This chapter contains a thorough characterization of

SPDC and second harmonic generation (SHG) in periodically poled

KTiOPO4. The investigated spatial aspects of the phase-matching condition

are essential for the two-photon field used in chapters 4-6. As a bonus, we dis-

covered how the observed phase-matching rings in SPDC light contain quan-

titative information on the quality of the poling structure in the nonlinear

crystal.

• Chapter 4: Finally, more than 200 years after Young’s double-slit experi-

ment, we present a complete and comprehensive description of the

double-slit experiment for the two-photon case. Two-photon interfer-

ence allows for a wide variety of different fringe patterns. We are the first to

measure them all and with unprecedented quality (see cover of printed thesis).

Our results are backed-up by our simple comprehensive model for two-photon

double-slit fringe patterns. Special attention is paid to the two-photon phase

front, an important aspect that has often been overlooked. To generate these

patterns, we utilize phase-sensitive properties of the two-photon field in both

the near-field and far-field of the non-linear crystal.

• Chapter 5: Wave propagation in random media has intrigued and occupied

many physicists in the last five decades. The most prominent feature of a

multiply scattered wave is its random interference pattern called speckle. We

wondered what two-photon speckle patters with spatial entanglement would

look like. In chapter 5 we present the first observation of two-photon

speckle patterns. We have found out how the spatial structure within two-

photon speckle patterns is related to the structure of the scattering medium.

Spatial entanglement gives two-photon speckle a much richer structure than

ordinary one-photon speckle.

• Chapter 6: Only a few exotic one-photon interference phenomena are known

to survive averaging over different realizations of disorder. Examples are en-

hanced backscattering and Anderson localization of light. Read chapter 6

for a sneak preview in yet unpublished work on the first observation of a

two-photon interference phenomenon that survives averaging over

different realizations of disorder.
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