
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Related- and Future Work 7

In this chapter we present a direct comparison of our own
framework and corresponding tool support with PQL [64],
Jassda [16], LARVA [26] and MOP [20]. We model the prop-
erties of the Fredhopper case study described in the previous
section in these respective tools. We consider the learnabil-
ity of the frameworks: that is, does the framework provide a
specification language with a surface syntax close to existing
formal/modeling languages? Is the semantics of the specifica-
tions properly documented? We test how easily the frameworks
can be adopted or integrated into the the software develop-
ment cycle in an industrial context such as at Fredhopper. This
includes operational steps like installation, execution, and doc-
umentation and support.

We now provide a brief overview of these three frameworks.

PQL Program Query Language, PQL, is developed by Mar-
tin et al. [64], it is a query language for pattern matching (pos-
sibly recursive) sequences of method invocations of Java pro-
grams. Unlike all the other approaches in the evaluation, PQL
queries express invalid behavior rather than all possible valid
behavior. Figure 7.1 shows a PQL query expressing part of the
Worker property. Specifically, it matches invalid behavior of in-

103

7. Related- and Future Work

voking reg after invoking establish with the input argument
“LIST”.

Jassda Java with assertions Debugger Architecture, Jassda,
is a framework developed by Brörkens et al. [16]. Trace as-
sertions are given in a CSP-like notation. The CSP-like nota-
tion maps invocations and returns of method calls of Java pro-
grams as events. For example, Figure 7.2 shows that the event
w.rg.begin is mapped to the invocation of method Worker.reg

The framework takes such assertions, combined with the Java
Debugger Architecture to monitor calls and returns of meth-
ods. It then generates a program for a state machine, and at-
taches to the Java Virtual Machine running the system under
test that is accepting debug connections. The framework then
monitors invocations and returns of method calls and output
log messages to a separate file on state transitions.

LARVA Logical Automata for Runtime Verification and
Analysis, LARVA, is developed by Colombo et al. [26]. LARVA
provides a modeling language for specifying both valid and
invalid method invocations of Java programs by enumerating
transitions in a state transition function of an abstract machine.
Each transition is conditioned on an event, where an event
maps to one or more invocations and returns of method calls.
The modeling language also permits declaring global variables
of any visible Java types (class/interface), and at each transi-
tion an optional condition can be made about values of these
variables against input arguments or return values of methods
as well as any number of Java statements on these variables
and values. Figure 7.3 shows how to partially model Worker
property in LARVA.

JavaMOP Monitoring-Oriented Programming, MOP [20], is
a run-time monitoring tool based on aspect-oriented program-
ming which uses context-free grammars to describe properties
of the control flow of histories. Properties on the data-flow are
predefined built-in functions (basically AspectJ functions such
as a ’target’ to bind the callee and ’this’ to bind the caller, com-
parable to built-in attributes of terminals in our setting). This

104

limits the expression of data properties: there is no support for
defining properties of sequences of terminals. To circumvent
this limitation one may however hack general properties into
the tool implementation. Figure 7.4 formalizes the protocol
behavior of the Worker.

In contrast, our approach supports a general methodology
to introduce systematically user-defined properties, by means
of attributes of non-terminals. Furthermore SAGA supports
conditional productions which are essential to specify protocols
dependent on data in a declarative manner. Finally, JavaMOP
does not directly support the specification of local histories (i.e.
monitoring the messages sent and received by a single object).

Expressiveness

Snapshot Coordinator Worker

PQL yes no no
Jassda yes no no
LARVA yes yes yes
MOP yes yes yes
SAGA yes yes yes

Table 7.1: Comparison of Expressiveness

We investigated the expressiveness of the specification lan-
guages of these tools by attempting to express and check the
SnapShot, Worker and Coordination properties (see Chap-
ter 5). The resulting specifications are given in Figures 7.1
to 7.4.

Table 7.1 summarizes the results. Neither PQL nor
Jassda can express the Coordinator and Worker proper-
ties since neither allows user-defined properties of data. In
both Coordinator and Worker properties, the validity of a
method invocation is dependent on the value of the input
arguments as well as the return values. For example in
PQL snippet in Figure 7.1, to model the invalid sequence of
method invocations establish("LIST") followed by reg(_),
we had to encapsulate the string value "LIST" into the method
SyncServer.getList() as PQL does support object manipu-

105

7. Related- and Future Work

Specification Execution
PQL 5 2

Jassda 4 2
LARVA 2 1
MOP 5 1
SAGA 3 1

Table 7.2: Duration per Activity in hours

query main ()

uses object Worker w; object String s;

matches {

w = Acceptor.getWorker();

s = SyncServer.getList();

w.establish(s); w.reg(s); }

executes Util.printStackTrace(*);

Figure 7.1: PQL

trace worker {

eventset w { class="Worker" }

eventset r { method="reg"}

...

process main() {

w.ls.begin -> w.ls.end ->

w.et.begin -> w.et.end -> STOP

[]

w.os.begin -> w.os.end ->

w.et.begin -> w.et.end ->

w.rg.begin -> STOP }}

Figure 7.2: JASS

lation. LARVA and MOP, on the other hand, support execut-
ing arbitrary Java statements when an event occurs, hence it is
possible to define data-oriented properties such as Coordinator
and Worker. As such, user-defined properties of the data of a
single event are possible to express. It is not possible to di-

106

IMPORTS{ import java.util.*; }

GLOBAL {

FOREACH (Worker w) {

VARIABLES { String c = null; ArrayDeque q = null;}

EVENTS{

et(String s, Worker w1) = {

w1.establish(s);} where {w = w1;}

is(String s, List is, Worker w1) = {

w1.reg(s)uponReturning(is);} where {w = w1;}

tr(Item i, Worker w1) = {

w1.transfer(i);} where {w = w1;}}

PROPERTY workers{

STATES {

STARTING{ start{} }

BAD{ regL{} transW{} }

NORMAL{ est{} regS{} transC{} }}

TRANSITIONS{

start -> est [et()\\c = s;]

est -> regL [is()\"LIST".equals(c)]

est -> regS [is()\! "LIST".equals(c)\q =

new ArrayDeque(is);]

regS -> transW [tr()\q.pop() != i]

regS -> transC [tr()\q.pop() == i] }}}}

Figure 7.3: LARVA

rectly express properties of sequences of events (i.e. the data-
flow of the history). In LARVA, non-regular context-free pro-
tocols cannot be expressed directly : one would have to write
the parser for a context-free grammar oneself. The user would
then essentially be writing their own run-time checker in Java,
bypassing MOP and Larva. This is clearly unfeasible, and the
resulting specifications are not declarative anymore. Most im-
portantly, in that degenerative sense of expressiveness, AspectJ
(on which MOP and LARVA are based) would already be suf-
ficient.

Moreover, since LARVA supports the manipulation of ar-
bitrary Java objects as global variables, it is as expressive as
SAGA. However, unlike SAGA, LARVA requires the specifi-

107

7. Related- and Future Work

import java.io.*; import java.util.*;

suffix HasNext(Worker w) {

event et before(Worker w):

call(* Worker.establish(String)) && target(w) {}

event rg before(Worker w):

call(* Worker.reg(String)) && target(w) {}

event is after(Worker w) returning(List result):

call(* Worker.reg(String)) && target(w) {}

event tr before(Worker w):

call(* Worker.transfer(int)) && target(w) {}

cfg : S -> epsilon | et U, U -> epsilon | rg V,

V -> epsilon | is W, W -> epsilon | tr W

@fail { System.err.println("Protocol violation"); }}

Figure 7.4: MOP

cation to be explicit on both valid and invalid method call
sequences. For example, the specification in Figure 7.3 would
allow reg() to be invoked immediately at the start state, as
the transition from the start state is not defined, it is simply
ignored by the monitoring framework.

Learnability

Learnability is the capability of a software product to enable
the user to learn how to use it. Table 7.2 shows the number of
hours spent on activities to specify and monitoring properties
defined in Figure 6.5.

The most time spent at specification was for PQL; PQL
defines a new specification language for expressing queries for
(recursively) matching sequences of method invocations. We
find the language to be counter-intuitive as it does not match
any existing modeling or programming languages. Moreover, it
requires the user to specify invalid behavior rather than valid
ones and it is unclear how to specify method invocations with
specific input values. Similarly Jassda lacks an integration into
the general context of assertion checking, which is needed to
specify properties of variable values.

108

Documentation Maintenance Support
PQL 1 paper, examples 2006 Minimal

Jassda papers, (German)
thesis, examples

2006 Minimal

LARVA papers, manuals,
examples

2011 Immediate

MOP papers, manuals,
examples

2011 Immediate

SAGA papers, examples 2012 Immediate

Table 7.3: Adoptability

LARVA provides an intuitive language for specifying reg-
ular protocols. Specifications are finite state automata with
optionally actions (arbitrary Java code) on the transitions of
the automaton. Actions can be used to express data-oriented
properties, though in an imperative style. Context-free proto-
cols are however much more cumbersome to express as noted
previously. Despite the fact that the Worker property has only
been formalized partially in LARVA due to requirements to
express all invalid sequences of method invocations, the full
specification in SAGA is much more concise.

Though it is no so difficult in MOP to formalize the proto-
col behavior of the Worker, Figure 7.4 (data-oriented properties
are more problematic, as these cannot be expressed directly as
mentioned), the meaning of the grammars in MOP is unclear:
the failure handler was triggered by MOP even for correct pro-
grams. Whether this is due to misunderstanding on our part
of the meaning of MOP specifications, or due to a bug in MOP
remains unclear even after a thorough reading of the documen-
tation.

For PQL, most time is spent identifying which Java state-
ments are supported and how variables can be manipulated.
The actual set-up of the run-time checking (compilation, in-
strumentation etc.) are carried by mirroring the setting in the
toy examples provided by the installation package. For Jassda,
time is spent at understanding the Java Debugger Architec-
ture, and in particular the proper settings in the configuration
files.

109

7. Related- and Future Work

We evaluated how easily the frameworks can be adopted
or integrated into the the software development cycle in an
industrial context such as at Fredhopper. This includes op-
erational steps like installation, execution, and documentation
and support. The quality assurance process at Fredhopper (as
in many other software companies) includes automated testing.
This type of testing requires a running FAS instance and can be
augmented with run-time assertion checking techniques. Lack
of support and maintenance (Table 7.3) reduces the confidence
in PQL and Jassda.

Future Work

The concurrent version of our run-time checker which is de-
scribed in Chapter 6 currently supports only regular grammars
and all attributes must be inherited. As described, this restric-
tion allows efficient run-time checking since one does not need
to store the full history (just storing the attribute values of the
‘previous’ history suffices), and one does not need to re-parse
the full history when a message is added to it (instead, one
simply executes a single step in a finite automaton). The sin-
gle threaded version allows more general grammars, but at the
cost of a more expensive parsing process (the entire history is
stored, and completely re-parsed whenever an event occurs).
This suggests a possible direction of future work: investigate
if and how more general grammars can be parsed incremen-
tally, and implement efficient parsers for that class of gram-
mars. Some initial theoretical work has already been done in
this direction by Hedin [43].

Another direction of future work concerns error reporting
(by error, we mean here that a history has been reached dur-
ing execution which violated a specification as given by the
grammars). If the run-time checker detects an error, what
information is reported, and how is it presented? Clearly it
is cumbersome to read through long stacktraces and low-level
details of Java virtual machines that one gets by simply ex-
ecuting the program inside a debugger. On the other hand,
the reported error should be sufficient to isolate the incorrect
part of the source-code if it is to be of use for fixing the er-
ror. As a first step, the current version of the run-time checker

110

outputs a UML sequence diagram depicting an invalid history
upon detection, but much work remains to be done. For in-
stance, it is clearly infeasable to visualize large histories (or
even any history containing more than 10.000 messages). Thus
suitable abstractions must be found. In particular, the ques-
tion arises: which of the messages in the history are actually
relevant for the error that was found? Once this is known, the
other messages can simply be filtered away.

A third opportunity for future work concerns off-line mon-
itoring. The current run-time checker parses the current his-
tory during execution of the program in real-time and stops (or
possibly corrects) the original program once a violation of the
specification is caught. Therefore the run-time checker induces
an overhead during execution. This can partly be alleviated
on multicore machines by running the run-time checker in a
separate virtual machine (this is done by default if one uses
the Java debugger, as explained in Chapter 4), and running
that virtual machine on another processor. However there will
still be some communication to report the next method call to
be executed between the two virtual machines, and communi-
cation between two processes generally decreases performance.
An alternative would be to develop a run-time checker which
writes the history to disk. This allows to investigate any po-
tential errors at another time, potentially even on a physically
completely separate machine! One possible downside of this al-
ternative is that since errors are only detected at a later time,
the running system is not prevented from unsafe behavior. To
keep the sizes of the stored histories manageable, it is in this
regard clearly also important to find efficient representations
or abstractions of the history.

While our formalism was based on context-free grammars
(extended with attributes and assertions), there are more ex-
pressive grammar formalisms, such as Boolean grammars [71]
or context-sensitive grammars (see for example [63]). These
formalisms still have a decidable parsing problem. Future work
in this direction can be done by investigating if (and how) these
formalisms can be extended by some form of attributes, simi-
larly to how attribute grammars are an extension of context-
free grammars.

A perhaps simpler line of future work would be to ex-

111

7. Related- and Future Work

tend the tool, for example with wildcards in communication
views, or associating some form of time to each communica-
tion event. Wildcards are useful for specifying patterns (or
sets) of method calls. For instance, if a class contains multiple
overloaded methods, and one wants identify all of them in the
attribute grammar, using a wildcard as the list of parameters
would be a simple solution which avoids explicitly listing all
variants of the overloaded method in the comunication view.
As another feature, one could store the time at which a method
call occured as an additional built-in attribute in the grammar
terminals. This additional attribute could be used to specify
non-functional properties such as resource requirements. For
instance, it allows to express properties like ‘the method m
should not be called within 1 second after n was called’. In
this respect it would be interesting to compare the resulting
attribute grammars with existing temporal logics.

112

