
On hard real-time scheduling of cyclo-static dataflow and its application
in system-level design
Bamakhrama, M.A.M.

Citation
Bamakhrama, M. A. M. (2014, March 12). On hard real-time scheduling of cyclo-static
dataflow and its application in system-level design. Retrieved from
https://hdl.handle.net/1887/24481

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/24481

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/24481

Cover Page

The handle http://hdl.handle.net/1887/24481 holds various files of this Leiden University
dissertation

Author: Bamakhrama, Mohamed A.
Title: On hard real-time scheduling of cyclo-static dataflow and its application in system-
level design
Issue Date: 2014-03-12

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/24481

Chapter 5

System-Level Synthesis

Build a system that even a fool can use,
and only a fool will want to use it.

George Bernard Shaw

SYSTEM-level synthesis represents the � h step in the proposed design �ow. ¿e
inputs to this step are the program, architecture, and mapping speci�cations. ¿e

program speci�cation consists of the PPNs derived in Chapter 3 together with the
tasks’ parameters and bu�er sizes derived in Chapter 4. ¿e architecture speci�cation
describes the number of processors as derived in Section 4.8. Finally, the mapping
speci�cation, derived in Section 4.8, associates each task with the processor on which it
runs. All these speci�cations are used, as shown in Figure 5.1, to generate the MPSoC
platform which consists of the hardware part together with the so ware running on
that hardware. ¿e whole system-level synthesis procedure is performed using ESPAM
[NSD08]. ESPAM is a system-level synthesis tool for streaming systems with support
for model-based design. We extended ESPAM in order to: (1) generate the hardware
architecture explained in the following section, (2) generate the so ware with the
proper scheduling and communication infrastructures explained later in Section 5.2,
and (3) add support for Xilinx ML605 and Zynq boards that are used later in Chapter 6
for prototyping the synthesized systems.

5.1 Hardware

In this dissertation, we consider a hardware platform consisting of a tiled distributed
memory MPSoC as shown in Figure 5.2. ¿e on-chip interconnect is assumed to be
a predictable on-chip interconnect. A predictable on-chip interconnect is one that

76 Chapter 5. System-Level Synthesis

Program
Specifications

Architecture
Specifications

Mapping
Specifications

System-Level Synthesis
(ESPAM)

RTL + Software

5○
5○5○

Figure 5.1: Electronic System-Level Synthesis

Tile Tile Tile

On-Chip Interconnect

Shared MemoriesPeripherals

...

Figure 5.2: Top-level block diagram of the hardware platform considered in this dissertation

provides bounded worst-case latency on read/write operations between any communi-
cating source and destination pair in the SoC. An example of such interconnect is the
Æthereal network-on-chip [GDR05]. ¿e aforementioned assumption is necessary in
order to compute in Section 4.3 a safe upper bound on the worst-case execution time
of each actor.

Each tile consists, as shown in Figure 5.3, of a processor, several memories, and a
timer. Each tile contains three dedicated memories:

• ProgramMemory (PM) to store the programs’ binaries
• Data Memory (DM) to store the data segments, heap and stack
• Communication Memory (CM) to store the data sent to other processors

Each processor writes the processed data to its local communication memory. A er
that, remote consumer processors read this data from the communication memory of
the producer processor. ¿is means that data writes are always local, and data reads
are either local or remote depending on the actual mapping of tasks to processors. All
the memories are implemented as dual-port memories which means that the commu-

5.2. Software 77

Program Memory Data Memory

Processor

Communication
MemoryTimer

Figure 5.3: Tile organization

nication memory can be accessed by its owner processor and a remote processor at the
same time.

A complete detailed picture of the SoC architecture integrated into ESPAM is
shown in Figure 5.4. ¿e on-chip interconnect in the SoC is a general-purpose, high
performance AXI-4 [ARM10] crossbar switch which is provided by a commercial IP
vendor. ¿e crossbar features a Shared-Address, Multiple-Data (SAMD) topology as
shown in Figure 5.5. It has two arbiters: one for read transactions and one for write
transactions. Both arbiters are independent and can be active at the same time. ¿e
arbitration policy can be con�gured to be round-robin or priority-based. Parallel write
and read data pathways connect eachmaster to all the slaves that it can access according
to a sparse connectivity map. When more than one source has data to send to di�erent
destinations, data transfers can occur independently and in parallel. We con�gure the
crossbar to use the round-robin arbitration policy which enables us to derive a safe
upper bound on the latencies of the communication operations.

In order to perform hardware generation, we store the hardware platform shown
in Figure 5.4 as a parametrized template in ESPAM. ¿en, we use ESPAM to generate
the actual platform in Xilinx Platform Studio (XPS) Microprocessor Hardware Speci-
�cations (MHS, [Xil11]) format. ¿is allows importing the hardware project directly
into the Xilinx XPS tool and performing FPGA synthesis.

5.2 Software

Recall from Chapter 3 that the code of the parallelized programs is generated by the
PNgen compiler. ¿e generated code has a form as the one shown in the example in
Figure 3.2 on page 42. ¿us, the remaining components that we have to generate are: (1)
the scheduling infrastructure, and (2) the communication infrastructure implementing

78 Chapter 5. System-Level Synthesis

Tile 1 Organization Tile N Organization
SoC Organization

Timer PM DM

Processor

Bridge CM

AXI

P-Bus D-Bus

Timer PM DM

Processor

Bridge CM

AXI

P-Bus D-Bus

AXI-4 Crossbar Switch

M-AXI S-AXI M-AXI S-AXI

DDR Controller UART Controller I2C Controller

S-AXI S-AXI S-AXI

Figure 5.4: Complete MPSoC architecture. P-Bus and D-Bus stand for program and data buses,
respectively. M-AXI and S-AXI stand for AXI master and slave, respectively.

the FIFO reads/writes.

5.2.1 Scheduling Infrastructure

Recall from Chapter 4 that we schedule the tasks as periodic tasks. For the scheduler,
we consider �xed task priority scheduling with Deadline Monotonic priority assign-
ment. ¿is choice is driven by the wide availability of real-time operating systems
supporting �xed task priority scheduling. Nevertheless, it is important to note that
di�erent scheduling algorithms (e.g., EDF) can be used. We chose to implement the
scheduling infrastructure using FreeRTOS [Reab]. FreeRTOS is an open source RTOS
that implements �xed task priority scheduling and supports Xilinx FPGAs which are
used later in Chapter 6 for evaluating the synthesized systems.

Tick-Based Implementation

FreeRTOS, as many real-time operating systems, relies on using hardware timers to
keep track of time. Such timers generate periodic interrupts and these interrupts cause
the OS to invoke the scheduler. A single interrupt and the associated scheduling event
are calledOS clock tick. ¿e OS clock tick de�nes the shortest time granularity visible
to the OS. OS clock tick is di�erent from the processor (or CPU) clock tick. A processor
clock tick refers to the duration of a single clock cycle of the clock signal used to operate
the processor. Most of theWCET analysis tools measure theWCET of a task in terms of
processor clock cycles. However, the RTOS can keep track only of time durations that

5.2. Software 79

Master 0

AW

AR

Master 1

AW

AR

Router

Write Arbiter

Read Arbiter

Router

Slave 0

AW

AR

Slave 1

AW

AR

Interconnect

(a) Address Topology

Master 0

W

R

Master 1

W

R

Slave 0

W

R

Slave 1

W

R

Write Crossbar

Read Crossbar

Interconnect

(b) Data Topology

Figure 5.5:Crossbar Topology. AW stands for AXI write address channel, AR for AXI read address
channel, W for write data channel, and R for read data channel.

are multiple of the OS clock tick duration. ¿erefore, it is necessary during the system
synthesis phase to ensure that all the timing parameters are converted to the appropriate
OS clock tick values. ¿is can be done, for example, by rounding the parameters up to
the nearest multiple of the OS clock tick duration. To illustrate the previous concepts,
we provide the following example.

Example 5.2.1. Suppose that we have a system comprised of a processor with a clock
frequency equal to 1 GHz (i.e., processor clock cycle is 1 ns). Suppose that we want to
run a task T1 with the following parameters (all in processor clock cycles) T1 = (C1 =
1.5 × 106, P1 = 2.5 × 106,D1 = 2.5 × 106, S1 = 0). Now, suppose that the OS clock tick
frequency is 1000 Hz. ¿is means that the OS performs scheduling events every 1 ms,
which is equivalent to 106 processor clock cycles. We see that the period and deadline
of T1 are not multiples of the OS clock tick duration. ¿erefore, P1 and D1 must be
rounded up to the nearest multiple of the OS clock tick duration which is 3.0 × 106.
Such roundingmight of course violate the timing requirements dictated by the designer.
¿erefore, it is important to keep in mind the e�ect of such rounding while specifying
the system and program timing requirements. ◻

One e�ect of the tick-based implementation that must be taken into account is
the ratio between the tasks’ WCET and the OS clock tick duration. If the WCET is a
fraction of the OS clock tick, then the resulting schedule has sub-optimal throughput
with under-utilized processors and the overhead of the RTOS is not amortized. On the
other hand, if the WCET is larger than the OS clock tick duration (preferably multiples
of the OS clock tick), then the RTOS overhead is amortized. ¿erefore, it is important
to consider this relation between the tasks’ WCET and the OS clock tick duration when
the timing parameters are converted from CPU clock cycles into OS clock ticks.

A periodic task Ti can be implemented in FreeRTOS as shown in Listing 3. Variable

80 Chapter 5. System-Level Synthesis

Listing 3 Implementing a periodic task in FreeRTOS
1 void task(void *arg) {
2 portTickType LastReleaseTime;
3 const portTickType Period = 5;
4 LastReleaseTime = xTaskGetTickCount();
5

6 for (;;) {
7 function();
8 vTaskDelayUntil(&LastReleaseTime, Period);
9 }
10 }

LastReleaseTime records, as its name implies, the last release time of Ti in OS
clock ticks. ¿is variable is initialized when the task starts. Constant Period repre-
sents the period of the task in terms of OS clock ticks. For example, in Listing 3, the
period is 5 OS clock ticks. Inside the for-loop, the task function (i.e., function())
is executed in�nitely. Upon each execution, function vTaskDelayUntil, which is
part of the FreeRTOS API, is called. ¿e detailed description of vTaskDelayUntil
is shown in Figure 5.6. ¿e function takes two parameters: LastReleaseTime
and Period. Upon calling it, it puts the task in the sleep state and schedules it for
reactivation at time t = LastReleaseTime + Period. It also updates the value of
LastReleaseTime accordingly.

Another e�ect of the tick-based implementation thatmust be also taken into account
is the need to synchronize the time returned by xTaskGetTickCount() among
the di�erent processors. In an MPSoC, the clock signals of the di�erent processors
are usually generated from a single “reference” clock signal produced by an oscillator.
¿erefore, the clock signals used by the processors can be kept in phase. ¿e moment,
at which the OS clock tick count returned by xTaskGetTickCount() is initialized,
can be synchronized through the use of a global barrier in the initialization code of
each processor. For example, see line 14 in Listing 5.

Example 5.2.2. Consider the PPN shown in Figure 3.2 on page 42. Process 𝒫snk is
realized under FreeRTOS as shown in Listing 4. Note that the while-loop shown in
Figure 3.2 is replacedwithfor(;;) in Listing 4. Note also thatvTaskDelayUntil
is placed such that a er each invocation of function snk, the task postpones its next
execution to the next release time in accordance with the real-time periodic task model
as de�ned in Section 2.4.1. ¿eREAD primitive togetherwith its counterpartWRITE are
used to read/write from/to the FIFOs, respectively. ¿ese two primitives are explained
later in Section 5.2.2. ◻

5.2. Software 81

Function Prototype:

void vTaskDelayUntil(portTickType *LastReleaseTime,
portTickType Period);

Description:
Delay a task until a speci�ed time. ¿is function can be used by cyclical tasks to ensure a
constant execution frequency.
¿is function di�ers from vTaskDelay() in one important aspect: vTaskDelay() speci-
�es a time at which the task wishes to unblock relative to the time at which vTaskDelay()
is called, whereas vTaskDelayUntil() speci�es an absolute time at which the task wishes
to unblock.
vTaskDelay() will cause a task to block for the speci�ed number of ticks from the time
vTaskDelay() is called. It is therefore di�cult to use vTaskDelay() by itself to gen-
erate a �xed execution frequency as the time between a task unblocking following a call to
vTaskDelay() and that task next calling vTaskDelay()may not be �xed (the task may
take a di�erent path though the code between calls, or may get interrupted or preempted a
di�erent number of times each time it executes).
Whereas vTaskDelay() speci�es a wake time relative to the time at which the function
is called, vTaskDelayUntil() speci�es the absolute (exact) time at which it wishes to
unblock.
It should be noted that vTaskDelayUntil() will return immediately (without block-
ing) if it is used to specify a wake time that is already in the past. ¿erefore a task using
vTaskDelayUntil() to execute periodically will have to re-calculate its required wake
time if the periodic execution is halted for any reason (for example, the task is temporarily
placed into the Suspended state) causing the task to miss one or more periodic executions.
¿is can be detected by checking the variable passed by reference as the LastReleaseTime
parameter against the current tick count. ¿is is however not necessary under most usage
scenarios.
¿is function must not be called while the RTOS scheduler has been suspended by a call to
vTaskSuspendAll().

Parameters:
LastReleaseTime: Pointer to a variable that holds the time at which the task was
last unblocked. ¿e variable must be initialized with the current time prior to its �rst
use (see the example below). Following this the variable is automatically updated within
vTaskDelayUntil().
Period: ¿e cycle time period. ¿e task will be unblocked at time (*LastReleaseTime
+ Period). Calling vTaskDelayUntil with the same Period parameter value will
cause the task to execute with a �xed interval period.

Figure 5.6: Detailed description of function vTaskDelayUntil. Source: [Reaa].

Enforcing Start Times

In many commercial real-time operating systems, the API provided by the RTOS does
not allow the programmer to specify explicitly the start time of a task when the task is

82 Chapter 5. System-Level Synthesis

Listing 4 Implementing process 𝒫snk in Figure 3.2 as a periodic task under FreeRTOS
1 void task_snk(void *arg) {
2 portTickType LastReleaseTime;
3 const portTickType Period = 5;
4 LastReleaseTime = xTaskGetTickCount();
5

6 for (;;) {
7 for(i=1;i<=10;i++) {
8 for(j=1;j<=3;j++) {
9 if(j<=2)
10 READ(&in1,IP1,SIZE_OF_in1,SIZE_OF_FIFO_E4);
11 else
12 READ(&in1,IP2,SIZE_OF_in1,SIZE_OF_FIFO_E5);
13

14 READ(&in2,IP3,SIZE_OF_in2,SIZE_OF_FIFO_E3);
15

16 snk(in1,in2);
17 vTaskDelayUntil(&LastReleaseTime, Period);
18 }
19 }
20 }
21 }

created. ¿erefore, it is the programmer’s responsibility to implement a mechanism
which ensures that a task starts on its speci�ed start time as derived in Section 4.4. ¿e
start time of a task may be realized under such an RTOS using several mechanisms.
We list here two possible mechanisms:

1. ¿e �rst mechanism is to use amaster task that releases the programs’ tasks at
the time when they are supposed to start. ¿is master task releases each task at
the OS clock tick on which the task should begin its execution. A er starting
all the tasks, the master task can be terminated or put into a permanent sleep
state.

2. ¿e second mechanism is to release all the tasks simultaneously. A er that,
each task is put into sleep state from the moment of simultaneous release till
the moment at which it should start.

¿e �rst mechanism provides tight control on when to start the tasks. However,
a disadvantage of this mechanism is the extra overhead introduced by the master
task. ¿e utilization of the master task must be taken into account while deriving the
architecture andmapping speci�cations (see Section 4.8) in order to avoid any deadline
misses.

¿e second mechanism does not have the utilization overhead of the master task
mechanism. ¿ismechanism keeps the execution of the task conforming to the periodic

5.2. Software 83

location content

0 wr_cnt
1 rd_cnt
2 data
3 data
... ...

size+1 data
(a) FIFO layout

31 30 0
Flag write counter

(b) wr_cnt register

31 30 0
Flag read counter

(c) rd_cnt register

Figure 5.7: FIFO layout in memory and the read/write registers

task model as it does not cause the task to block the processor from other tasks.
Example 5.2.3. Consider task snk shown in Listing 4. ¿e implementation of snk
assuming the second mechanism (i.e., simultaneous release) is shown in Listing 5.
Variable SimultaneousReleaseTime is passed from the main function that
releases all the program’s tasks. ¿is variable is used to put the task in sleep state until
its start time. A er that, the task executes as a periodic task starting from the time
assigned to LastReleaseTime at line 29. ◻

5.2.2 Communication Infrastructure

¿e communication infrastructure deals with the implementation of the READ and
WRITE primitives shown for example in Figure 3.2 on page 42 and Listing 4 on page
82. ¿ese primitives provide the actors with the ability to communicate among each
other. Recall from Section 5.1 that each actor produces data to its local communication
memory, and reads data from its communication memory and/or remote communi-
cation memories. ¿e FIFOs are implemented as circular bu�ers, and they are stored
in the communication memories of the processors (see Figure 5.4 on page 78). ¿e
size of a single data word in the FIFOs is 32 bits. Each FIFO contains two special data
words called wr_cnt and rd_cnt as shown in Figure 5.7(a). ¿ese data words store
two pieces of information as shown in Figure 5.7(b) and 5.7(c): (1) the write and read
counters of the FIFO, and (2) a special bit called “Flag” which is used for detecting
counter over�ows. Whenever the read/write counter exceeds the FIFO size, the �ag bit
is toggled. Storing the counter and �ag in one data word enables updating the FIFO
state in a producer/consumer task using a single atomic operation.

A detailed implementation of the read/write operations is depicted in Listings 6
and 7. ¿e read/write operations accept four input parameters: (1) a pointer to the value
read/written (val), (2) a pointer to the FIFO (pos), (3) the amount of data, in 32-bit
words, being read/written during an invocation of the read/write operation (len), and
(4) the size of the FIFO in 32-bit words (size). ¿e implementation shown in Listings
6 and 7 assumes that the amount of data written/read by the producer/consumer,

84 Chapter 5. System-Level Synthesis

Listing 5 Implementing the simultaneous release mechanism under FreeRTOS. ¿e
listing shows only the relevant code to the simultaneous release mechanism and other
non-relevant details are omitted.

1 int main() {
2 static portTickType SimultaneousReleaseTime;
3 /* xTaskCreate() (part of FreeRTOS API) creates new tasks */
4 xTaskCreate(task_snk, "snk", SNK_STACK_SIZE, \
5 &SimultaneousReleaseTime, SNK_PRIORITY, NULL);
6 /* Other xTaskCreate() invocations go here */
7

8 /* xTaskGetTickCount() (part of FreeRTOS API) returns the count
9 of OS clock ticks since vTaskStartScheduler() was called.
10 If vTaskStartScheduler() was not called, it returns 0 */
11 SimultaneousReleaseTime = xTaskGetTickCount();
12

13 /* Set up a global barrier to synchronize the processors */
14 waitForGlobalStartSignal(); /* */
15

16 /* vTaskStartScheduler() (part of FreeRTOS API) invokes the
17 scheduler for the first time. It also resets the count of
18 OS clock ticks returned by xTaskGetTickCount() to 0 */
19 vTaskStartScheduler();
20 }
21 void task_snk(void *arg) {
22 portTickType LastReleaseTime, SimultaneousReleaseTime;
23 const portTickType Period = 5;
24 const portTickType StartTime = 20;
25 /* SimultaneousReleaseTime is set in main() */
26 SimultaneousReleaseTime = *((portTickType *) arg);
27 vTaskDelayUntil(&SimultaneousReleaseTime, StartTime);
28 /* Set LastReleaseTime to the actual start time */
29 LastReleaseTime = xTaskGetTickCount(); /* */
30

31 for (;;) {
32 for(i=1;i<=10;i++) {
33 for(j=1;j<=3;j++) {
34 if(j<=2) READ(&in1,IP1,SIZE_OF_in1,SIZE_OF_FIFO_E4);
35 else READ(&in1,IP2,SIZE_OF_in1,SIZE_OF_FIFO_E5);
36 READ(&in2,IP3,SIZE_OF_in2,SIZE_OF_FIFO_E3);
37 snk(in1,in2);
38 vTaskDelayUntil(&LastReleaseTime, Period);
39 } } } }

5.2. Software 85

Listing 6 An example implementation of the read macro under FreeRTOS

1 READ(void *val, void *pos, int len, int size){
2 volatile int *fifo=(int *)pos;
3 int r_cnt = fifo[1];
4 int w_cnt = fifo[0];
5 int i = 0;
6 while(w_cnt == r_cnt){
7 taskDISABLE_INTERRUPTS();
8 xil_printf("PANIC! Buffer Underflow\n");
9 for (;;);
10 }
11 for(i = 0; i < len; i++){
12 ((volatile int *)val)[i]= fifo[(r_cnt & 0x7FFFFFFF)+2+i];
13 }
14 r_cnt += len;
15 if((r_cnt & 0x7FFFFFFF) == size){
16 r_cnt &= 0x80000000;
17 r_cnt ^= 0x80000000;
18 }
19 fifo[1] = r_cnt;
20 }

respectively, is always the same. ¿at is, for a given communication channel, the value
of len used in WRITE by the producer and the value of len used in READ by the
consumer are the same. When a task Ti reads len words from the FIFO into a bu�er
val, the read macro performs the following steps:

1. ¿e read and write counters are copied into local variables (lines 3 and 4)
2. If a bu�erunder�owoccurs (i.e., FIFO is empty), then the interrupts are disabled

and a “panic” message is printed to the user to indicate that a bu�er under�ow
has occurred (lines 6-10). It is important to note that this situation should not
occur under normal operating conditions since the start times and bu�er sizes
derived in Sections 4.4 and 4.5 are valid. Recall from Section 1.2 that normal
operating conditions mean that both system hardware and so ware function
properly without faults.

3. ¿e for-loop copies the data from the communication memory into val and
the read counter is incremented (lines 11-14).

4. A er that, the read counter is checked for over�ow condition and Flag is toggled
accordingly (lines 15-18).

5. Finally, the macro updates rd_cnt register in the FIFO with the new value of
the read counter by doing a single atomic assignment (line 19).

Analogously, when a task Ti writes len words to the FIFO from a bu�er val, the

86 Chapter 5. System-Level Synthesis

Listing 7 An example implementation of the write macro under FreeRTOS

1 WRITE(void *val, void *pos, int len, int size){
2 volatile int *fifo=(int *)pos;
3 int w_cnt = fifo[0];
4 int r_cnt = fifo[1];
5 int i = 0;
6 while(r_cnt == (w_cnt ^ 0x80000000)){
7 taskDISABLE_INTERRUPTS();
8 xil_printf("PANIC! Buffer overflow\n");
9 for (;;);
10 }
11 for(i = 0; i < len; i++) {
12 fifo[(w_cnt & 0x7FFFFFFF)+2+i] = ((volatile int *)val)[i];
13 }
14 w_cnt += len;
15 if((w_cnt & 0x7FFFFFFF) == size){
16 w_cnt &= 0x80000000;
17 w_cnt ^= 0x80000000;
18 }
19 fifo[0] = w_cnt;
20 }

write macro performs the following steps:
1. ¿e read and write counters are copied into local variables (lines 3 and 4)
2. If a bu�er over�ow occurs (i.e., FIFO is full), then, similar to READ, the in-

terrupts are disabled and a “panic” message is printed to the user (lines 6-10).
Note again that this situation should not occur under normal operating circum-
stances since the start times and bu�er sizes derived in Sections 4.4 and 4.5 are
valid.

3. ¿e for-loop copies the data from val into the communication memory and
the write counter is incremented (lines 11-14).

4. A er that, thewrite counter is checked for over�ow condition andFlag is toggled
accordingly (lines 15-18).

5. Finally, the macro updates wr_cnt register in the FIFO with the new value of
the write counter by doing a single atomic assignment (line 19).

