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Chapter 6

State of the Art of Biogas Plant Feed
Control
The anaerobic digestion process is used for a wide range of applications (Olsson et al.,
2007). Depending on the application the main objectives for process control vary.
Whereas the goal of agricultural biogas plants (ABP) is renewable energy production,
anaerobic wastewater treatment aims for minimization of the pollution (measured as
COD) in the effluent while maximizing the throughput. Therefore, control objectives
and properties of potential feed control algorithms must be adapted to match the needs
of the application. Although the primary goal of ABP is energy production a control
also needs to assure safe and stable process conditions. At the same time profit has
to be maximized and ecological criteria have to be met. But, most control methods
proposed so far are only capable of satisfying one or two of these criteria at the same
time. The most often encountered ones are:

• maximization or set-point tracking of methane production rate (economical
criteria)

• minimization or set-point tracking of COD in the digester effluent (ecological
criteria)

• control of stability criteria, such as VFA, VFA/TA, propionate or dissolved
hydrogen

An important difference between ABP and anaerobic waste treatment plants is that in
the latter application the operator often cannot choose between different feeds, because
there often is only one mixed feedstream available, e.g. wastewater. Given a limited
storage capacity for the input, the scope of feed control is restricted. This is in contrast
to ABP, where a range of different feeds is used. These are all separately stored and
solely used for energy production.
To investigate whether control methods exist, which optimally control either an ABP
or a waste treatment process, respectively, a definition of optimal control for both
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applications is necessary. This definition is given in Definitions 6.1 and 6.2.

Definition 6.1: A substrate feed control for an ABP is said to be optimal if it is a
robustly stable setpoint control for the produced volumetric flow rate of methane, while
maximizing the economical benefit, minimizing the ecological footprint and maximizing
process stability.

Definition 6.2: A substrate feed control for an anaerobic waste treatment process
is said to be optimal if it is a robustly stable setpoint control for effluent COD,
while maximizing the throughput as well as economical benefit, minimizing the
ecological footprint and maximizing process stability. Instead of a COD setpoint
control, minimizing the effluent COD is possible as well.

Most of the published control methods are applied to anaerobic wastewater treatment
systems, only very few are focused on controlling dry (total solids content TS >

20 %FM) or semi-dry (8 %FM < TS < 15 %FM) digestion processes. Due to that most
controls are only capable to control the feed of one substrate, mostly the wastewater.
Therefore, the dilution rate of the feed is very often used as the manipulated variable.
Depending on the application control variables such as methane flow rate or COD in
the effluent as well as stability parameters such as VFA/TA, bicarbonate (Rozzi et al.,
1985), propionate or dissolved hydrogen are used (see also Molina et al. (2009), Boe
et al. (2010)). In low-buffered systems pH can also be an indicator for process stability
(Björnsson et al., 2000).
The following extensive review of control methods proposed for biogas plant control is
presented to give an overview of the state of the art of AD control. The review includes
146 publications focusing on the development of algorithms for substrate feed control
for anaerobic digestion processes. Only those anaerobic digestion processes are included,
that produce biogas, thus excluding dark fermentation and processes producing acids
only. The control methods range from simple on/off and PID controllers over fuzzy
and neural network control up to linearizing and other advanced approaches such as
adaptive, robust and model-based control methods.
Excellent reviews on monitoring and control of anaerobic digesters can be found in Ols-
son et al. (2007) and Pind et al. (2003). The experience of 15 years in instrumentation,
control and automation in anaerobic digesters is summarized in Steyer et al. (2006).
In Batstone and Steyer (2007) and Strömberg et al. (2012) comparisons of different
control approaches are performed in simulation studies using the Anaerobic Digestion
Model No. 1 (ADM1) (see Section 7.1, Batstone et al. (2002a)). They are two of the
very few objective control comparisons of three, respectively four control methods.
However, a broad comparison of the high number of existing control methods has not
yet been performed. Thus, the need for further objective performance evaluation and
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comparison of control strategies at full-scale AD plants is high.

6.1 Classical Control
To classical control methods belong the well known PID controllers and on/off control.
Applications of these control methodologies are listed in the Tables 6.1, 6.2 and 6.3.
For the convenience of the user all tables are shifted to the end of this chapter, see
Section 6.7.
In the 70s the first control methods were proposed (Table 6.1), which are mainly on/off
controls, that set the manipulated variable to a binary value depending on predefined
threshold values. They were followed by PID controls including P, PI, and PID cascade
controls, which are listed in Tables 6.2 and 6.3. PID cascade controls are a simple
but effective approach for feed control such that they are nowadays still developed
and published with good results. Their advantages are that two possibly conflictive
setpoints can be simultaneously controlled while the setpoint of the master loop can
be set by an expert system. As previously noted, most approaches are dedicated to
control anaerobic wastewater treatment processes, such that almost all listed methods
use the dilution rate as the manipulated variable.
Approaches such as Liu et al. (2004a), Alferes et al. (2008), Alferes and Irizar (2010)
are dedicated to control biogas production at a setpoint, or to operate the digester at
high organic load, respectively. Therefore they try to maximize the economical benefit
of the digester, whereas the setpoint is set accordingly to not overload the digester.
But they do not use direct measurements such as VFA, COD, dissolved hydrogen or
bicarbonate which are able to signalize whether the digester is currently overloaded.
This is done by Zhou et al. (2012), where the methane flow rate setpoint is set based
on measurements of VFA and VFA/TA.
Another approach is to minimize COD in the effluent or the VFA content inside the
digester as is e.g. done by Alvarez-Ramirez et al. (2002), Batstone and Steyer (2007),
Mu et al. (2007). Their goal is to stabilize the digester and maximize the degradation
of COD. In contrast to them the approach in García-Diéguez et al. (2011) is able to
maximize the methane flow rate, while tracking a setpoint for VFA in the digester
effluent. However, as the setpoint for methane depends on the VFA concentration in
the digester, this control is not suited to control agricultural biogas plants, which are in
need of a user-defined methane setpoint. Together with Boe and Angelidaki (2012) it is
the only approach that was applied at pilot-scale, the others were applied at lab-scale,
none was applied at full-scale.

6.2 Expert Systems
Expert systems are rule-based systems (Table 6.4), fuzzy systems (Table 6.5) and
systems extended with a surrogate model such as an artificial neural network (Table
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6.6). As biogas plants are nonlinear processes, applying nonlinear control methods
comes quite natural. Such expert systems are quite popular for controlling anaerobic
digesters because of their intuitive design based on rules and their non-linearity coping
with the non-linearity of the plant. The first approach is performed by rule-based
systems such as the well-known fuzzy controls and the latter one by the use of neural
networks. Furthermore, expert systems can incorporate all measured variables easily
and are easily extensible if an additional process value is measured in the future.
Because of their non-linearity their disadvantage is that it can not be proofed whether
the closed-loop control is stable. Furthermore, surrogate models need proper data to
train them otherwise these models can be very bad representatives of the real process.
Especially for full-scale plants obtaining data representing the full range of operation
very often is not possible, such that those models actually only will work on lab- and
pilot-scale where a dynamic operation is more easily.
Approaches not listed in the tables, because not really fitting but related to this topic
are Flores et al. (2000a) and Kottas et al. (2006).

6.3 Linearizing Control
Conventional linear controls have a disadvantage controlling a nonlinear process
because the closed loop is nonlinear (see Figure 6.1). Linearizing controls are designed
so that the closed loop is linear. Linear means, that the time t dependent dynamics
of the control error signal e(t) can be described by the first order differential equation
d
dte(t) + C(t) · e(t) = 0, with the damping factor C(t) > 0, assuming d

dtC(t) ≈ 0. As a
consequence the control error converges exponentially to zero with increasing time t:
e(t) = exp (−C(t)) ·e(0). As a result linearizing controls can be highly nonlinear, which
means that they are not per default robust against uncertainties such as noise or model
mismatch. Using interval observers, they can be made robust against uncertainties in
the process input and initial states. Furthermore, model parameters can be properly
estimated using adaptive schemes. Linearizing controls can have different kind of
properties from model-based, adaptive to robust, which is why there are many different
philosophies and approaches on how to develop linearizing controls. Linearizing controls
are popular for a stabilizing feed control of anaerobic digestion processes and the
dilution rate is mostly used as manipulated variable. The approaches found in the
literature are listed in the Tables 6.7 and 6.8.
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Figure 6.1: Comparison between conventional and linearizing control (cf. Bastin and Dochain
(1990)).

6.4 Discontinuous Control
Discontinuous controls come from optimal control theory solving Pontryagin’s max-
imum principle (see Table 6.9). As they switch from a minimal to a maximal dilution
rate in one instant they have a bang-bang behavior. This behavior does not seem to
be practical for full-scale ABP, because, although theoretically impossible, such a huge
instantaneous change in the dilution rate might lead to process imbalances.

6.5 Other Advanced Controls
Other advanced control approaches are not further subdivided into different groups
and contain model-based, robust, adaptive and other approaches. They are listed in
Tables 6.10, 6.11 and 6.12.

6.6 Summary and Discussion
In this chapter an extensive review on feed control of the anaerobic digestion process
is given. Despite the vast amount of publications in this field, none was found
focusing on dynamic real-time feed optimization of co-digestion plants. The two key
features of dynamic RTO are an arbitrary optimization criterion to be defined by
the user and a dynamic model that is used for prediction. In most proposed control
algorithms the optimization criterion is restricted to be either to maximize or control
methane production or to minimize or control the COD concentration in the effluent.
Furthermore, no model based feed control was found that uses the Anaerobic Digestion
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Model No. 1 as prediction model. As a result, this review revealed a lack in research on
dynamic real-time feed optimization whereas this thesis is trying to make a contribution
to this field.
In the following paragraphs the main results of the review are examined.

Manipulated Variable By far the most developed controls use the dilution rate
as manipulated variable (see Figure 6.2a). Examples for other manipulated variables
are recirculation rates and the addition of bases to stabilize the process. In case of a
co-digestion plant only one substrate or a constant substrate mix can be controlled
using the dilution rate as manipulated variable. The other substrates then must be
calculated based on boundary conditions such as hydraulic retention time, organic
loading rate or restrictions defined by funding schemes (Zhou et al., 2012). For German
ABP some funding schemes are linked to a required minimal amount of manure and a
maximal allowable amount of maize in the feed (BMU, 2012a).

Scale of the Digester Looking at the scale of the digesters where the control
methods were applied to, it can be observed that most of the evaluations were performed
at lab-scale or pilot-scale plants (Figure 6.2b). However, a clear distinction between
lab and pilot-scale is difficult. Therefore, digesters with a volume from 500 l to
10 m3 are considered to be pilot-scale, while smaller digesters are lab-scale and larger
ones full-scale. The largest part of all proposed controllers are applied to simulation
models only. If controls are evaluated at simulation models, nowadays complex models
(such as Batstone et al. (2002b), Siegrist et al. (2002)) should be used to make the
evaluation as realistic as possible. As stability of controls can only be proved for simple
models exhaustive simulations can show the performance and stability of the control
empirically. Figure 6.2b clearly shows, that feed control of the anaerobic digestion
process has not yet reached full-scale application. The main reasons are a lack of
measurement devices and missing advanced diagnosis schemes, that are needed for
process monitoring (Batstone et al., 2004, Alcaraz-González et al., 2012). Whereas
control approaches for waste treatment processes, which come very close to the optimal
control defined in Definition 6.2, do exist (e.g. García-Diéguez et al. (2011), Dimitrova
and Krastanov (2009)), an optimal control for agricultural biogas plants as defined in
Definition 6.1 has not yet been developed. Although robustly stable methane setpoint
controls are available (e.g. Hilgert et al. (2000)), wrongly chosen setpoints might easily
lead to process imbalances that strongly affect process stability. Therefore, the key is
to set the setpoint properly, so that the process is stable at all times.

Substrates Looking at the substrates it can be observed, that the vast majority
of controls are applied to wastewater treating plants (see Figure 6.2c). Wastewater
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Figure 6.2: Percentage distribution of manipulated variable (121 publications), size of digester
(134 publications) and substrates (109 publications) of the reviewed publications.

includes different streams from municipal treatment plants and industry. Agricultural
substrates are energy crops, grass and manure. Solid waste is the organic fraction of
municipal solid waste as well as biowaste. For the latter two substrates only a very
few feed controls were developed in the past. Treating wastewater in high-rate reactors
offers the opportunity to operate with very low hydraulic retention times requiring a
control with a low sampling rate.

Concluding Remarks Substrate feed control for anaerobic wastewater treatment
has come very far in the last decades. Control algorithms yielding a good performance
are available and ready to be used in practice. But, feed controllers for ABP and solid
waste digesting plants are still lacking. The key difficulty with ABP is a lack of a
methane setpoint control which offers an economically profitable operation and at the
same time guaranteeing stable operation. Before such a control can be applied, robust
measurement devices must be installed or soft sensor approaches should be used to
estimate key process values. In solid waste digestion the main problem seems to lie
in the lack of sufficiently, mechanically robust measurement devices. Because of the
solids content such measurement devices are under very high mechanical stress, which
makes them more expensive than those developed for wastewater treatment plants.
High solid contents also lead to bad miscibility inside the digester. It is astonishing
how few full-scale applications are published in the literature. And the question remains
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how well advanced control methods applied to small-scale plants or simulation models
do perform in the real world at full-scale biogas plants.
To get a better overview over the vast amount of feed controllers the author thinks
that more objective comparisons of different controls should be published. Today it is
not that difficult to compare them at hand of advanced simulation models such as the
ADM1 (see Section 7.1) (Batstone et al., 2002a). For anaerobic wastewater treatment
the benchmark model BSM2 (Jeppsson et al., 2007) can be used, but to the author’s
knowledge no benchmark model for agricultural biogas plants exists.

6.7 Tables
In the following all tables created in this review are listed.
They are:

• Classical Control of Biogas Plants
– Table 6.1: on/off controls
– Table 6.2: PID controls
– Table 6.3: adaptive PID and PID cascade controls

• Expert Systems Control of Biogas Plants
– Table 6.4: expert systems
– Table 6.5: fuzzy controls
– Table 6.6: neural networks and special fuzzy systems

• Linearizing Control of Biogas Plants
– Table 6.7: Part I
– Table 6.8: Part II

• Discontinuous Control of Biogas Plants
– Table 6.9

• Other Advanced Controls for Biogas Plants
– Table 6.10: Part I
– Table 6.11: Part II
– Table 6.12: Part III
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Table 6.1: Classical Control of Biogas Plants: on/off controls

Control
type

Author Description Manipulated variable Control variable

on/off Podruzny and
van den Berg (1984)

“on” time proportional-integral to reference error
measured biogas flow rate Qgas
application: lab-scale AFB, synthetic wastewater

dilution rate biogas flow rate

on/off Denac et al. (1988) “off” time proportional to surplus above threshold
application: lab-scale FBR, wastewater dilution rate effluent VFA

on/off Rozzi (1984)
proposal of three controllers (1, 2, 3)
purpose of stabilization
application: simulation only

alkaline solution
1) pH
2) bicarbonate
3) pH, pCO2

on/off Whitmore and
Lloyd (1986)

membrane inlet mass spectrometry measures dissolved H2

application: lab-scale CSTR, wastewater, thermophilic dilution rate dissolved H2

on/off Whitmore et al.
(1987) as in Whitmore and Lloyd (1986), except: mesophilic dilution rate dissolved H2

on/off Andrews (1974) application: CSTR, simulation only, wastewater recirculation CH4 flow rate

on/off Pretorius (1994)
pH is measured in an unbuffered region based on biogas
stripping
application: lab-scale UASB, synthetic wastewater, mesophilic

dilution rate pH

on/off Romli et al. (1994)
2-stage (CSTR, FBR), recirculation is changed to find
optimum: min. addition of caustic soda/max. biogas flow rate
application: lab-scale CSTR, wastewater, mesophilic

caustic soda pH

on/off + P Graef (1972), Graef
and Andrews (1974)

proposal of three controllers: 1, 2) on/off, 3) P
in 1) the scrubbed gas (CO2) is recirculated to the digester
application: CSTR, simulation only

1) gas scrubbing
2) base addition
3) sludge recycle

1, 2) pH
3) CH4 flow rate
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Table 6.2: Classical Control of Biogas Plants: PID controls

Control
type

Author Description Manipulated variable Control variable

P Cord-Ruwisch et al.
(1997)

setpoint control; purpose: high OLR and stability
application: lab-scale CSTR, wastewater, mesophilic dilution rate dissolved H2

P Andrews (1974) application: CSTR, simulation only, wastewater base addition pH

P Franke et al. (2008) as in Cord-Ruwisch et al. (1997)
application: lab-scale CSTR, agricultural, mesophilic dilution rate dissolved H2

P
deadband Denac et al. (1990) based on alkaline consumption

application: lab-scale FBR, wastewater
- dilution rate
- alkali addition

- effluent VFA
- pH

I deadband
Feitkenhauer
et al. (2002)

application to an acidic phase reactor, goal: max. VFA
application: lab-scale CSTR, wastewater dilution rate VFA

PI von Sachs et al.
(2003)

application: two-phase AD system, lab-scale FBR (2nd
phase), wastewater, mesophilic
expert system overrules control in special user-defined cases

dilution rate biogas flow rate

PI Batstone and
Steyer (2007)

proposal of two controls (1, 2)
application: simulation only (ADM1), wastewater dilution rate 1) VFA

2) alkalinity

PI Mu et al. (2007)
decision system switches between both manipulated variables
application: simulation only, lab-scale UASB (ADM1d),
wastewater

- recirculation-to-influent ratio
- dilution rate effluent COD

PI + PID Ryhiner et al. (1993),
Heinzle et al. (1993)

proposal of four controllers (1 PI, 2 PID, 3 PI, 4 PID)
application: lab-scale FBR, whey, mesophilic dilution rate

1),2) pH
3) dissolved H2

4) organic acids

PI + PID Simeonov (1994) four different gas setpoints according to a performance index
application: simulation only; taken from Pind et al. (2003) dilution rate biogas flow rate

PID Marsili-Libelli
and Beni (1996)

purpose: stabilization
application: simulation only bicarbonate addition bicarbonate

alkalinity



6.7.
Tables

75

Table 6.3: Classical Control of Biogas Plants: adaptive PID and PID cascade control

Control
type

Author Description Manipulated variable Control variable

adaptive PI Perrier and Do-
chain (1993)

proposal of three controllers (1, 2, 3)
application: simulation only dilution rate

1) effluent COD
2) dissolved H2

3) propionate

adaptive
PID Zhou et al. (2012)

CH4 setpoint set by VFA and VFA/TA
application: simulation only (ADM1), CSTR, manure and
corn

dilution rate CH4 flow rate

cascade P Liu et al. (2004a,b)
inner loop: pH; outer loop: gas flow rate
setpoint of outer loop given by rule-based supervisory system
lab-scale AFB reactor, wastewater, mesophilic

dilution rate OLR

cascade P Boe and Angelidaki
(2012)

inner loop: VFA; outer loop: gas flow rate
rule-based system as in Liu et al. (2004a)
application: pilot-scale CSTR, manure, thermophilic

dilution rate CH4 flow rate

cascade P Liu et al. (2006)
same as Liu et al. (2004a)
inner loop pH control is rule-based variable-gain P control
with rules defined by state machine
lab-scale AFB reactor, wastewater, mesophilic

dilution rate OLR

cascade P Alferes et al. (2008)
same as Liu et al. (2004a)
includes fill level of an upstream equalization tank
application: simulation only (ADM1), UASB-AF, wastewater

dilution rate - OLR
- fill level

cascade P Alferes and Irizar
(2010)

same as Alferes et al. (2008)
rule-based supervisory system implemented by a fuzzy module
application: simulation only (ADM1), UASB-AF, wastewater

dilution rate - OLR
- fill level

cascade PI Alvarez-Ramirez
et al. (2002)

inner loop: VFA; outer loop: COD
application: lab-scale UASB, wastewater dilution rate effluent COD

cascade PID García-Diéguez
et al. (2011)

inner loop: methane flow rate; outer loop: VFA
application: pilot-scale UASB-AF, wastewater, mesophilic dilution rate - CH4 flow rate

- effluent VFA
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Table 6.4: Expert Systems Control of Biogas Plants: expert systems

Control
type

Author Description Manipulated variable Control variable

expert
system

Boe (2006),
Boe et al. (2008)

if propionate …, then in-/decrease feed
high fluctuations in biogas flow rate, because propionate is too
persistent
application: lab-scale CSTR, cow manure, thermophilic

dilution rate propionate

expert
system

Barnett and Andrews
(1992)

rules implemented with fuzzy logic
inputs: a lot; output: a few next to dilution rate
application: simulation only

dilution rate normal operation

expert
system

Chynoweth
et al. (1994)

rules based on CH4 flow rate, its derivative, dilution rate and its
derivative
able to distinguish between overloading, underloading and inhibition
application: lab-scale CSTR, wastewater, mesophilic

dilution rate CH4 flow rate

expert
system Moletta et al. (1994) inputs: pH, biogas flow rate, H2 content of biogas

application: lab- and pilot-scale FBR, wastewater, mesophilic dilution rate normal operation

expert
system Ehlinger et al. (1994) decision tree: pH, gas and H2 flow rate

application: lab-scale FBR, mesophilic, wastewater dilution rate normal operation

expert
system Flores et al. (2000b) application: start-up of pilot-scale UASB-AF reactor, wastewater dilution rate normal operation

expert
system

Pullammanappallil
et al. (1991, 1998)

bumpless switch between four different control strategies based on a
t-test:
1) set-point control, 2) constant yield control
3) batch operation, 4) constant dilution rate
application: lab-scale CSTR, wastewater, mesophilic

dilution rate CH4 flow rate

expert
fuzzy
system

Müller et al. (1997)
H2 and CH4 flow rate; uses Fuzzy C-Means Clustering of Marsili-
Libelli and Müller (1996)
application: lab-scale FBR, wastewater, mesophilic

- bypass
- storage
- dilution

normal, overload,
inhibition,
toxicity

expert
fuzzy
system

Puñal et al. (2001,
2002), Carrasco (2002)

many input variables
application: pilot-scale UASB-AF, wastewater flow rates over-, underload

recovery
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Table 6.5: Expert Systems Control of Biogas Plants: fuzzy controls

Control
type

Author Description Manipulated variable Control variable

fuzzy P Bernard et al. (2001b) inputs: TA, VFA/TA
application: pilot-scale FBR, wastewater dilution rate VFA/TA

fuzzy P Scherer et al.
(2008, 2009)

inputs: pH value, CH4 content and specific gas flow rate
application: lab-/pilot-scale CSTR, agricultural, meso-
/thermophilic

dilution rate OLR

fuzzy I Boscolo et al. (1993) inputs: nine variables
application: pilot-scale CSTR, OFMSW, thermophilic

- feed rate
- TS of feed
- recycling rates

normal operation

fuzzy P +
PI

Murnleitner (2001),
Murnleitner et al.
(2002),
Grepmeier (2002)

inputs: H2, CH4, biogas flow rate, pH, filling level
application: lab-scale FBR, two-stage, wastewater, mesophilic

- different flows (PI)
- pH (P)
- temperature (P)

overload
avoidance

fuzzy PI Estaben et al. (1997)
inputs: error to setpoints of gas flow rate and pH value and
the derivatives of the errors; output: change of feed rate
application: lab-scale FBR, wastewater

dilution rate - gas flow rate
- pH value

fuzzy PI Puñal et al. (2003)
inputs: error of VFA to its setpoint and its derivative
output: change of feed rate
application: pilot-scale AFB, wastewater

dilution rate effluent VFA

fuzzy PI Garcia et al. (2007)
inputs: CH4 flow rate; H2 content of gas; VFA/TA
output: change of feed rate
application: ADM1, lab-scale UASB-AF, wastewater

dilution rate OLR

fuzzy PI Wolfsberger (2008) eight different fuzzy controls
application: lab-scale, agricultural, meso-/thermophilic dilution rate OLR

fuzzy PI
cascade

Martinez-Sibaja
et al. (2007)

- inner loop (conventional PI): pH
- outer loop (fuzzy PI): gas flow rate
application: simulation only

dilution rate - gas flow rate
- pH value
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Table 6.6: Expert Systems Control of Biogas Plants: neural networks and special fuzzy systems

Control
type

Author Description Manipulated variable Control variable

hierarch-
ical fuzzy Steyer et al. (1997)

inputs: control error of pH, T and biogas flow rate
for a small rule-set a hierarchical fuzzy structure is chosen
application: lab-scale FBR, wastewater, mesophilic

dilution rate VFA

neural
network

Holubar et al.
(2002, 2003)

ANN models for: pH, VFA, biogas production and composition
optimal COD loading rate is solution of max. CH4 flow rate
and COD degradation; application: lab-scale CSTR, primary
sludge

COD loading rate CH4 flow rate

neural Wilcox et al. (1995),
Guwy et al. (1997)

ANN model for bicarbonate alkalinity (BA) out of past BA
values
application: lab-scale FBR, ice-cream and baker’s yeast WW

BA dosing pump bicarbonate
alkalinity

neural
network

Emmanouilides
and Petrou (1996)

adaptive on-line trained neural networks
application: simulation only dilution rate - CH4 flow rate

- effluent COD

neural-
fuzzy

Yordanova et al.
(2004)

fuzzy PI, fuzzy tuning control
application: simulation only, wastewater dilution rate biogas flow rate

neural-
fuzzy Waewsak et al. (2010)

ANN models for: pH, TA and VFA, predicted out of past
values
application: lab-scale UASB-AF, synthetic WW, mesophilic

dilution rate - high performance
- stability

fuzzy
supervision

Carlos-Hernandez
et al. (2007)

Takagi-Sugeno supervisor switches between:
1) open loop, 2) base addition (fuzzy PI), 3) dilution rate
(fuzzy PI)
application: FBR, wastewater, simulation only

- base addition
- dilution rate high performance

fuzzy
supervision

Carlos-Hernandez
et al. (2010a)

as in Carlos-Hernandez et al. (2007)
PCA and Takagi-Sugeno estimate biomass and substrate
application: CSTR, wastewater, simulation only

- base addition
- dilution rate CH4 flow rate

fuzzy
supervision Gurubel et al. (2013) as in Carlos-Hernandez et al. (2010a), additional using PSO

to improve setpoint tracking
- base addition
- dilution rate CH4 flow rate

neural-
fuzzy

Carlos-Hernandez
et al. (2010b)

as in Carlos-Hernandez et al. (2007)
neural observer trained by EKF estimates methanogenic
biomass
application: FBR, abattoir wastewater, simulation only

- base addition
- dilution rate high performance
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Table 6.7: Linearizing Control of Biogas Plants: Part I

Control type Author Description Manipulated variable Control variable

linearizing
Alvarez-Ramirez
et al. (1996), Monroy
et al. (1996)

adaptive, no need for measuring biogas flow rate
application: lab-scale UASB, wastewater, mesophilic dilution rate effluent COD

linearizing Petre et al. (2007) adaptive, asymptotic state observer
application: simulation only dilution rate effluent COD

feedback
linearization Angulo et al. (2007) derivation using AM1 (Bernard et al., 2001a), model-based

application: simulation only, AFB reactor, wastewater dilution rate effluent VFA

external
linearization Renard et al. (1988) adaptive control, influent COD needs to be measured

application: lab-scale CSTR, WW (citric acid), mesophilic dilution rate effluent COD

external
linearization Johnson et al. (1995) Renard et al. (1988) approach used

application: lab-scale AFB, wastewater, mesophilic dilution rate effluent COD

external
linearization Renard et al. (1991) adaptive control, influent COD needs to be measured

application: lab-scale CSTR, WW (citric acid), mesophilic dilution rate propionate

linearizing Dochain and Per-
rier (1993)

direct adaptive linearizing
application: CSTR, simulation only dilution rate propionate

linearizing Dochain et al. (1991) nonlinear adaptive, model-based
application: CSTR, simulation only dilution rate dissolved H2

linearizing Bernard et al.
(2001b)

adaptive control, influent COD estimated by soft sensor
application: pilot-scale FBR, wastewater

- dilution rate
- alkalinity VFA/TA

linearizing Rincon et al. (2009) adaptive control, normal form of fold bifurcation
application: simulation only, wastewater dilution rate effluent VFA

linearizing Simeonov and Quein-
nec (2006)

model-based, organic wastes and acetate
application: simulation only, CSTR, mesophilic acetate addition biogas flow rate
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Table 6.8: Linearizing Control of Biogas Plants: Part II

Control type Author Description Manipulated variable Control variable

robust
linearizing

Rapaport and Har-
mand (2002)

interval observer
application: simulation only, CSTR dilution rate effluent COD

geometric
Méndez-Acosta
et al. (2003, 2004,
2005)

to avoid overshooting fuzzy-based gain-scheduling and anti-
windup scheme are used, high-gain observer
application: simulation only, AFB, wastewater

dilution rate effluent COD

geometric
robust

Méndez-Acosta
et al. (2007a, 2008)

model-based: extended Luenberger observer
application: pilot-scale AFB, wastewater dilution rate effluent VFA

geometric
robust

Méndez-Acosta
et al. (2007b)

model-based: extended Luenberger observer; proposal of two
controls (1, 2); TOC: total organic carbon
application: pilot-scale AFB, wastewater, mesophilic

dilution rate 1) VFA
2) TOC

geometric
robust

Méndez-Acosta
et al. (2010)

model-based: extended Luenberger observer, antiwindup
structure
application: simulation only, wastewater

- dilution rate
- alkali solution

- VFA
- TA

linearizing Dochain and
Bastin (1985)

nonlinear adaptive
application: CSTR, simulation only dilution rate effluent VFA

Generic Model
Control Costello et al. (1989) improvement of Dochain and Bastin (1985)

application: CSTR, simulation only, wastewater dilution rate effluent COD

linearizing Petre et al. (2013)
three controls: 1) adaptive (asymptotic observer), 2) robust,
3) robust-adaptive (interval observer, both)
application: CSTR, simulation only, wastewater

dilution rate effluent COD

VSM
Tartakovsky et al.
(2002, 2005)

variable structure model (VSM) containing three linear
submodels, for each submodel one linearizing control
application: lab-scale UASB, synthetic wastewater, mesophilic

influent COD effluent COD

decoupled
linearizing

Aguilar-Garnica
et al. (2007, 2009)

two-phase AD system, modeled by PDE, observer-based
estimator
application: simulation only, two AFBs, wastewater

recycle flow rates - effluent VFA
- effluent COD
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Table 6.9: Discontinuous Control of Biogas Plants

Control type Author Description Manipulated variable Control variable

singular
control

Stamatelatou
et al. (1997)

optimal is model-based (bang-bang), suboptimal is P control
application: CSTR, simulation only dilution rate CH4 flow rate

switching con-
trol policy

Sbarciog et al. (2011,
2012a), Sbarciog
and Vande Wouwer
(2012)

bang-bang control maximizes CH4 flow rate
application: CSTR, simulation only, wastewater dilution rate CH4 flow rate

switching con-
trol policy

Sbarciog et al.
(2012b)

as Sbarciog et al. (2011) and others, but biogas measured only
application: CSTR, simulation only, wastewater dilution rate CH4 flow rate

piecewise
continuous

Chamroo et al.
(2008)

two controls (1, 2)
application: simulation only dilution rate 1) effluent COD

2) CH4 flow rate

sliding mode Tabrizi et al. (2010) application: AFB, simulation only, wastewater dilution rate effluent COD

sliding mode Kravaris and Sa-
voglidis (2012) application: CSTR, simulation only dilution rate CH4 flow rate
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Table 6.10: Other Advanced Controls for Biogas Plants: Part I

Control type Author Description Manipulated variable Control variable

disturbance
monitoring Steyer et al. (1999)

increased biogas yield caused by an impulse in feed is
compared with expected. Overloading/inhibition reflected by
an unsatisfactory gas yield.
application: lab-scale FBR, wastewater, mesophilic

dilution rate biogas flow rate

disturbance
accommodating

Harmand et al.
(2000)

ARMAX model with bias estimation
application: lab-scale FBR, wastewater dilution rate biogas flow rate

nonlinear
adaptive

Polihronakis
et al. (1993)

proposal of three controls: 1), 2) and combination of both
combination switches between both control objectives
application: full-scale, wastewater

dilution rate 1) effluent COD
2) CH4 flow rate

adaptive
robust Hilgert et al. (2000)

ARMAX model with uncertain part, estimated by kernel
estimator
application: lab-scale FBR, wastewater, mesophilic

dilution rate biogas flow rate

adaptive Harmon et al. (1993) taken from Pind et al. (2003)
application: lab-scale CSTR, glucose temperature CH4 flow rate

nonlinear Harmon et al. (1990) constant reactor yield control
application: lab-scale CSTR, synthetic WW, thermophilic dilution rate CH4 flow rate

sampled de-
layed control

García-Sandoval
et al. (2007)

nonlinear, robust, delayed measurements
application: simulation only, wastewater dilution rate effluent COD

sampled de-
layed control

Méndez-Acosta
et al. (2011)

same as in García-Sandoval et al. (2007), COD measured daily
application: lab-scale AFB, wastewater, mesophilic dilution rate effluent COD

robust output
feedback

Antonelli et al. (2002,
2003)

nonlinear; only measured variable: CH4 flow rate
application: pilot-scale AFB, wastewater, mesophilic dilution rate CH4 flow rate

robust output
feedback

Mailleret and Bern-
ard (2001), Mailleret
et al. (2003)

CH4 flow rate and input COD needed
application: pilot-scale AFB, wastewater dilution rate effluent COD
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Table 6.11: Other Advanced Controls for Biogas Plants: Part II

Control type Author Description Manipulated variable Control variable

nonlinear
adaptive

Mailleret et al.
(2004)

CH4 flow rate needed
application: pilot-scale AFB, wastewater dilution rate effluent COD

nonlinear
adaptive

Dimitrova and
Krastanov (2009)

extremum seeking algorithm to maximize CH4 production
application: simulation only dilution rate - effluent COD

- CH4 flow rate

adaptive Seok (2003) recursive system identification, convex optimization problem
application: lab-scale FBR, wastewater, mesophilic dilution rate propionate

extremum
seeking

Marcos et al.
(2004a,b)

adaptive; substrate concentration kept at setpoint
application: CSTR, AFB, simulation only dilution rate CH4 flow rate

extremum
seeking

Simeonov et al.
(2007), Simeonov
and Stoyanov (2011)

application: CSTR, simulation only, mesophilic dilution rate CH4 flow rate

LQT Mu et al. (2008)
linear quadratic tracking (LQT) and error integral action
application: simulation only, lab-scale UASB, distributed
model, wastewater

- recirculation-to-feed ratio
- bypass-to-feed ratio effluent COD

NMPC Aceves-Lara
et al. (2010)

asymptotic observer estimates influent, effluent and some
product concentrations; dark fermentation
application: lab-scale CSTR, diluted molasses, mesophilic

dilution rate H2 flow rate

EPSAC-MPC Ordace et al. (2012) Extended Prediction Self-Adaptive Control (EPSAC)
application: simulation only (ADM1), wastewater sludge feed flow rates CH4 flow rate
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Table 6.12: Other Advanced Controls for Biogas Plants: Part III

Control type Author Description Manipulated variable Control variable

variable-gain Rodríguez
et al. (2006)

indirect COD control by controlling H2 in gas phase
application: pilot-scale UASB-AF, wastewater dilution rate effluent COD

composed Wang et al.
(2011, 2013)

algebraic differential estimator, adaptive (Wang et al.,
2011); model-free (Wang et al., 2013)
application: CSTR, simulation only, agricultural, meso-
philic

dilution rate CH4 flow rate

adaptive
optimization Ryhiner et al. (1992) steepest descent finds optimal operating point

application: FBR, wastewater dilution rate - CH4 flow rate
- VFA

saturated
proportional

Grognard and Bern-
ard (2006)

no input COD measurement needed; attracts to a region
application: simulation only, wastewater dilution rate effluent COD

H∞
Flores-Estrella
et al. (2013) application: simulation only, wastewater dilution rate effluent COD

dynamic
compensator

Simeonov and
Stoyanov (2003)

linear model with interval parameters; proposes two controls
(1, 2)
application: simulation only

dilution rate 1) biogas flow rate
2) effluent COD

robust
adaptive Rincón et al. (2012) Lyapunov-like function

application: simulation only, wastewater dilution rate effluent VFA

robust set-
valued

Alcaraz-González
et al. (2000)

interval observers, nonlinear
application: simulation only, AFB, wastewater dilution rate - effluent VFA

- effluent COD

robust
interval

Alcaraz-González
et al. (2001, 2005)

interval observers
application: pilot-scale AFB, wastewater dilution rate effluent COD


