
Real-Time Substrate Feed Optimization of Anaerobic Co-Digestion Plants
Gaida, D.

Citation
Gaida, D. (2014, October 22). Real-Time Substrate Feed Optimization of Anaerobic Co-
Digestion Plants. Retrieved from https://hdl.handle.net/1887/29085

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/29085

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/29085

Cover Page

The handle http://hdl.handle.net/1887/29085 holds various files of this Leiden University
dissertation

Author: Gaida, Daniel
Title: Dynamic real-time substrate feed optimization of anaerobic co-digestion plants
Issue Date: 2014-10-22

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/29085

Chapter 2

Multi-Objective Nonlinear Model Pre-
dictive Control
Consider a physical, time-dependent, real-world system showing deterministic behavior
at any time t ∈ R+

0 . Assume that the main influence on the system by its environment
can be described by a finite number nu ∈ N0 of physical values. They are called the
input values of the system. The nominal input values of the system are generated by
a function of time u : R+

0 → U , which, for each time t ≥ 0, returns the input of
the system at time t symbolized by u(t) ∈ U . Each input function uiu , with u :=

(u1, . . . , uiu , . . . , unu)
T , returns values out of the set Uiu ⊆ R, iu = 1, . . . , nu. The set U

then is defined as U := (Uiu)
nu := U1×· · ·×Unu . Note that the ith input of the system

is symbolized by the iterator iu ∈ {1, . . . , nu}.
Those physical values which are assumed to describe the inherent behavior of the
system are put inside the state of the system x : R+

0 → X , with the state space
X ⊆ Rnx and nx ∈ N0 representing the number of physical values in the system state
vector x ∈ X . The idea of the system state is that if it is known for some time t, then
the complete physical system description at that time is known. Examples of state
vector components are the position of the system in space, the temperature inside the
system or the concentration of fluids or species inside the system.
The sets X and U could be generated out of state and input constraints, respectively.
If the state (input) constraints are linear, then X (U) is a convex set (Boyd and
Vandenberghe, 2004).
To be able to predict the future trajectory of the system state x for a given input
trajectory u the real-world system is described as a system of continuous-time nonlinear
stochastic differential equations:

ox′(t) = f (ox(t),u(t),ω(t)) , ox (0) = x (0) . (2.1)

This future state vector trajectory is symbolized by the vector valued function ox :

R+
0 → X . As eq. (2.1) is only initialized at time t = 0 the calculated state ox is

16 2. Multi-Objective Nonlinear Model Predictive Control

called the open loop state, whereas “open” is symbolized by the o in front of x in ox.
The behavior of the real-world system is approximately modeled using the real-valued
smooth vector field f : X ×U×Rnω → T X , which maps the input space of the function
onto the tangent space T X ⊆ Rnx . To emphasize that f is only an approximation of
the real system the noise process ω : R+

0 → Rnω is introduced as input of the system
function f . This noise process is used to take account for the fact that f cannot describe
exactly what is happening in the real world and for possibly noisy input values u.
This nω ∈ N0 dimensional noise process ω is modeled as a normal distribution with
zero-mean and the covariance matrix Ψω ∈ Rnω×nω , symbolized by ω(t) ∼ N (0,Ψω).
We assume stationary, white noise. That is, E

〈
ω(t) · ωT (τ)

〉
= Ψω · δD (t− τ), where

δD is the Dirac delta “function” and E 〈·〉 denotes the expected value.

Given the initial state of the real system at time t = 0, x (0), for each t ≥ 0 the
approximate state of the system ox(t) can be calculated using equation (2.1). As for
t > 0 there is no further interaction with the real system (thus no feedback) this
predictor could be very inaccurate, because it cannot be guaranteed that the predicted
state values ox(t) track the real state values x(t) for t > 0. The error between the two
state vector trajectories is commonly measured by the root-mean-square error (RMSE):

RMSE (ox(t),x(t)) :=
∥∥∥(ox(t)− x(t)) · (ox(t)− x(t))

T
∥∥∥
2
,

whose value must be kept arbitrarily small. Better predictors than eq. (2.1) are
presented later in Chapter 4.

The task at hand is to find an optimal input function u∗ : R+
0 → U , such that an

objective function

J̃ : X × U → Rno (2.2)

gets minimized for all t ∈ [0,∞), with the number of objectives no ∈ N0 and the

constraint ox(t) ∈ X ∀t ∈ [0,∞). The vector function J̃ :=
(
J̃1, . . . , J̃no

)T
consists

out of no scalar-valued objective functions

J̃io : X × U → R (2.3)

with io = 1, . . . , no. The problem can be formulated as:

minimizeu J̃ (ox(t),u(t))

subject to ox′(t) = f (ox(t),u(t),0) , ox (0) = x (0) ,

ox(t) ∈ X , ∀t ≥ 0,

u : [0,∞)→ U .

(2.4)

The minimum of a vector function is not defined in general, such that it has to be defined
what is meant by minimizing the objective function J̃ . To minimize each objective

2.1. Case I: Number of Objectives no = 1 17

function J̃io separately is often not well-suited, because most of the time the objective
functions are conflicting. Two objective functions are conflicting, if and only if the set
of optimal solutions of one objective function does not overlap with the set of optimal
solutions of the other objective function. To simplify things, at first the optimal control
problem for the case no = 1 is handled in Section 2.1 before the general case for no > 1

is solved in Section 2.3. To minimize the objective function J̃ properly, concepts from
multi-objective optimization are used, which are recapped in Section 2.2.
Since minimizing J̃ in choosing the optimal input u for all t ∈ [0,∞) is in general a
hard problem, in practice a heuristic technique named multi-objective nonlinear model
predictive control (MONMPC) shall be used that will be introduced in Section 2.1.

2.1 Case I: Number of Objectives no = 1

For no = 1 the objective function reduces to the scalar-valued objective function J̃1,
defined in equation (2.3), such that the minimum of the objective function is well
defined. Thus, for this case problem (2.4) results in the problem formulation:

u∗ := arg min
u

J̃1 (
ox(t),u(t))

subject to ox′(t) = f (ox(t),u(t),0) , ox (0) = x (0) ,

ox(t) ∈ X , ∀t ≥ 0,

u : [0,∞)→ U .

(2.5)

Problem (2.5) states that we try to find the optimal input function u∗ for system (2.1)
which for all time t ≥ 0 minimizes the objective function J̃1.
According to Diehl et al. (2006a) there are three basic approaches to address optimal
control problems:

• Dynamic Programming Methods
• Indirect Methods
• Direct Methods

Direct methods can be divided into single shooting, collocation and multiple shooting.
The approach followed in this thesis belongs to the method of single shooting. An
example of multiple shooting can be found in Diehl et al. (2002, 2003). For collocation
see Biegler (1984).
Finding a closed solution for this problem using dynamic programming or indirect
methods can be very difficult or even impossible for some systems f and objective
functions J̃1 (Findeisen et al., 2003, Diehl et al., 2006a). From a practical viewpoint a
closed solution is often not needed, because model mismatch and disturbances acting
on the real-world system (both modeled by the noise process ω) will make the solution
for t > t0 > 0, with t0 ∈ R+ inaccurate.

18 2. Multi-Objective Nonlinear Model Predictive Control

Therefore, using nonlinear model predictive control (NMPC), problem (2.5) is only
solved over a finite horizon. This finite horizon is called the prediction horizon Tp ∈ R+.
Having solved problem (2.5) over the prediction horizon Tp > 0, the optimal input is
applied to the system for a short time period, named (control) sampling time δ. After
the sampling time δ ∈ R+ has passed by, problem (2.5) is solved over the prediction
horizon again. Therefore Tp is moved forward by time δ and the new solution is applied
again for timespan δ and so on. Therefore, problem (2.5) is solved iteratively over the
moving horizon Tp, resulting in an approximate solution to problem (2.5).

For Tp → ∞ and δ → 0 the found approximate solution will converge towards the
optimal solution u∗, provided it exists.

The found optimal input functions at each iteration cannot be equal to the input values
applied to the system, because they are only defined over the time period Tp. Thus, the
found optimal inputs are called open loop input functions. The applied input function
to the system is named closed-loop input.

The NMPC approach has at least two justifications:

• As there may be no closed solution to problem (2.5), the approach using NMPC
will at least return an approximate solution. The degree of approximation can be
defined by the user in choosing appropriate values for the prediction horizon Tp

and sampling time δ.
• Because of model mismatch and disturbances a solution has to be calculated

repeatedly, anyway. Therefore, there is no need to spend time in solving problem
(2.5) over an infinite horizon.

Next to prediction horizon Tp and sampling time δ, the term control horizon Tc ∈ R+

with Tp ≥ Tc ≥ δ is used as well. Using these terms it can be stated that for each
sampling instance k = 0, 1, 2, . . . at time

tk := k · δ (2.6)

NMPC tries to find the optimal open loop input function ou∗
k : [tk, tk + Tp] → U

which minimizes the objective function J̃1 over the interval [tk, tk + Tp], defined by the
prediction horizon Tp. Open loop input functions are denoted by ou : [tk, tk + Tp]→ U .
During the time period [tk, tk + Tc] the system input ou may be changed, after that
it is kept constant at the value ou (tk + Tc), see eq. (2.7). Using these terms, problem

2.1. Case I: Number of Objectives no = 1 19

(2.5) can be formulated approximately as:

For each k = 0, 1, 2, . . . set tk = k · δ and solve:
ou∗

k := arg min
ou

J̃1 (
ox(τ), ou(τ))

subject to ox′(τ) = f (ox(τ), ou(τ),0) , ox (tk) = x (tk) ,

ox(τ) ∈ X , ∀τ ∈ [tk, tk + Tp] ,

ou : [tk, tk + Tc]→ U ,
ou(τ) = ou (tk + Tc) , ∀τ ∈ (tk + Tc, tk + Tp] .

(2.7)

Here it is assumed that for each discrete time tk the state x (tk) of the real system can
be observed. As the system state often can not be observed directly, it often has to be
estimated for each time tk, see Chapter 4.

The resulting optimal input ou∗
k is applied for the interval [tk, tk + δ) to the system:

u(t) = ou∗
k(t), t ∈ [tk, tk + δ) (2.8)

and the optimization problem in (2.7) is solved again for the next value of k. Note that
we assume here that problem (2.7) can be solved in no time. If we would take into
account, that a method solving problem (2.7) for one k needs a certain runtime, then
the application of the optimal input to the real system according to equation (2.8) will
be delayed by the timespan of the runtime.

To simplify the NMPC problem (2.7) further, the open loop input ou is often restricted
to be a piecewise constant function. Therefore, given the open loop input function
ou := (ou1, . . . ,

ouiu , . . . ,
ounu)

T , each component ouiu : R+ → Uiu is a piecewise
constant function. The duration of each constant period of the function ouiu is given
by the sampling time δ. In problem (2.7) it is defined that the open loop input ou should
only be variable over the control horizon Tc. Then, the number of steps of the piecewise
constant function over the control horizon Tc is given by sc := Tc

δ ∈ N0. Thus, each
such piecewise constant function ouiu of the iu = 1, . . . , nu inputs can be described by
sc values given in the vector uiu := (uiu,1, . . . , uiu,sc)

T ∈ (Uiu)
sc with the i = 1, . . . , sc

amplitudes uiu,i ∈ Uiu as given in equation (2.9). This kind of parametrization is called
control vector parametrization (Schlegel et al., 2005). An example of such a piecewise
constant input function is depicted in Figure 2.1.

ouiu (tk + τ) :=


sc∑
i=1

uiu,i · rect (τ − (i− 1) · δ) 0 ≤ τ < Tc

uiu,sc Tc ≤ τ ≤ Tp

rect(τ) :=

{
1 0 ≤ τ < δ

0 else

(2.9)

20 2. Multi-Objective Nonlinear Model Predictive Control

Furthermore, we define

u :=
(
uT
1 , . . . ,u

T
iu
, . . . ,uT

nu

)T ∈ UF ,with

UF := (U1)sc × · · · × (Uiu)
sc × · · · × (Unu)

sc ,
(2.10)

containing all sc amplitudes of each of the nu inputs, which therefore completely
describes the piecewise constant open loop input function ou. Using this simplification

0 δ 2δ 3δ Tc Tp τ

ou1(τ)

u1,1

u1,2

u1,3

u1,4

Figure 2.1: Example of a piecewise constant open loop input function ou1 for iu = 1 and
number of steps sc = 4.

the problem in finding a continuous function ou over the interval [tk, tk + Tc] was
transformed into the simpler problem of finding a vector u containing only nv :=

sc · nu ∈ N0 components, i.e., the amplitudes of the piecewise constant inputs. This
means, that the argument of the objective function J̃ is changed from a function ou

to a vector u with nu elements. From now on this vector u is called the vector of
optimization or decision variables, containing nu optimization variables.
The transformation between the vector of optimization variables u and the open loop
input function ou is given by the function

fU : UF → U (2.11)

which returns the piecewise constant function
ou : [tk, tk + Tp] 7→ fU (u) (2.12)

given the corresponding vector of optimization variables u using equation (2.9).
To account for this transformation in optimization problem (2.7) a new objective
function with a different domain J : X × UF → Rno has to be introduced. Using
equation (2.11) the objective function J is defined by the following equation:

J̃ (ox(τ), ou(τ))
(2.11)
= J̃ (ox(τ),fU (u)) =: J (ox(τ),u) ∀τ ∈ [tk, tk + Tp] (2.13)

Using the new objective function J := (J1, . . . , Jno)
T , with Jio : X × UF → R and

introducing u∗
k ∈ UF , with

ou∗
k : [tk, tk + Tp]→ fU (u∗

k) , (2.14)

2.2. Multi-Objective Optimization 21

problem (2.7) can be reformulated as:

For each k = 0, 1, 2, . . . set tk = k · δ and solve:

u∗
k := arg min

u∈UF
J1 (

ox(τ),u)

subject to ox′(τ) = f (ox(τ), ou(τ),0) , ox (tk) = x (tk) ,

ox(τ) ∈ X , ∀τ ∈ [tk, tk + Tp] ,

ou : [tk, tk + Tp]→ fU (u) .

(2.15)

As ou∗
k

(2.14)
= fU (u∗

k), equation (2.8) can be applied.
To stress that the open loop input u is the vector of optimization variables, which
therefore is the only grip to influence the values of the objective function, if necessary
the following notation is used:

Jx (u) := J (ox(τ),u) . (2.16)

The function Jx : UF → Rno , Jx := (Jx,1, . . . , Jx,no)
T , will be used in Section 2.2 to

simplify the notation, Jx,io : UF → R for io = 1, . . . , no.

2.2 Multi-Objective Optimization
To be able to solve problem (2.4) for no > 1 the concept of multi-objective optim-
ization is introduced. In multi-objective optimization one tries to solve the following
optimization problem:

minimizeu Jx (u)

subject to u ∈ UF
(2.17)

To solve (2.17) a couple of terms are defined to get an idea of how to minimize the
vector function Jx.
In Definition 2.1 the notation Jx (u1) ≤ Jx (u2) is used, which is short for Jx,io (u1) ≤
Jx,io (u2)∀io ∈ {1, . . . , no}, for u1,u2 ∈ UF .

Definition 2.1 (Custódio et al. (2012)): Given two vectors of optimization variables
u1,u2 ∈ UF , it is said that u1 dominates u2, being represented by u1 ≺ u2, iff
Jx (u1) ≤ Jx (u2) and Jx,io (u1) < Jx,io (u2)∃io ∈ {1, . . . , no}.

As Jx shall be minimized, u1 is always preferred over u2, if u1 ≺ u2. Definition 2.1
implies that u1 ≺ u2 if and only if Jx (u1) ≤ Jx (u2) and Jx (u1) 6= Jx (u2). Some
authors define the dominance relation in the space of objective function vectors. In this
meaning there exists the following equivalence, which is used in this thesis:

u1 ≺ u2 ≡ Jx (u1) ≺ Jx (u2) .

22 2. Multi-Objective Nonlinear Model Predictive Control

Special interest lies in vectors of optimization variables u which are non-dominated
within a given set. They are called Pareto optimal points, see Definition 2.2.

Definition 2.2 (Coello Coello (2011)): It is said that a vector of optimization variables
u∗ ∈ UF is Pareto optimal iff there does not exist another u ∈ UF such that u ≺ u∗.

Pareto optimal points are so-called trade-off solutions. There is no solution which is
better (viz. smaller) in all components, but there could be solutions which are at least
better in some component(s) and in each case worse in other components.
If, for u1,u2 ∈ UF , u1 ⊀ u2 and u2 ⊀ u1 then u1 and u2 are said to be nondominated
points. A subset of UF is said to be nondominated when any pair of points in this
subset is nondominated (Custódio et al., 2012).

Definition 2.3 (Coello Coello (2011)): The Pareto optimal set P∗ is defined by:

P∗ := {u ∈ UF |u is Pareto optimal}

Out of definition the Pareto optimal set is a nondominated set. The Pareto optimal
set contains all Pareto optimal points in the feasible set UF . As for each vector in the
Pareto optimal set, there does not exist a better (in the sense of domination) solution
candidate with respect to problem (2.17), each Pareto optimal point will minimize the
objective function Jx. In other words, all Pareto optimal points are equally good, thus
there is no ranking of Pareto optimal points at the moment. This is why we want to
know the Pareto optimal set for the given problem (2.17). A set which contains only
a subset of all Pareto optimal points is called approximate Pareto set or just Pareto
set. As will be shown later in Chapter 3, it usually is not possible to find the Pareto
optimal set but only an approximate Pareto set, because only a finite number of Pareto
optimal points can be found.
To the Pareto optimal set there does also exist the corresponding Pareto front, see
Figure 2.2, defined as:

Definition 2.4 (Coello Coello (2011)): The Pareto front PF∗ is defined by:

PF∗ := {Jx (u) ∈ Rno |u ∈ P∗}

To each approximate Pareto set there does also exist an approximate Pareto front. So
later the question will be to find the best finite set of solutions, which approximates
the Pareto front best possibly.
Multi-objective optimization algorithms, see Chapter 3, then have the task to find
the Pareto optimal set and therefore the Pareto front. Using both terms the general
multi-objective nonlinear model predictive control problem with no > 1 is studied in
Section 2.3.

2.4. Case II: Number of Objectives no > 1 23

Jx,1

Jx,2 PF∗

º

º

º

º

º

º
º

feasible points

infeasible point

Pareto optimal points•

•

•

•

•

Figure 2.2: Example of a two-dimensional Pareto front. The Pareto front is depicted as a line.
Feasible points lie on the right side of the line, infeasible points on the left side. Pareto optimal
points are feasible points which lie directly on the Pareto front.

2.3 Case II: Number of Objectives no > 1

Knowing that the minima of the objective function J lie on the Pareto front, problem
(2.4) is approximately solved by:

For each k = 0, 1, 2, . . . set tk = k · δ and solve:

PF∗
k := min

u∈UF
J (ox(τ),u)

subject to ox′(τ) = f (ox(τ), ou(τ),0) , ox (tk) = x (tk) ,

ox(τ) ∈ X , ∀τ ∈ [tk, tk + Tp] ,

ou : [tk, tk + Tp]→ fU (u) .

(2.18)

Let P∗
k be the corresponding Pareto optimal set to the Pareto front PF∗

k for each
k = 0, 1, 2, Then the optimal input u∗

k ∈ UF has to be picked out of the solutions
inside the Pareto optimal set P∗

k . One possible approach would be the use of a weighted
sum:

u∗
k := arg min

u∈P∗
k

no∑
io=1

$io · Jx,io (u) (2.19)

with $io ∈ (0, 1), io = 1, . . . , no and
no∑

io=1

$io = 1. The weights $io could also be made

dependent on the current state of the system x (tk).
Other possibilities to determine the optimal input u∗

k out of the Pareto optimal set P∗
k

can be found in Bemporad and Muñoz de la Peña (2009), Valera García et al. (2012)
and Flores-Tlacuahuac et al. (2012).

24 2. Multi-Objective Nonlinear Model Predictive Control

2.4 Summary and Discussion
In this chapter an optimization problem was defined, which states that an objective
function J̃ shall be minimized which depends on state trajectories of a dynamic system
ox(t) and inputs u(t), eq. (2.4). It was proposed to approximately solve this optimal
control problem using multi-objective nonlinear model predictive control. Applying
NMPC resulted in the problem formulation (2.18):

For each k = 0, 1, 2, . . . set tk = k · δ and solve:

PF∗
k := min

u∈UF
J (ox(τ),u)

subject to ox′(τ) = f (ox(τ), ou(τ),0) , ox (tk) = x (tk) ,

ox(τ) ∈ X , ∀τ ∈ [tk, tk + Tp] ,

ou : [tk, tk + Tp]→ fU (u) .

(2.20)

with the optimal input vector u∗
k in equation (2.19)

u∗
k := arg min

u∈P∗
k

no∑
io=1

$io · Jx,io (u) (2.21)

and application of equation (2.8) which gives the optimal input in the interval t ∈
[tk, tk + δ)

u(t) = ou∗
k(t) = fU (u∗

k) , t ∈ [tk, tk + δ) . (2.22)

As open questions remained how to solve the optimization problem in eq. (2.20) and
how to get the state of the system at time tk, x (tk), in case it is not directly observable.
The first question will be tackled in the next Chapter 3 and the latter question will be
answered in Chapter 4.
In model-based control offset-free control in case of plant-model mismatch is an
important issue, because there the control error usually is not directly fed back to
the control as it is done in conventional control (e.g. Huang et al. (2010), Tian et al.
(2012)). There are different approaches to handle this problem. For example it can be
solved by introducing a disturbance model that models the plant-model mismatch and
persistent disturbances acting on the plant (Maeder et al., 2009, Morari and Maeder,
2012). However, in this thesis it is tackled using RTO, thus a master/slave (or two-
layer) approach, whereas the master (upper layer) control is the model-based and the
slave (lower layer) is a conventional control. This approach is explained in detail in
Chapter 9.

