
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Case Studies 5

In this chapter we use the formalism described in chapter Chap-
ter 3 and the extension to design by contract described in chap-
ter Chapter 4 to specify a Java library, and an industrial-sized
case from the e-commerce company Fredhopper. The Java li-
brary we consider is a (last-in-first-out) Stack. The Stack ex-
ample illustrates how the Design by Contract methodology as
supported by JML can be used to specify the push and pop-
methods purely in terms of histories in an elegant manner. In
particular, this example shows how synthesized attributes of
the start-symbol can be used conveniently inside method pre-
and postconditions. Based on the case study, we discuss our
experiences with SAGA.

51

5. Case Studies

5.1 Design by Contract: Stack

A Stack is an abstract data type which has only two operations
push and pop. The operation push adds an object to the stack,
while pop returns and removes the last element from the stack
which was pushed but not yet removed. The operation pop is
not allowed on an empty Stack. Figure 5.1 shows an interface
for the Stack in Java.

public interface Stack {

void push(Object item);

Object pop();

}

Figure 5.1: Stack Interface

Our task is to find a specification for the Stack which en-
sures that pop is never called by the user on an empty stack,
and moreover that pop returns the right object when called
on a non-empty stack. The communication view in Figure 5.2
selects three events. The returns of push are needed to keep
track of the elements which have been pushed onto the Stack.
Note that it would incorrect be to consider the calls to push

instead: suppose some strange implementation of push would
itself call pop as its first action, before restoring the removed el-
ement and adding the element which was passed to push. Then
calling push on an empty stack would fail (since that results
in calling pop on an empty stack), but the history would be
‘PUSH POP’ (which seemingly looks valid for a Stack). Se-
lecting returns of push avoids this problem. The calls to pop,
which are referred to by the terminal ‘POP’, are needed to en-
sure that pop is never called on an empty Stack. In this case it
would not suffice to track only returns of pop, since whenever
pop is executed on an empty stack, the run-time checker would
only detect the failure after executing of pop (which fails), and
thus does not prevent unsafe behavior.

The protocol behavior of this view can be defined in terms
of sequences of the terminals ’PUSH’ and ’POP’ generated by
the context-free grammar given in Figure 5.3, where ‘s’ is the

52

5.1. Design by Contract: Stack

local view StackHistory specifies Stack {

return push PUSH;

call pop POP;

}

Figure 5.2: Communication View of a Stack

start symbol.

s ::= PUSH s
| s s
| b

b ::= PUSH b POP
| ε
| b b

Figure 5.3: Abstract Stack Behavior

The non-terminal ‘s’ generates the prefix closure of the stan-
dard grammar for balanced sequences of ‘PUSH’ and ‘POP’
(which are generated by the non-terminal ‘b’). This ensures
that pop is never called on an empty stack.

In order to specify the relation between the actual
parameters of calls to the push method and the return
values of the pop method, we introduce a synthesized
attribute ‘stack’ of type JMLListValueNode for the non-
terminal ‘s’. JMLListValueNode is a JML class for a
singly-linked list with side-effect free implementations of
the methods JMLListValueNode append(Object item)

, which appends an item to the list, and
JMLListValueNode concat(JMLListValueNode ls2) which
concatenates two lists. The intended value of the ‘stack’
attribute is a list of the elements which are pushed but have
not yet been popped. Since balanced Stacks are empty,
associating the ‘stack’ attribute also to the b-non-terminal
would be redundant. Figure 5.4 shows how ‘stack’ is updated
in each production of the non-terminal s. Intuitively the value
of ‘stack’ at the root of the parse-tree (i.e. an occurence of the
start-symbol s) is a list containing the current contents of the

53

5. Case Studies

Stack. Figure 5.5 shows the parse tree for the history resulting
from the program s.push(5); s.push(7); s.pop();. Note
that this does not mean that an actual implementation of the
stack interface works correctly: the attribute grammar can be
considered as a ‘reference implementation’ of the stack, but
we still need to ensure that an actual implementation of the
Stack matches (in the sense that calling pop returns the right
value) this reference implementation.

s ::= PUSH s1 (stack =s1.stack.append(PUSH.item);)
| s1 s2 (stack =s1.stack.append(s2.Stack);)
| b (stack = stack.clear();)

b ::= PUSH b POP
| ε
| b b

Figure 5.4: Attribute Grammar Stack Behavior

In order to specify the method contracts for the Stack, the
JML implementation of SAGA (described in Section 4.1) al-
lows referring to the synthesized attributes of the root of the
parse tree. Since the start symbol in the parse tree gener-

Figure 5.5: Parse tree annotated with attribute values for the
history push(5) push(7) pop() in the grammar of Figure 5.4
(irrelevant attributes ommitted)

54

5.1. Design by Contract: Stack

ates the whole history, intuitively the synthesized attributes
of the start symbol can be thought of as a property of the
entire history. In order to use the attribute ‘stack’ of this
grammar in assertions for specifying the contracts of the push

and pop methods of the ‘Stack’ interface (Figure 5.1) in terms
of communication histories, the modeling framework provides
a class StackHistory which corresponds to the communica-
tion view of Figure 5.2. This class contains a ’getter’ method
JMLListValueNode stack() which retrieves the value of the
attribute ‘stack’ of the root of the parse tree of the current
history.

interface Stack {

//@ public model instance StackHistory history;

//@ ensures history.stack (). equals(

//@ \old(history.stack ()). append(item));

void push(Object item);

//@ ensures history.stack (). equals(

//@ \old(history.stack ()). tail ());

//@ ensures \result == \old(history.stack ()). head ();

Object pop();

}

Figure 5.6: JML Specification Stack Interface

Figure 5.6 illustrates how the StackHistory class can be
used to specify the desired contracts. The JML keyword model

indicates that history (of type StackHistory) can be used
only in specifications. The keyword instance specifies that
history will be added as a (non-static) field to any class that
implements the Stack interface. The ensures and requires

clauses specify the method contracts in terms of the ‘stack’
attribute (whose value is defined in the attribute grammar).
Summarizingly, the property that pop may not be called on
an empty stack is ensured by the productions of the grammar
(the grammar productions can be considered to be an interface
invariant for the protocol behavior), and the property that pop
returns the right object is guaranteed by the method contracts
and the definition of the attribute ‘stack’.

55

5. Case Studies

Note that alternatively we could have avoided the method
contracts by instead adding appropriate assertions in the at-
tribute grammar before and after every occurence of ‘PUSH’
and ‘POP’ in the grammar. This leads to duplication since
‘PUSH’ occurs multiple times in the grammar. Moreover,
for this alternative solution, we should also have added to
the communication view that we intend to capture returns
of pop: otherwise there would be no way to check that pop

returned the right value. For the above example, we favour
the above design-by-contract solution over the assertions-in-
grammar, since it avoids duplication of specifications and ad-
ditionally avoids adding the extra terminal for returns of pop.
This increases readability of the grammar, and results in less
overhead for the run-time check since the sequence of tokens to
parse is shorter.

56

5.2. Fredhopper Case-Study

Live

Environment

Live

Environment

Data and Config

Updates

Configurations

changes

Staging

Environment

Data

Manager

Internet

...

Client-side

Web App

Client-side

Web App

Client-side

Web App

Data updates Live

Environment... Load

balancer

Figure 5.7: An example FAS deployment

5.2 Fredhopper Case-Study

Fredhopper1 is a search, merchandising and personalization so-
lution provider, whose products are tailored to the needs of on-
line businesses. Fredhopper operates behind the scenes of more
than 100 of the largest online shops 2. It provides the Fred-
hopper Access Server (FAS), which is a distributed concurrent
object-oriented system that provides search and merchandising
services to eCommerce companies. Briefly, FAS provides to its
clients structured search capabilities within the client’s data.
Each FAS installation is deployed to a customer according to
the FAS deployment architecture (See Figure 5.7).

FAS consists of a set of live environments and a single stag-
ing environment. A live environment processes queries from
client web applications via web services. FAS aims at provid-
ing a constant query capacity to client-side web applications. A
staging environment is responsible for receiving data updates in
XML format, indexing the XML, and distributing the resulting
indices across all live environments according to the Replica-

1http://www.sdl.com/products/fredhopper/
2http://www.sdl.com/campaign/wcm/gartner-maqic-quadrant-wcm-2013.

html?campaignid=70160000000fSXu

57

5. Case Studies

Figure 5.8: Replication interaction

tion Protocol. The Replication Protocol is implemented by the
Replication System. The Replication System consists of a Sync-
Server at the staging environment and one SyncClient for each
live environment. The SyncServer determines the schedule of
replication, as well as its content, while SyncClient receives
data and configuration updates according to the schedule.

Replication Protocol

The SyncServer communicates to SyncClients by creating
Worker objects. Workers serve as the interface to the server-
side of the Replication Protocol. On the other hand, Sync-
Clients schedule and create ClientJob objects to handle com-
munications to the client-side of the Replication Protocol.
When transferring data between the staging and the live en-
vironments, it is important that the data remains immutable.
To ensure immutability without interfering the read and write
accesses of the staging environment’s underlying file system,

58

5.2. Fredhopper Case-Study

interface Snapshot {

void refresh();

void clear();

List<Item> items(String sn);

}

interface Worker {

void establish(String sn);

List<Item> reg(String sn);

void transfer(Item item);

SyncServer server();

}

Figure 5.9: SnapShot and Worker interfaces of Replication Sys-
tem

the SyncServer creates a Snapshot object that encapsulates a
snapshot of the necessary part of the staging environment’s file
system, and periodically refreshes it against the file system.
This ensures that data remains immutable until it is deemed
safe to modify it. The SyncServer uses a Coordinator object
to determine the safe state in which the Snapshot can be re-
freshed. Figure 5.8 shows a UML sequence diagram concerning
parts of the replication protocol with the interaction between
a SyncClient, a ClientJob, a Worker, a SyncServer, a Coor-
dinator and a Snapshot. the diagram also shows a Util class
that provides static methods for writing to and reading from
Stream. The figure assumes that SyncClient has already estab-
lished connection with a SyncServer and shows how a ClientJob
from the SyncClient and a Worker from a SyncServer are in-
stantiated for interaction. For the purpose of this paper we
consider this part of the Replication Protocol as a replication
session.

In this section we show how to modularly decompose ob-
ject interaction behavior depicted by the UML sequence dia-
gram in Figure 5.8 using SAGA. Figures 5.9 and 5.10 shows
the corresponding interfaces and classes, note that we do not
consider SyncClient as our interest is in object interactions of a
replication session, that is after ClientJob.start() has been
invoked.

The protocol descriptions and specifications considered in
this case study have been obtained by manually examining the

59

5. Case Studies

interface SyncServer {

Snapshot snapshot();

}

interface Coordinator {

void start(Worker t);

void finish(Worker t);

}

class Util {

static void write(String s) { .. }

}

Figure 5.10: SyncServer and Coordinator interfaces of Repli-
cation System

behavior of the existing implementation, by formalizing avail-
able informal documentations, and by consulting existing de-
velopers on intended behavior. Here we first provide such in-
formal descriptions of the relevant object interactions:

• Snapshot: at the initialization of the Replication System,
refresh should be called first to refresh the snapshot.
Subsequently the invocations of methods refresh and
clear should alternate.

• Coordinator: neither of methods start and finish may
be invoked twice in a row with the same argument, and
method start must be invoked before finish with the
same argument can be invoked.

• Worker: establish must be called first. Furthermore
reg may be called if the input argument of establish
is not “LIST” but the name of a specific replication
schedule, and that reg must take that name as an in-
put argument. When the reg method is invoked and
before the method returns, the Worker must obtain the
replication items for that specific replication schedule via
method items of the Snapshot object. The Snapshot ob-
ject must be obtained via method snapshot of its Sync-
Server, which must be obtained via the method server.
It must notify the name of each replication item to its

60

5.2. Fredhopper Case-Study

local view SnapshotHistory

grammar Snapshot.g

specifies Snapshot {

call void refresh() rf,

call void clear() cl

}

Figure 5.11: Snapshot Communication View

local view CoordinatorHistory

grammar Coordinator.g

specifies Coordinator {

call void start(Worker t) st,

call void finish(Worker t) fn

}

Figure 5.12: Coordinator Communication View

local view WorkerHistory grammar Worker.g

specifies Worker {

call void establish(String sn) et,

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

call void transfer(Item item) tr

}

Figure 5.13: Worker Communication View

interacting SyncClient. This notification behavior is im-
plemented by the static method write of the class Util.
The method reg also checks for the validity of each repli-
cation item and so the method must return a subset of the
items provided by the method items. Finally transfer

may be invoked after reg, one or more times, each time
with a unique replication item, of type Item, from the list
of replication items, of type List<Item>, returned from
reg.

Figures 5.11 to 5.14 specifies communication views. They
provide partial mappings from message types (method calls and
returns) that are local to individual objects to grammar termi-
nal symbols. Note that the specification of the Worker’s behav-
ior is modularly captured by two views: WorkerHistory and

61

5. Case Studies

local view WorkerRegHistory grammar WorkerReg.g

specifies Worker {

call List<Item> reg(String sn) rg,

return List<Item> reg(String sn) is,

return Snapshot SyncServer.snapshot() sp,

call List<Item> Snapshot.items(String sn) ls,

return List<Item Snapshot.items(String sn) li,

call static void Util.write(String s) wr

}

Figure 5.14: WorkerReg Communication View

S ::= ε | rf T
T ::= ε | cl S

Figure 5.15: Snapshot Attribute Grammar

S ::= T (T.ts = new HashSet();)
T ::= ε | st {assert ! T.ts.contains(st.t);}

(T.ts.add(st.t);) T1 (T1.ts = T.ts;)
| fn {assert T.ts.contains(fn.t);}

(T.ts.remove(fn.t);) T1 (T1.ts = T.ts;)

Figure 5.16: Coordinator Attribute Grammar

WorkerRegHistory. The view WorkerHistory exposes meth-
ods establish, reg and transfer. Using this view we would
like to capture the overall valid interaction in which Worker
is the callee of methods, and at the same time the view helps
abstracting away the implementation detail of individual meth-

S ::= ε | et T (T.d = et.sn;)
T ::= ε | {!"LIST".equals(T.d);}?

rg {assert rg.sn.equals(T.d);} U
U ::= ε | is V (V .m = new ArrayDeque(is.result);)
V ::= ε | tr {assert V .m.peek().equals(tr.item);}

(V .m.pop();) V1 (V1.m = V .m;)

Figure 5.17: Worker Attribute Grammar

62

5.2. Fredhopper Case-Study

/*S accepts call to Worker.reg() and, records */

/*the input schedule name, also S allows */

/*arbitary calls to SyncServer.snapshot() */

/*and Util.write() */

S ::= ε | wr S | sp S | rg T (T.d = et.sn;)

/*T accepts and stores the return */

/*snapshot object from SyncServer.snapshot() */

T ::= ε | sp V (V .d = T.d; U.s = sp.result;)

/*U ensures call items() is called on the same */

/*snapshot object, and the replication items */

/*for the correct schedule are retrieved */

U ::= ε | ls {assert ls.callee.equals(U.s);
assert ls.sn.equals(U.d);}

V (V .s = U.s;)

/*V records replication items and their name */

/*returned from item() */

V ::= ε | li W (W.is = new HashSet(li.result);
W.ns = new HashSet();

for (Item i :W.is) {

W.ns.add(i.name()); })

/*W ensures all replication */

/*items are processed */

W ::= ε | wr (W.ns.remove(wr.s);)
W1 (W1.ns =W.ns; W1.is =W.is;)

| is {assert W.is.containsAll(is.result);
assert W.ns.isEmpty();}

X

X ::= ε | sp X | rg X

Figure 5.18: WorkerReg Attribute Grammar

63

5. Case Studies

ods. The view WorkerRegHistory, on the other hand, captures
the behavior inside reg. According to the informal description
above, the view projects incoming method calls and returns of
reg, outgoing method calls to server and items, and as well
as the outgoing static method calls to write.

We now define the abstract behavior of the communication
views, that is, the set of allowable sequences of interactions of
objects restricted to those method calls and returns mapped
in the views. Each local view also defines the file contain-
ing the attribute grammar, whoses terminal symbols the view
maps method invocations and returns to. Specifically, Fig-
ures 5.15 to 5.18 shows the attribute grammars Snapshot.g,
Coordinator.g, Worker.g and WorkerReg.g for views
SnapshotHistory, CoordinatorHistory, WorkerHistory and
WorkerRegHistory respectively.

The simplest grammar Snapshot.g specifies the interaction
protocol of Snapshot. It focuses on invocations of methods
refresh and clear per Snapshot object. The grammar es-
sentially specifies the (prefix-closure of the) regular expression
(refresh clear)∗.

The grammar Coordinator.g specifies the interaction pro-
tocol of Coordinator. It focuses on invocations of methods
start and finish, both of which take a Worker object as the
input parameter. These method calls are mapped to terminal
symbols st and fn, while their inherited attribute is a HashSet,
recording the input parameters, thereby enforcing that for each
unique Worker object as an input parameter only the set of
sequences of method invocations defined by the reqular expres-
sion (start finish)∗ is allowed.

The grammar Worker.g specifies the interaction protocol
of Worker It focuses on invocations and returns of methods
establish, reg and transfer. The grammar specifies that
for each Worker object, establish must be first invoked, then
followed by reg and then zero or more transfer, that is, the
regular expression (establish reg transfer∗). We use the
attribute definition of the grammar to ensure the following:

• The input argument of establish and reg must be the
same;

64

5.2. Fredhopper Case-Study

• reg can only be invoked if the input argument of
establish is not “LIST”;

• The return value of reg is a list of Item objects such that
transfer is invoked with each of Item in that list from
position 0 to the size of that list.

The grammar WorkerReg.g specifies the behavior of the
method reg of Worker. It focuses on the invocations and re-
turns of method reg of Worker as well as the outgoing method
calls and returns of Util.write and SyncServer.snapshot

and Snapshot.items. At the protocol level the grammar spec-
ifies the regular expression (snapshot items write∗) inside
the invocation method reg. We use attribute definition to en-
sure the following:

• Snapshot.items must be called with the input argument
of reg and it must be called on the Snapshot object that
is identical to the return value of SyncServer.snapshot;

• The static method Util.write must be invoked with the
value of Item.name for each Item object in the Collection
returned from Snapshot.items;

• The returned list of Item objects from reg must be a
subset of that returned from Snapshot.items.

Notice that methods Util.write and SyncServer.snapshot

may be invoked outside of the method reg. However, this
particular behavioral property does not specify the protocol for
those invocations. The grammar therefore abstracts from these
invocations by allowing any number of calls to Util.write and
SyncServer.snapshot before and after reg.

65

5. Case Studies

Figure 5.19: Violating histories

5.3 Experiment

We applied SAGA to the Replication System. The current Java
implementation of FAS has over 150,000 lines of code, and the
Replication System has approximately 6400 lines of code, 44
classes and 5 interfaces.

We have successfully integrated SAGA into the quality as-
surance process at Fredhopper. The quality assurance process
includes automated testing that includes automated unit, inte-
gration and system tests as well as manual acceptance tests. In
particular system tests are executed twice a day on instances
of FAS on a server farm. Two types of system tests are sce-
nario and functional testing. Scenario testing executes a set
of programs that emulate a user and interact with the system
in predefined sequences of steps (scenarios). At each step they
perform a configuration change or a query to FAS, make asser-
tions about the response from the query, etc. Functional testing
executes sequences of queries, where each query-response pair
is used to decide on the next query and the assertion to make
about the response. Both types of tests require a running FAS
instance and as a result we may leverage SAGA by augment-
ing these two automated test facilities with runtime assertion
checking using SAGA.

To integrate of SAGA with the system tests, we employ
Apache Maven tool3, an open source Java based tool for man-
aging dependencies between applications and for building de-
pendency artifacts. Maven consists of a project object model

3maven.apache.org

66

5.3. Experiment

class WKImpl extends Thread

implements Worker {

final Coordinator c;

WKImpl(Coordinator c) {

this.c = c; }

public void run() {

try { .. c.start(this); ..

} finally {

c.finish(this); .. }}}

Figure 5.20: Incorrect behavior of WKImpl

(POM), a set of standards, a project lifecycle, and an exten-
sible dependency management and build system via plug-ins.
We use its build system to automatically generate and pack-
age the parser/lexer of attribute grammars as well as aspects
from views and grammars. We expose the packaged aspects,
parser and lexer to FAS instance on the server farm and employ
Aspectj using load-time weaver for monitoring method call-
s/returns during the execution of FAS instances on the server
farm. Table 5.1 shows the number of join point matches dur-
ing the execution of 766 replication sessions over live client
data. Figure 5.21 shows the exection time of the 766 repli-
cation sessions with and without the integration of SAGA in
milliseconds. At some points (for example, around 261 events),
the figure seemingly indicates that the system runs faster with
SAGA than without. In reality this is not the case: the depen-
dence of the case study on user input (i.e., to start replication
sessions) means that it is impossible to replicate an execution
exactly (with the only difference being SAGA turned on and
off respectively) and leads to small errors in the measurements.
However, despite the fact that we cannot control the exact flow
of control of the replication sessions (due to this dependence
on user input), the graph clearly shows that the integration of
SAGA has minimal performance impact on the execution time.

During this session we have found an assertion er-
ror at join point call finish due to the condition
T.ts.contains(fn.t) not being satisfied at non-terminal T
of the grammar Coordinator.g. Specifically, the implemen-
tation of Worker (WKImpl) that invoke finish before start.
Figure 5.19 shows the sequence diagram of an invalid history

67

5. Case Studies

Join point Terminal Match
call static write wr 247446
return snapshot sp 3061
call transferItem tr 1101
return reg (WorkerHistory) is 765
return reg (WorkerRegHistory) is 765
call establish et 766
call reg (WorkerHistory) rg 765
call reg (WorkerRegHistory) rg 765
return items li 765
call start st 766
call finish fn 766
call items ls 765
call refresh rf 766
call clear cl 766

Table 5.1: Join point matches in 766 replication sessions

15000

20000

25000

30000

With SAGA

Without SAGA

0

5000

10000

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

Figure 5.21: Comparison of the execution time (milliseconds)
of the replication sessions with and without the integration of
SAGA

causing the error, fully automatically generated from the out-
put of SAGA. Figure 5.20 shows part of the implementation of
WKImpl. It turns out that in the run method of WKImpl, the
method start is invoked inside a try block while the method
finish is invoked in the corresponding finally block. As a
result when there is an exception being thrown by the execu-

68

5.3. Experiment

tion preceding the invocation of start inside the try block,
for example a network disruption, finish would be invoked
without start being invoked.

69

