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Chapter 3

Multi-Objective Optimization
Algorithms
Multi-objective optimization algorithms try to find the Pareto front and the corres-
ponding Pareto optimal set of a multi-objective optimization problem. As in case of
continuous function optimization a Pareto front could contain infinite many elements
these algorithms in general cannot find the complete Pareto front. Therefore they try
to find solutions which approximate the form of the Pareto front best possible.
In this thesis a multi-objective optimization algorithm is used to solve the MONMPC
problem stated in Chapter 2. In the simulation and optimization studies in Chapter
9 two multi-objective optimization methods are compared. They are SMS-EMOA
(Emmerich et al., 2005, Beume et al., 2007) and SMS-EGO (Wagner et al., 2007,
Ponweiser et al., 2008). Both methods are briefly introduced in the following two
sections.
Next to the two methods there are also other famous multi-objective optimization
methods. Examples are NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001),
ε-MOEA (Deb et al., 2003) and ParEGO (Knowles, 2006). Various publications
comparing these different multi-objective optimization methods reveal that both SMS-
EMOA and SMS-EGO belong to the best methods of their kind, e.g. (Ponweiser et al.,
2008, Wagner et al., 2007, 2010).

3.1 Hypervolume-based Evolutionary Algorithm
An evolutionary algorithm is a stochastic optimization technique inspired by the
principles of natural evolution (cf. Alba and Cotta (2006)). It describes a class of
different optimization methods which all have the following in common. The key feature
of evolutionary algorithms (EAs) is that in each iteration of the algorithm a collection of
potential solutions, the so-called population, of the optimization problem is evaluated in
parallel. The elements of the population are called individuals. The performance of each
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individual is measured by the objective function. In each iteration the population may
change, what means that new solutions are created and already existing solutions are
discarded from the population to keep the number of individuals inside the population
constant. As EAs typically return a set of solutions (the population) in one call, they are
especially suited to solve multi-objective optimization problems, compared to methods,
which only return one solution at a time.
The purpose of a hypervolume-based EA is to maximize a scalar criterion, which
is named the hypervolume indicator (or S-metric, Zitzler and Thiele (1998)), see
Definition 3.1. This criterion is a property of a set and describes the size of a space
covered by this set. Below it is shown that the hypervolume indicator of the Pareto
front PF∗ is maximal for a given optimization problem. Therefore, by maximizing the
hypervolume indicator the algorithm tries to find the best approximation (with a finite
number of elements) of the true Pareto front PF∗. Note that the multi objectives are
mapped onto one objective, so that in general each single objective optimization method
can be used to solve a multi-objective optimization problem using the hypervolume
indicator (Fleischer, 2003, Knowles et al., 2003).

Definition 3.1 (Hypervolume indicator, Custódio et al. (2012)): The hypervolume
indicator for some set A ⊂ Rno and a reference point r ∈ Rno that is dominated by all
the points in A is defined as:

IH (A) := V ol {bB ∈ Rno |bB ≤ r ∧ ∃aA ∈ A : aA ≤ bB } = V ol

( ⋃
aA∈A

[aA, r]

)
Here V ol denotes the Lebesgue measure of a no-dimensional set of points, and [aA, r]

denotes the interval box with lower corner aA and upper corner r.

Figure 3.1a shows an example of the hypervolume indicator for a set A in a two-
dimensional and Figure 3.1b in a three-dimensional space. To be able to find the
approximation of the Pareto front we first have to be able to compare two different
approximate Pareto fronts and to decide which one is better.

Definition 3.2 (Custódio et al. (2012)): Given two nondominated sets A and B. A is
better than B, which is represented by A ≺ B, if and only if

∀bB ∈ B : ∃aA ∈ A : aA ≤ bB and ∃bB ∈ B : ∃aA ∈ A : aA ≺ bB

Now the hypervolume indicator is used to compare two Pareto front approximations.
In Zitzler et al. (2003) it was shown, that if a certain property holds, the better
nondominated set has a higher hypervolume indicator, see Lemma 3.1.

Lemma 3.1 (Custódio et al. (2012), Zitzler et al. (2003)): Let A and B be two
nondominated sets with the properties A ≺ B and ∀ϕ ∈ A ∪ B : ϕ ≺ r, where r
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(a) The hypervolume indicator IH for the
set A is shaded in grey, cf. Custódio et al.
(2012).
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(b) The hypervolume indicator IH for the
set B with r = (6, 6, 0)T , cf. Custódio et al.
(2012).

Figure 3.1: Hypervolume indicator for a set A := {aA1,aA2,aA3,aA4} ⊂ R2 in a two-
dimensional space and a set B := {bB1, . . . , bB5} ⊂ R3 in a three-dimensional space.

is the reference point used in the hypervolume computations. Then IH (A) > IH (B).

This means that the hypervolume indicator of the true Pareto front is maximal,
because it is always better than or equal to any other possible nondominated set,
and therefore IH (PF∗) ≥ IH (A) for any nondominated set A. Knowing that, it is
obviously of interest to maximize the hypervolume indicator, so that the best possible
approximation of the Pareto front can be found.
Furthermore in Zitzler et al. (2003) the following Lemma was shown.

Lemma 3.2 (Custódio et al. (2012), Zitzler et al. (2003)): Let ≺ be defined as in
Definition 3.2, and A and B be two nondominated sets with the property ∀ϕ ∈ A ∪
B : ϕ ≺ r, where r is the reference point used in the hypervolume computations. If
IH (A) > IH (B) then B ⊀ A.

This means, that if an algorithm exists, which provably never decreases the hy-
pervolume indicator of the current approximation of the Pareto front, then the
approximation will never be worse than the approximation of the previous iteration.
The S metric selection evolutionary multi-objective optimization algorithm (SMS-
EMOA) is such a method, which is presented in the following.
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3.1.1 SMS-EMOA
SMS-EMOA is initialized with an initial population P0 of size µ. In each iteration of
the algorithm one solution candidate ϕ is created out of the current population Pκ

using variation. If the new solution improves the quality of the current population it is
kept and another solution is deleted, else it is discarded. The SMS-EMOA algorithm
is shown in Algorithm 3.1.

Algorithm 3.1 A SMS-EMOA algorithm (Beume et al., 2008)
Input: P0 ← init
Input: κ← 0

1:
2: repeat
3: ϕ← variation (Pκ)
4: D ← dominated_individuals (Pκ ∪ {ϕ})
5: if D 6= ∅ then
6: φ∗ ← arg maxφ∈D dn (φ,Pκ ∪ {ϕ})
7: else
8: φ∗ ← arg minφ∈(Pκ∪{ϕ}) ∆IH (Jx (φ) ,PFκ ∪ {Jx (ϕ)})
9: end if

10: Pκ+1 ← (Pκ ∪ {ϕ}) \ {φ∗}
11: κ← κ+ 1
12: until some stopping criterion

In Algorithm 3.1 the number of dominating points dn (card (A) calculates the cardin-
ality of the set A)

dn (φ,A) := card ({aA ∈ A |aA ≺ φ}) (3.1)

and the contributing hypervolume ∆IH

∆IH (aA,A) := IH (A)− IH (A\{aA})

with aA ∈ A
(3.2)

are used, cf. (Beume et al., 2007). In Algorithm 3.1 all dominated solutions are collected
in the set D which are returned by the function dominated_individuals, called in line 4
of the algorithm. The population of solution candidates in iteration κ is symbolized by
Pκ, which is the current approximation of the Pareto optimal set. The corresponding
approximation of the Pareto front is given by PFκ.
In Figure 3.2a the concept of the number of dominating points dn is visualized. If there
are dominated solutions, visualized as the two white circles in Figure 3.2a, then dn

specifies the number of solutions that dominate each dominated solution. One of the
solutions with the largest dn is deleted from the current population, here φ∗. If there
is no dominated solution, thus all solutions are non-dominated within the population,
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(a) The two dominated solutions (white
circles) are dominated by solutions which lie
in the shaded areas. The point φ∗ has the
higher dominance number, which is three
compared to one.
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Figure 3.2: The solutions of a two-dimensional optimization problem are shown. The worst
solution φ∗ will be deleted from the current population, cf. Beume et al. (2008).

then the solution with the smallest contributing hypervolume ∆IH is deleted, see Figure
3.2b. As by discarding the solution with the smallest contribution always a subset of
size µ with largest hypervolume is selected, the hypervolume indicator IH will never
decrease. Either the new solution is directly deleted from the population, which leaves
the hypervolume indicator unchanged or the new solution increases the hypervolume
indicator.

3.2 SMS-EGO
S-metric selection-based efficient global optimization (SMS-EGO) was first introduced
in Ponweiser et al. (2008). SMS-EGO is a multi-objective variant of so called Efficient
Global Optimization Algorithms (EGO) (Jones et al., 1998), which were earlier known
as Statistical Global Optimization (Cox and John, 1997, Mockus et al., 1978).
In SMS-EGO a meta-model is used to predict objective function evaluations, that are
assumed to be expensive. The meta-model is learned from previous exact evaluations.
Based on the meta-model it is decided which point is evaluated next using the exact
objective function.
The general idea of SMS-EGO is to replace during optimization the original objective
function J with the meta-model generated one Ĵ . Thus, an optimization method solves
the optimization problem given by Ĵ . The returned optimal solution is evaluated by
the original objective function J and this result is used to update the meta-model
restarting the optimization process again.
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For each component Jio of the objective function a separate meta-model is created. As
meta-model a DACE stochastic process model is used, where DACE is short for ’Design
and Analysis of Computer Experiments’ (Jones et al., 1998). Each such DACE model
returns an estimate of the objective function Ĵio ∈ R and a standard deviation ŝJio

∈ R
representing the uncertainty in the estimation. Both values are collected in the vectors
Ĵ :=

(
Ĵ1, . . . , Ĵio , . . . , Ĵno

)T
∈ Rno and ŝJ :=

(
ŝJ1

, . . . , ŝJio
, . . . , ŝJno

)T ∈ Rno .

As the meta-models also return the estimated uncertainty ŝJ the lower confidence
bound Ĵpot := Ĵ − αLCB · ŝJ , with αLCB = −Φ−1

CDF
(
0.5 · no

√
0.5
)

(Wagner et al., 2010,
Emmerich et al., 2006), is used as the objective of some evaluated solution and not just
Ĵ . Here, ΦCDF : R→ (0, 1) is the cumulative normal distribution function.

Each evaluated Ĵ is validated by a measure named additive ε-dominance, defined in
Def. 3.3.

Definition 3.3 (cf. Zitzler et al. (2003)): Given two vectors of optimization variables
u1,u2 ∈ UF , it is said that u1 ε-dominates u2, being represented by u1 �ε+ u2, iff for
some ε ∈ R+ ∀io ∈ {1, . . . , no} : Jx,io (u1) ≤ Jx,io (u2) + ε.

The single-objective function, which tries to find the optimum of Ĵ uses additive
ε-dominance. It distinguishes between two kinds of solution candidates: ε-dominated
and non-ε-dominated solution candidates, see Figure 3.3. Non-ε-dominated candidates
ϕpot yielding Ĵpot are evaluated based on the negative value of their additional hy-
pervolume contribution: IH (PFκ)− IH

(
PFκ ∪

{
Ĵpot

})
, whereas PFκ is the current

approximation of the Pareto front of J . However, ε-dominated solutions are penalized
by a penalty given in equation (3.3), with Pκ being the current approximation of the
Pareto optimal set (only containing non-dominated points), (Wagner et al., 2010).

pε :=
maxϕ∈Pκ

[
−1 +

no∏
io=1

(
1 + max

(
Ĵpot,io − Jx,io (ϕ) , 0

))]
if ϕ �ε+ ϕpot

0 otherwise

(3.3)

In equation (3.4) the single-objective function is shown, that is used to find an optimal
solution candidate to be evaluated at the original objective function J .

fEGO :=

IH (PFκ)− IH

(
PFκ ∪

{
Ĵpot

})
non-ε-dominated Ĵpot

pε ε-dominated Ĵpot
(3.4)

In SMS-EGO this objective function is minimized using an interior point method.

The value for ε is calculated as in Ponweiser et al. (2008) using ε = ∆PFκ

card(PFκ)+c·nleft
.
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There, ∆PFκ := max (PFκ)−min (PFκ), where

max (PFκ) :=

(
max

Jx∈PFκ

Jx,1, . . . , max
Jx∈PFκ

Jx,io , . . . , max
Jx∈PFκ

Jx,no

)T

,

likewise min (PFκ). Furthermore, c = 1 − 1
2no is a correction factor and nleft is the

number of remaining evaluations (Ponweiser et al., 2008).
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Figure 3.3: Graphical explanation of the concept of ε-dominance used in SMS-EGO, cf.
Ponweiser et al. (2008).




