The handle http://hdl.handle.net/1887/30105 holds various files of this Leiden University dissertation.

Author: Etemadi Idgahi (Etemaadi), Ramin
Title: Quality-driven multi-objective optimization of software architecture design: method, tool, and application
Issue Date: 2014-12-11
In this appendix, a sample of AQOSA IR (described in Chapter 4.3) is presented. Listing A.1 shows the source of the AQOSA IR model for the case study mentioned in Section 5.3. It is encoded in the Eclipse EMF [Ecl] format. This model is also accessible via this URL: http://goo.gl/nio8u8.

Listing A.1: AQOSA IR EMF model for Saab Instrument Cluster system

```xml
<?xml version="1.0" encoding="UTF-8"?>
  <assembly>
    <component name="ReadWheelSpeedSensors">
      <service name="ReadWheelSpeedSensors"/>
      <inport name="ReadWheelSpeedSensors-in"/>
      <outport name="ReadWheelSpeedSensors-out"/>
    </component>
    <component name="ControlWheelSpeed">
      <service name="CalculateWheelRotation"/>
      <inport name="ControlWheelSpeed-in"/>
      <outport name="ControlWheelSpeed-out"/>
    </component>
    <component name="EngineVehicleInterface">
      <service name="ObtainEngineSpeed"/>  
      <service name="ObtainVehicleSpeed"/>
      <service name="ObtainCoolantTemp"/>
      <inport name="EngineVehicleInterface-in_Engine"/>
      <inport name="EngineVehicleInterface-in_Vehicle"/>
      <inport name="EngineVehicleInterface-in_Coolant"/>
      <outport name="EngineVehicleInterface-out_Engine"/>
      <outport name="EngineVehicleInterface-out_Vehicle"/>
      <outport name="EngineVehicleInterface-out_Coolant"/>
    </component>
    <component name="ProvidePowerModeInfo">
      <service name="PowerModeInfo"/>
      <outport name="PowerModeInfo-out"/>
    </component>
  </assembly>
</aqosa.ir:AQOSAModel>
```
<component name="ControlEngineSpeedGauge">
 <service name="DisplayEngineSpeed"/>
 <inport name="ControlEngineSpeedGauge-in"/>
 <outport name="ControlEngineSpeedGauge-out"/>
</component>

<component name="ControlVehicleSpeedGauge">
 <service name="DisplayVehicleSpeed"/>
 <inport name="ControlVehicleSpeedGauge-in"/>
 <outport name="ControlVehicleSpeedGauge-out"/>
</component>

<component name="Gauge_Engine">
 <service name="CalculateNeedlePosition"/>
 <inport name="Gauge_Engine-in"/>
</component>

<component name="TransmissionVehicleInterface">
 <service name="ReadLeverPstn"/>
 <outport name="TransmissionVehicleInterface-out"/>
</component>

<component name="ControlGearSelectedIndication">
 <service name="GearDisplayValue"/>
 <inport name="ControlGearSelectedIndication-in"/>
 <outport name="ControlGearSelectedIndication-out"/>
</component>

<component name="Display_Engine">
 <service name="IndicateGearPstn"/>
 <service name="DisplayOAT"/>
 <service name="DisplayOdometer"/>
 <service name="IndicateLowWasher"/>
 <inport name="Display_Engine-in_Gear"/>
 <inport name="Display_Engine-in_OAT"/>
 <inport name="Display_Engine-in_Odometer"/>
 <inport name="Display_Engine-in_Washer"/>
</component>

<component name="ReadOATSensor">
 <service name="ObtaionOAT"/>
 <outport name="ReadOATSensor-out"/>
</component>

<component name="ControlOutsideAirTemp">
 <service name="CalculateOAT"/>
 <inport name="ControlOutsideAirTemp-in"/>
 <outport name="ControlOutsideAirTemp-out"/>
</component>

<component name="ControlCoolantTempGauge">
 <service name="DisplayCoolantTemp"/>
 <inport name="ControlCoolantTempGauge-in"/>
 <outport name="ControlCoolantTempGauge-out"/>
</component>

<component name="ReadDriverDoorAjarSwitch">
 <service name="ReadDriverDoorAjarSwitch"/>
 <outport name="ReadDriverDoorAjarSwitch-out"/>
</component>

<component name="ControlOdometer">
 <service name="OdometerValue"/>
 <inport name="ControlOdometer-in"/>
 <outport name="ControlOdometer-out"/>
</component>

<component name="ReadTripStemButton">
 <service name="ReadTripStemButton"/>
 <outport name="ReadTripStemButton-out"/>
</component>
<component name="ReadLowWasherLevel">
 <service name="ReadLowWasherLevel"/>
 <outport name="ReadLowWasherLevel-out"/>
</component>

<component name="ControlWasherLevelIndication">
 <service name="ControlWasherLevelIndication"/>
 <inport name="ControlWasherLevelIndication-in"/>
 <outport name="ControlWasherLevelIndication-out"/>
</component>

<flow name="Ignition_to_EngineSpeed">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/component.3/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/component.3/outport.0" destination="/assembly/component.2/inport.0"/>
</flow>

<flow name="Ignition_to_VehicleSpeed">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/component.3/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/component.3/outport.0" destination="/assembly/component.0/inport.0"/>
</flow>

<flow name="GearIndication">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/component.7/service.0"/>
</flow>
<flow name="VehicleSpeedIndication">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.0/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.0/outport.0" destination="/assembly/@component.1/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.1/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.1/outport.0" destination="/assembly/@component.2/inport.1"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.2/service.1"/>
</flow>

<flow name="EngineSpeedIndication">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.2/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.2/outport.0" destination="/assembly/@component.4/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.4/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.4/outport.0" destination="/assembly/@component.6/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.6/service.0"/>
</flow>

<flow name="OATCalculation">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.10/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.10/outport.0" destination="/assembly/@component.11/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.11/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.11/outport.0" destination="/assembly/@component.9/inport.1"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.9/service.1"/>
</flow>

<flow name="EngineCoolantTemp">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.2/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.2/outport.0" destination="/assembly/@component.12/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.12/service.0"/>
 <action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.12/outport.0" destination="/assembly/@component.6/inport.0"/>
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.6/service.0"/>
</flow>

<flow name="DriverDoor_to_Odometer">
 <action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.13/service.0"/>
</flow>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.13/outport.0" destination="/assembly/@component.14/inport.0"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.14/service.0"/>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.14/outport.0" destination="/assembly/@component.9/inport.2"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.9/service.2"/>
</flow>
<flow name="StemButton_to_Odometer">
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.15/service.0"/>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.15/outport.0" destination="/assembly/@component.14/inport.0"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.14/service.0"/>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.14/outport.0" destination="/assembly/@component.9/inport.2"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.9/service.2"/>
</flow>
<flow name="LowWasherIndication">
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.16/service.0"/>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.16/outport.0" destination="/assembly/@component.17/inport.0"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.17/service.0"/>
<action xsi:type="aqosa.ir:CommunicateAction" source="/assembly/@component.17/outport.0" destination="/assembly/@component.9/inport.3"/>
<action xsi:type="aqosa.ir:ComputeAction" service="/assembly/@component.9/service.3"/>
</flow>
</assembly>
<scenarios>
<flowset name="Average" completionTime="10000.0" missedPercentage="0.05">
<flowinstance instance="/assembly/@flow.0" start="300.0" trigger="5000.0" deadline="75.0"/>
<flowinstance instance="/assembly/@flow.1" start="400.0" trigger="5000.0" deadline="75.0"/>
<flowinstance instance="/assembly/@flow.2" start="500.0" trigger="5000.0" deadline="50.0"/>
<flowinstance instance="/assembly/@flow.3" start="1000.0" trigger="100.0" deadline="50.0"/>
<flowinstance instance="/assembly/@flow.4" start="1030.0" trigger="100.0" deadline="35.0"/>
<flowinstance instance="/assembly/@flow.5" start="100.0" trigger="1000.0" deadline="50.0"/>
<flowinstance instance="/assembly/@flow.6" start="1070.0" trigger="100.0" deadline="30.0"/>
<flowinstance instance="/assembly/@flow.7" start="2000.0" trigger="5000.0" deadline="250.0"/>
<flowinstance instance="/assembly/@flow.8" start="2500.0" trigger="5000.0" deadline="250.0"/>
<flowinstance instance="/assembly/@flow.9" start="3000.0" trigger="5000.0" deadline="125.0"/>
</flowset>
</scenarios>
<repository>
<componentinstance id="ReadWheelSpeedSensors_Instance" compatible="
<componentinstance id="ControlWheelSpeed_Instance" compatible="//@assembly/@component.1" variancePercentage="0.05">
 <service instance="//@assembly/@component.1/@service.0" cycles="500" networkUsage="2000.0">
 <provide connects="//@assembly/@component.1/@outport.0"/>
 <depend>
 <require external="//@repository/@externalport.3"/>
 <require internal="//@assembly/@component.1/@inport.0"/>
 </depend>
 </service>
</componentinstance>

<componentinstance id="EngineVehicleInterface_Instance" compatible="//@assembly/@component.2" variancePercentage="0.05">
 <service instance="//@assembly/@component.2/@service.0" cycles="500" networkUsage="2000.0">
 <provide connects="//@assembly/@component.2/@outport.0"/>
 <depend>
 <require external="//@repository/@externalport.3"/>
 <require internal="//@assembly/@component.2/@inport.0"/>
 </depend>
 </service>
</componentinstance>

<service instance="//@assembly/@component.2/@service.1" cycles="500" networkUsage="1000.0">
 <provide connects="//@assembly/@component.2/@outport.1"/>
 <depend>
 <require internal="//@assembly/@component.2/@inport.1"/>
 </depend>
</service>

<service instance="//@assembly/@component.2/@service.2" cycles="500" networkUsage="1000.0">
 <provide connects="//@assembly/@component.2/@outport.2"/>
 <depend>
 <require internal="//@assembly/@component.2/@inport.2"/>
 </depend>
</service>

<componentinstance id="ProvidePowerModeInfo_Instance" compatible="//@assembly/@component.3" variancePercentage="0.05">
 <service instance="//@assembly/@component.3/@service.0" cycles="400" networkUsage="1000.0">
 <provide connects="//@assembly/@component.3/@outport.0"/>
 <depend>
 <require external="//@repository/@externalport.2"/>
 </depend>
 </service>
</componentinstance>

<componentinstance id="ControlEngineSpeedGauge_Instance" compatible="//@assembly/@component.4" variancePercentage="0.05">
 <service instance="//@assembly/@component.4/@service.0" cycles="2850" networkUsage="2000.0">
 <provide connects="//@assembly/@component.4/@outport.0"/>
 </service>
</componentinstance>
<depend>
 <require internal="/assembly/component.4/inport.0"/>
</depend>
</service>
</componentinstance>
<componentinstance id="ControlVehicleSpeedGauge_Instance" compatible="/assembly/component.5"
 variancePercentage="0.05">
 <service instance="/assembly/component.5/service.0" cycles="2950" networkUsage="2000.0">
 <provide connects="/assembly/component.5/outport.0"/>
 <depend>
 <require internal="/assembly/component.5/inport.0"/>
 </depend>
 </service>
</componentinstance>
<componentinstance id="Gauge_Engine_Instance" compatible="/assembly/component.6"
 variancePercentage="0.05">
 <service instance="/assembly/component.6/service.0" cycles="500">
 <depend>
 <require internal="/assembly/component.6/inport.0"/>
 </depend>
 </service>
</componentinstance>
<componentinstance id="TransmissionVehicleInterface_Instance" compatible="/assembly/component.7"
 variancePercentage="0.05">
 <service instance="/assembly/component.7/service.0" cycles="100" networkUsage="1000.0">
 <provide connects="/assembly/component.7/outport.0"/>
 <depend>
 <require external="/repository/externalport.5"/>
 </depend>
 </service>
</componentinstance>
<componentinstance id="ControlGearSelectedIndication_Instance" compatible="/assembly/component.8"
 variancePercentage="0.05">
 <service instance="/assembly/component.8/service.0" cycles="2500" networkUsage="1000.0">
 <provide connects="/assembly/component.8/outport.0"/>
 <depend>
 <require internal="/assembly/component.8/inport.0"/>
 </depend>
 </service>
</componentinstance>
<componentinstance id="Display_Engine_Instance" cost="55.0" compatible="/assembly/component.9"
 variancePercentage="0.05">
 <service instance="/assembly/component.9/service.0" cycles="500" networkUsage="1000.0">
 <depend>
 <require internal="/assembly/component.9/inport.0"/>
 </depend>
 </service>
 <service instance="/assembly/component.9/service.1" cycles="500" networkUsage="1000.0">
 <depend>
 <require internal="/assembly/component.9/inport.1"/>
 </depend>
 </service>
 <service instance="/assembly/component.9/service.2" cycles="500" networkUsage="1000.0">
 <depend>
<require internal="//@assembly/@component.9/@inport.2"/>
</depend>
</service>
<service instance="//@assembly/@component.9/@service.3" cycles="500" networkUsage="1000.0">
<depend>
<require internal="//@assembly/@component.9/@inport.3"/>
</depend>
</service></componentinstance>

<componentinstance id="ReadOATSensor_Instance" compatible="//@assembly/@component.10" variancePercentage="0.05">
<service instance="//@assembly/@component.10/@service.0" cycles="1000" networkUsage="1000.0">
<provide connects="//@assembly/@component.10/@outport.0"/>
<depend>
<require external="//@repository/@externalport.6"/>
</depend>
</service>
</componentinstance>

<componentinstance id="ControlOutsideAirTemp_Instance" compatible="//@assembly/@component.11" variancePercentage="0.05">
<service instance="//@assembly/@component.11/@service.0" cycles="2744" networkUsage="1000.0">
<provide connects="//@assembly/@component.11/@outport.0"/>
<depend>
<require internal="//@assembly/@component.11/@inport.0"/>
</depend>
</service>
</componentinstance>

<componentinstance id="ControlCoolantTempGauge_Instance" compatible="//@assembly/@component.12" variancePercentage="0.05">
<service instance="//@assembly/@component.12/@service.0" cycles="1500" networkUsage="1000.0">
<provide connects="//@assembly/@component.12/@outport.0"/>
<depend>
<require internal="//@assembly/@component.12/@inport.0"/>
</depend>
</service>
</componentinstance>

<componentinstance id="ReadDriverDoorAjarSwitch_Instance" cost="1.0" compatible="//@assembly/@component.13" variancePercentage="0.05">
<service instance="//@assembly/@component.13/@service.0" cycles="100" networkUsage="1000.0">
<provide connects="//@assembly/@component.13/@outport.0"/>
<depend>
<require external="//@repository/@externalport.0"/>
</depend>
</service>
</componentinstance>

<componentinstance id="ControlOdometer_Instance" compatible="//@assembly/@component.14" variancePercentage="0.05">
<service instance="//@assembly/@component.14/@service.0" cycles="2440" networkUsage="4000.0">
<provide connects="//@assembly/@component.14/@outport.0"/>
<depend>
<require internal="//@assembly/@component.14/@inport.0"/>
<require external="//@repository/@externalport.7"/>
</depend>
</service>
<componentinstance id="ReadTripStemButton_Instance" compatible=""
 @assembly/@component.15" variancePercentage="0.05">
 <service instance="/@assembly/@component.15/@service.0" cycles="100" networkUsage="1000.0">
 <provide connects="/@assembly/@component.15/@outport.0"/>
 <require external="/repository/@externalport.1"/>
 </service>
</componentinstance>

<componentinstance id="ReadLowWasherLevel_Instance" compatible=""
 @assembly/@component.16" variancePercentage="0.05">
 <service instance="/@assembly/@component.16/@service.0" cycles="100" networkUsage="1000.0">
 <provide connects="/@assembly/@component.16/@outport.0"/>
 <require external="/repository/@externalport.8"/>
 </service>
</componentinstance>

<componentinstance id="ControlWasherLevelIndication_Instance" compatible=""
 @assembly/@component.17" variancePercentage="0.05">
 <service instance="/@assembly/@component.17/@service.0" cycles="300" networkUsage="1000.0">
 <provide connects="/@assembly/@component.17/@outport.0"/>
 <require internal="/assembly/@component.17/@inport.0"/>
 </service>
</componentinstance>

<processor id="cpu066-h" clock="66.0" cost="100.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu066-l" clock="66.0" cost="140.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu100-h" clock="100.0" cost="125.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu100-l" clock="100.0" cost="175.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu133-h" clock="133.0" cost="150.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu133-l" clock="133.0" cost="210.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu166-h" clock="166.0" cost="175.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu166-l" clock="166.0" cost="245.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu200-h" clock="200.0" cost="200.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu200-l" clock="200.0" cost="280.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu233-h" clock="233.0" cost="225.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu233-l" clock="233.0" cost="315.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.01" upperFail="0.025"/>
<processor id="cpu266-h" clock="266.0" cost="250.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>
<processor id="cpu266-l" clock="266.0" cost="350.0" internalBusBandwidth="1024.0"
 internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>
<processor id="cpu300-h" clock="300.0" cost="275.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>

<processor id="cpu300-l" clock="300.0" cost="385.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>

<processor id="cpu333-h" clock="333.0" cost="300.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>

<processor id="cpu333-l" clock="333.0" cost="420.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.015" upperFail="0.035"/>

<processor id="cpu366-h" clock="366.0" cost="325.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>

<processor id="cpu366-l" clock="366.0" cost="455.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.015" upperFail="0.035"/>

<processor id="cpu400-h" clock="400.0" cost="350.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.02" upperFail="0.035"/>

<processor id="cpu400-l" clock="400.0" cost="490.0" internalBusBandwidth="1024.0"
internalBusDelay="0.1" lowerFail="0.015" upperFail="0.03"/>

<bus id="CAN-HS" bandwidth="500.0" delay="0.002" cost="100.0"/>

<bus id="CAN-MS" bandwidth="125.0" delay="0.008" cost="50.0"/>

<bus id="CAN-LS" bandwidth="33.3" delay="0.016" cost="25.0"/>

<bus id="LIN" bandwidth="10.0" delay="0.05" cost="10.0"/>

<externalport id="ajar-switch" lowerFail="0.01" upperFail="0.05"/>

<externalport id="stem-button" lowerFail="0.01" upperFail="0.05"/>

<externalport id="ignition-switch" lowerFail="0.01" upperFail="0.05"/>

<externalport id="crankshaft-sensor" lowerFail="0.01" upperFail="0.05"/>

<externalport id="wheel-sensor" lowerFail="0.01" upperFail="0.05"/>

<externalport id="oat-sensor" lowerFail="0.01" upperFail="0.05"/>

<externalport id="odometer-storage" lowerFail="0.01" upperFail="0.05"/>

<externalport id="lowwasher-switch" lowerFail="0.01" upperFail="0.05"/>

</repository>

<objectives>

<settings noRun="3" noSampling="50" noDuplicate="1" minCost="200.0" maxCost="10000.0" />

<evaluations>ResponseTime</evaluations>
<evaluations>CPUUtilization</evaluations>
<evaluations>BusUtilization</evaluations>
<evaluations>Safety</evaluations>
<evaluations>Cost</evaluations>

</settings>

</objectives>

</aqosa.ir:AQOSAModel>
List of Figures

2.1 The 4+1 view model of architecture ... 11

4.1 AQOSA high level architecture ... 28
4.2 AQOSA tooling parts .. 29
4.3 AQOSA modelling tool screenshot ... 31
4.4 AQOSA Intermediate Representation (IR) simplified meta-model 32
4.5 Three possible topologies for a 4-node network 35
4.6 Optimizer module class diagram ... 36
4.7 Solution module class diagram .. 40
4.8 Example scenario ... 41
4.9 Sample genotype ... 41
4.10 Generated queuing network for sample scenario 42
4.11 Generated fault tree for sample scenario ... 42
4.12 Evaluator module class diagram ... 45
4.13 AQOSA live Pareto front monitoring screenshot 46
4.14 AQOSA web-based interface screenshot .. 47

5.1 BRS 4-tier components .. 52
5.2 2D Pareto front comparison for Business Report system 54
5.3 3D Pareto front comparison for Business Report system 54
5.4 The boxplots of the hypervolume indicator over 15 runs 55
5.5 Use Case Maps notation of Cruise Control system 57
5.6 2D Pareto front comparison for cruise control system 58
5.7 3D Pareto front for cruise control system ... 59
5.8 Component diagram of SAAB Instrument Cluster sub-system 61
5.9 Sequence diagram of *OutsideAirTemperatureIndication* user function ... 65
LIST OF FIGURES

5.10 Sequence diagram of **VehicleSpeedIndication** user function .. 66
5.11 Sequence diagram of **VehicleSpeed_onStart** user function ... 67
5.12 Sequence diagram of **EngineSpeedIndication** user function ... 68
5.13 Sequence diagram of **EngineSpeed_onStart** user function ... 69
5.14 Sequence diagram of **CoolantTemperatureIndication** user function 70
5.15 Sequence diagram of **SelectedGearIndication** user function ... 71
5.16 Sequence diagram of **OdometerIndication** user function on Trip Stem Button Activation event ... 72
5.17 Sequence diagram of **OdometerIndication** user function on Door Ajar Activation event ... 73
5.18 Sequence diagram of **LowWasherIndication** user function .. 74
5.19 Current realization of SAAB Instrument Cluster sub-system .. 75
5.20 Pareto front views for all pairs of two out of five quality attributes 77
5.21 Response time vs. cost Pareto front ... 78
5.22 Parallel coordinate plot of optimized solutions .. 79
5.23 Selected solution as proposed realization .. 80

6.1 Base topology ... 86
6.2 Samples of possible and impossible topologies ... 87
6.3 Comparing the effect of load balancing DoF ... 88
6.4 Baseline topology for CC system .. 89
6.5 Boxplot comparison of optimization results with and without topology DoF ... 90
6.6 Pareto front of Processor utilization vs. Cost .. 91
6.7 Arch. A: Sample of 5-node topology ... 92
6.8 Arch. B: Sample of 4-node topology ... 92
6.9 Arch. C: Sample of 3-node topology ... 93
6.10 Arch. D: Sample of 2-node topology ... 93
6.11 Boxplot comparison of three experiments sets ... 95
6.12 Best of Processor utilization for experiment sets (2) and (3) ... 96
6.13 Boxplot comparison of the hypervolume of archive sets ... 97

7.1 Caching pattern ... 101
7.2 Voter pattern ... 101
7.3 Encryption/Decryption pattern .. 102
7.4 Non-balanced distribution of software components ... 104
7.5 Balanced distribution of software components ... 104
7.6 Random combination of heuristic-based search operators .. 106
7.7 Sequential combination of heuristic-based search operators ... 106
7.8 Random-Sequential combination of heuristic-based search operators 107
7.9 Half-Random combination of heuristic-based search operators ... 107
7.10 Half-Sequential combination of heuristic-based search operators 108
7.11 Half-Random-Sequential combination of heuristic-based search operators 108
7.12 Averaged Hausdorff Distance of different operator combinations 110

8.1 Process of finding similar optimal architectural solutions from Pareto fronts ... 115
8.2 Case study feature model .. 121
8.3 Resource claims (CPU cycles) for all possible products in the feature model 122
8.4 Feature configuration for Car1 .. 123
8.5 Feature configuration for Car2 .. 124
8.6 Feature configuration for Car3 .. 125
8.7 Feature configuration for Car4 .. 126
8.8 Feature configuration for Car5 .. 127
8.9 Proposed common solution which is optimal for Car1 128
8.10 Similar solutions in other Pareto fronts .. 129
8.11 Boxplot of the number of found common solutions for various Δ 131

9.1 A visualization of Map and Reduce processes .. 137
9.2 Concurrency with actors and asynchronous message sending 139
9.3 AQOSA implementation of actor-based distribution scheme 140
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>AQOSA framework genotype</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Algorithm complexity parameters</td>
<td>48</td>
</tr>
<tr>
<td>5.1</td>
<td>Description of user functions for the SAAB Instrument Cluster sub-system</td>
<td>60</td>
</tr>
<tr>
<td>5.2</td>
<td>Sporadic tasks included in SAAB Instrument Cluster sub-system</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Periodic tasks included in SAAB Instrument Cluster sub-system</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>Deployment constraints for SAAB Instrument Cluster sub-system</td>
<td>64</td>
</tr>
<tr>
<td>5.5</td>
<td>Hardware data and cost</td>
<td>76</td>
</tr>
<tr>
<td>5.6</td>
<td>Quality attribute values for a selection of candidate solutions</td>
<td>79</td>
</tr>
<tr>
<td>8.1</td>
<td>Average number of common solutions over 60 runs among various Pareto fronts</td>
<td>130</td>
</tr>
<tr>
<td>9.1</td>
<td>Execution time (in ms) of 30 runs of experiment</td>
<td>141</td>
</tr>
</tbody>
</table>

[Sun] Sun Microsystems (merged with Oracle Corporation). Java: a set of several computer software products and specifications from Sun Microsystems (which has since merged with Oracle Corporation), v6. URL: http://java.sun.com/. (cited on pages 43 and 47).

