
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Concurrent Object Groups 6

In [80] Java is extended with a concurrency model based on
the notion of concurrently running object groups, so-called
coboxes, which provide a powerful generalization of the con-
cept of active objects. Coboxes can be dynamically created
and objects within a cobox have only direct access to the fields
of the other objects belonging to the same cobox. Since one
of the main requirements of the design of coboxes is a smooth
integration with object-oriented languages like Java, coboxes
themselves do not have an identity, e.g., all communication be-
tween coboxes refer to the objects within coboxes. Communi-
cation between coboxes is based on asynchronous method calls
with standard objects as targets. An asynchronous method call
spawns a local thread within the cobox to which the targeted
object belongs. Such a thread consists of the usual stack of
internal method calls. Coboxes support multiple local threads
which are executed in an interleaved manner. The local threads
of a cobox are scheduled cooperatively, along the lines of the
Creol modeling language described in [55]. This means, that at
most one thread can be active in a cobox at a time, and that
the active thread has to give up its control explicitly to allow
other threads of the same cobox to become active.

ABS (Abstract Behavioral Specification language) is a novel

71

6. Concurrent Object Groups

language based on coboxes for modeling and analysis of com-
plex distributed systems. It is a fully executable language with
code generators for Java, Maude and Scala. In [54] a for-
mal semantics of ABS was introduced based on asynchronous
messages between coboxes. However, as of yet, no formal
method for specifying and run-time verifying traces of such
asynchronous messages has been developed. In this chapter,
we develop tool support for the efficient run-time verification
of asynchronous message passing between coboxes, indepen-
dent from any backend. This latter requirement is important
because in general the analysis of a particular backend is com-
plicated by low-level implementation details. Further, it allows
to generalize the analysis to all (including future) backends.

We show how to use attribute grammars extended with as-
sertions to specify and verify (at run-time) properties of the
messages sent between coboxes. To this end, we first improve
the efficiency of the run-time verification tool SAGA [34], which
smoothly integrates both data- and protocol-oriented proper-
ties of message sequences. Both time and space complexity of
SAGA is linear in the size of the message sequence. Further
we extend it to support design-by-contract for coboxes. We
illustrate the effectiveness of our method by an industrial case
study from the eCommerce software company Fredhopper.

72

6.1. Language

6.1 Language

We formally describe coboxes by means of a modeling language
which is based on the Abstract Behavioral Specification lan-
guage [54]. We refer to our own modeling language by ACOG
(pure Actor-based Concurrent Object Groups). ACOG is de-
signed with a layered architecture, at the base are functional
abstractions around a standard notion of parametric algebraic
data types (ADTs). Next we have an OO-imperative layer
similar to (but much simpler than) Java. ACOG generalizes
the concurrency model of Creol [55] from single concurrent ob-
jects to concurrent object groups (coboxes). As in [80] coboxes
encapsulate synchronous, multi-threaded, shared state compu-
tation on a single processor. In contrast to thread-based con-
currency, task scheduling is cooperative, i.e., switching between
tasks of the same object happens only at specific scheduling
points during the execution, which are explicit in the source
code and can be syntactically identified. This allows writing
concurrent programs in a much less error-prone way than in
a thread-based model and makes ACOG models suitable for
static analysis. In fact, the standard Java concurrency model,
based on threads and locks, is too low-level, error-prone and
insufficiently modular for many applications areas [80]. In our
dialect, unlike in [80], for simplicity we restrict to coboxes that
communicate only via pure asynchronous messages, and as such
form an actor-based model as initially introduced by [2] and
further developed in [82].

Fig. 6.1 shows some data types and parts of interfaces used
in the case study. The interface ClientJob models a Clien-
tJob, the interface Worker models a Worker, and the inter-
face Coordinator models a Coordinator. The algebraic data
types (ADT) Content models the file system of environments
in ACOG. ADTs allow specifying immutable values in func-
tional expressions and to abstract away from implementation
details such as hardware environment, file content, or operat-
ing system specifics. Specifically, Content is either a File,
where an integer (e.g., its size) is taken to represent the con-
tent of a single file, or it is a directory Dir with a mapping of
names to Content, thereby, modelling a file system structure
with hierarchical name space. Note that an ADT may have

73

6. Concurrent Object Groups

data Content = File(Int content)

| Dir(Map<String,Content>);

interface Worker {

Unit acceptCoordinator(Coordinator coord);

Unit sendCurrentId(Int id);

Unit replyRegisterItems(Bool register);

Unit acceptItems(Set<Item> items);

Unit acceptEntries(Set<Map<String,Content>> contents);

}

interface Coordinator {

Unit startReplication(Worker w);

}

interface ClientJob {

Unit registerItems(Worker w, Int id);

}

Figure 6.1: Data types and Interfaces

type parameters. For example, Map is a built-in ADT where its
key and value type parameters are instantiated to String and
Content.

In this subsection we describe the core constructs of our
dialect of the ABS in some detail. Specifically, we describe

• algebraic data types and functions;

• interfaces

• synchronous method calls and objects creation;

• asynchronous method calls and cobox creation;

• cooperative scheduling using await statements.

To illustrate synchronous and asycnhronous communication we
look at the implementation of how a ClientJob connects to a
Worker and receives the next set of replication schedules.

74

6.1. Language

Data types and Functions ACOG supports algebraic data
types (ADT) to model data in a software system. ADTs ab-
stract away from implementation details such as hardware en-
vironment, file content, or operating system specifics. For ex-
ample in the Replication System, the following ADT Content

models the file system of environments.

data Content = File(Int content)

| Dir(Map<String,Content>);

ACOG supports first-order functional programming with ADT.
Functional code is guaranteed to be free of side effects. One
consequence of this is that functional code may not use object-
oriented features. For example, the following function isFile

checks if the given Content value records a file.

def Bool isFile(Content c) =

case {

File(_) => True;

_ => False;

};

Interfaces ACOG has a nominal type system with interface-
based subtyping. Interfaces define types for objects. They
have a name, and define a set of method signatures, that is,
the names and types of callable methods. The following shows
interface Worker that models a Worker.

interface Worker {

Unit execute();

Unit command(Command c);

Unit acceptCoordinator(Coordinator coord);

Unit sendCurrentId(Int id);

Unit replyRegisterItems(Bool register);

Unit acceptItems(Set<Item> items);

Unit acceptEntries(Set<Map<String,Content>> contents);

}

Classes ACOG also supports class-based, object-oriented
programming with standard imperative constructs. Classes de-

75

6. Concurrent Object Groups

fine the implementation of objects. In contrast to Java, for
example, classes do not define a type. Classes can implement
arbitrarily many interfaces. These interfaces define the type
of instances of that class. A class has to implement all meth-
ods of all its implementing interfaces. Classes are instantiated
by constructors. The following class WorkerImpl implements
Worker:

class WorkerImpl(ClientJob job,

SyncServer server,

Coordinator coord)

implements Worker {

Maybe<Command> cmd = Just(ListSchedule);

WorkerImpl(ClientJob job,

SyncServer server,

Coordinator coord) {

...

}

Unit execute() {

...

}

Unit command(Command c) {

...

}

Unit acceptCoordinator(Coordinator coord) {

...

}

Unit sendCurrentId(Int id) {

...

}

Unit replyRegisterItems(Bool register) {

...

}

Unit acceptItems(Set<Item> items) {

...

}

Unit acceptEntries(Set<Map<String,Content>> contents) {

...

}

}

76

6.1. Language

It defines the fields job, server, cmd and coord. Those fields
are typically initialized by a constructor method, or for simple
initializations such as cmd, in the class definition itself.

Thread-based computation Basic statements describing
the flow of control of a single thread include the usual (syn-
chronous) method invocations, object creation, and field and
variable reads and assignments. These statements can be com-
posed by the standard control structures (sequential compo-
sition, conditional and iteration constructs). The following
shows the part of class ClientJobImpl that a ClientJob con-
necting to a Worker and acquiring the next schedules:

class ClientJobImpl(SyncServer server)

implements ClientJob {

Unit sendSchedules(Set<Schedule> ss) {

...

}

Unit executeJob() {

...

}

Unit acceptConnection(Worker w) {

if (w != null) {

...

this.scheduleJob();

}

}

Unit scheduleJobs() {

Scheduler sr = new SchedulerImpl(...);

sr.schedule();

}

}

The method acceptConnection invokes synchronously the
(private) method scheduleJob, which in turn creates an ob-
ject of SchedulerImpl (by invoking the appropriate construc-
tor method) and invokes its method schedule.

Coboxes The concurrency model of ACOG is based on the
concept of Coboxes. A typical ACOG system consists of mul-
tiple, concurrently running coboxes. Coboxes can be regarded

77

6. Concurrent Object Groups

as autonomous run-time components that are executed con-
currently, share no state and communicate via method calls. A
new object cobox is created by using the new cog expression.
It takes as argument a class name and optional parameters
and returns a reference to the initial object of the new cobox.
Communication between coboxes may solely be done via asyn-
chronous method calls. The difference to the synchronous case
is that an asynchronous call immediately returns to the caller
without waiting for the message to be received and handled
by the callee. Asynchronous method calls are indicated by an
exclamation mark (!) instead of a dot.

The following fragment of ClientJobImpl illustrates cobox
creation and asynchronous communications.

class ClientJobImpl(SyncServer server,

SyncClient client,

Schedule s)

implements ClientJob {

Set<Schedule> schedules = EmptySet;

Unit executeJob() {

server!getConnection(this);

}

Unit acceptConnection(Worker w) {

...

}

Unit sendSchedules(Set<Schedule> ss) {

...

}

Unit scheduleJobs() {

...

}

}

class SyncServerImpl(Coordinator coord)

implements SyncServer {

Unit getConnection(ClientJob job) {

Bool shutdown = this.isShutdownRequested();

if (shutdown) {

job!acceptConnection(null);

78

6.1. Language

} else {

Worker w = new cog WorkerImpl(job,

this,

coord);

job!acceptConnection(w);

}

}

}

The class SyncServerImpl implements the SyncServer and
ClientJobImpl implements a ClientJob. ClientJobImpl has
a field server that holds the reference to the SyncServer that
is assigned to a different cobox. The method executeJob in-
vokes SyncServer’s method getConnection asynchronously to
connect with a Worker. In the implementation of SyncServer,
a new object cobox is created with the WorkerImpl object be-
ing the initial object in that cobox.

Cooperative scheduling Each asynchronous method call
results in a task in the cobox of the target object. Tasks are
scheduled cooperatively within the scope of a object cobox. Co-
operative scheduling means that switching between tasks of the
same object cobox happens only at specific scheduling points
during program execution and that at no point two tasks in
the same cobox are active at the same time. Using the await

statement, one can create a conditional scheduling point, where
the running task is suspended until a Boolean condition over
the object state becomes true. The following shows the imple-
mentation of ClientJobImpl after connecting with a Worker.

class ClientJobImpl(SyncServer server,

SyncClient client,

Schedule s)

implements ClientJob {

Set<Schedule> schedules = EmptySet;

Unit sendSchedules(Set<Schedule> ss) {

schedules = ss;

}

Unit acceptConnection(Worker w) {

79

6. Concurrent Object Groups

if (w != null) {

w!command(Schedule(s));

await schedules != EmptySet;

this.scheduleJobs();

}

}

...

}

class WorkerImpl(ClientJob job,

SyncServer server)

implements Worker {

Unit command(Command c) {

...

job!sendSchedules(schedules);

}

}

The method acceptConnection invokes method command

on the worker and suspends using the statement
await schedules != EmptySet to wait for the next set
of schedules to arrive. The next set of schedules is set by
invoking the method sendSchedules on the ClientJob.

Fig. 6.2 shows a part of a class implementation
of Worker that provides an implementation of method
acceptCoordinator. The method takes a reference of
the Coordinator. It first sets the instance variable
coord to the input reference, it invokes the statement
await cmd != Nothing, which suspends the current task un-
til the side-effect free expression cmd != Nothing is satis-
fied. Instance variable cmd is a Maybe value which is either
a Command value representing the next command to the worker
from the ClientJob, or the value Nothing if no command has
yet been given. After this, the method makes an asynchronous
method call either to the server’s requestListSchedules,
requesting to get all configured replication schedules, or
requestSchedule, requesting only the schedule with the name
specified by the given command. Both fromJust and ssname

are functions on data types.

80

6.2. Semantics

class WorkerImpl(ClientJob job,

SyncServer server)

implements Worker {

Maybe<Command> cmd = Nothing;

Coordinator coord = null;

Unit acceptCoordinator(Coordinator coord) {

this.coord = coord;

await cmd != Nothing;

if (cmd == Just(ListSchedule)) {

server!requestListSchedules(this);

} else {

server!requestSchedule(this,

ssname(fromJust(cmd)));

}

}

}

Figure 6.2: Method acceptCoordinator

6.2 Semantics

In this section we describe the formal semantics of systems of
coboxes compositionally in terms of the behavior of the coboxes
individually. The behavior of a cobox itself is described com-
positionally in terms of its threads. In this section we abstract
from the functional part of the modeling language. We further
abstract from variable declarations and typing information, and
simply assume given a set of variables x, y, We distinguish
between simple and instance variables. The set of simple vari-
ables is assumed to include the special variable “this”. Simple
variables are used as formal parameters of method definitions.

Throughout this section we assume a given program which
specifies a set of classes and a (single) inheritance relation.
We start with the following basic semantic notions. For each
class C we assume given a set of OC , with typical element o,
of (abstract) objects which belong to class C at run-time. A
heap h is formally given as a set of (uniquely) labelled object

81

6. Concurrent Object Groups

states o : s, where s assigns values to the instance variables
of the object o. An object o exists in a heap h if and only it
has a state in h, that is, o : s ∈ h, for some object state s.
A heap thus represents the values of the instance variables of
a group of objects. A heap is ”open” in the sense that s(x),
for o : s ∈ h, may refer to an object that does not exist in
h, i.e., that belongs to a different group. We denote s(x), for
o : s ∈ h, by h(o.x). By sinit we denote the object state
which results from the initialization of the instance variables of
a newly created object. Further, by h[o.x = v] we denote the
heap update resulting from the assignment of the value v to the
instance variable x of the object o. Next we introduce a thread
configuration as a pair 〈t, h〉 consisting of a thread t. and heap
h. A thread itself is a stack of closures of the form (S, τ), where
S is a statement and τ is a local environment which assigns
values to simple variables. By τ [x = v] we denote the update
of the local environment τ resulting from the assignment of the
value v to the variable x. We denote by V (e)(τ, h) the value of
a side-effect free expression e in the local environment τ and
global heap h. In particular we have that V (x)(s, h) = s(x),
for a simple variable x, and V (x)(τ, h) = h(τ(this).x), for an
instance variable x. It is important to observe that since heaps
are ”open” (as discussed above) V (e)(τ, h) can be undefined in
case e refers to instance variables of objects that do not belong
to the group represented by h.

Thread Semantics A transition

〈t, h〉 −→ 〈t′, h′〉

between thread configurations 〈t, h〉 and 〈t′, h′〉 indicates

• the execution of an assignment x = e or

• the evaluation of a boolean condition b of an if-then-else
or while statement,

• or the execution of a synchronous call.

A labelled transition

〈t, h〉 l−→ 〈t′, h′〉

82

6.2. Semantics

indicates for

l = await: the successfull execution of an await statement,

l = o!m(v̄): an asynchronous call of the method m of the object
o with actual parameters v̄.

In the following structural operational semantics for the exe-
cution of single threads (S, s) · t denotes the result of pushing
the closure (S, s) into the stack t. We omit the transitions for
sequential composition, if-then-else and while statement since
they are standard.

Assignment simple variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ ′) · t, h〉

where τ ′ = τ [x = V (e)(τ, h)].
The assigment to a simple variable thus only affects the (active)
local environment.

Assignment instance variables

〈(x = e;S, τ) · t, h〉 −→ 〈(S, τ) · t, h′]〉

where h′ = h[τ(this).x = V (e)(τ, h)] (assuming that V (e)(τ, h)
is defined).
The assignment to an instance variable only affects the heap.
Note that the assignment thus fails in case V (e)(τ, h) is un-
defined (such failures can be prevented by a suitable typing
system, see [80]).

Await

〈(await b;S, τ) · t, h〉 await−→ 〈(S, τ) · t, h〉

where V (b)(τ, h) = true .
If the boolean condition of an await statement evaluates to
true this transition thus additionally generates a label which
will be used for synchronization with other threads (see the
corresponding rule in the semantics of coboxes below).

83

6. Concurrent Object Groups

Asynchronous method call

〈(x!m(ē);S, τ) · t, h〉 o!m(v̄)−→ 〈(S, τ) · t, h〉

where o = V (x)(s, h), ē = e1, . . . , en, v̄ = v1, . . . , vn, and vi =
V (ei)(s, h), for i = 1, . . . , n. An asynchronous call thus simply
generates a corresponding message.

Synchronous method call

〈(y = x.m(ē);S, τ) · t, h〉 −→ 〈(S′, τ ′) · (y = r;S, τ) · t, h〉

where, assuming that V (x)(s, h) ∈ OC , m(x̄){S′} is the cor-
responding method definition in class C. Further, τ ′(this) =
V (x)(τ, h) and τ ′(xi) = V (ei)(τ, h), for i = 1, . . . , n, (here
ē = e1, . . . , en and x̄ = x1, . . . , xn). We implicitly assume here
that τ ′ initializes the local variables of m, i.e., those simple
variables which are not among the formal parameters x̄. Upon
return for each type a distinguished simple variable r (which
is assumed not to appear in the given program) will store the
return value (see the transition below for returning a value).

Class instantiation

〈(y = new C(ē);S, τ)·t, h〉 −→ 〈(y = r.C(ē);S, τ ′)·t, h∪{o′ : sinit}〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity (i.e.,
not in h), where C is the type of the variable y. For each
type, the distinguished variable r is used to store temporarily
the identity of the new object. We implicitly assume that the
constructor method returns the identity of the newly created
object (by the statement ”return this”).

Cobox instantiation

〈(y = new cog C(ē);S, τ) · t, h〉 −→ 〈(y = r; y!C(ē);S, τ ′) · t, h〉

where τ ′ = τ [r = o′], o′ ∈ OC is a fresh object identity, (C is
the type of the variable y). As above, the distinguished vari-
able r is used to store temporarily the identity of the new object
(here it allows to circumvent a case distinction on whether y

84

6.2. Semantics

is a simple or an instance variable). Note that the main differ-
ence with class instantiation is that the newly created object is
not added to the heap h and the constructor method is called
asynchronously.

In contrast to [54] and [80] we allow for very flexible schedul-
ing policies (no assumptions are made about scheduling policies
at all, even for constructors, besides the fact that await state-
ments are respected), it is possible that the constructor method
is executed at a later stage than a normal method called on the
newly created object. If this is not desired, the user can syn-
chronize explicitly using await.

Return

〈(return e;S, τ) · (S′, τ ′) · t, h〉 −→ 〈(S′, τ ′[r = v]) · t, h〉

where v = V (e)(τ, h). The distinguished variable r here is used
to store temporarily the return value.

In the above transitions for the creation of a class instance
or a new cobox we assume a thread-local mechanism for the
selection of a fresh object identity which avoids name clashes
between the activated threads, the technical details of which
are straightforward and therefore ommitted.

Semantics of coboxes A cobox is a pair 〈T, h〉 consisting
of a set T of threads and a heap h. An object o belongs to a
cobox 〈T, h〉 if and only if it has a state in h, that is, o : s ∈ h,
for some object state s.

Internal computation step
An unlabelled computation step of a thread is extended to a
corresponding transition of the cobox by the following rule:

〈t, h〉 −→ 〈t′, h′〉
〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

External call
A computation step labelled by an asynchronous method call

85

6. Concurrent Object Groups

is extended to a corresponding transition of the cobox by the
following rule:

〈t, h〉 o!m(v̄)−→ 〈t′, h′〉

〈{t} ∪ T, h〉 o!m(v̄)−→ 〈{t′} ∪ T, h′〉

Synchronization
The execution of an await statement by a thread within a given
cobox is formally captured by the rule

〈t, h〉 await−→ 〈t′, h′〉
〈{t} ∪ T, h〉 −→ 〈{t′} ∪ T, h′〉

provided all threads in T executing an await statement, that
is, the top of each thread in T consists of a closure of the form
(await b;S, τ) (we implicitly assume that terminated threads
are removed). Note that thus the await statement enforces
a barrier synchronization of all the threads of a cobox. This
synchronization ensures that at most one thread in a cobox is
executing.

Input-enabledness
We further have the following transition which describes the
reception of an asynchronous method call to an object o which
belongs to the cobox 〈T, h〉:

〈T, h〉 o?m(v̄)−→ 〈T ∪ {t}, h〉

where, assuming that o ∈ OC , m(x̄){S} is the corresponding
method definition in class C. Further, t consists of the clo-
sure 〈 await b ;S, τ〉, where V (b)(τ, h) = true and τ assigns
the actual parameters v̄ to the formal parameters x̄ of m (as
above, the object identity o is assigned to the implicit formal
parameter “this”) and initializes all local variables of m.

The added await statement enforces synchronization be-
tween the other threads. Since coboxes are input-enabled this
transition thus models an assumption about the environment.
This assumption is validated in the context of coboxes as de-
scribed next.

86

6.2. Semantics

Semantics of systems of coboxes Finally, a system config-
uration is simply a set G of coboxes. For technical convenience
we assume that all system configurations contain an infinite
set of latent coboxes 〈∅, {o : s init }〉 (for o ∈ OC for all classes
C) which have not yet been activated. The fresh object gen-
erated by the creation of a new cobox, as described above in
the thread semantics (transition 6.2), at this level is assumed
to correspond to a latent cobox.

Interleaving
An internal computation step of a cobox is extended to a cor-
responding transition of the global system as follows.

g −→ g′

{g} ∪G −→ {g′} ∪G

Message passing
Communication between two coboxes is formalized by

g1
o?m(v̄)−→ g′1 g2

o!m(v̄)−→ g′2
{g1, g2} ∪G −→ {g′1, g′2} ∪G

Here it is worthwhile to observe that for an asynchronous call
o!m(v̄) to an object o belonging to the same cobox there does
not exist a matching reception o?m(v̄) by a different cobox
because coboxes have no shared objects.

Trace Semantics A trace is a finite sequence of input and
output messages, e.g., o?m(v̄) and o!m(v̄), respectively. For
each coboxes g we define its trace semantics T (g) by

{〈θ, g′〉 | g θ−→ g′}

where
θ−→ denotes the reflexive, transitive closure of the above

transition relation between coboxes, collecting the input/out-
put messages. Note that the trace θ by which we can obtain
from g a cobox g′ does not provide information about object
creation or information about which objects belong to the same
cobox. In fact, information about which objects have been

87

6. Concurrent Object Groups

created can be inferred from the trace θ. Further, in general
a cobox does not “know” which objects belong to the same
cobox.

The following compositionality theorem is based on a no-
tion of compatible traces which roughly requires for every input
message a corresponding output message, and vice versa. We
define this notion formally in terms of the following rewrite rule
for sets of traces

{o?m(v̄) · θ, o!m(v̄) · θ′} ∪Θ⇒ {θ, θ′} ∪Θ

This rule identifies two traces in the given set which have
two matching initial messages which are removed from these
traces in the resulting set. Note that this identification is non-
deterministic, i.e., for a given trace there may be several traces
with a matching initial message. A set of traces Θ is compati-
ble, denoted by Compat (Θ), if we can derive the singleton set
{ε} (ε denotes the empty trace). Formally, Compat (Θ) if and
only if Θ ⇒∗ {ε}, where ⇒∗ denotes the reflexive, transitive
closure of ⇒.

Theorem 6.2.1 Let→∗ denote the reflexive, transitive closure
of the above transition relation between system configurations.
We have

G −→∗ G′

if and only if G = {gi | i ∈ I} and G′ = {g′i | i ∈ I}, for some
index set I such that for every i ∈ I there exists 〈θi, g′i〉 ∈ T (gi),
with Compat ({θi | i ∈ I}).

Proof : The proof is straightforward but tedious and pro-
ceeds by induction on the derivation.

The above theorem states that the overall system behavior
can be described in terms of the above trace semantics of the
individual coboxes. This means that for compositionality no
further information is required. Next we show in the following
section how to specify properties of the externally observable
behavior of a cobox, as defined by its traces of input/output
messages.

88

6.3. Behavioral Interfaces for Coboxes

6.3 Behavioral Interfaces for Coboxes

In this section we use the previously introduced attribute gram-
mars extended with assertions to specify and verify properties
of the traces generated between coboxes. As such, extended
attribute grammars provide a new formalism for contracts in
general, and coboxes in particular. In contrast to classes or
interfaces, coboxes are run-time entities which do not have a
single fixed interface1. In particular, newly created objects of
any type can be added dynamically at any time to a group
by executing a new-statement without the cog keyword. The
execution of such a statement expands the group with the new
object, which can be of a type different from all the objects in
the group so far and consequently provides methods not pro-
vided by the other objects in the group.

As a crude approximation of the behavior of a group, we
could just take the behavior of the class C of the object which is
created by a new cog C statement. Such an approach requires
no modification in specification languages (and corresponding
tools) traditionally used for object-oriented languages (be it as-
sertions on states, or trace-based specifications). However this
basically corresponds to the assumption that all groups con-
tain only a single object, bypassing the very concept of groups
of objects and essentially resulting in concurrent objects, not
concurrent object groups. This can be partly alleviated by as-
suming that besides the object of type C, objects of other types
can also be part of the group by having specifications of the
form ‘if an object of type D is part of the group, then φ’. How-
ever, this means that all groups whose first created object is
of type C must satisfy the property (since the group name in
this case does not depend on other objects in the group). We
abandon this idea in favor of a more fine-grained specification
of groups. We first discuss how we can still refer statically, in
the program text, to these run-time entities by communication
views.

1 We consider interfaces here to be a list of all signatures of the meth-
ods supported by some object in the cobox

89

6. Concurrent Object Groups

Communication Views for COGs

To be able to refer to coboxes in syntactical constructs (such
as specifications), we introduce the following (optional) anno-
tation of cobox instantiations:

S ::= y = new cog [Name] C(ē)

The semantics of the language remain unchanged. Note that
the same cobox name can be shared among several coboxes
(i.e. is in general not unique) since different cobox creation
statements can specify the same cobox name. First, the same
group creation statement y = new cog A C can appear mul-
tiple times in the program. Second, a group creation statement
can be surrounded by a loop or recursive method, causing it to
be executed multiple times. In both cases, all groups created
by the statement receive the same name. However in contrast
to the previously sketched abandoned proposal (where differ-
ent named groups are distinguished at the class level of the
first object in the group), in this approach, named groups are
distinguished at the finer-grained statement level.

Now that we can refer to groups syntactically, the question
arises what kind of specification languages would be suitable to
specify the behavior of a named group. Groups communicate
with other groups exclusively using asynchronous method calls,
and there are no returns. Thus, the behavior of a group as ob-
served by its environment (other groups) is simply a sequence
of asynchronous method calls sent and received by objects in
the group. Taking the set of all legal sequences of asynchronous
method calls (also known as traces) of the group as its speci-
fication is a natural choice. We observe asynchronous method
calls directly when the method call statement executes in the
group, not when the actual method body of the called method
begins to execute (note that the latter can happen at a much
later time in our concurrency model, or even not at all in the
absence of fairness assumptions). This convention allows an
orthogonal treatment of scheduling policies. However, we have
to face the following problem: Coboxes do not have a fixed
interface, as the methods which can be invoked on an object
in a cobox (and consequently appear in traces) are not fixed
statically. In particular, during execution objects of any type

90

6.3. Behavioral Interfaces for Coboxes

can be added to a cobox, which clearly affects the possible
traces of the cobox. Additionally, for practical reasons it is
often convenient to focus on a particular subset of methods,
leaving out methods irrelevant for specification purposes. This
is especially useful for incomplete specifications. To solve both
these problems, we use communication views. A communica-
tion view can be thought of as an interface for a named cobox.
Figure 6.3 shows an example communication view associated
with all coboxes named WorkerGroup. Formally a communi-

view WorkerView grammar Worker.g specifies WorkerGroup {

send Coordinator.startReplication(Worker w) st,

send ClientJob.registerItems(Worker w, Int id) pr,

receive Worker.sendCurrendId(Int id) id,

receive Worker.replyRegisterItems(Bool reg) ar,

receive Worker.acceptItems(Set<Item> items) is,

receive Worker.acceptEntries(

Set<Map<String, Content>> contents) es

}

Figure 6.3: Communication View

cation view is a partial mapping from messages to abstract
event names. A communication view thus simply introduces
names tailored for specification purposes (see the next subsec-
tion about grammars for more details on how this event name
is used). Partiality allows the user to select only those asyn-
chronous methods relevant for specification purposes. Names
(such as ‘st’ for the method startReplication) are not strictly
needed, but can be used to identify calls to different methods.
Any method not listed in the view will be irrelevant in the
specification of WorkerGroups.

Note that in this asynchronous setting we can distinguish
three different events: sending a message (at the call-site),
receiving the message in the queue (at the callee-site), and
scheduling the message for execution (i.e. the point in time
when the corresponding method starts executing). By the
asynchronous nature of the ABS, we cannot detect in the ABS
itself when a message has been put into the queue. There-
fore we restrict to the other two events. Since we imple-
ment the run-time checker independently from any back-end

91

6. Concurrent Object Groups

(see also Section 6.4), we are forced to use the ABS itself
for the detection of the observable events. The send key-
word identifies calls from objects in the WorkerGroup to meth-
ods of objects in another cobox (in other words: methods re-
quired by an object in the WorkerGroup). Conversely, the
keyword receive identifies the scheduling of calls from an-
other cobox to an object in a WorkerGroup. It is possible
that methods listed in the view actually can never be called
in practice (and therefore won’t appear in the local trace of
a cobox). For example, if WorkerGroups are created by a
statement y = new cog WorkerGroup Worker2, only objects
of the class Worker2 are guaranteed to be part of the group.
Thus messages of the form receive Worker.* can only be re-
ceived in those WorkerGroups in which a Worker-object was
added. The introduction of names for messages gives rise to a
small refinement of our notion of a specification of a group. A
specification is not a set of sequences of asynchronous method
calls anymore, instead a specification is a set of sequences of
names.

Communication views allow the selection of messages es-
sentially just on the basis of the method name. But messages
also involve and contain data: they are sent between an object
in one group (the caller), to an object in another group (the
callee) with the actual parameter values as the contents of the
message. Thus the question arises what data (caller, callee,
actual parameters) we can observe and use in specifications of
groups. Clearly the parameter values sent in a message influ-
ence the behavior of the group which receives the message. On
the other hand, as can be seen by inspecting the formal (com-
positional) semantics introduced in the previous section, the
identity of the caller of a receive message does not influence
the behavior of a group. In particular, there is no way to detect
whether two messages originate from the same group (or even
the same object). Thus it would be unnatural if one could refer
in a specification to the identity of the caller: this results in
specifications that cannot be satisfied by any implementation.
Consequently we disallow any reference to the identity of the
caller in specifications, and take the callee and the actual pa-
rameter values as the only data that can be observed from a
message. A fully abstract semantics allows to determine the

92

6.3. Behavioral Interfaces for Coboxes

minimum amount of information that needs to be captured.
The introduction of data introduces another refinement of our
notion of a specification. Message names are not just strings
anymore, they also contain the identity of the callee and the
actual parameter values. A specification for a group is still a
set of the legal sequences of names (as above), but since names
now also contain the callee and parameter values, their values
can be restricted by the specification. Note that specifications
combine protocol-oriented properties (such as the legal order-
ings between messages) and data-oriented properties (such as
the allowed parameter values). The next subsection discusses
how specifications can be defined syntactically in a convenient
way.

We are now in the position to formally define when an im-
plementation satisfies a specification.

Definition Let P be a program and S a specification (set of
traces). Then P |= S iff For all sets of groups G = {gi | i ∈
I} : For all i ∈ I : θi ∈ T (gi) and compat({θi|i ∈ I}) implies
ProjV (θi) ∈ S.

In this definition we assume a mechanism ProjV (θi)for pro-
jecting each trace of a named group on the events listed in the
associated communication view V . Informally the definition
says that a P satisfies S if the traces of P are a subset of those
of S.

Attribute Grammars

In this subsection we describe how properties of the set of al-
lowed traces of a cobox can be specified in a convenient, high-
level and declarative manner. We illustrate our approach by
partially specifying the behavior depicted by the UML sequence
diagram in Figure 6.4. Informally the property we focus on is:

The Worker first notifies the Coordinator its inten-
tion to commence a replication session, the Worker
would then receive the last transaction id identi-
fying the version of the data to be replicated, the
Worker sends this id to the ClientJob to see if the

93

6. Concurrent Object Groups

Figure 6.4: Replication interaction

client is required to update its data up to the spec-
ified version. The Worker then expects an answer.
Only if the answer is positive can the Worker re-
trieve replication items from the snapshot, more-
over, the number of files sets to be replicated to the
ClientJob must correspond to the number of repli-
cation items retrieved.

The formalization of the above property uses the commu-
nication view depicted in Figure 6.3. The productions of the
grammar underlying the attribute grammar in Figure 6.5 spec-
ify the legal orderings of these messages named in the view.
For example, the productions

S ::= ε
| st T

T ::= ε
| id U

94

6.3. Behavioral Interfaces for Coboxes

specify that the message ‘id’ is preceded by the message ‘st’.
The grammars above specify only the protocol structure of

the valid traces, but do not take the data-flow into account.
To that end, we extend the grammar with attributes and as-
sertions over these attributes. Each terminal symbol has built-
in attributes consisting of the parameter names for referring
to the object identities of the actual parameters, and callee

for referencing the identity of the callee (see the end of the
previous subsection for a motivation to include these partic-
ular attributes). Non-terminals have user-defined attributes
to define data properties of sequences of terminals. In each
production, the value of the attributes of the non-terminals
appearing on the right-hand side of the production is defined.2

For example, in the following production, the attribute ‘w’ for
the non-terminal ‘T’ is defined.

S ::= ε
| st T (T.w = st.w;)

Attribute definitions are surrounded by ‘(’ and ‘)’. However the
attributes themselves do not alter the language generated by
the attribute grammar, they only define properties of data-flow
of the trace. We extend the attribute grammar with assertions
to specify properties of attributes. For example, the assertion
in the second production of

T ::= ε
| id U (U.w = T.w; U.i = id.id;)

U ::= ε
| pr {assert U.w == pr.w

&& U.i == pr.id;} V

expresses that the ‘id’ passed as a parameter to the method
‘registerItems’ (represented in the grammar by the terminal
pr.id) must be the same as the one previously passed into
‘sendCurrentId’ (terminal id.id). Assertions are surrounded
by ‘{’ and ‘}’ to distinguish them visually from attribute defi-
nitions.

2 In the literature, such attributes are called inherited attributes.

95

6. Concurrent Object Groups

S ::= ε | st T (T.w = st.w;)
T ::= ε | id U (U.w = T.w; U.i = id.id;)
U ::= ε | pr {assert U.w == pr.w

&& U.i == pr.id;} V
V ::= ε | ar W (W.b = ar.reg;)
W ::= ε | is {assert W.b;} X (X.s = size(is.items);)
X ::= ε | es {assert X.s == size(es.contents);}

Figure 6.5: Attribute Grammars

The full attribute grammar Figure 6.5 formalizes the in-
formal property stated in the beginning of this subsection.
The grammar specifies that for each Worker object, in its own
object cobox, the Coordinator must be notified of the start
of the replication by invoking its method startReplication

(st). Only then can the Worker receive (from an unspeci-
fied cobox) the identifier of the current version of the data
to be replicated (id). Next the Worker invokes the method
registerItems on the corresponding ClientJob about this ver-
sion of the data (pr). The grammar here asserts that the iden-
tifier is indeed the same as that received via the method call
sendCurrendId. The Worker then expects to receive a method
call replyRegisterItems indicating if the replication should
proceed, the Worker then can recieve method call acceptItems
for the data items to be replicated. The grammar here as-
serts that this can only happen if the previous call indicated
the replication should proceed. The Worker then can receive
method call acceptEntries for the set of Directories, each
identified by a data item. Since each data item refers to a di-
rectory, the grammar here asserts the number of items is the
same as the number of directories.

To further illustrate the above concepts, we consider an
additional behavioral interface for the WorkerGroup cobox. To
allow users to make changes to the replication schedules during
the run-time of FAS, every ClientJob would request the next
set of replication schedules and send them to SyncClient for
scheduling. Here is an informal description of the property,
where Figure 6.6 presents the communication view capturing

96

6.3. Behavioral Interfaces for Coboxes

view ScheduleView grammar Schedule.g

specifies WorkerGroup {

receive Worker.command(Command c) cm,

send ClientJob.sendSchedules(Set<Schedule> ss) sn,

send SyncServer.requestListSchedules(Worker w) lt,

send SyncServer.requestSchedule(Worker w, String name)

gt,

send Coordinator.requestStartReplication(Worker w) st

}

Figure 6.6: Communication View for Scheduling

S ::= ε | cm T (T.c = cm.c;)
T ::= ε | gt {assert T.c != ListSchedule &&

gt.n == name(T.c);} U (U.c = T.c;)
| lt {assert T.c == ListSchedule;} U (U.c = T.c;)

U ::= ε | sn {assert sn.ss != EmptySet;} V (V .c = U.c;)
V ::= ε | st {assert V .c != ListSchedule;}

Figure 6.7: Attribute Grammar for Scheduling

the relevant messages and Figure 6.7 presents the grammar
that formalizes the property:

A ClientJob may request for either all replication
schedules or a single schedule. The ClientJob does
this by sending a command to the Worker (cm).
If the command is of the value ListSchedule, the
Worker is to acquire all schedules from the Sync-
Server (lt) and return them to the ClientJob (sn).
Otherwise, the Worker is to acquire only the spec-
ified schedule (gt) and return it to the ClientJob
(sn). If the ClientJob asks for all schedules, it must
not proceed further with the replication session and
terminate (st).

In summary, a communication view provides an interface of
a named cobox. The behavior of such an interface is specified

97

6. Concurrent Object Groups

by means of an attribute grammar extended with assertions.
This grammar represents the legal traces of the named cobox as
words of the language generated by the grammar, which gives
rise to a natural notion of the satisfaction relation between
programs and specifications. Properties of the control-flow and
data-flow are integrated in a single formalism: the grammar
productions specify the valid orderings of the messages (the
control-flow of the valid traces), whereas assertions specify the
data-flow.

98

6.4. Implementation

6.4 Implementation

In this section we discuss the architecture of the run-time
checker for coboxes, identify crucial design decisions and its
performance. The cobox version of SAGA is implemented
as a run-time checker for ABS models. ABS is basically an
extension of the modeling language considered in this paper.
It is tool-supported by various analysis tools [88] and auto-
mated code generation has been implemented to various lower-
level languages including Java, Maude and Scala. SAGA tests
whether an actual execution of a given ABS model satisfies its
specification given by attribute grammars, and stops the run-
ning program in case of a violation to prevent unsafe behavior.
It is implemented as a meta-program in Rascal. The full meta-
program consists of approximately 1100 lines of code.

Design The design of the cobox version of SAGA was guided
by several requirements.

1. All back-ends (even future ones) which generate code
from ABS models to lower-level target languages should
be supported, without having to update SAGA when any
of the back-ends is updated (for example, to generate
more efficient code). Consequently we need a parser-
generator which generates ABS code, and therefore can-
not use existing parser generators.

2. The overhead induced by SAGA must be kept to a min-
imum. In particular, whenever the trace of a cobox is
updated with a new message, SAGA should be able to
decide in constant time whether the new trace still sat-
isfies the specification (the attribute grammar). This is
determined by parsing the trace (then considered as a se-
quence of tokens) in a parser for the attribute grammar.

3. Because of the intrinsic complexity of developing efficient
and user-friendly parser generators, we require that the
implementation of the parser-generator should be decou-
pled from the rest of the implementation of SAGA.

These requirements are far from trivial to satisfy. For ex-
ample JML, a state-of-the-art specification language for Java,

99

6. Concurrent Object Groups

has no stable version of the run-time checker which supports all
back-ends (and future ones) for Java, violating the first require-
ment. This is due to the fact that the JML run-time checker
was designed as an extension of a proprietary Java compiler.
Other tools for run-time verification such as MOP and LARVA
satisfy the requirement to a certain extent. Their implementa-
tion is based on AspectJ, a compiler which extends Java with
aspect-oriented programming. AspectJ can transform Java
programs in bytecode form. Hence all back-ends which gen-
erate bytecode compatible with AspectJ are also supported by
MOP and LARVA. This includes most, though not all, ver-
sions of the standard Sun Java compiler. However aspect-
oriented programming is currently not supported by the ABS.
We choose an approach based on pre-processing. Specifications
(consisting of a communication view and attribute grammar)
are not added to the formal syntax of the programming lan-
guage, they are put in separate files. This avoids creating mul-
tiple branches of the ABS language. In JML, specifications are
added to the actual source, but in comments (so they are not
part of the ”logic” of the program). In MOP and LARVA, spec-
ifications are also separated from the programming language.

The input of SAGA consists of three ingredients: a commu-
nication view, an attribute grammar extended with assertions
and an ABS model. The output is an ordinary ABS model
which behaves the same as the input program, except that it
throws an assertion failure when the current execution violates
the specification. Since the resulting ABS model is an ordi-
nary ABS model, all analysis tools[88] (including a debugging
environment with visualization and a state-of-the-art cost ana-
lyzer) and back-ends which exist for the ABS can be used on it
directly. The third requirement (a separation of concerns be-
tween the parser-generator and the rest of the implementation)
has lead to a component-based design consisting of a parser-
generator component and source-code weaving component. We
discuss these components, and the second requirement on per-
formance of the generated parser, in more detail below.

Parser generator component The parser-generator com-
ponent processes only the attribute grammar and generates a

100

6.4. Implementation

parser for it, with ABS as the target language. Parsers for
attribute grammars in general take a stream of terminals as
input, and output a parse tree according to the grammar pro-
ductions (where non-terminal nodes are annotated with their
attribute values). In our case, the attribute grammars also con-
tains assertions, and the generated parser additionally checks
that all assertions in the grammar are true.

In our case, whenever a new message (asynchronous call)
is added to the trace, all parse trees of all prefixes have been
computed previously. The question arises how efficient the new
parse trees can be computed by exploiting the parse trees of
the prefixes. Unfortunately, for general context-free grammars,
this cannot be done in constant time using currently known al-
gorithms (violating the second requirement on performance).
For if this was possible in constant time, parsing the full trace
results in a parser which works in linear time (n terminals which
all take a constant amount of time), and no linear time algo-
rithm for general context-free grammars is known. We there-
fore restrict to deterministic regular attribute grammars with
only inherited attributes. All grammars used in the case study
have this form and parsing the new trace in such grammars can
be done in constant time, since they can be translated to a finite
automaton with conditions (assertions) and attribute updates
as actions to execute on transitions. Parsing the new message
consists of taking a single step in this automaton. Moreover for
such grammars, the space complexity is also very low: it is not
necessary to store the entire trace, only the attribute values of
the previous trace must be stored.

Source-code weaving component The weaving compo-
nent processes the communication view and the given ABS
model, and outputs a new ABS model in which each call to
a method appearing in the view is transformed. The trans-
formation checks whether the method call which is about to
be executed is allowed by the attribute grammar, and if this
is not the case, prevents unsafe behavior by throwing an as-
sertion failure. This transformation is invasive, in the sense
that it cannot be done only locally in the body of those meth-
ods actually appearing in the view, but instead it has to be

101

6. Concurrent Object Groups

done at all call-sites (in client code). To see this, suppose that
the transformation was done locally, say in the beginning of
the method body. Due to concurrency and scheduling policies,
other methods which were called at a later time could have been
scheduled earlier. In such a scenario, these other methods are
checked earlier than the order in which they are actually called
by a client, which violates the decision (see also the previous
section) to treat scheduling policies orthogonally.

The transformation is done in two steps. First, all calls to
methods that occur in a communication view are isolated using
pattern matching in the meta-program. We created a Rascal
ABS grammar for that purpose. The ABS grammar contains
around 240 non-terminals: for comparison, the Java grammar
in Rascal has about 120. The main reason for the significantly
larger size is that the ABS contains an internal sublanguage (for
feature models and delta programming [79, 23]) for designing
software product lines. The following snippet from the Rascal
ABS grammar descibes the syntax for asynchronous method
calls (i.e. om(e1, ..., en)!).

syntax AsyncCall

= PureExpPrefix ! IDENTIFIER (DataExp ","*);

In the second step, all asynchronous call-statements are pre-
ceded by code which checks that the current object is part of
a named cobox (note that this check really has to be done at
run-time due to the dynamic nature of coboxes). If this is the
case, the trace is updated by taking a step in the finite au-
tomaton where additionally the assertion is checked. If there is
no transition for the message from the current state, we throw
an assertion error. Intuitively such an error corresponds to a
protocol violation. There is one subtle point about updating
the trace. If no assumptions are made about the scheduling
of received messages, only updates to the trace of the calling
cobox (i.e. ‘send’ messages in the view) can be guaranteed
to be executed directly before the actual call happens. For
‘receive’ messages the history is updated whenever the cor-
responding method begins executing. Thus this assymmetry
between ‘send’ and ‘receive’ events is natural when one takes
into account that the actual behavior of the program only de-
pends on the order in which the ‘receive’ events (or rather, the
associated methods) are actually executed.

102

