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Chapter 9

Dynamic Real-Time Substrate Feed Op-
timization of a Biogas Plant
9.1 Introduction
In Chapter 2 the MONMPC optimization problem was stated (eqs. (2.20) - (2.22)),
whose eqs. are repeated here for convenience:

For each k = 0, 1, 2, . . . set tk = k · δ and solve:

PF∗
k := min

u∈UF
J (ox(τ),u)

subject to ox′(τ) = f (ox(τ), ou(τ),0) , ox (tk) = x (tk) ,

ox(τ) ∈ X , ∀τ ∈ [tk, tk + Tp] ,

ou : [tk, tk + Tp]→ fU (u) ,

(9.1)

with equation (2.21)

u∗
k := arg min

∀u∈P∗
k

no∑
io=1

$io · Jx,io (u) (9.2)

and application of equation (2.22)

u(t) = ou∗
k(t) = fU (u∗

k) , t ∈ [tk, tk + δ) . (9.3)

In this chapter MONMPC is applied to the simulation model of the biogas plant
introduced in Section 7.4 in four performance experiments (I - IV), each containing
various tests. The same simulation model is used as model f inside the NMPC
formulation. To take into account plant-model mismatch, measurement noise and errors
is important during evaluation of the control. Therefore, for the controlled simulation
model these effects are additionally implemented in some tests, see Section 9.3.2.
As objective function J in eq. (9.1) the one defined in Section 7.3.4 is used. In
experiment II and III this objective function is extended by an additional setpoint
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control term, which is described in the according sections 9.3.4 and 9.3.5.
In all but the last experiment (IV, Section 9.3.6) the current state vector x(tk) is
directly taken out of the controlled simulation model. Thus, in experiments I to III a
perfect state estimator is used. Only in experiment IV a real state estimation algorithm
is used. There, some of the previous tests are repeated to see the deterioration of the
quality of the results introduced by the state estimator out of Chapter 8.
Each input variable uiu,i, iu = 1, . . . , nu and i = 1, . . . , sc (see eq. (2.9)) represents
the volumetric flow rate of a substrate, measured in m3

d . The iuth input variable,
iu = 1, . . . , nu, is bound between constant lower LBiu ∈ Uiu and upper UBiu ∈ Uiu

boundaries, thus LBiu ≤ uiu,i ≤ UBiu or equally Uiu := [LBiu ,UBiu ]. In experiment
II both boundary vectors LB := (LB1, . . . ,LBiu , . . . ,LBnu)

T ∈ U and UB :=

(UB1, . . . ,UBiu , . . . ,UBnu)
T ∈ U depend on the available dynamically changing feed

stock, see Section 9.3.4, in all other experiments they are constant.

9.2 Control Structure
In Figure 9.1 the complete control loop developed in this thesis is shown. It is dedicated
to optimally control the substrate feed of anaerobic co-digestion plants. In this section
the functionality and structure of the control loop is explained.
As pointed out in the summary of Chapter 2 (Section 2.4) offset-free control using
model-based control does not come naturally. In case of plant-model mismatch there
can be a steady-state offset because the control error is not directly minimized by
the model-based control. To avoid such an offset a cascading control is developed,
where the MONMPC is the master and a simpler setpoint control is the slave control.
The slave control should track a directly measurable process value. Depending on the
application this might be the produced volumetric methane flow rate Qch4

(for ABP)
or the effluent VFA or COD (for anaerobic waste treatment plants), cf. Definitions 6.1
and 6.2 in Chapter 6. Note that online-measurement of effluent COD is expensive but
possible using UV/Vis spectroscopy (Langergraber et al., 2004, Brito et al., 2013).
The setpoint (here it is assumed the methane setpoint Q∗

ch4
(t)) is set by the master loop

containing the MONMPC, which is performing the real-time optimization. As process
control a methane setpoint control can be used (e.g. (Hilgert et al., 2000, Antonelli
et al., 2003)), which controls the dilution rate D(t). The solution of the MONMPC
optimization problem at time tk is the optimal methane setpoint Q∗

ch4
(t) as well as the

corresponding optimal substrate feed ou∗
k [tk, tk + δ). Both are passed to the process

control, see Figure 9.1. The process control changes the dilution rate D(t) based on
the given control error

ech4(t) := Q∗
ch4

(t)−Qch4(t). (9.4)
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Figure 9.1: Real-Time Substrate Feed Optimization. The background colours of the blocks
visualize where they are implemented. The green and yellow blocks are implemented in
Simulink® for evaluation purposes. When the control should be applied to the real biogas
plant, then the green blocks must be implemented in the PLC (programmable logic controller).
The red block is always implemented in MATLAB® and the blue block is implemented in
MATLAB® with optional usage of Simulink®.

Here the dilution rate D(t) can be seen as a scaling factor which is only altered by
the process control in case of model inaccuracies or process disturbances. The scaling
is done in the “D/feed” block in Figure 9.1 where the given optimal substrate feed
ou∗

k [tk, tk + δ) is scaled by D(t)
D∗

k
, with the optimal dilution rate calculated in the

“feed/D” block

D∗
k :=

nu∑
iu=1

ou∗
iu,k [tk, tk + δ)

Vliq
. (9.5)

Then, the feed applied to the biogas plant uctrl is given by:

uctrl(t) :=
ou∗

k [tk, tk + δ) · D(t)

D∗
k

. (9.6)

The state estimator in Figure 9.1 is needed so that the dynamic model in the real-time
optimization block knows the current state of the biogas plant. In practice the state x

is estimated by the state estimator given in Chapter 8. Using this control scheme the
given setpoint is robustly controlled and the setpoint itself is set to guarantee stable
and optimal control.
This control structure is used in all experiments, with the restriction that in all but
the last experiment (Section 9.3.6) a perfect state estimator is used leading to the
simplified structure visualized in Figure 9.2.
As process control the very simple approach of Antonelli et al. (2003) is used. It just
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Figure 9.2: Real-Time Substrate Feed Optimization without State Estimator.

consists out of the one equation (kch4 > 0):

D′(t) = kch4
·
(
Qch4

(t)−Q∗
ch4

(t)
)
· (D(t)−Dmax,k) · (D(t)−Dmin,k) (9.7)

Here, the boundaries Dmin,k and Dmax,k are set according to (∆D ≥ 0 1
d )

Dmin,k = D∗
k −∆D and Dmax,k = D∗

k +∆D (9.8)

with the optimal dilution rate D∗
k determined by the real-time optimization, see eq.

(9.5).

As this control has some limitations, in this thesis an extension is developed as follows.
The factor kch4 of the original approach in eq. (9.7) is made dependent on the time
derivative of the control error ech4

(t). In the new approach kch4
must be replaced by

the term given in equation (9.9), kch4
, kch4,rel > 0.

kch4
+ kch4,rel ·

[
min (ech4

(t), 0) ·min
(
e′ch4

(t), 0
)
+ max (ech4

(t), 0) ·max
(
e′ch4

(t), 0
)]

(9.9)
Using this extension the original factor kch4 is increased if the signs of the control error
ech4

(t) and its derivative e′ch4
(t) are the same. Both signs are the same if the control

error is negative and decreasing or positive and increasing, respectively. Both situations
are not favorable, so that kch4

is increased to in-/decrease the dilution rate D faster.
On the one hand this is advantageous, but on the other hand using the derivative of
the control error e′ch4

(t) makes the control numerically more difficult. Furthermore,
the derivative of the control error in reality can be rather noisy. Unfortunately, using
this control in the Simulink® model of the modeled biogas plant did not work out
because of numerical problems. Therefore, this control could not yet be tested at the
simulation model. Nevertheless, it is planned to use it in the future to control the feed
of a pilot-scale biogas plant and compare it with its original control by Antonelli et al.
(2003).
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9.3 Performance Experiments

In this section the results obtained in the four performance experiments

• Experiment I: Steady-state optimal feed (Section 9.3.3)
• Experiment II: Change of substrate mixture (Section 9.3.4)
• Experiment III: Setpoint control (Section 9.3.5)
• Experiment IV: State estimator (Section 9.3.6)

are presented and discussed. All four performance experiments are performed on three
different computers. They are:

• Computer 1 (PC 1): Intel® Core™ i7-4770 CPU @ 3.40 GHz, 16.0 GB RAM,
Windows 8, 64 bit

• Computer 2 (PC 2): Intel® Core™ i5-750 CPU @ 2.67 GHz, 4.0 GB RAM,
Windows 7, 64 bit

• Computer 3 (PC 3): Intel® Core™2 Quad Q6600 CPU @ 2.40 GHz, 4.0 GB RAM,
Windows 7, 64 bit

The obtained results are compared based on the fitness J1D (7.70), one-dimensional
stage cost F1D (7.71), the hypervolume indicator IH (Def. 3.1), the R2 (9.10) and ∆p

(9.13) indicator. The R2 indicator is defined in equation (9.10) (Trautmann et al.,
2013).

R2 :=
1

card (Q)
∑
λ∈Q

min
ϕ∈PF∗

{
max

io=1,...,no
{λio · (ϕio − iio)}

}
(9.10)

The R2 indicator of the Pareto front PF∗ with elements ϕ := (ϕ1, . . . , ϕno)
T ∈ PF∗

given in eq. (9.10) depends on the ideal point i := (i1, . . . , ino)
T ∈ Rno and weight

vectors λ := (λ1, . . . , λno)
T ∈ Q taken out of the set of weight vectors Q ⊂ Rno . In

total 512 weight vectors λ, ‖λ‖1 = 1, are drawn from a normal distribution with mean
0.5 and standard deviation 0.2, bound between 0 and 1 and then each component λio

is scaled by the corresponding weight $io (see eq. (2.19)). The normal distribution is
favored over the uniform one, to concentrate more on the central points in the Pareto
front that are much more likely to be chosen by the decision maker. The weights $io

are set to $1 = 0.125 and $2 = 1.

The ∆p indicator of an approximation set A ∈ Rno for the Pareto front PF∗ is defined
as in Schütze et al. (2012) using slightly modified versions of the generational distance
GDp (9.11) and inverted generational distance IGDp (9.12) indicators, p ∈ N.

GDp (A) :=

(
1

card (A)
·
∑

aA∈A

(
inf

ϕ∈PF∗
‖aA −ϕ‖2

)p
) 1

p

(9.11)
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IGDp (A) :=

 1

card (PF∗)
·
∑

ϕ∈PF∗

(
inf

aA∈A
‖aA −ϕ‖2

)p
 1

p

(9.12)

The ∆p indicator is then given in eq. (9.13) (Schütze et al., 2012).

∆p (A) := max (GDp, IGDp) (9.13)

Here, p = 1 is selected, thus ∆1 of the set A is calculated. As the true Pareto front
PF∗ often is not known, the ∆p indicator must often be calculated against an optimal
Pareto front approximation. Here, the one visualized in Figure 9.5 is used, see Section
9.3.3.2.

9.3.1 Implementation of Optimization Methods
To solve the minimization problem in eq. (9.1) three different optimization methods are
evaluated in these experiments. The one most often used is the multi-objective method
SMS-EGO. It is compared against the methods SMS-EMOA (see Section 3.1.1) and
CMA-ES (Hansen, 2006). All algorithms are implemented in MATLAB®. The latter two
methods (SMS-EMOA by Fabian Kretzschmar and Tobias Wagner and CMA-ES by
Nikolaus Hansen) are freely available for download1,2, whereas Tobias Wagner is greatly
acknowledged for giving me the opportunity to use his MATLAB® implementation of
SMS-EGO.
Both multi-objective optimization methods are configured (changed) so that they use
the Pareto optimal set of the previous run at time tk−1 as initial points of the current
run k. More precisely, for SMS-EMOA the complete previous population is used as
initial population (not only the Pareto optimal set). For SMS-EGO at least five by
Latin hypercube sampling (LHS) (Jin et al., 2005) selected individuals are used, the
remaining initial points are taken out of the previous population starting with the
Pareto optimal individuals. Furthermore, the optimal parameters of the previous DACE
model are used as initial parameters for the DACE model used in the next run.
In the used CMA-ES implementation the previous population can not be used directly
as initial population. Here, the best ever solution from the previous run k − 1 is used
to calculate the new population for the kth run.

9.3.1.1 Choice of Optimization Methods

The chosen optimization algorithms are all derivative-free and global methods. The
question is why these methods are chosen and whether also algorithms could be chosen
that do not possess these two properties.

1http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
2https://www.lri.fr/~hansen/cmaes_inmatlab.html

http://ls11-www.cs.uni-dortmund.de/rudolph/hypervolume/start
https://www.lri.fr/~hansen/cmaes_inmatlab.html
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Figure 9.3: Landscape of one-dimensional steady-state stage cost F1D. Each plot is created
out of data taken from 1040 simulations, each simulation ran with a constant substrate feed
taken from an equidistant distributed grid of substrate feeds. The interpolation of the data
points is performed using a Kriging model.

As the objective function used here is quite complex, to determine the gradient of it
with respect to the optimization variables analytically would be very difficult or even
impossible. As the objective function contains some hard constraints it will not be
possible to find a derivative for all components of the objective function. Therefore,
derivative-free algorithms have a clear advantage here, because they do not need to
know the gradient of the objective function.

Global optimization methods are used when the objective function possesses a lot of
local optima. As local optimization algorithms easily get stuck in such local minima
they are not suited for that kind of optimization problems. To get an idea whether the
objective function used here has local optima the one-dimensional steady-state stage
cost F1D is plotted over the three substrates, which are used later during optimization.
The results are depicted in Figure 9.3. It can be seen that the landscape is quite
nonlinear but here there are not that many local minima. Therefore, it might be possible
to also use derivative-free local optimization methods and obtain good results. An
example could be to use the downhill simplex method by Nelder and Mead (1965).
Therefore, as fourth optimization method MATLAB®’s fminsearchbnd algorithm is
used that implements the simplex method of Lagarias et al. (1998).
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Table 9.1: Miscalibrated values of substrate dependent ADM1 parameters to emulate plant-
model mismatch. To be compared with Table 7.7, whose values are given here in brackets.

Substrate kdis km,c4 km,pro km,ac km,h2

maize silage 0.1 (0.14) 20 (20) 4.0 (3.8) 5.0 (4.8) 35.0 (35.9)
swine manure 0.25 (0.27) 20 (20) 3.6 (3.8) 7.0 (6.8) 36.9 (36.1)
grass silage 0.09 (0.04) 20 (20) 7.7 (8) 4.6 (4.9) 36.1 (35.6)

9.3.2 Real World Simulation
To make the experiments as realistic as possible in some tests the model to be controlled
is changed a little bit. In total, three changes are applied. First, to account for plant-
model mismatch the ADM1 parameters calibrated in Section 7.5 are set to slightly
different values, see Table 9.1. As second change the three parameters TSIN,VSIN and
pHIN of the substrates are made noisy as can be seen in Figure 9.4. Last, noise and
drift are added to some measured variables, see the following list, using the sensor
implementation of Rieger et al. (2003).

• sensor Qgas: noise N
(
0 m3

d , 32.5 m3

d

)
, drift of 0.5 m3

d , re-calibration after each
365 d

• sensor rch4
: noise N (0 %, 0.5 %), drift of 0.05 %, re-calibration after each 31 d

• sensor rco2
: noise N (0 %, 0.5 %), drift of 0.05 %, re-calibration after each 31 d

• sensor pH: noise N (0, 0.07), drift of 0.01, re-calibration after each 14 d
• sensor QIN: noise N

(
0 m3

d , 0.25 m3

d

)
, drift of 0.0 m3

d , re-calibration after each
365 d

Using these changes it is expected to create more realistic tests, so that the controller
is optimally prepared for real world applications. Further realism could be added as
in (Rosen et al., 2008). A process disturbance caused by fluctuations in the digester
temperature is not modeled. The reason is that the stoichiometry of the implemented
ADM1 is not temperature dependent yet. For a temperature dependent AD model see
(Donoso-Bravo et al., 2013).

9.3.3 Experiment I: Steady-State Optimal Feed
In the first set of tests the biogas plant is in a stationary environment. The task is to
find the optimal substrate feed for a steady-state operation which in the long run has
the best performance. Therefore, in experiment I the following questions are tackled in
different simulation studies:

1. Does MONMPC find the true Pareto front of the stage cost F at steady state?
2. How large is the basin of attraction of the found Pareto front?
3. Is the closed loop control stable?
4. Can the results be repeated?
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Figure 9.4: Noisy parameters TSIN,VSIN and pHIN of the substrates maize silage and swine
manure. The horizontal dash-dotted line in each plot visualizes the nominal value of the
parameter used in the ideal world simulations. The diamonds show when offline analysis were
done of the parameters, which is in a five day interval. The dashed, noisy curve shows the
online measured values. The noise is drawn from a zero-mean normal distribution with 2 %
error amplitude for TSIN and VSIN and 1 % for pHIN.

9.3.3.1 Setup

Using simulation these questions cannot be answered conclusively. By designing well
suited tests the questions can only be answered for the obtained results.

The first question is particularly difficult to answer. In the following the Pareto front
of the stage cost F at steady state is called steady-state Pareto front. Here, we search
for the Pareto front of the stage cost F and not of the objective function J because
we are only interested in the performance of a steady-state operation and not in the
costs needed to get there. To determine the steady-state Pareto front, the only possible
approach seems to be to compare the results obtained by the MONMPC with results
gained by other multi-objective optimization methods which are applied in an open
loop fashion, see eq. (9.14). In the optimization problem tend = 750 d is seen as a long
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enough simulation duration so that a steady state is reached.

PF∗
F := min

u∈UF
F (ox (tend) ,u)

subject to ox′(τ) = f (ox(τ), ou (0) ,0) , ox (0) = x (0) ,

ox(τ) ∈ X , ∀τ ∈ [0, tend] ,

ou : [0, tend]→ fU (u) , sc = 1.

(9.14)

To study the second question the MONMPC is started at four different initial substrate
feeds (see Table 9.2) to test whether the steady-state Pareto front is the same for all
tests. Based on the obtained steady-state Pareto front, it can be concluded whether
the corresponding substrate feed did or did not belong to the basin of attraction of the
true steady-state Pareto front.
Stability of the closed loop is once investigated without noise, to test whether the
control keeps the feed constant once the optimal steady state was found. This is to
test whether the control is stationary. Furthermore, all experiments are repeated with
measurement noise, drift and disturbances added to the controlled simulation model to
examine the stability of the control towards such disturbances acting on the process.

Table 9.2: Initial substrate feeds and lower/upper boundaries (LB,UB) for substrates. The
feeds of test I.A and I.C are moderate. The one of test I.B is very low and the one of test I.D
is very high.

component Test I.A Test I.B Test I.C Test I.D LB UB unit
Qmaize 15 5 40 85 0 30 m3/d
Qmanure 10 5 30 85 5 15 m3/d
Qgrass 2 0 10 45 0 30 m3/d

To answer the last question some tests are repeated to get an estimate of the scattering
in the results. This also applies to all other experiments performed further below in
the other sections 9.3.4 - 9.3.6.
The effect of different parameters and configurations on the answers of above questions
is investigated as well. They are:

• Optimization methods: Multi-objective as well as single-objective
• Algorithm parameters: Objective function J evaluations neval ∈ N and initial

population size npop ∈ N
• Control parameters: Control horizon Tc, prediction horizon Tp and control

sampling time δ

To avoid a combinatorial explosion not all parameters are changed at the same time.
The parameter sets for all tests in experiment I are given in Table 9.3. All parameter
sets are performed once for each initial substrate feed I.A to I.D. Therefore, the ID of a
test in experiment I could be I.A5 or I.B2. In the first six tests in Table 9.3 the control
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parameters prediction Tp and control horizon Tc are studied. As in experiment I the
focus is on the steady-state solution the main emphasis is put here on the prediction
horizon Tp (test I.1 until I.5) and only in test I.6 the control horizon Tc is changed.
In all tests the control sampling time δ is set to the control horizon Tc, so that the
substrate feed is only changed once over the control horizon (sc = 1, see eq. (2.9)). The
MATLAB® implementation in principle allows to choose sc > 1 but as this increases
the complexity of the optimization problem this option is not studied here. For more
information about the implementation of this option and performance investigations
see the Master’s thesis of Venkatesan (2012). In tests I.7 to I.10 the effect of the number
of simulations in each iteration neval is validated for the method SMS-EGO. In tests
I.11 until I.14 and I.15 until I.18 two other optimization methods are evaluated. They
are the multi-objective method SMS-EMOA and the single-objective method CMA-ES
(see Section 9.3.1). Finally, in tests I.19 to I.21 the simplex method (fminsearchbnd) is
used.

Table 9.3: Parameter sets for all tests in experiment I.

test no. Tp/[d] Tc/[d] δ/[d] npop neval method
1 50 10 10 32 50 SMS-EGO
2 100 10 10 32 50 SMS-EGO
3 150 10 10 32 50 SMS-EGO
4 200 10 10 32 50 SMS-EGO
5 300 10 10 32 50 SMS-EGO
6 200 5 5 32 50 SMS-EGO
7 150 10 10 32 40 SMS-EGO
8 150 10 10 32 60 SMS-EGO
9 200 10 10 32 40 SMS-EGO
10 200 10 10 32 60 SMS-EGO
11 150 10 10 20 60 SMS-EMOA
12 150 10 10 25 75 SMS-EMOA
13 150 10 10 20 80 SMS-EMOA
14 150 10 10 30 90 SMS-EMOA
15 150 10 10 10 30 CMA-ES
16 150 10 10 15 45 CMA-ES
17 150 10 10 20 60 CMA-ES
18 150 10 10 20 80 CMA-ES
19 150 10 10 - 30 fminsearchbnd
20 150 10 10 - 40 fminsearchbnd
21 150 10 10 - 50 fminsearchbnd

The simulated control duration for all tests is kept constant and set to 150 days. This
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should be enough time to find the optimal substrate feed and to maintain the feed at
the optimum so that stationarity and stability can be examined.
As initial state vector x (t0) the steady state corresponding to the initial substrate feed
(see Table 9.2) is chosen. An exception is test I.D, because there the initial feed leads
to the washout state (all biomass is washed out and therefore no biogas is produced
anymore). So tests I.D are started in a transient state that is very close to a point of
no return.

9.3.3.2 Results
Do we find the true steady-state Pareto front? From a practical point of view
this question can be answered with yes. In Figure 9.5 the steady-state Pareto front
resulting out of all performed tests in experiment I together with two extensive open
loop optimization runs (SMS-EGO with neval = 750 and neval = 900, respectively)
is shown. To make the MONMPC test results comparable to the results of the two
optimization runs the steady-state Pareto front is determined by predicting the final
Pareto optimal set of each MONMPC test for 600 days. As the simulated control
duration of each test is 150 d, the total prediction horizon is 750 d and therefore equal
to the prediction horizon of the two optimization tests, see eq. (9.14). In Figure 9.5 it
can be seen that almost all simulation results are very close to the obtained steady-state
Pareto front. However, looking at the performance of the MONMPC tests with respect
to different parameters some differences can be observed, which are pointed out in the
following.
In Figure 9.6 results for the tests I.A and I.C and in Figure 9.7 results for the tests I.B
and I.D with respect to the prediction horizon Tp are visualized. The tests A/C and
B/D are separated in two figures, because a different behavior can be observed for both
groups. The lower boundaries (for the hypervolume indicator IH upper boundary) of the
plots are set to the optimal values gotten from the optimal Pareto front approximation
shown in Figure 9.5. In the left plot of both figures the one-dimensional stage cost
F1D (see eq. (7.71)), obtained at the end of the 750 d long prediction, is shown. Note,
that the obtained one-dimensional steady-state stage cost F1D is the one the control
really selects based on the information 150 d + Tp and not the one the control would
select if it knows to which steady states all feeds in the final Pareto optimal set would
lead (information: 750 d). Thus, the one-dimensional steady-state stage cost F1D is not
just the optimal one-dimensional criterion of the steady-state Pareto front. In both
Figures 9.6 and 9.7 it can be seen that the one-dimensional steady-state stage cost
F1D improves with an increasing prediction horizon Tp, but only until a value for Tp

of about 200 d. This seems about right, because the ones with a shorter prediction
horizon are not foresighted enough and the ones with a larger Tp do not focus enough
on the present situation. In the left plot of Figure 9.7 the disadvantage of a control
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Figure 9.5: Optimal steady-state Pareto front approximation resulting out of all tests
performed in experiment I. The blue dots belong to all experiments. The little bit larger
red dots belong to the Pareto front of the set of all blue dots. Be aware that the steady-state
Pareto front is not equal to the Pareto front of the final iteration of an MONMPC test. The
first one is created out of the steady-state stage cost F (750 d), where as the latter one out of
the objective function J evaluated at steady state: J (150 d+ Tp). The right plot is a zoom
of the rectangular area in the left plot.

with a high prediction horizon Tp can be seen at the example of initial feed I.D. There,
the biogas plant model crashes for Tp = 300 d (test I.D5), because the control chooses
a feed that is successful only in the long run. This feed works inside the optimization
problem, but due to numerical inaccuracies it does not work when it is applied to the
model (or the real biogas plant)3. A crash of a biogas plant can easily be detected by
a drop of pH value and methane production, see Figure 9.12.
This behavior of a biogas plant is also the reason why a dynamic model is used inside
the RTO scheme and not a static model. As a static model does not consider the current
state of the plant it will suggest feeds that will only be successful in the long run but
that lead to a failure of the biogas plant before. Using a static model for prediction it
is very likely that almost all tests in experiment I.D would have failed. For the other
three experiments I.A to I.C a static model might be sufficient.
In the middle left part of Figures 9.6 and 9.7 the hypervolume indicator IH (Def.
3.1) of both experiment pairs A/C and B/D is shown. In Figure 9.6 the hypervolume
indicator IH is quite large, independent of the prediction horizon Tp. In Figure 9.7 it can
be observed, that the hypervolume indicator IH increases with an increasing prediction
horizon Tp with the only exception of test I.D5, see the previous discussion. This was
to be expected, because the initial feeds A/C are quite near the optimal substrate feed
where as to find the trajectory from the initial feeds B/D to the optimal one is much

3The optimization algorithm is not robust, see (Beyer and Sendhoff, 2006, Kruisselbrink, 2012) for
robust optimization.
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Figure 9.6: Dependency of the test results A/C on the prediction horizon Tp for the method
SMS-EGO. Data from tests I.A1 until I.A5 and I.C1 until I.C5 are used. Therefore, the
control horizon Tc = 10 d and the number of simulations neval = 50 are constant. Left:
One-dimensional steady-state stage cost F1D at day 750. Middle left: Hypervolume indicator
IH of the steady-state Pareto front. Middle right: R2 indicator of the steady-state Pareto front.
Right: ∆1 indicator of the steady-state Pareto front.
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Figure 9.7: Dependency of the test results B/D on the prediction horizon Tp for the method
SMS-EGO. This is the equivalent to Figure 9.6 for the tests I.B and I.D. Both tests I.D5,
which is repeated once, lead to very poor results, which are outside the visualized region
(Tp = 300 d).

harder and therefore more dependent on a proper choice of the prediction horizon Tp.
The same is about true for the trends of the R2 and ∆1 indicator, shown in both
Figures 9.6 and 9.7 middle right and right, respectively.
The comparison of the results for the optimization methods in Figure 9.8, based on the
one-dimensional steady-state stage cost F1D (left), shows that SMS-EGO performs
significantly better than SMS-EMOA. This is in contrast to the values of F1D in
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Figure 9.8: Dependency of the test results A/C on the optimization method. Data from tests
I.A3, I.A7, I.A8 and I.A11 until I.A21 as well as I.C3, I.C7, I.C8 and I.C11 until I.C21 are
used. In these plots prediction horizon Tp = 150 d and control horizon Tc = 10 d. Left:
One-dimensional steady-state stage cost F1D at day 750. Middle left: Hypervolume indicator
IH of the steady-state Pareto front. Middle right: R2 indicator of the steady-state Pareto front.
Right: ∆1 indicator of the steady-state Pareto front.
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Figure 9.9: Dependency of the test results B/D on the optimization method. This is the
equivalent to Figure 9.8 for the tests I.B and I.D. Test I.B20 (fminsearch) failed and therefore
is not visualized in the plot.

Figure 9.9, where SMS-EMOA is clearly superior to SMS-EGO. With respect to the
hypervolume indicator IH, R2 and ∆1 indicator, SMS-EMOA yields better results than
SMS-EGO in five of six cases for all four categories A until D.
The number of simulations neval performed in SMS-EMOA and CMA-ES are chosen
so that the total runtime of one test approximately lasts the same amount of time as a
test using SMS-EGO does. About 77 % of all tests used to compare the optimization
methods in experiment I (49 of 64 tests) are performed on computer 1 (see Section
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9.3). There, the median of the runtime of a test using SMS-EGO as method lasts
16.9 h and for SMS-EMOA the median runtime is 15.6 h. With a median of 20.6 h the
tests using CMA-ES last a little bit longer, but CMA-ES yields better one-dimensional
steady-state stage cost F1D results at least for tests A/C, see Figure 9.8. Surprisingly,
the simplex method (fminsearch) with a median runtime of 16.9 h offers the best
results. It seems to be that the objective function in this configuration does not have
many local optima so that the locally converging simplex method provides such good
results. Nevertheless, it cannot be guaranteed that the simplex method finds the global
optimum if the configuration of the objective function is changed. This is why the
simplex method is used out of competition and therefore is not further investigated in
the following experiments. However, the simplex method can be used as a dual method
or “polisher” to improve optimization results found by a global optimization method
such as CMA-ES.
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Figure 9.10: Dependency of the test results A/C on the number of simulations neval. Data
from tests I.A4, I.A9 and I.A10 as well as I.C4, I.C9 and I.C10 are used, thus Tp = 200 d. Left:
One-dimensional steady-state stage cost F1D at day 750. Middle left: Hypervolume indicator
IH of the steady-state Pareto front. Middle right: R2 indicator of the steady-state Pareto front.
Right: ∆1 indicator of the steady-state Pareto front.

For the number of simulations neval in each iteration no clear trend can be seen in
both Figures 9.10 and 9.11 for the one-dimensional steady-state stage cost F1D. It
seems that for a good steady-state solution enough simulations (150 d/δ · neval) are
performed for all selected number of simulations neval. The quality of the obtained
Pareto front, measured by the three performance measures IH,R2 and ∆1, appears to
increase with the number of objective function evaluations, at least in five of six cases
(the trend of the hypervolume indicator in Figure 9.10 is not counted).
The control horizon (test I.4 vs. test I.6, Tc = 10 d vs. Tc = 5 d) has not such a
large influence on the steady-state solution. The fact that in test I.6 due to the control
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Figure 9.11: Dependency of the test results B/D on the number of simulations neval. This is
the equivalent to Figure 9.10 for the tests I.B and I.D.

horizon twice as many simulations are performed as in test I.4 makes the results of test
I.6 most of the time a little bit better than the ones of test I.4. Nevertheless, it can
be expected that the influence of the control horizon in the setpoint experiment III is
more apparent, see Section 9.3.5.

Size of the basin of attraction of the true steady-state Pareto front? Based
on the optimal Pareto front approximation seen in Figure 9.5 it can be concluded that
all selected initial feeds I.A to I.D (see Table 9.2) belong to the basin of attraction of
the true steady-state Pareto front. This result is quite remarkable because the chosen
initial feeds are taken from a quite large range of values. Dependent on the control
parameters it can happen that a Pareto front approximation is obtained that is not as
good as the true one. But in general it is possible to find the true steady-state Pareto
front from each initial state.
If it is possible to reach the steady-state Pareto front from almost every initial state
it means that the steady-state solution does not depend on the feed trajectory leading
to the steady-state. In other words the steady-state solution only depends on the final
substrate feed and not on the previous feed values. This means that using NMPC we
will not find more optima as we can find using open loop optimization. At least the
obtained results indicate that this observation could be true.

Stability of the closed loop? To test whether the control is stationary in Figure
9.13 the absolute change of the total substrate feed over the simulated control duration
is shown. It can be seen that all controls are stationary. Only a very few controls change
the feed after the 100th simulated day.
Note that in all tests above a perfectly known plant was assumed with no plant-model
mismatch, measurement noise or drift. Here, the first five tests for experiments I.B and
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Figure 9.12: Simulation results for test I.D5. At hand of the methane production Qch4 and
the pH value of the 1st digester one can see, that the digester fails. The total substrate feed in
the lowest plot is the sum of the volumetric flow rate of the three fed substrates maize silage,
swine manure and grass silage.
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Figure 9.13: Absolute change of total substrate feed over the simulated control duration. The
data of all tests in experiment I for the ideal model is used. It can be seen that all controls
are stationary.

I.D (Table 9.3) are repeated with a not perfectly known controlled model (see Section
9.3.2). The results are depicted in Figure 9.14 in the same format as they are visualized
in Figure 9.7 for the ideal world results.
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Figure 9.14: Dependency of the test results B/D on the prediction horizon Tp for the
method SMS-EGO. This is the equivalent to Figure 9.7, but this time in a noisy environment
created in Section 9.3.2. Solving the ADM1 in a non-stationary environment is numerically
difficult. Because of that test I.B4 failed three times and therefore is not displayed. Left: One-
dimensional steady-state stage cost F1D at day 750. Middle left: Hypervolume indicator IH
of the steady-state Pareto front. Middle right: R2 indicator of the steady-state Pareto front.
Right: ∆1 indicator of the steady-state Pareto front. The ∆1 indicator for test I.D1 is short
outside the visualized region (Tp = 50 d).

The initial feeds I.B and I.D are very far away from the optimal feed (see Table 9.2).
Therefore, it is not unexpected that the steady-state results in a noisy environment for
both initial feeds are different to the results in the ideal world. By comparing Figures
9.7 and 9.14 it can be seen that the results are not that different. With respect to
the one-dimensional steady-state stage cost F1D only test I.D4 (Tp = 200 d) yields a
considerable different result. The trend of the hypervolume indicator of the steady-state
Pareto front looks different. Here indeed test I.D2 (Tp = 100 d) and again test I.D4
(Tp = 200 d) have different results. The trends of the R2 and ∆1 indicator are very
much alike, this is especially true for the ∆1 indicator. In conclusion one can say that
the RTO is quite robust against noise and plant-model mismatch. Be aware that the
plant-model mismatch is still there at steady state whereas the noise is not.

Can the results be repeated? For experiment I in total 16 tests are repeated once
and three tests are repeated twice. The median of the absolute values of the variation
of the steady-state stage cost F1D(750 d) in those repetitions is 0.0004. In comparison,
the absolute median variation of the steady-state stage cost F1D(750 d) in all tests of
experiment I is 0.0024. For the hypervolume indicator (R2, ∆1 indicator) these numbers
are for the repetitions 0.0030 (0.0001, 0.0009) and 0.0095 (0.0003, 0.0027) for all tests.
Based on these numbers, the variation in the repetitions can be seen as reasonably
small compared to the total variation of the four measures. Therefore, the obtained
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results seem to be repeatable.

Optimal feeds and parameter sets In Figure 9.15 the optimal, with respect to the
fitness J1D, substrate feeds taken out of the final approximation of the Pareto optimal
set are shown. All feeds qualify for the manure bonus (see Section 7.3.2), it also can be
seen that all substrate mixtures contain a little more manure than would be required
for the bonus. In the upper left view it can be observed that all feeds almost lie on one
line. When maize silage is decreased, grass silage is increased.
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Figure 9.15: With respect to fitness J1D optimal substrate feeds of the final approximation of
the Pareto optimal set obtained in experiment I. The feeds are visualized in three views. Top
left: Front view, top right: Left view, bottom left: Top view and bottom right: 3D view. The
red plane divides the feeds in those which qualify for the manure bonus (see Section 7.3.2) and
those who do not. The optimal feed, with respect to the one-dimensional steady-state stage
cost F1D, is emphasized by a circle.

With respect to the one-dimensional steady-state stage cost F1D the best performing
test in experiment I is test I.A21 (fminsearch) with a value of F1D (750 d) ≈ −0.2361.
The corresponding optimal substrate mixture contains out of 18.79 m3

d maize silage,
14.54 m3

d swine manure and 1.01 m3

d grass silage, which is also visualized in Figure
9.15 by a circle. The absolute best value ever obtained for the one-dimensional steady-
state stage cost is F1D (750 d) ≈ −0.2363. It was found in an optimization run. The
corresponding feed is 18.73 m3

d maize silage, 14.99 m3

d swine manure and 0.97 m3

d grass
silage. Thus, both feeds are almost exactly the same.
Among the three global optimization methods the best test is I.A16 (CMA-ES) with a
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value of F1D (750 d) ≈ −0.2359. The corresponding optimal substrate mixture contains
out of 19.68 m3

d maize silage, 15.00 m3

d swine manure and 0.00 m3

d grass silage.
The best value for the hypervolume indicator IH is obtained in test I.B12 with a value of
IH ≈ 3.5405. The best test for the other two indicators R2 and ∆1 is I.D12. Their values
are R2 ≈ 0.0301 and ∆1 ≈ 0.0102. In both tests SMS-EMOA is used as optimization
method. It is interesting to see that the best steady-state Pareto front approximations
are found when starting at the most difficult initial substrate feeds I.B and especially
I.D.
The strength of the multi-objective optimization methods are that they return a set of
optimal solutions from which the decision maker can pick a solution. But, if the applied
solution is always chosen by predefined weights a single-objective method such as CMA-
ES may yield better results. The problem of the used multi-objective methods is that
they rather try to approximate the complete Pareto front, thus also its extremes, and do
not concentrate their search in the region where the single-objective weighted criterion
is optimized. Thus, the strength of the multi-objective solutions is only exploited well
when based on the given Pareto front it is decided which solution is picked and not
beforehand.

9.3.4 Experiment II: Change of Substrate Mixture
A sudden change in the substrate mixture of a biogas plant can often result in a
transient decrease in performance (e.g. leaving a setpoint) or even lead to process
instabilities or failure. Using predictive control such an adjustment of the fed substrates
can be made smoothly and thus above mentioned disadvantages can be avoided. Such
a scenario is investigated in this second experiment, where the substrate feed has to
be changed because the substrate maize silage will be used up during the simulated
control duration. Despite the change of the substrate mixture the control has to carry on
tracking a given methane setpoint Q∗

ch4,ext(t). Furthermore, the new substrate mixture
should also be optimal for the biogas plant given the limited amount of substrates
available.

9.3.4.1 Setup
In a first test it will be evaluated what happens if the depletion of maize silage is not
taken into account during prediction. This should be the worst case scenario. Then tests
are done where the decreasing amount of maize silage in the silo is used as a further
information during prediction. This is implemented by changing the upper boundary
UBiu for the iuth substrate so that the amount given by the upper boundary could be
fed for the complete duration of some future horizon. The length of this future horizon
is difficult to determine. If it is set to the prediction horizon the fed amount of the
limited substrate will be very low if the prediction horizon is long. An optimal solution



150 9. Dynamic Real-Time Substrate Feed Optimization of a Biogas Plant

for the horizon could not be determined in this thesis so it is set by experience to Tp
4 ,

but at least to a value of 14 d. To avoid that shortly before the substrate is depleted
only very small amounts of the substrate are fed the corresponding upper boundary
UBiu is limited to a minimal value of 2 m3

d .
The prediction horizon Tp is the only control parameter which is evaluated in this
experiment, using values 50 d, 100 d and 150 d. All tests are started with the optimal
substrate feed found in test I.A16, which is Qmaize ≈ 19.68 m3

d , Qmanure = 15.00 m3

d
and Qgrass = 0.00 m3

d . The assumed amount of maize silage in the silo at the start of
the simulation is 1000 t. The other two substrates swine manure and grass silage are
not finite in time.
The simulated control duration is set to 300 days and the control is started at day 20.
At day 160 the maize silage silo is refilled, so that the control has the task to return
to the optimal substrate feed where it started from.
In this experiment the two best controller configurations obtained in experiment I
are used, except of the different value for the prediction horizon Tp. They are the
configuration I.12 using SMS-EMOA and I.16 using the method CMA-ES, see Table
9.3.
In order that during the simulated control duration the methane setpoint Q∗

ch4,ext(t)

is hold, the objective function J is extended by a setpoint term. This term is used in
experiment III as well and is described there, see Section 9.3.5. In this experiment a
constant CH4 setpoint is used with a value of Q∗

ch4,ext(t) = 2797.5 m3

d . This amount of
methane is produced with the initial feed all tests are started from.

9.3.4.2 Results
In Figure 9.16 the obtained results for configuration I.16 and Tp = 150 d with and
without including the available amount of maize silage in the silo are compared.
In Figure 9.16 it can be seen that the “hard” control, which changes the feed in a
moment, tracks the methane setpoint very poorly during the transition. The reasons
are the fast change of the feed but also the delayed switch to the usage of grass silage.
The reason is, that once the setpoint error is larger than an upper boundary the fitness
value is cut-off by the Tukey’s biweight function (see eq. (9.16)). Therefore, a reasonable
control error and a huge one are rated the same. The reason is that the control should
be able to leave a setpoint if it is beneficial for the biogas plant. As a high amount of
grass silage leads to an increase of ammonia the control prefers to loose the setpoint
for a while and only later (at day 110) changes the feeding regime to a higher amount
of grass silage.
At the time maize silage is available again (day 160), the “smooth” control immediately
changes back to a by maize silage dominated feed. This comes with a little overshoot
of methane production. Furthermore, it can be observed that both controls do not
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Figure 9.16: Comparison of controls with and without inclusion of the available amount of
maize silage in the silo during prediction for configuration I.16 and Tp = 150 d. Top: Methane
production of the biogas plant and methane setpoint Q∗

ch4,ext(t). Middle: Substrate feed of the
control with prediction of the available feed stock (“soft” control). Bottom: Substrate feed of
the control without prediction of the available feed stock (“hard” control).

return to the substrate mix they started from, resulting in a worse one-dimensional
steady-state stage cost F1D compared to the one at initial state as can be seen in
Figure 9.18 below.
In Figure 9.17 the same presentation as in Figure 9.16 is shown. Again configuration I.16
is used, but this time with a prediction horizon of Tp = 50 d. Here, the hard control is
not that much worse than the soft control by just looking at the control error ech4,ext(t)

(see eq. (9.15)). The reason is that the first one is better and the latter one is worse
than the ones for Tp = 150 d shown in Figure 9.16. For both controls the final substrate
feed is almost the same as the initial one. Therefore, for this configuration the control
almost returns to the optimal feed it started from.
In the top row of Figure 9.18 the obtained fitness values at the end of the simulated
control duration J1D (300 d) is shown. It can be seen that the fitness value for the
soft control is most of the time worse than the one of the hard control. This was not
expected but can be explained as follows. With the change to a grass silage dominated
feed the ammonia, VFA and VFA/TA contents in the digesters increase. All three
influence the fitness value negatively (the fitness value increases). As changing the feed
leads to loosing the methane setpoint for a short while it is not beneficial for the soft
control to leave the setpoint improving the fitness on a longer term. Only when the
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Figure 9.17: Comparison of controls with and without inclusion of the available amount of
maize silage in the silo during prediction for configuration I.16 and Tp = 50 d. Top: Methane
production of the biogas plant and methane setpoint Q∗

ch4,ext(t). Middle: Substrate feed of the
control with prediction of the available feed stock (“soft” control). Bottom: Substrate feed of
the control without prediction of the available feed stock (“hard” control).

setpoint is already lost (hard control) the control has the freedom to leave the setpoint
even more, because the fitness value corresponding to the control error is cut-off (see
above).
In the middle row of Figure 9.18 the one-dimensional steady-state stage cost F1D (500 d)
is shown. Here again, the soft control is worse than the hard control. This is due to the
fact that the final substrate feed of the hard control is most often better than the one
of the soft control.
For SMS-EMOA the reason for this is that the soft control does not change the feed
at day 160 at all. Therefore, maize silage is kept at 0 m3

d . In Figure 9.19 the reason
for that behavior can be observed. There, the populations shortly before and at the
time maize silage is available again (day 160) are plotted for configuration I.12 with
Tp = 150 d. It can be observed that the solution candidates of the soft control are only
located at the currently optimal feed and nowhere else. The versatility in feeds for the
hard control is much higher. This is because the soft control sets the amount for maize
silage at an earlier stage to 0 m3

d as does the hard control. Therefore, the versatility in
solutions is lost over the last number of iterations. This urged population is the reason
why at day 160 SMS-EMOA cannot generate new and different solutions because the
population does not allow space for exploration. Here, it can be seen that initializing
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Figure 9.18: Obtained results for fitness at the end of the simulated control duration
(J1D (300 d), top row), one-dimensional steady-state stage cost (F1D (500 d), middle row) and
the integral of the squared control error over 500 days: 10−6 ·

∫ 500

0
e2ch4,ext (τ) dτ , bottom row.

The figure compares the two optimization methods CMA-ES (config. I.16) and SMS-EMOA
(config. I.12) as well as the inclusion of the feed stock during prediction (soft) and not (hard).
The steady-state stage cost results for SMS-EMOA (soft) are out of the visualized region.
This is also true for the tracking error obtained with CMA-ES (hard) for Tp = 100 d and
Tp = 150 d.

SMS-EMOA only with the last population without any randomly generated solution
candidates is a bad strategy (see Section 9.3.1). By replacing some solution candidates
in the initial population by randomly (or LHS) selected candidates it can be expected
that much better results are obtained. This is not done here to avoid that all tests
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Figure 9.19: Comparison of the final populations of individuals from day 140 to day 160 (from
left to right) for configuration I.12 (SMS-EMOA) with Tp = 150 d. The red dots for the soft
control are plotted a little bit larger so that they can be located easier. It can be seen that
the versatility of the solution candidates of the hard control is much higher compared with
the soft control.

performed so far have to be repeated.
For CMA-ES the reason that the one-dimensional steady-state stage cost for the soft
control is worse compared to the one for the hard control might be that at day 160
the soft control tracks the setpoint a little bit more accurate and therefore has more
difficulty to leave it for a longer time.
In the bottom row of Figure 9.18 the integral of the squared control error over 500
days, 10−6 ·

∫ 500

0
e2ch4,ext (τ)dτ , is shown. It can be seen that the soft control always

yields better setpoint tracking results. For CMA-ES the hard control is very bad for
Tp = 100 d and Tp = 150 d as could also be seen in Figure 9.16 above.
In this experiment no tests in the noisy environment are performed. The reason is that
all tests in this experiment are computationally very expensive and performing them
in the noisy environment would blast the performance of the available PCs.
The winning configuration of this experiment is the soft implementation of I.16 with
Tp = 150 d. Thus, it is exactly configuration I.16 from Table 9.3 that was already the
winner in experiment I.
Especially the soft control using configuration I.12 (SMS-EMOA) is a complete
disappointment. At least the hard controls using SMS-EMOA for Tp = 100 d and
Tp = 150 d yield somehow satisfying results.

9.3.5 Experiment III: Setpoint Control
In this third experiment the real-time optimization scheme is used as setpoint tracking
control. In the tests performed here, the control variable is the volumetric flow rate of
methane Qch4(t) which has to follow a given methane setpoint Q∗

ch4,ext(t). Therefore,
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the objective function J in Section 7.3.4 is extended by a term measuring the control
error ech4,ext(t), defined in eq. (9.15).

ech4,ext(t) := Q∗
ch4,ext(t)−Qch4(t) (9.15)

More precisely the second component of the stage cost function F2 given in eq. (7.66)
is extended by the control error ech4,ext(t) by introducing a further constraint. This
additional constraint is modeled as

constraintnc+1(τ) := ρTy
(
ζ · e2ch4,ext(τ)

)
(9.16)

with Tukey’s biweight function ρTy (7.69) and a weight ζ ∈ R+. The weight ζ is used to
scale the squared control error e2ch4,ext(τ) to the sensitive domain of Tukey’s biweight
function ρTy.
Note the difference between the control error ech4

(t) and the “external” control error
ech4,ext(t). The first one is minimized by the process control and the latter one by the
NMPC.

9.3.5.1 Setup

The setpoint trajectory Q∗
ch4,ext(t) used in the tests is characterized by two 100 d long

constant periods and only two steps over the complete scenario (see Figure 9.20). The
special property of the trajectory is that the setpoint at the start and the end of the
scenario are the same and the setpoint in between is very bad for the biogas plant.
Based on this trajectory the ability of the control to find and maintain a steady-state
solution for a given setpoint and to find it again at a later point will be studied. To
prove that the control is intelligent, it is investigated with the bad setpoint how the
control behaves, because it may not just follow the setpoint. Furthermore, dynamics,
oscillation, overshooting and action on the manipulated variable can be investigated in
this experiment.
In the tests only the dependency of the results on the prediction horizon Tp is studied.
As prediction horizon the four values Tp = 10 d, Tp = 25 d, Tp = 75 d and Tp = 100 d
are chosen. The simulated control duration is set to 250 days. For all other parameters
(optimization method and number of simulations) the two best configurations obtained
in experiment I are used (Section 9.3.3). They are configuration I.12 with SMS-EMOA
and I.16 with CMA-ES as optimization methods, see Table 9.3.
An important aspect for setpoint tracking is the performance of the control in a
noisy and erroneous environment. Therefore, all tests are first performed in a perfect
environment and then repeated in an environment where measurements are noisy,
drifting and error-prone, a plant-model mismatch exists and substrate parameters are
not exactly known (see Section 9.3.2). As the simulation studies with the real world
model are computational very expensive the simulated control duration is reduced to
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150 days. As setpoint a constant value of Q∗
ch4,ext(t) = 2750 m3

d is used, which is the
same value as the previous setpoint trajectory has at the start and in the end. Next
to the prediction horizon, here also the control horizon for the best configurations is
changed once to Tc = 5 d for comparison.

9.3.5.2 Results
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Figure 9.20: Setpoint control for ideal model: Comparison of two tests using configuration
I.16 with Tp = 10 d and configuration I.12 with Tp = 100 d. Top: Methane production of the
biogas plant with setpoint Q∗

ch4,ext(t). Middle: Substrate feed of the control with CMA-ES
and Tp = 10 d. Bottom: Substrate feed of the control with SMS-EMOA and Tp = 100 d.

In Figure 9.20 simulation results for the setpoint tracking tests for the ideal simulation
model are shown. Two controls, each with a different value for the prediction horizon,
are compared. They are the best and worst performing controls in these tests. The
controls are started at day 20 with an initial feed of 15 m3

d maize silage, 5 m3

d swine
manure and 2 m3

d grass silage. It can be seen that both controls converge to the setpoint,
which the control with the larger prediction horizon tracks more accurately and much
more stable. Because of the large bump in the setpoint between day 120 and day 170
both controls only slightly leave the previous setpoint for some time. This behavior
is desired, because the setpoint of 6000 m3

d is not beneficial for the biogas plant. In
contrast to the control with Tp = 100 d the one with the short prediction horizon fails
to find a stationary substrate feed. Furthermore, the final feed for Tp = 10 d is totally
different to the nearly optimal one obtained for Tp = 100 d. The latter substrate feed is
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almost as good as the best one found in the tests below which can be seen as reference
values (see Figure 9.23). With respect to the one-dimensional steady-state stage cost
the difference between both optimal solutions is only 0.0034. Therefore, one can say
that the control is able to find the optimal substrate feed while tracking a setpoint.
But this wanted behavior is highly dependent on the prediction horizon as can be seen
in Figure 9.21.
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Figure 9.21: Setpoint control for ideal model: Results for fitness at the end of the simulated
control duration (J1D (300 d), left) and one-dimensional steady-state stage cost (F1D (500 d),
right). Comparison of configurations I.12 and I.16 for different values of the prediction horizon
Tp. The tests with Tp = 10 d and Tp = 25 d yield very bad results and therefore are partly
not visualized. All tests are repeated once, one test (SMS-EMOA, Tp = 100 d) is repeated
twice.

In Figure 9.21 all results yield in experiment III for the setpoint shown in Figure
9.20 above and with the ideal model are shown. The fitness at the end of the
simulated control duration (J1D (300 d)) and the one-dimensional steady-state stage
cost (F1D (500 d)) are visualized and compared with respect to the chosen prediction
horizon Tp and optimization method. Both, fitness and steady-state stage cost in
general improve with an increasing prediction horizon. There is no best configuration.
However, the CMA-ES based configurations most of the time yield better fitness values
and the one for Tp = 75 d is pretty good.
To evaluate the control’s performance in a noisy environment the next test results
are obtained applying the control at the real world model. As explained in the setup
above a constant setpoint is used here, as can be seen in the top plot of Fig. 9.22. For
comparison the same tests are also evaluated at the ideal model.
In Figure 9.22 two tests using the same configuration (I.12 with Tp = 100 d) are
compared. In the first test the control is applied to the ideal model and in the latter



158 9. Dynamic Real-Time Substrate Feed Optimization of a Biogas Plant

0 20 40 60 80 100 120 140 160
1500

2000

2500

3000

Q
ch
4
o
f
b
io
g
a
s
p
la
nt

[m
3
/
d
]

time [d]

 

 

0 20 40 60 80 100 120 140 160
0

5

10

15

20

time [d]

su
b
st
ra
te

fe
ed

[m
3
/
d
]

 

 

0 20 40 60 80 100 120 140 160
0

10

20

30

time [d]

su
b
st
ra
te

fe
ed

[m
3
/
d
]

 

 

maize silage
swine manure
grass silage

SMS-EMOA , Tp = 100 d

SMS-EMOA , Tp = 100 d

Q∗

ch4,ext(t)

Figure 9.22: Setpoint control for real world model: Comparison of two tests using configuration
I.12 with Tp = 100 d, one is evaluated at the ideal and the other at the real world model. Top:
Methane production of the biogas plant with setpoint Q∗

ch4,ext(t). In blue the CH4 production
of the ideal and in red the one of the real world model is visualized. Middle: Substrate feed of
the control applied to the ideal model. Bottom: Substrate feed of the control applied to the
real world model.

test the control is applied to the real world model. Using the ideal model the control
tracks the setpoint very well finding a stationary feed at the end (see the top and
middle plot in Figure 9.22). Applied to the real world model the control is able to
track the setpoint without an offset. This is due to the used process control. The
NMPC itself is not able to control the plant offset-free. However, it seems that the
process control is not fast enough to compensate all disturbances immediately. It is
apparent that the process control in the beginning between day 0 and day 20 produces
a high over- and undershoot to get to the initial setpoint. This is very unfortunate and
one of the weaknesses of the used process control. The extension of the process control
proposed in Section 9.2 does not have this disadvantage. It reduces the overshoot by
77 %, results are not visualized here. Note, that an overshoot of the process control is
not punished harder as an undershoot. However, as in reality an overshoot could mean
that the additionally produced biogas must be burned in a torch an overshoot in this
case would be inferior to an undershoot. Using a model-based process control instead of
Antonelli et al. (2003) better results might be expected. Nevertheless, Antonelli et al.
(2003) has the advantage of its simplicity and therefore it is used here.
The final substrate mixture found for the real world model is almost the same as is
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found for the ideal model. This can also be seen at the one-dimensional steady-state
stage cost which is visualized in Figure 9.23 among others.
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Figure 9.23: Setpoint control for ideal and real world model: Results for fitness at the end
of the simulated control duration (J1D (170 d), left), one-dimensional steady-state stage cost
(F1D (500 d), middle) and the integral of the squared control error over 500 days: 10−6 ·∫ 500

0
e2ch4,ext (τ)dτ , right. Comparison of configurations I.12 and I.16 for different values of the

prediction horizon Tp.

In Figure 9.23 all results obtained for the constant setpoint are visualized. Both for the
ideal and real world model together. It can be seen that for some configurations the
achieved results for both models are quite different but for some they are almost the
same. Here the focus is on the configurations leading to different results.
The configuration I.12 (SMS-EMOA) with Tp = 10 d yields very bad results. This is
especially true for the integral over the squared control error ech4,ext while controlling
the real world model (see most right plot in Figure 9.23). The reason for this huge
control error is that at the end of the simulated control duration at day 170 the control
for some reason leaves the setpoint. After 500 days this rather small deviation from
the setpoint has summed up to this large value. The reason why the control leaves the
setpoint at that time is that due to the badly chosen feed ammonia increases so that it
affects the fitness value negatively. This lets the control change its feed leading to the
setpoint deviation which is kept until the end after the control is switched off at day
170.
Using SMS-EMOA with Tp = 25 d different results for the substrate feed are obtained.
This leads to the totally different results for the fitness value and steady-state stage
cost. The same is true for configuration I.16 (CMA-ES) with Tp = 25 d. But here, this
only affects the one-dimensional steady-state stage cost.
One can say that the smaller the prediction horizon the larger are the deviations of the
real world simulation results from their ideal counterparts. Below a prediction horizon
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of Tp = 100 d no satisfying results are obtained. But, for Tp = 100 d the simulation
results for the real world model are almost the same as for the ideal model.
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Figure 9.24: Setpoint control for real world model: Comparison of two tests using configuration
I.12 with Tp = 100 d, Tc = 10 d and Tc = 5 d, respectively. Top: Methane production of the
biogas plant with setpointQ∗

ch4,ext(t). In blue the CH4 production of the control with Tc = 10 d
and in red the one with Tc = 5 d is visualized. Middle: Substrate feed of the control with
Tc = 10 d. Bottom: Substrate feed of the control with Tc = 5 d.

In a last test the value for the control horizon is set to Tc = 5 d instead of the value
of Tc = 10 d used in the previous tests. The test results for configuration I.12 with
Tp = 100 d for both control horizon values can be seen in Figure 9.24. It can be
observed that the RTO with Tc = 5 d tracks the given setpoint Q∗

ch4,ext(t) a little
bit more accurately. In the tests the process control is switched off, to only see the
performance of the NMPC. That the NMPC with Tc = 5 d has a better tracking
performance could be expected, because the offline analysis of the substrate feeds are
done in a five day interval (see Figure 9.4) so that the expected methane production
can be predicted more accurately. However, if the process control is switched on it in
general is able to adapt the feed so that the difference in results for both controls will
be marginal. Because feed analysis is expensive the usage of a higher rate of analyses
and a shorter control horizon in some cases might not be economically reasonable.

9.3.6 Experiment IV: State Estimator
In the last experiment which is presented in this section those tests yielding the best
results in the above three experiments (Sections 9.3.3 - 9.3.5) are repeated. The only
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difference is that this time the state estimator developed in Chapter 8 is used instead
of the ideal state estimator used before. Thus, the control loop sketched in Figure 9.1
is utilized instead of the one in Figure 9.2 which is used in the other experiments. In
this section is studied whether the corresponding tests yield approximately the same
results. In contrast to the ideal state estimator the real estimator does not assume
that the complete state vector of the ADM1 can be measured. Instead, the estimates
of the real estimator are only based on a few measured process values (for details see
Chapter 8). Therefore, if in this experiment satisfying results are obtained the control
in principle will be ready to be used in practice.
As time and resources are limited not all tests are repeated. Only those tests are
repeated that achieved best results in the previous experiments. They are:

• Experiment I: Configuration I.16: CMA-ES, Tp = 150 d.
• Experiment II: Configuration I.16: CMA-ES, Tp = 150 d, soft control.
• Experiment III: Configuration I.16: CMA-ES, Tp = 75 d for 1st setpoint and

CMA-ES, Tp = 100 d for 2nd setpoint.
Similar results were already published in Gaida et al. (2012a) in the course of this
thesis.

9.3.6.1 Setup
As the used state estimator just returns a class label for each state vector component
x̂ix based on the input variables, the real value for each component is in between a
lower and upper boundary defined by the previously in Section 8.2 applied splitting of
the state vector components into C = 10 classes. Remember that the state estimation
problem is solved as a classification task (see Section 4.1). Instead of using the center
values in between these lower and upper boundaries (named lbx ∈ Rnx and ubx ∈ Rnx ,
respectively) that state vector as current state estimate is used, whose maximum norm
of its derivative is minimal. Thus, the current state estimate x̂k is defined as:

x̂k := arg min
lbx≤x≤ubx

|f (x, ou∗
k (tk − δ))|∞ (9.17)

In eq. (9.17) is searched for a steady-state solution by varying the states x inside
the allowed range lbx ≤ x ≤ ubx. Thus, using this definition the chance should be
increased that simulations of the RTO starting at x̂k converge to a steady-state solution
respectively converge at all. This optimization problem is solved using CMA-ES with
a population size of 25 and four generations.
For the setup details to each experiment please consult Section 9.3.3 to Section 9.3.5.

9.3.6.2 Results: Experiment I
In Figure 9.25 optimization results for the tests I.A16 until I.D16 are shown once using
the ideal and once using the real state estimator. As with CMA-ES a single-objective
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Figure 9.25: Experiment I: Test results of configurations I.A16 - I.D16 for the control using
the ideal vs. the real state estimator. As in configuration I.16 the method CMA-ES is used
only the one-dimensional steady-state stage cost F1D at day 750 is visualized. All four tests
I.A16 - I.D16 using the ideal state estimator are repeated once.

optimization method is used only the one-dimensional steady-state stage cost F1D is
shown. It can be seen that the obtained results for the one-dimensional steady-state
stage cost are very similar and almost independent of the choice of the estimator.
Therefore, it can be concluded that using the real state estimator steady states are
found that are as good as the ones found with the ideal estimator.

9.3.6.3 Results: Experiment II

In Figure 9.26 simulation results for the best configuration from experiment II are
presented. This is configuration I.16 as the soft implementation. In the top row the
simulated methane production and the given methane setpoint Q∗

ch4,ext(t) are shown.
In the middle row the fed substrates of the control with the ideal estimator and in the
bottom row the ones proposed by the control with the real estimator are visualized. It
can be seen that the results using the real state estimator are very bad. The reason is
that the control has trouble to track the given setpoint. As the initial state estimate
is not very accurate only at the end of the prediction horizon the setpoint might be
achieved if the correct feed is chosen. Therefore, actually good feeds are evaluated
badly. Furthermore, the state estimator is only calibrated for an amount of grass silage
between 0 m3

d and 5 m3

d , see Table 8.2. So, in case the control would suffice to feed
high amounts of grass silage as it would be required, the state estimates might be
unpredictably inaccurate. At least the feed at the end of the test is very close to the
optimal one, where the test was started from.
To make setpoint tracking work, the way how the control error is included in the object-
ive function must be revised. Once the setpoint is lost, in the current implementation
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Figure 9.26: Experiment II: Comparison of controls with ideal vs. real state estimator for
“soft” control configuration I.16 and Tp = 150 d. Top: Methane production of the biogas
plant and methane setpoint Q∗

ch4,ext(t). Middle: Substrate feed of the control with ideal state
estimator. Bottom: Substrate feed of the control with real state estimator. The test using
the real state estimator was terminated after 270 days because of exhausted resources on the
computer.

a very large and a small control error are evaluated the same. This leads to very large
deviations from the setpoint as it can be seen in Figure 9.26.

Table 9.4: Results of control using ideal and real state estimator for configuration I.16 with
Tp = 150 d in experiment II.

state estimator J1D (300 d) F1D (500 d) 10−6 ·
∫ 500

0
e2ch4,ext (τ)dτ

ideal -0.015 -0.219 2.31
real 0.202 -0.218 136.71

Table 9.4 compares the obtained results visualized in Figure 9.26 by means of three
performance measures. Based on these it can also be easily observed that the perform-
ance of the test using the real state estimator is far worse than the one using the ideal
state estimator.

9.3.6.4 Results: Experiment III

In Figure 9.27 the achieved control trajectories for the 1st setpoint using the ideal
model are shown. The figure compares the results obtained with the real and ideal
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Figure 9.27: Experiment III: Setpoint control for ideal model and 1st setpoint: Comparison
of two tests with ideal and with real state estimator using configuration I.16 with Tp = 75 d.
Top: Methane production of the biogas plant with setpoint Q∗

ch4,ext(t). Middle: Substrate feed
of the control with ideal state estimator. Bottom: Substrate feed of the control with real state
estimator.

state estimator. Although there is a small difference between both simulation results,
using the real state estimator the setpoint is tracked accurately enough.
In Figure 9.28 the control results for the 2nd setpoint at the ideal model are shown.
The trajectories obtained using the ideal and real state estimator are compared. It
can be seen that the control using the real state estimator does not track the setpoint
as accurately as the other, but the control error is quite small. The difference in the
obtained feed mixtures is also only marginal.
Figure 9.29 visualizes the results obtained for the 2nd setpoint at the real-world model.
Due to the noisy model the setpoint is not tracked exactly. As the simulations starting
at the real state estimate, at the start of the simulations are very inaccurate the
predicted biogas production of the RTO at the start is very unreliable. Therefore,
using the real state estimator the process control is not used, because the setpoint
trajectory generated by the RTO would be unpredictably inaccurate.
In Figure 9.30 simulation results for the setpoint experiment using the real and ideal
state estimator are shown. In the two plots on the left side of the figure results of the
first setpoint (see Figure 9.27) are visualized. The remaining three plots on the right
side present the results for the second setpoint (see Figure 9.28).
For the 1st setpoint the results using the real state estimator are not that good as
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Figure 9.28: Experiment III: Setpoint control for ideal model and 2nd setpoint: Comparison
of two tests with ideal and with real state estimator using configuration I.16 with Tp = 100 d.
Top: Methane production of the biogas plant with setpoint Q∗

ch4,ext(t). Middle: Substrate feed
of the control with ideal state estimator. Bottom: Substrate feed of the control with real state
estimator.

the ones using the ideal state estimator. The reason is that the setpoint is not tracked
accurately which increases both fitness and stage cost values. For the 2nd setpoint the
deterioration of both values is introduced because the methane content of the produced
biogas is below 50 %. This is a hard boundary defined in the objective function.
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Figure 9.29: Experiment III: Setpoint control for real-world model and 2nd setpoint:
Comparison of two tests with ideal and with real state estimator using configuration I.16
with Tp = 100 d. Top: Methane production of the biogas plant with setpoint Q∗

ch4,ext(t).
Middle: Substrate feed of the control with ideal state estimator. Bottom: Substrate feed of
the control with real state estimator.

0

0.1

0.2

0.3

id
ea

l
re

al

fi
tn

es
s 

at
 d

ay
 3

0
0

setpoint 1

−0.2

−0.1

0

0.1

0.2

0.3

id
ea

l
re

al

st
ag

e 
co

st
 a

t 
st

ea
d
y
 s

ta
te

setpoint 1

0

0.1

0.2

0.3

0.4

0.5

0.6

id
ea

l
re

al

fi
tn

es
s 

at
 d

ay
 1

7
0

setpoint 2

−0.2

0

0.2

0.4

0.6

id
ea

l
re

al

st
ag

e 
co

st
 a

t 
st

ea
d
y
 s

ta
te

setpoint 2

0

20

40

60

80

100

id
ea

l
re

al

1
0

−
6
 ⋅

 ∫
05

0
0
 e

ch
4

,e
x

t

2
(τ

) 
d
τ

setpoint 2

Figure 9.30: Setpoint control for ideal and real-world model using real and ideal state
estimator. 1st setpoint: Results for fitness at the end of the simulated control duration
(J1D (300 d), left), one-dimensional steady-state stage cost (F1D (500 d), middle left). 2nd
setpoint: Results for fitness at the end of the simulated control duration (J1D (300 d), middle),
one-dimensional steady-state stage cost (F1D (500 d), middle right) and the integral of the
squared control error over 500 days: 10−6 ·

∫ 500

0
e2ch4,ext (τ) dτ , right.
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9.4 Summary and Discussion
The real-time optimization scheme in principle is able to find the optimal substrate
feed with respect to a multi-objective objective function. The tests in experiment I
revealed that the basin of attraction of the control is quite large and the optimal
feed is kept once it is found. Under changing availability of substrates the predicting
behavior of the control helps to change the substrate feed smoothly and to avoid
a temporary deterioration of performance (see experiment II). As setpoint control a
minimal prediction horizon of Tp = 100 d is needed as was observed in experiment III.
This can also be said in general. A prediction horizon between 100 and 200 days can
be suggested in general for all performed experiments.
Using the real instead of the ideal state estimator introduces some difficulties. Although
the steady-state results are almost the same more dynamic scenarios such as changing
the substrate feed or a setpoint tracking task are more challenging. With the used
state estimator it is not yet possible to change the substrate feed without a loss in
plant efficiency. Setpoint tracking is not that accurate but is possible. However, if more
measurements are included in the state estimator, improved results will most certainly
be observed.
In the following subsections 9.4.1 - 9.4.6 six extensions of the developed RTO control
scheme are discussed. They are:

• Providing balancing energy for secondary and tertiary control.
• Parameter estimation and re-calibration of the process model and state estimator.
• Extension of the control scheme by a supervised expert system.
• Use of models to extend the process control.
• Increasing the speed of the RTO scheme.
• Implementation of simulation model and process control in different units.

9.4.1 Providing Balancing Energy for Secondary and Tertiary Control
Since the amendment of the Renewable Energy Sources Act in 2012 biogas plants in
Germany may be used to provide balancing energy for secondary and tertiary control.
Nowadays, with the high amount of renewable electrical energy production, the energy
market is deregulated. In this market the price for electrical energy is volatile and its
prediction is very valuable (cf. Che and Wang (2010), Esfahani (2011)). In Figure 9.31
an exemplary curve of block prices for electrical energy taken from the EPEX SPOT
market is shown. When a biogas plant is participating in this market it must be able to
start up or bring down its energy production within five (secondary) or fifteen minutes
(tertiary), respectively4. As a biogas plant is a very slow system such fast responses are

4http://www.next-kraftwerke.de/wissen/regelenergie
http://www.next-kraftwerke.de/energie-blog/praequalifikation-regelenergiemarkt

http://www.next-kraftwerke.de/wissen/regelenergie
http://www.next-kraftwerke.de/energie-blog/praequalifikation-regelenergiemarkt
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Figure 9.31: Block prices for electrical energy at the EPEX SPOT auction between 02/12/2013
and 09/12/2013.

only possible when the biogas plant has a gas storage unit. Here, an optimal control
has the task to always keep the volume in the gas storage half-full so that the biogas
plant can provide positive as well as negative balancing energy in the same amount.
To predict the gas volume in the storage unit a model-based predictive control can use
the predicted biogas production and the requested energy profile over the prediction
horizon. To keep the gas storage unit at a minimal installation size a good prediction
as well as an accurate setpoint tracking control is needed. As a minimum the gas
volume should be able to store the produced biogas for a few hours at maximal biogas
production.
As already written in the summary of Chapter 7 a gas storage unit is not yet
implemented in the biogas plant model. Therefore, such a setpoint tracking problem
unfortunately could not yet be simulated in this thesis.

9.4.2 Parameter Estimation and Re-Calibration of the Process Model
and State Estimator

The problem with modeling of biogas plants is that after some time there will be a
mismatch between model predictions and real plant behavior. There are numerous
reasons that could lead to this situation. Examples are:

• Adaptation of anaerobic bacteria to (inhibiting) conditions in the digester.
• Insufficient calibration of model parameters (that are only locally valid).
• Drift in online measurement devices such as gas analyzer, pH and TS sensor.
• Change of substrate characteristics that are not measured, e.g. inclusion of toxic

substances.
• Digester and substrate probes used for calibration are far from representative for

the complete digester content or substrate storage.
• Unmodeled processes happening on the biogas plant such as some biochemical

processes or process disturbances.
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The questions are how to detect whether the model and the process are drifting apart
and what is the reason for that. The first question is way easier to answer.
There are at least two methods to detect a deterioration of process model predictions.
The first idea is to compare the simulated state vector of the last iteration ox (tk−1 + δ)

with the predicted state vector of the current iteration x̂k on a moving horizon. If the
sum of the deviation of both “predictions” ox (tk−1 + δ)−x̂k over some horizon exceeds
an upper boundary a drift between predictions of the process model and the real process
behavior is very likely. The only problem of this approach is that both predictions are
based on the same model. Therefore, in a worst case scenario, it is possible that a drift
maybe remains undetected.

RTO

Σ
process
control D/feed

feed/D

biogas
plant
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estimator

Re-Calib

optimal feed ou∗
k [tk, tk + δ)

Q∗
ch4

(t) ech4(t)

D∗
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D(t) feed
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Qch4(t)

x̂k−1

disturbances

y

Figure 9.32: Real-Time Substrate Feed Optimization with a Re-Calibration Module. This
figure is equal to Figure 9.1 with the only change that here a module to re-calibrate the
process model and the state estimator is integrated. The new module is colored in blue.

The second idea is based on the fact that the control error ech4(t) must be minimal and
at the same time the optimal feed ou∗

k [tk, tk + δ) and the really applied feed uctrl(t)

(see eq. (9.6)) will be approximately the same if the model is perfect. The error between
both feeds shall be denoted by ∆uctrl(t) := uctrl(t)− ou∗

k [tk, tk + δ). By observing the
weighted sum of both error terms over a moving window∫ tk

tk−Nctrl·δ
∆uT

ctrl(τ) ·Qctrl ·∆uctrl(τ) + e2ch4
(τ)dτ > εctrl

it can be identified whether there is a deviation between model prediction and plant
behavior. There, Qctrl is a weighting matrix, εctrl ∈ R+ is an upper boundary and
Nctrl ∈ N defines the length of the moving window.
To answer the second question from above - what is the reason for the deviation of
model predictions? - is very difficult. The reason is that there are many possible reasons
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for this deviation as is listed above. By regular re-calibration of the online measurement
devices their drift can at least be limited so that one item of the list above can be solved.
A drift in methane concentration measurement could be detected by a static model
calculating the biomethane potential of the substrate feed or by reverse calculation
using the produced electrical energy assuming a constant electrical degree of efficiency
of the CHPs and a drift free measurement of biogas production.
If, in case of a plant-model mismatch, model parameters should be re-calibrated the
question arises whether they can be estimated reliably given available online and offline
measurements of the plant. The field dealing with this kind of question is called practical
identifiability analysis (Brun et al., 2001, Dochain and Vanrolleghem, 2001, Raue et al.,
2009, 2011). To the author’s knowledge such a practical identifiability analysis has not
yet been performed for the ADM1. As on full-scale biogas plants there are only a few
online or frequently measured values, practical identifiability of most ADM1 parameters
will be rather difficult. The reason is also that most full-scale biogas plants are operated
at steady state and therefore kinetic parameters cannot be determined. With a shift of
biogas plant operation to demand-oriented operation this might change in the future.
If a model mismatch is detected a re-calibration module could be implemented as is
sketched in Figure 9.32.

9.4.3 Extension of the Control Scheme by a Supervised Expert
System

Due to the complexity of the anaerobic digestion process also the most detailed model is
always only a very scarce approximation of reality. As a failure in biogas plant operation
can be very expensive one should not trust the RTO suggested feeds blindly. As optimal
operation often also means risky operation in special situations the suggested feeds must
be used with care. Therefore, a scheme as sketched in Figure 9.33 is suggested.

expert
decision
system

RTO

expert decision
system
sets feed

operator
approves
of feed

biogas
plant

database OK optimal feed approved feed

abnormal state feed

Figure 9.33: Expert decision system and operator are important parts of the closed-loop feed
control.

In Figure 9.33 an expert system superimposes the RTO scheme and in special situations
may overrule it. The expert system could be a rule-based system that analyses in which
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state the biogas plant is in and based on that it decides whether the state is normal
or abnormal. If the state is normal the RTO may propose its optimal substrate feed. If
the state is abnormal then the expert system suggests a feed that is maybe more safe.
The rules in the expert system could be defined by the biogas plant’s operator using
his valuable expert knowledge. The state detection of the expert system is based on
the available data in the database and explicitly also can use measurements that can
not be used in a mechanistic simulation model yet. This means that the state also may
contain variables that can not be modeled yet. The final decision of the expert system
might be implemented using fuzzy logic.
No matter which system suggests the feed it is always recommendable that the operator
always has to approve (release) the feed before it is fed to the biogas plant, see Fig.
9.33.

9.4.4 Use of Models to Extend the Process Control
The process control Antonelli et al. (2003) that is used in the RTO control scheme
above is not model-based. The literature review in Chapter 6 revealed that many
process controls do exist that could be used instead of Antonelli et al. (2003). In the
following some ideas are collected that could be worth investigating to improve the
process control.
To use a MPC as process control using the linearized ADM1 would be a straight forward
extension of the RTO scheme. As the state of the ADM1 is already estimated by the
state estimation method the state estimate for the MPC comes for free. As nowadays
it is no problem any more to solve a convex optimization problem online, to develop
such a process control could be worth a try. The interested reader is referred to the
following literature for a quick start: Kauder et al. (2007), Benhalla et al. (2010), Smets
et al. (2003).
Instead of using the linearized ADM1 one could also use the singular thresholding
method to create a linear model (Qin and Badgwell, 2003).

9.4.5 Increasing the Speed of the RTO Scheme
The time to solve the nonlinear optimization problem at each control sampling time
is quite long and needs a lot of resources. Therefore, to shorten this time is of great
interest. The time consuming part in the optimization problem is the evaluation of the
objective function J because it triggers a simulation of the biogas plant model. By
using approximations of the complex model these times can severely be reduced. This
approach is also followed by the method SMS-EGO (see Section 3.2) using a DACE
model. This DACE model is learned on the fly using simulation results of the expensive
model. An extension of this idea would be to use the methods of Co-Kriging (Forrester
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et al., 2007). There, also simpler models can be used to train the DACE model and by
that improve the quality of the resulting DACE model.
Static models are examples of such simpler models. Two ideas are presented in the
following.
The first idea is to use a state dependent static model. Based on the current state and
constant substrate feed of the plant it predicts its steady state solution. As noted in
subsection 9.3.3.2 above most of the time the steady state of a biogas plant does not
depend on its initial state but only on the substrate feed. Therefore, this model most
of the time would be a usual static one and only for some special regions of the state
space it would be state dependent. Such a model could be created as a “black-box”
model which is trained beforehand by simulations with the complex simulation model.
The second idea would be to use a mechanistic static model. Based on the biomethane
potential (Angelidaki et al., 2009) of a substrate its potential for energy production
can be estimated. Furthermore, given the purchasing cost of a substrate an economic
gain can be calculated. Using this, the economic gain of a substrate mixture can be
obtained. This is a very gross approximation of the complex model but it is a very
simple and fast one. This approach is currently investigated by my colleague Martin
Zaefferer at Cologne University of Applied Sciences.

9.4.6 Implementation of Simulation Model and Process Control in
Different Units

Using the biogas plant model and the process control in the same Simulink® model
causes numerical difficulties for the ODE solver to simulate the model. Therefore,
separating both components in two different Simulink® models might be an option.
Communication and synchronization of both might be possible using OPC (formerly:
OLE for process control5).

5http://www.opcconnect.com/

http://www.opcconnect.com/

