

Cover Page

The handle http://hdl.handle.net/1887/29085 holds various files of this Leiden University
dissertation

Author: Gaida, Daniel
Title: Dynamic real-time substrate feed optimization of anaerobic co-digestion plants
Issue Date: 2014-10-22

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29085

Chapter 4

State Estimation
Given a real-world system as introduced in the beginning of Chapter 2 it can not
be assumed that the state x of the system is known at each time t. Nevertheless,
the NMPC approach in eq. (2.20) assumes, that x is known at each discrete time tk,
for k = 0, 1, 2, . . . (for the definition of tk see equation (2.6)). Those ny ∈ N0 process
values that can be observed of a system are denoted by the measurement value function
y : R+ → Y, Y ⊆ Rny , and the functional connection of the current measurement values
y(t) and the current state of the system x(t) is given by:

y(t) = h (x(t),υ(t)) . (4.1)

Inaccuracies in the real-valued measurement function h : X × Rnυ → Y as well as
measurement noise, are modeled by the nυ ∈ N0 dimensional white Gaussian noise
process υ : R+ → Rnυ with covariance matrix Ψυ ∈ Rnυ×nυ .

The question arises, whether it is possible to estimate the values of the system state
x at each time tk, given equations (2.1) and (4.1) as well as u(τ) and y(τ) for each
τ ∈ [0, tk]. The state vector estimate at time tk will be symbolized using x̂(tk) and
the corresponding function is x̂ : R+ → X . This state estimate x̂ will be used by the
NMPC (eq. (2.20)) as an approximation of the real state x at each time tk.

Let us assume that there are two different sampling times where the measurement y

and input values u are acquired. The one for the measurement values is named δy ∈ R+

and the one for the input values δu ∈ R+. The ratio of the control sampling time δ (see
Section 2.1) and both sampling times δy ≤ δ and δu ≤ δ are defined by the symbols:

Nδy :=
δ

δy
∈ N0 and Nδu :=

δ

δu
∈ N0. (4.2)

In the following three sections (4.1 - 4.3) three different state estimation methods are
proposed. Thereafter, they are applied at an anaerobic digestion process in a simulation
study in Section 4.4.

34 4. State Estimation

4.1 State Estimation using Software Sensors
In this section an approach is developed, that tries to find a function FE : YNδy ·k+1 ×
UNδu ·k+1 → X with the sets

YNδy ·k+1 := {y (0) ,y (δy) , . . . ,y (δ) ,y (δ + δy) , . . . ,y(tk)} (4.3)

and

UNδu ·k+1 := {u (0) ,u (δu) , . . . ,u (δ) ,u (δ + δu) , . . . ,u(tk)} (4.4)

estimating the state of the system at time tk. This function FE uses the complete
stream of inputs u and outputs y of the system recorded from time 0 until time tk

and therefore is a completely data based state estimator. Its returned state estimate
x̂FE : R+ → X defined as

x̂FE(tk) := FE

y (0) , . . . ,y(tk)︸ ︷︷ ︸
∈ YNδy ·k+1

,u (0) , . . . ,u(tk)︸ ︷︷ ︸
∈ UNδu ·k+1

 ∈ X (4.5)

would be the best state estimate that could be achieved based on the input and output
data. Unfortunately the amount of data used in this approach is increasing with time tk,
therefore in practice it will only be possible to find an approximation of this function
FE, defined as F̃E : YNy+1 × UNu+1 → X . There a constant number of input and
output samples is used, which are Nu + 1 ∈ N and Ny + 1 ∈ N using a sliding window
approach. To be able to interpret Ny and Nu some formalism has to be introduced.
To make the domain of F̃E sufficiently small, causal moving average filters are used to
merge adjacent samples of input and output data to one representative value. A moving
average filter for input data Λu ∈ FΛ, with the function space of moving average filters
FΛ and Λu : Uwu → U , with the window size wu ∈ Wu ⊂ N is defined as:

Λu (u(tk), . . . ,u (tk − (wu − 1) · δu)) :=
1

wu
·

wu∑
i=1

u (tk − (i− 1) · δu) . (4.6)

Note that a moving average filter can be implemented as a tapped delay line with
wu − 1 taps.
For the input data Nu moving average filters are used, each with a different window
size wu. Thus, the set of moving average window lengths Wu has Nu elements and
is defined as Wu := {wu,1, . . . , wu,Nu}. Then, to each window size wu,iΛu

belongs the
moving average filter Λu,iΛu

∈ FΛ, returning for each iΛu = 1, . . . , Nu the moving
average value uiΛu

: R+ → U defined as:

uiΛu
(tk) := Λu,iΛu

(
u(tk), . . . ,u

(
tk −

(
wu,iΛu

− 1
)
· δu
))
∈ U . (4.7)

We equally define a moving average filter for output data Λy ∈ FΛ, Λy : Ywy → Y,

4.1. State Estimation using Software Sensors 35

with the window size wy ∈ Wy ⊂ N0 as

Λy (y(tk), . . . ,y (tk − (wy − 1) · δy)) :=
1

wy
·

wy∑
i=1

y (tk − (i− 1) · δy) . (4.8)

For the measurement data Ny moving average filters are used, each with a different
window size wy. Thus, the set of moving average window lengths Wy has Ny elements
and is defined as Wy :=

{
wy,1, . . . , wy,Ny

}
. Then, to each window size wy,iΛy

the
moving average filter Λy,iΛy

∈ FΛ belongs, returning for each iΛy = 1, . . . , Ny the
moving average value yiΛy

: R+ → Y defined as:

yiΛy
(tk) := Λy,iΛy

(
y(tk), . . . ,y

(
tk −

(
wy,iΛy

− 1
)
· δy

))
∈ Y. (4.9)

The vector which is returned by the approximate state estimation function F̃E, defined
above, is used as state estimate at each time tk:

x̂(tk) := F̃E

y(tk),y1(tk), . . . ,yNy
(tk)︸ ︷︷ ︸

∈ YNy+1

,u(tk),u1(tk), . . . ,uNu(tk)︸ ︷︷ ︸
∈ UNu+1

 . (4.10)

Now it is established which values are passed to the estimation function F̃E. But,
what kind of function F̃E should be is not yet clear. At the moment, and there maybe
never will be, an equation which describes for a biogas plant how current and past
input and output values let one imply on the current state of the system. Therefore,
this function has to be found. In this thesis it was tried to find an approximation for
this function using supervised machine learning methods. In supervised learning many
matching input and output data samples are presented to the learning method. The
method tries to find a general structure in the seen data, which is then generalized
to all unseen regions of the data space. In the following subsection this idea is made
more clear. Furthermore, three machine learning methods are briefly introduced, which
were used to find a model for the state estimation function F̃E. These are Random
Forests, linear discriminant analysis and generalized discriminant analysis, whereas
both discriminant analysis methods are used as data preprocessing methods for a linear
classifier. As machine learning methods in general can be highly nonlinear, the state
estimator F̃E can be highly nonlinear as well. In contrast to a dynamic state estimation
method this one is static. Therefore, issues such as stability and convergence are not
applicable. The estimator is always stable. Its estimate does not converge to the real
state values, but there remains a data dependent estimation error.

36 4. State Estimation

4.1.1 Supervised Machine Learning Methods

To be able to apply machine learning methods training and validation samples are
created as follows. Without loss of generalization let us set δu = δy. Then the matrices

Y :=


yT (0),yT

1 (0), . . . ,y
T
Ny

(0),uT (0),uT
1 (0), . . . ,u

T
Nu

(0)

yT (δy) ,y
T
1 (δy) , . . . ,y

T
Ny

(δy) ,u
T (δy) ,u

T
1 (δy) , . . . ,u

T
Nu

(δy)
...

yT (tk),y
T
1 (tk), . . . ,y

T
Ny

(tk),u
T (tk),u

T
1 (tk), . . . ,u

T
Nu

(tk)

 , (4.11)

Y ∈ RN×D, D := ny · (Ny + 1) + nu · (Nu + 1), N := k ·Nδy + 1, and

X :=
(
xix , . . . ,xnx

)
:=


xT (0)

xT (δy)
...

xT (tk)

 ∈ RN×nx (4.12)

can be defined, with xix ∈ RN . Using both matrices X and Y , the state estimation
problem is to find a mapping Y 7→ xix for each state vector component ix = 1, . . . , nx.
As said in the beginning of this chapter it cannot be assumed that the state x is
available at each discrete time tk. Therefore, the matrix X is not available. Hence,
a calibrated simulation model of the biogas plant at hand is used to generate an
approximation of X, replacing x with ox at each simulated time τ . The simulation
model consists out of eqs. (2.1) and (4.1). At the same time all vectors y in Y are
replaced with the values returned by h (ox(τ),υ(τ)) at each corresponding time τ .
Based on ox and h, an approximation of the original problem is solved, assuming that
the model emulates the real process with sufficient accuracy.

This estimation problem can be solved using either regression or classification tech-
niques. In this case, classification was used.

To be able to apply discriminant analysis and classification methods on the dataset,
the range for each state vector component xix is clustered into C ∈ N0 equally
distributed classes, ix = 1, . . . , nx. Thus, vectors are generated containing the class
labels corresponding to the simulated values of the state vector components xix , that
is, ϑix ∈ {1, ..., C}

N , ix = 1, . . . , nx.

Before machine learning methods are applied, the complete dataset Y is split into a
training dataset YT ∈ RNT×D and a validation dataset YV ∈ RNV×D with NV :=

N − NT, NT < N . In the following, the used machine learning methods are briefly
described.

4.1. State Estimation using Software Sensors 37

4.1.1.1 Linear Discriminant Analysis (LDA)

Linear discriminant analysis searches for a linear transformation ALDA ∈ Rd×D, d ≤ D,
such that the transformed data Z = ALDA · Y T

T , Z := (z1, . . . , zNT) ∈ Rd×NT ,
can be linearly separated better than the original feature vectors Y T

T . The linear
transformation ALDA is determined by solving an optimization problem maximizing
the well-known Fisher discriminant criterion:

trace
{
S−1

T · SB
}

(4.13)

where ST ∈ RD×D is total scatter-matrix and SB ∈ RD×D is the between-class scatter-
matrix for the data (Duda et al., 2000). The LDA and a subsequent linear classifier are
both implemented in MATLAB®.

4.1.1.2 Generalized Discriminant Analysis (GerDA) (Stuhlsatz et al., 2012)

LDA is a popular pre-processing and visualization tool used in different pattern
recognition applications. Unfortunately, LDA followed by linear classification produces
high error rates on many real-world datasets, because a linear mapping ALDA cannot
transform arbitrarily distributed features into independently Gaussian distributed ones.
A natural generalization of the classical LDA is to assume a function space F of
nonlinear transformations fGerDA : RD → Rd and to still rely on having intrinsic
features zi := fGerDA (yi), i = 1, . . . , NT, with the same statistical properties as
assumed for LDA features. The idea is that a sufficiently large space F potentially
contains a nonlinear feature extractor f∗

GerDA ∈ F that increases the discriminant
criterion (4.13) compared with a linear extractor ALDA. GerDA defines a large space F
using a deep neural network (DNN), and consequently the nonlinear feature extractor
f∗

GerDA ∈ F is given by the DNN which is trained with measurements of the data
space such that the objective function (4.13) is maximized. Unfortunately, training a
DNN with standard methods, like back-propagation, is known to be challenging due
to many local optima in the considered objective function. To efficiently train a large
DNN with respect to (4.13), in Stuhlsatz et al. (2010a,b) a stochastic pre-optimization
has been proposed based on greedily layer-wise trained Restricted Boltzmann Machines
(Hinton et al., 2006). After layer-wise pre-optimization all weights W and biases b of the
GerDA-DNN are appropriately initialized. Nevertheless, pre-optimization is suboptimal
in maximizing (4.13), thus a subsequent fine-tuning of the GerDA-DNN is performed
using a modified back-propagation of the gradients of (4.13) with respect to the network
parameters. In Stuhlsatz et al. (2010a,b) it is shown that stochastic pre-optimization
and subsequent fine-tuning yields very good discriminative features and training time
is substantially reduced compared with random initialization of large GerDA-DNNs.
The GerDA-framework is implemented in MATLAB®.

38 4. State Estimation

4.1.1.3 Random Forests
Random Forests consists out of an ensemble of decision trees (Breiman, 2001) and
can be used to solve complex classification and regression problems. At each node of
such a binary decision tree the dataset at that node is split into two disjoint datasets.
At each leaf of the tree the value for the predicted variable is decided. Classification is
performed by taking the majority vote of an ensemble of classification trees, where each
tree is trained on a bootstrapped sample of the original training dataset. This results
in an ensemble of slightly different decision trees leading to improved generalization
(Criminisi et al., 2011). The Random Forests algorithm used is from the Random
Forests implementation for MATLAB® (and Standalone) (Jaiantilal, 2010).

4.2 Hybrid Extended Kalman Filter
Above eq. (4.2) the sampling time for measurement values δy was introduced. The
hybrid extended Kalman filter proposed in this section will return a state estimate at
each time

tj := j · δy (4.14)

for j = 1, 2, 3, Setting tj = tk with tk defined in equation (2.6) and using eq. (4.2)
it is

j = Nδy · k. (4.15)

Thus, j runs with Nδy times the frequency of k. At time instant j = 0 the filter is
started and initialized with the expectation value of the system state at time instant
k = 0: E 〈x (t0)〉.
To simplify the notation it is generally defined:

Xj := X(tj) and xj := x(tj) (4.16)

as well as

Xk := X(tk) and xk := x(tk) (4.17)

for any matrix X(tj),X(tk) ∈ Rm×n and any vector x(tj),x(tk) ∈ Rn, n,m ∈ N.
A Kalman filter basically can be divided into the two parts prediction and correction.
In the prediction step the model equation of the system (eq. (2.1)) is used to predict
the current state xj of the system given a state estimate from the last iteration j − 1.
In the correction step the current measurement values yj are taken to correct the
predicted state estimate. The state estimate at time instant j is named the a priori
state estimate, denoted by x̂−

j := x̂
(
t−j
)
∈ X , and the corrected state estimate is the a

posteriori state estimate x̂+
j := x̂

(
t+j
)
∈ X . In Figure 4.1 the idea of both definitions

and the meaning of the times t−j and t+j are visualized, t−j / tj / t+j .

4.2. Hybrid Extended Kalman Filter 39

x̂−
j−1

P−
j−1

x̂+
j−1

P+
j−1

x̂−
j

P−
j

x̂+
j

P+
j

t−j−1 t+j−1

j − 1

t−j t+j

j

discretediscrete

continuous

Figure 4.1: Definition of a priori (x̂−
j , P

−
j) and a posteriori state estimates and estimation

error covariance matrices (x̂+
j , P

+
j), respectively (cf. Simon (2006)).

The propagation of the estimation error covariance matrix

Pj := E
〈
(xj − x̂j) · (xj − x̂j)

T
〉
∈ Rnx×nx (4.18)

is visualized in Figure 4.1 as well. The a priori P−
j := P

(
t−j
)
∈ Rnx×nx and a posteriori

estimation error covariance matrices P+
j := P

(
t+j
)
∈ Rnx×nx describe the certainty in

the corresponding state estimate at each time t−j and t+j , respectively. In the hybrid
extended Kalman filter the prediction step is done in continuous-time and the correction
step is calculated in discrete time. This filter is dedicated to nonlinear systems that
are continuous in nature, but where the measurements y are measured discretely with
a sampling time δy.
The algorithm of the hybrid extended Kalman filter can be described as follows (Simon,
2006).

1. The system equations with continuous-time dynamics and discrete-time measure-
ments are given as follows (with the Kronecker delta δj1j2), (Grewal and Andrews,
2008):

eq. (2.1) ox′(t) = f (ox(t),u(t),ω(t))

eq. (4.1) y(tj) = h (x(tj),υj)

ω(t) ∼ N (0,Ψω)

υj ∼ N
(
0,

Ψυ

δy

)
E
〈
υj1 · υT

j2

〉
= δj1j2 ·

Ψυ

δy

2. Initialize the filter as follows:

x̂+
0 = E 〈x0〉 P+

0 = E
〈(

x0 − x̂+
0

) (
x0 − x̂+

0

)T〉
3. For j = 1, 2, . . . perform the following:

(a) Integrate the state estimate and its covariance from time t+j−1 to time t−j as

40 4. State Estimation

follows:
ox′(τ) = f (ox(τ),u(τ),0)

P ′(τ) = Aj · P (τ) + P (τ) ·AT
j +Ej ·Ψω ·ET

j

τ ∈
[
t+j−1, t

−
j

]
ox
(
t+j−1

)
= x̂+

j−1

with the linearizations:

Aj :=
∂f

∂ox

(
x̂+
j−1,u(tj),0

)
Cj :=

∂h

∂ox

(
x̂+
j−1,0

)
Ej :=

∂f

∂ω

(
x̂+
j−1,u(tj),0

)
Fj :=

∂h

∂υ

(
x̂+
j−1,0

) (4.19)

At the end of this integration we set x̂−
j = ox

(
t−j
)
.

(b) At time instant j, incorporate the measurement yj into the state estimate
and estimation covariance as follows (K∗

j ∈ Rnx×ny is called optimal Kalman
matrix):

K∗
j = P−

j ·C
T
j ·
(
Cj · P−

j ·C
T
j + Fj ·Ψυ · F T

j

)−1

x̂+
j = x̂−

j +K∗
j ·
(
yj − h

(
x̂−
j ,0

))
P+

j =
(
11nx −K∗

j ·Cj

)
· P−

j

(4.20)

The last equation in eq. (4.20) can be replaced by the equivalent expression

P+
j =

(
11nx −K∗

j ·Cj

)
P−

j

(
11nx −K∗

j ·Cj

)T
+K∗

j ·Ψυ ·
(
K∗

j

)T
which can be shown to be more robust (Simon, 2006).

4.3 Moving Horizon Estimation
Moving horizon state estimation (MHE) estimates the current state xk out of input
and output measurements coming from the system, starting in the past and reaching
into present. Therefore, simulations with the plant model (eqs. (2.1) and (4.1)) are
started in the past from different initial states x◦ ∈ X using the given input data u.
The obtained simulation results are compared with the output measurements y, and
the initial state leading to the best agreement of both trajectories (named x◦

∗ ∈ X) is
used to generate the trajectory of states eventually leading to the current state estimate
x̂(tk). Using the moving window concept, this approach is repeated at every sampling
instance k of the control. To put this idea into formalism, the length of the moving
horizon δMHE ∈ R+ is defined as

δMHE := wMHE · δy (4.21)

with the unit-less length of the horizon wMHE ∈ N and the sampling time of the
measurement values δy, see eq. (4.2). For later use another unit-less length of the

4.3. Moving Horizon Estimation 41

horizon w̃MHE ∈ N is defined as:

w̃MHE :=
1

Nδy

· wMHE
(4.2)
=

δy

δ
· wMHE

(4.21)
=

δMHE

δ
. (4.22)

From eq. (4.22) it can be seen that the following relation holds:
w̃MHE

wMHE
=

δy

δ
,

thus w̃MHE measures the window-length in the units of δ and wMHE the same in the
units of δy. Keeping in mind the definitions of tk and tj in eqs. (2.6) and (4.14),
respectively, and using the system equations (2.1) and (4.1) the moving horizon state
estimation problem can be formulated as follows (cf. Busch et al. (2009)):

For each k = w̃MHE, w̃MHE + 1, w̃MHE + 2, . . . solve:

x◦
∗ := arg min

x◦

‖x◦ − x̃ (tk − δMHE)‖2 +

+ κMHE ·
Nδy ·k∑

j=Nδy ·(k−w̃MHE)

‖y (tj)− h (ox (tj) ,υ (tj))‖2


subject to ox′(τ) = f (ox(τ),u(τ),0) , ox (tk − δMHE) = x◦,

ox(τ) ∈ X ,u(τ) ∈ U , ∀τ ∈ [tk − δMHE, tk] ,

xLB ≤ x◦ ≤ xUB.

(4.23)

The state estimate at time tk, x̂(tk), then is given by the final value of the simulation
starting at the optimal initial state x◦

∗:

x̂(tk) =
ox(tk) x̃◦ := ox (tk+1 − δMHE) ∈ X

ox′(τ) = f (ox(τ),u(τ),0) ox (tk − δMHE) = x◦
∗ ∀τ ∈ [tk − δMHE, tk]

In eq. (4.23) x̃ : R+ → X denotes the initial state estimate at the start of the moving
window, κMHE ∈ R+ denotes a weighting factor and xLB,xUB ∈ X . At the first
start of the estimator an initial estimate of x̃ (0) must be given, all later iterations
can generate the initial estimate from the previous optimal simulation. This so called
arrival cost can be computed by Kalman filter updates (Busch et al., 2009). Although
Diehl et al. (2006b) strictly advises against the very simplified approach of setting
x̃ (tk − δMHE) = x̃◦ for each k = w̃MHE +1, w̃MHE +2, . . . , this approach is used in the
small application given in Section 4.4 to keep things as simple as possible. But, for real
systems more sophisticated approaches such as the one in Diehl et al. (2006b) should
be used instead. It should be mentioned that the moving horizon state estimation
problem can be extended easily with parameter estimation, see Busch et al. (2009).

42 4. State Estimation

As the optimization problem stated in eq. (4.23) must be solved for every sampling
time tk, real-time approaches are an important issue. For large-scale and fast systems
more sophisticated approaches to solve the optimization problem, especially differential
equation (2.1), must be used. Such methods are direct multiple shooting and its real-
time implementation (Diehl et al., 2006b,c) as well as approximate solutions (Alessandri
et al., 2008, 2010, 2011). Using one of these approaches, very large systems can be solved
in real-time, e.g. Busch et al. (2009), Diehl et al. (2006c).

4.4 Application to an Anaerobic Digestion Process
In this section the three proposed state estimation methods are applied to a simple
anaerobic digestion model and their performances are compared in a simulation study.
The used model was developed by Marsili-Libelli and Beni (1996) and adapted by Shen
et al. (2006). Here the implementation and parametrization of the latter is used. An
introduction into the anaerobic digestion process is given in Chapter 5. In the following
paragraph the applied simulation model is introduced briefly.
The model is a two-population model representing two species of bacteria: acidogenic
bacteria (acidogens Xa) and methanogenic bacteria (methanogens Xm). The acidogenic
bacteria convert the organic substrate S into acetic acid Va and carbon dioxide C

and the methanogenic bacteria convert the acetic acid Va into methane Qch4 and
carbon dioxide C as well. The produced gas is transferred between the liquid and
gas phase resulting in biogas production Qch4

and Qco2
. Furthermore, the association

and dissociation of acetic acid and sodium bicarbonate as well as the effects of CO2 and
bicarbonate on the liquid phase pH are modelled (Shen et al., 2006). This results in a
model containing six ordinary differential equations and two independent inputs S and
Bic. Its important variables are given in Table 4.1. All equations and parameters of the
model can be found in the appendix of this thesis, Part A. To be able to formulate the

Table 4.1: The most important model variables as in Shen et al. (2006)

Variable Unit Description
S [mg/l] Organic substrate concentration
Xa [mg/l] Acidogenic bacteria concentration
Va [mg/l] Acetic acid concentration
Xm [mg/l] Methanogenic bacteria concentration
C [mg/l] Carbon dioxide concentration (liquid phase)
Pc [mg/l] Carbon dioxide partial pressure (gas phase)
Qch4 [l/h] Methane gas production
Qco2

[l/h] Carbon dioxide gas production
Si [mg/l] Influent organic substrate concentration
Bic [mg/l] Cation ions concentration introduced by sodium bicarbonate

4.4. Application to an Anaerobic Digestion Process 43

given model in the standard notation given by equations (2.1) and (4.1), it is defined:
ox := (S,Xa, Va, Xm, C, Pc)

T
nx = 6

u := (Si, Bic)
T

nu = 2

y := (Qch4
, Qco2

)
T

ny = 2.

(4.24)

Note, that methane and carbon dioxide production Qch4 and Qco2 can be easily
measured, so that the such defined measurement vector y can be determined in practice
without extraordinary effort. In the following, results for experiments performed for the
three state estimation methods are presented.

4.4.1 The Experiments
To compare the three different state estimation methods the following setup is chosen.
30 different simulations from ten different randomly selected initial states with three
different input trajectories are performed. The three different input trajectories uα :=

(Si,α, Bic,α)
T , α = 1, 2, 3, are visualized in Figure 4.2. The first ten simulations are

performed with input u1, the next 10 simulations with u2 and then the last ten
simulations with the input trajectory u3. The simulation duration for each one is set
to 100 days.

0 20 40 60 80 100
0

5000

10000

t [d]

S
i,
α
(t
)
[m

g
/
l]

Si,1

Si,2

Si,3

0 20 40 60 80 100
0

2000

4000

6000

8000

t [d]

B
ic
,α
(t
)
[m

g
/
l]

Bic,1

Bic,2

Bic,3

Figure 4.2: Input trajectories uα := (Si,α, Bic,α)
T , α = 1, 2, 3

44 4. State Estimation

The noise processes ω and υ are solely modelled as additive input and measurement
noise, respectively. Therefore, from eqs. (2.1) and (4.1) it follows:

ox′(t) = f (ox(t),u(t) + ω(t),0)

y(t) = h (x(t),0) + υ(t)
(4.25)

The standard deviation of the input noise ω is set to create a signal-to-noise ratio of the
input uα of 26 dB. The measurement noise υ is set to the same signal-to-noise ratio for
the output values y. The sampling rate of the inputs δu as well as for the measurements
δy is set to one hour. An exception is the Kalman filter, where the sampling rate of
the inputs δu is set to one minute to achieve more accurate predictions. The prediction
results are compared with the simulated values between times tk1

and tk2
with k2 > k1

and thus following definition (2.6): tk2 > tk1 . As the predicted results come with a
sampling time δy of one hour but the sampling rate of the system δ is one day, the k’s
have to be replaced with j’s as defined in eq. (4.14). Let us set tj1 = tk1

and tj2 = tk2

with j1
(4.15)
= Nδy · k1 and j2

(4.15)
= Nδy · k2. Further, the following notations for each

state vector component ix = 1, . . . , nx shall be defined:

xix,[j1,j2] := [xix (tj1) , xix (tj1 + δy) , . . . , xix (tj2)]
T

(4.14)
= [xix (tj1) , xix (tj1+1) , . . . , xix (tj2)]

T

(4.16)
= [xix,j1 , xix,j1+1, . . . , xix,j2]

T

(4.26)

and

xix,[k1,k2] := [xix (tk1) , xix (tk1 + δ) , . . . , xix (tk2)]
T

(2.6)
= [xix (tk1) , xix (tk1+1) , . . . , xix (tk2)]

T

(4.17)
= [xix,k1

, xix,k1+1, . . . , xix,k2
]
T
.

(4.27)

To do a fair comparison between all three methods, the estimated and simulated state
vector components are compared starting at day k1 = 31 until day k2 = 100. The reason
is, that the soft sensor-based method returns its earliest state estimate at day 31 (see
Section 4.4.2) whereas the other two methods start at time 0. As Nδy

(4.2)
= δ

δy
= 24 it

is j1
(4.15)
= 24 · 31 and j2

(4.15)
= 24 · 100. As performance measure for the ixth estimated

state vector component x̂ix the root-mean-square error (RMSE) ex̂,ix ∈ R+ is used:

ex̂,ix :=

√
1

j2 − j1 + 1

(
x̂ix,[j1,j2] − xix,[j1,j2]

)T · (x̂ix,[j1,j2] − xix,[j1,j2]

)
(4.28)

and the total performance measure ex̂ ∈ R+ is the euclidian mean value of all nx RMSE

4.4. Application to an Anaerobic Digestion Process 45

values ex̂,ix :

ex̂ :=
1

nx
·

nx∑
ix=1

ex̂,ix (4.29)

4.4.2 State Estimation using Software Sensors
The state estimator is configured as follows. As classification method Random Forests
is used with 50 trees and C = 50 classes. The training and validation data are generated
out of totally 60.000 simulated days. Nu = 5 input data filters are used, their window
sizes are set to Wu = {12, 24, 3 · 24, 7 · 24, 14 · 24}. Remember, that these window sizes
wu,iΛu

are measured in the sampling time of the inputs δu, see eq. (4.6). As output
filters the following Ny = 7 are used: Wy = {12, 24, 3 · 24, 7 · 24, 14 · 24, 21 · 24, 31 · 24},
eq. (4.8). In Figure 4.3 an example result for the simulation starting at the eighth
initial state with the input trajectory u3 is shown. It can be seen, that the simulated

0 50 100
10

20

30

40

S
(t
)
[m

g
/
l]

0 50 100
0

2000

4000

6000

X
a
(t
)
[m

g
/
l]

0 50 100
0

500

1000

V
a
(t
)
[m

g
/
l]

0 50 100
500

1000

1500

2000

X
m
(t
)
[m

g
/
l]

0 50 100
200

300

400

t [d]

C
(t
)
[m

g
/
l]

0 50 100
0

0.2

0.4

t [d]

P
c
(t
)
[a
tm

]

Figure 4.3: Results for state estimation using software sensors for the experiment starting at
the eighth initial state with the input trajectory u3. The simulation results are coloured in
blue and the estimation results in red.

states for some components are estimated quite accurately (e.g. Xa), but others show

46 4. State Estimation

a considerable estimation error (e.g. Xm). Nevertheless, in principle, the states are
predicted with an almost constant accuracy for all 30 performed experiments as can be
seen in the left box plot in Figure 4.6. There, the error measure defined in eq. (4.29) is
shown.

4.4.3 Hybrid Extended Kalman Filter
The hybrid extended Kalman filter is initialized as described in Section 4.4.3. Further-
more, the covariance matrix of the process noise Ψω is set to

Ψω =

(
σω1

2 0

0 σω2
2

)
and the covariance matrix of the measurement noise Ψυ to

Ψυ =

(
συ1

2 0

0 συ2
2

)
.

There, σωiu
∈ R+ is the standard deviation of the process noise ωiu added to input

iu = 1, 2 and συiy
∈ R+ is the standard deviation of the measurement noise υiy added

to output iy = 1, 2. The initial state of the model x0 is estimated with three different
accuracies: 1 %, 5 % and 10 %, modelled as normal distributed noise. So, in total
90 simulations are performed, 30 for each initial state estimation accuracy. In Figure
4.4 the results of one experiment are shown. As can be seen, the simulated values are
estimated with a very high accuracy. Nevertheless, the disadvantage of the Kalman
filter is its dependency of an accurate estimate of the initial state (Reif et al., 1999,
2000). This can be seen in Figure 4.6, where the results in dependency of the accuracy
of the initial state estimate are shown.

4.4. Application to an Anaerobic Digestion Process 47

0 50 100
0

20

40

60

S
(t
)
[m

g
/
l]

0 50 100
0

2000

4000

X
a
(t
)
[m

g
/
l]

0 50 100
0

500

1000

V
a
(t
)
[m

g
/
l]

0 50 100
0

500

1000

1500

X
m
(t
)
[m

g
/
l]

0 50 100
200

300

400

500

t [d]

C
(t
)
[m

g
/
l]

0 50 100
0.2

0.3

0.4

t [d]

P
c
(t
)
[a
tm

]

Figure 4.4: Results for state estimation using hybrid EKF. Experiment starting at fourth
state, with u2 as input and 10 % as uncertainty in initial state estimate x̂+

0 . The simulation
results are coloured in blue (solid) and the estimation results in red (dashed).

48 4. State Estimation

4.4.4 Moving Horizon Estimation

The initial state estimate at the beginning of the 90 simulations x̃ (0) is known with
the same uncertainty as in the case of the Kalman filter, see Section 4.4.3. With the
sampling rate δ equal to one day, the window between two iterations is automatically
shifted for one day (see eq. (4.23)). The length of the moving horizon w̃MHE is set
to 31, thus equal to the largest window length of the output filters in the software
sensor approach, see Section 4.4.2. The optimization problem defined in eq. (4.23) is
solved using CMA-ES (Hansen, 2006) with a population size of 20 and four iterations.
The lower xLB and upper bounds xUB for the optimization variable x◦ are set to
x̃ (tk − δMHE) ·(1± 0.15). In Figure 4.5 the result for one of the estimation experiments
is shown. The estimation results are very accurate, but not as accurate as the ones for

0 50 100
0

50

100

S
(t
)
[m

g
/
l]

0 50 100
0

2000

4000

6000
X

a
(t
)
[m

g
/
l]

0 50 100
0

500

1000

V
a
(t
)
[m

g
/
l]

0 50 100
1000

1500

2000

X
m
(t
)
[m

g
/
l]

0 50 100
200

250

300

350

t [d]

C
(t
)
[m

g
/
l]

0 50 100
0.1

0.2

0.3

t [d]

P
c
(t
)
[a
tm

]

Figure 4.5: Results for state estimation using moving horizon estimation. Experiment starting
at first state, with u1 as input and 1 % as uncertainty in initial state estimate x̃ (0). The
simulation results are coloured in blue (solid) and the estimation results in red (dashed).

the extended Kalman filter (at least for the configuration used here). Nevertheless, the
clear advantage of this approach in comparison to the Kalman filter is its robustness
against poor estimates of the initial state x̃ (0) as can be seen in Figure 4.6, see also

4.5. Summary and Discussion 49

(Haseltine and Rawlings, 2005). It could surely be more robust, for example when the
arrival cost in the optimization problem (4.23) is weighted with the inverse covariance
matrix of the state estimate as is e.g. done in Busch et al. (2013).

0

10

20

30

40

50

60

70

e
x̂

0

100

200

300

400

 1 % 5 % 10 %

e
x̂

0

10

20

30

40

50

60

70

 1 % 5 % 10 %
e
x̂

Figure 4.6: Box plots showing the error measure defined in eq. (4.29) evaluated for all 90 (30
for the first approach) simulations for the three methods. Left: Results for the soft sensor state
estimation approach, Section 4.4.2. Middle: Dependency of EKF state estimation results on
uncertainty in initial state estimate x̂+

0 with 1 %, 5 % and 10 % normally distributed noise.
Right: Results for moving horizon estimation with dependency on uncertainty in initial state
estimate as well.

4.5 Summary and Discussion
In this chapter a soft sensor based state estimation method is developed. At hand of
a simple anaerobic digestion model it is compared with the hybrid extended Kalman
filter and moving horizon estimation.
The main advantage of the soft sensor based state estimation approach compared with
conventional state estimation filters (Rawlings and Bakshi, 2006) is that an initial guess
of the initial state of the system is not necessary. Furthermore, the state estimator is a
static function, such that stability issues and drift are not existent. However, the yield
estimation accuracy cannot compete with the approaches extended Kalman filter and
moving horizon estimation. Furthermore, the first state estimate in this configuration
arrives not before the 31st day of the simulation (see Section 4.4.2). On a real plant
this means that measurement data of the last 31 days must be available before this
estimator can be used. Before that the plant must be operated by hand. Overall, the
hybrid extended Kalman filter yields the best, but also the worst estimation results in
dependence of the accuracy of the initial state estimate x̂+

0 , see Figure 4.6. This and

50 4. State Estimation

the problem that the linearized model (eq. (4.19)) is required to be locally observable
(Dewil et al., 2011) makes it almost impossible to use for larger anaerobic digestion
models such as the ADM1. The reason is, that on biogas plants in practice only a few
process values can be measured, such that the plant is not observable.
In conclusion the moving horizon estimation approach is seen as the best tested state
estimation candidate for anaerobic digestion processes. Among its advantages are its
robustness and explicit incorporation of state constraints and parameter estimation
schemes (Rao, 2000, Rao et al., 2003). One challenge of MHE is to implement it for
real-time application. The MATLAB® implementation on a standard computer1 needs
for one sample time δ a mean runtime of 1.55 s. In comparison the mean runtime of
the hybrid extended Kalman filter is 0.18 s and for the soft sensor approach it is even
only 0.03 s. But, these results should only be seen as rough reference values because
the implementations were not written for high performance.
As the to be solved optimization problem in MHE (eq. (4.23)) is quite complex and
time-consuming in this thesis this approach was not implemented for the ADM1. But,
the reader is highly encouraged to spend the effort and to apply moving horizon
estimation to the ADM1. How robust the moving horizon estimation approach is against
the non-observability of the ADM1 in practice would be interesting to see.
To summarize, in this thesis the self-developed soft sensor based approach is used for
state estimation of the ADM1. Results for that can be found in Chapter 8 and its use
in a closed-loop control in Chapter 9.

1Intel® Core™ i7-2600 CPU @ 3.40 GHz, 8.00 GB RAM, Windows 8, 64 bit

