
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Implementation 4

Given a Java interface specified with an attribute grammar, we
would like to test whether an object implementing the interface
satisfies the properties defined in the grammar at every point in
its lifetime. In this chapter we first describe the generic archi-
tecture of our tool SAGA [34] which achieves this. Four differ-
ent components are combined: a state-based assertion checker,
a parser generator, a debugger and a general tool for meta-
programming. Traditionally these tools are used for very di-
verse purposes and don’t need to interact with each other. We
therefore investigate requirements needed to achieve a seam-
less integration of these components, motivated by describing
the workflow of the run-time checker. In the next section we
instantiate the four components with concrete state-of-the-art
tools.

Suppose that during execution of a Java program, a method
of a class (subsequently referred to as CUT, the ‘class under
test’) which implements an interface specified by an attribute
grammar is called. The new history of the object on which the
method was called should be updated to reflect the addition of
the method call. To represent the history of an object of CUT,
the Meta-Programming tool generates for each method m

in CUT two classes call-m and return-m. These classes con-

39

4. Implementation

Figure 4.1: Generic Tool Architecture

tain the following fields: the object identitity of the callee, the
identity of the caller and the actual parameters. Additionally
return-m contains a field result containing the return value.
A Java List containing instances of call-m and return-m then
stores the history of an object of CUT.

The meta-programming tool further generates code for a
wrapper class which replaces the original main class. We will
refer to this class as the “history class”. This history class
contains a field H, a Java map containing pairs (id, h) of an
object identity id and its local history h. Moreover it stores
the current values of the synthesized attributes of the start
symbol, these can be used in assertion languages supporting
design by contract (See Section 5.1 for an example of this us-
age). The history class executes the original program inside
the Debugger. The Debugger is responsible for monitoring
execution of the program. It must be capable of temporarily

40

‘pausing’ the program whenever a call or return occurs, and ex-
ecute user-defined code to update H appropriately . Moreover
the Debugger must be able to read the identity of the callee,
caller and parameters/return-value.

After the history is updated the run-time checker must de-
cide whether it still satisfies the specification (the attribute
grammar). Observe that a communication history can be seen
as a sequence of tokens (in our setting: communication events).
Since the attribute grammar together with the assertions gen-
erate the language of all valid histories, checking whether a his-
tory satisfies the specification reduces to deciding whether the
history can be parsed by a parser for the attribute grammar,
where moreover during parsing the assertions must evaluate to
true. Therefore the Parser Generator creates a parser for the
given attribute grammar. Since the history is a heterogenous
list of call-m and return-m objects, the parser must support
parsing streams of tokens with user-defined types. Assertions
in general describe properties of Java objects, and the grammar
contains assertions over attributes, the attributes must be nor-
mal Java variables. Consequently the parser generator must al-
low arbitrary user-defined java code (to set the attribute value)
in rule actions. The use of Java code ensures the attribute val-
ues are computable. Since assertions are allowed in-between
any two (non)-terminals, the parser generator should support
user-defined actions between arbitrary grammar symbols. At
run-time, the parser is triggered whenever the history of an
object is updated. The result is either a parse error, which
indicates that the current communication history has violated
the protocol structure specified by the attribute grammar, or
a parse tree with new attribute values. During parsing, the
Assertion Checker evaluates the assertions in the grammar
on the newly computed attribute values. To avoid parsing the
whole history of a given object each time a new call or return is
appended, ideally the parser should support incremental pars-
ing [43]. An incremental parser computes a parse tree for the
new history based on the parse trees for prefixes of the history.
In our setting, the attribute grammar specifies invariant prop-
erties of the ongoing behavior. Hence the parser constructs a
new parse tree after each call/return, consequently parse trees
for all prefixes of the current history can be exploited for in-

41

4. Implementation

cremental parsing.
To illustrate how the tools described above interact with

each other at run-time, the UML sequence diagram in Fig-
ure 4.2 shows the run-time environment of a successful method
invocation of a (single-threaded) Java program, containing a
class Class Under Test (CUT) whose local history is specififed
by an attribute grammar. The actors in the sequence diagrams
are:

• ‘User Prog’: A client class that instantiates and uses
CUT.

• ‘Debugger’: Java debugger that intercepts all method
calls and corresponding returns from ‘User Prog’ to CUT.

• ‘History (instance)’: an instance of the history class. This
class stores the local history of each object of CUT.

• ‘Parser’: an instance of a parser for the given attribute
grammar. The source code of the Parser was generated
by the Parser Generator.

• ‘Assertion Checker’: provides facilities to check assertions
at run-time.

• ‘Class Under Test (CUT)’: The class which was specified
using an attribute grammar.

• ‘stderr’: the standard error stream of the system. Error
reports (such as an assertion failure or protocol violation)
can be sent to this stream.

Figure 4.3 shows a scenario in which a method return causes
the updated history to violate the grammar rules. In this case,
the parser detects a parse error and outputs a protocol violation
to ‘stderr’. The scenario in which parsing is successfull, but the
assertions cause an error, is not shown but very similar.

42

4.1. Instantiating the Tool Architecture

Figure 4.2: Run-time environment of successfull method invo-
cation

4.1 Instantiating the Tool Architecture

The previous section introduced the generic tool architecture,
which was based on four different components: meta-programming,
debugger, parser generator and state-based run-time assertion
checker. Here we instantiate these four components with par-
ticular (state of the art) tools, and report our experiences to
what extent the requirements stated in the previous section
are satisfied by these current tools. The main overhead of the
run-time checker is caused by the parser, hence we discuss per-
formance (both theoretical and in practice) in the paragraph
on parser generators.

Meta-Programming Rascal [58] is a tool-supported domain
specific language for meta programming. We use its pars-
ing, source code analysis, source-to-source transformation and
source code generation features. A ± 1000 line Rascal pro-
gram1 takes care of:

1Excluding the grammar for Java.

43

4. Implementation

Figure 4.3: Run-time environment of successfull method invo-
cation

• parsing and analyzing the Java method signatures in the
communication view.

• generating Java source for a debugger. The debugger
should intercept any method call and return, and inform
the History class that an event occured.

• generating the token classes call-m and return-m for
each call and return event in the view.

• generating the History class, which specifically accepts
new events from the provided methods in the interface
and acts as a token stream for the generated parser.

The full source code which Rascal generates for the above tasks
contains about 50 times the number of events + 100 lines of
code, in other words, the size of the generated code depends
mainly on the number of events in the communication view.

Note that we require general meta programming features
for several input languages, not just Java. This application
of Rascal has three languages as input (ANTLR grammars,
View declarations and Java), and one output language (Java).
Rascal runs on a JVM, such that it integrates into any Java
environment.

44

4.1. Instantiating the Tool Architecture

In the following Rascal snippet we generate update methods
in the history class which are called whenever a method returns.

return "

<for (‘<mods > <return > <id > (<formals >)‘ <- methods) {

r = "return_<id >";>

public void update(return_<id > e) {

<if (r in tokens){>

e.setType(<grammarName >Lexer.<tokens[r] >);

addAndParse(e);<}>

}

<}>";

This return statement contains three levels. The Rascal lan-
guage level (in boldface) provides the return statement, the
string, and embedded in the string expressions marked by
<...> angular brackets. The string that is generated repre-
sent an (unparsed) Java fragment. The fragments embedded
in back ticks (‘) represent parsed Java fragments from the in-
put interface. Inside those fragments Rascal expressions occur
again between angular brackets.

The string template language of Rascal allows us to instan-
tiate a number of methods called update using a for loop and
an if statement. The data that is used in the for loop is ex-
tracted directly from the parse trees of the methods in a Java
interface file. The concrete Java source pattern between the
back ticks (‘) matches the declaration of a method in the inter-
face, extracting the name of the method (<id>). Note that this
snippet uses variables declared earlier, such as tokens which is
a map from method names to token names taken from the view
declaration in the interface and grammarName which was also
extracted from the view earlier. Albeit complex code due to the
many levels required for this task, the code is short and easy
to adapt to other kinds of analysis and generation patterns.

The main disadvantages of Rascal are that it is still in an
alpha stage, it is not fully backwards compatible and we discov-
ered numerous bugs in Rascal during development of the Rascal
program. However overall our experience was quite positive.
The identified bugs were fixed quickly by the Rascal team, and
its powerful parsing, pattern matching and transforming con-
crete syntax features proved indispensable.

45

4. Implementation

Debugger We evaluated Sun’s implementation of the Java
Debugging Interface for the debugger component. It is part of
the standard Java Development Kit, hence maintenance of the
debugger is practically guaranteed. The Sun debugger starts
the original user program in separate a virtual machine which is
monitored for occurences of MethodEntryEvent (method calls)
and MethodExitEvent (method returns). It allows defining
event handlers which are executed whenever such events occur.
It also allows retrieving the caller, callee, parameters values
and return value of events using StackFrames. No actual Java
source code for the class under test is needed for the debug-
ging. The approach is safe in that no source code nor bytecode
is modified for the monitoring. The Sun debugger meets all
requirements for the debugger stated above. As the main dis-
advantage, we found that the current implementation of the
debugger is very slow. In fact it was responsible for the major-
ity of the overhead of the run-time checker. This is not neces-
sarily problematic: as testing is done during development, the
debugger will typically not be present in performance critical
production code. Moreover, one usually wants to test only up
to a certain bound (for instance, in time, or in the number
of events), and report on results once the bound is exceeded.
Nonetheless, for testing up to huge bounds, a different imple-
mentation for the debugger is needed.

As an alternative we have also tested AspectJ, a Java com-
piler which supports aspect-oriented programming. Aspect-
oriented programming is tailored for monitoring. AspectJ can
intercept method calls and returns conveniently with pointcuts,
and weave in user-defined code (advices) which is executed be-
fore or after the intercepted call. In our case the pointcuts
correspond to the calls and returns of the messages listed in
the communication view. The advice consists of code which
updates the history. The code for the aspect is generated from
the communication view automatically by the Rascal meta-
program. Advice can either be woven into Java source code,
byte code or at class load-time fully automatically by AspectJ.
Note that in contrast to the above Java Debugger approach
this step involves changing the source or bytecode, which may
be deemed as less safe. We use the inter-type declarations of
AspectJ to store the local history of an object as a field in the

46

4.1. Instantiating the Tool Architecture

/* call int read(char[] cbuf, int off, int len); */

before(Object clr, BufferedReader cle,

char[] cbuf, int off, in len):

(call(int *.read(char[], int, int))

&& this(clr) && target(cle) && args(cbuf, off, len)

&& if(BReaderHistoryAspect.class.desiredAssertionStatus()))

{

cle.h.update(new call_push(clr, cle, cbuf, off, len));

}

Figure 4.4: Aspect for the event ‘call int read(char[] cbuf, int
off, int len)’

object itself. This ensures that whenever the object goes out
of scope, so does its history and consequently reduces mem-
ory usage. Clearly the same does not hold for global histories,
which are stored inside a separate Aspect class. Figure 4.4
shows a generated aspect. The second and third line specify
the relevant method, in this case BufferedReader.read. The
fourth line binds variables (‘clr’, ‘cle’, ...) to the appropriate
objects. Note that to support dynamic binding, it is not possi-
ble to statically match method calls to in the Java source to the
below pointcut: the dynamic type of the callee, which is deter-
mined at run-time, determines whether the pointcut matches.
The fifth line ensures that the aspect is applied only when Java
assertions are turned on. Assertions can be turned on or off for
each communication view individually. The fifth line contains
the advice that updates the history. Note that since the event
came was defined in a local view, the history is treated as a
field of the callee and will not persist in the program indefi-
nitely but rather is garbage collected as soon as callee object
itself is.

As a third alternative, we also tested the meta-
programming tool Rascal to generate code which intercepts the
method calls and returns appropriately. This can be done by
defining a transformation on the actual Java source code of the
class under test, which requires a full Java grammar (which
must be kept in sync with the latest updates to Java). To
capture the identity of the callee, parameter values and return

47

4. Implementation

value of a method, one only needs to transform that particular
method (i.e. locally). But inside the method there is no way
to access the identity of the caller. Java does offer facilities to
inspect stack frames, but these frames contain only static enti-
ties, such as the name of the method which called the currently
executing method, or the type of the caller, but not the caller
itself. To capture the caller, a global transformation at all call-
sites is needed (and in particular one needs to have access to
the source code of all clients which call the method). The same
problem arises in monitoring calls to required methods.

Finally it proved to quickly get very complex to handle
all Java features listed in Table 3.1. We wrote an initial ver-
sion of a weaver in Rascal which already took over 150 lines
(over half of the full checker at the time) without support-
ing method calls appearing inside expressions, inheritance, dy-
namic binding, constructors and overloading. Moreover the
meta-programming approach is also unsuitable if the Java
source code is not available (which happens frequently for li-
braries) ing where only byte code is available, limiting the ap-
plicability of the tool. In summary, while it is possible to imple-
ment monitoring by defining a code transformation in Rascal,
this rules out bytecode only libraries, and quickly gets complex
due to the need for a full (up to date) Java grammar and the
complexity of the full Java language.

Parser Generator For the the parser generator component
we tested ANTLR v3, a state of the art parser generator.
It generates fast recursive descent parsers for Java and al-
lows grammar actions and custom token streams. It even
supports conditional productions: productions which are only
chosen during parsing whenever an associated Boolean expres-
sion (the condition) is true and allow for a degree of context-
senstitiveness. Attribute grammars with conditional produc-
tions express protocols that depend on data which are typi-
cally not context-free. ANTLR also supports EBNF, a notation
grammars which extends context-free grammars with the op-
erations from regular expressions, for example the Kleene star.
Though EBNF does not strictly increase expressiveness (the
language generated by such grammars is still context-free), it is

48

4.1. Instantiating the Tool Architecture

convenient for practical purposes: sometimes a regular expres-
sion is simpler and more natural than a full-fledged grammar.

Due to the power of general context-free grammars ex-
tended with attributes (as introduced in the seminal paper [59]
by Knuth), they can be quite expensive to parse. In particular,
the currently best known algorithm [84] to parse context-free
grammars has a time complexity of O(n2.38) (with very huge
constants), where n is the number of terminals to parse. The
current best practical algorithms (with reasonably sized con-
stants) require cubic time. Clearly parsing n tokens cannot
be done in less than O(n) steps, since the entire input must
be read. Besides this trivial linear lower bound, no non-trivial
lower bounds are known [41], though Lee [61] showed that mul-
tiplication of two square Boolean matrices can be reduced at
a certain cost to parsing context-free grammars. In particular,
she showed that if parsing n tokens can be done in O(n3−ε)
steps, then we can multiple two n by n Boolean matrices in
O(n3−(ε/3)) steps, with small constants. This means that any
practical (i.e. small constants) sub-cubic parsing algorithm also
can be used as a practical sub-cubic matrix multiplication al-
gorithm. However no such fast practical algorithm is known
for matrix multiplication.

ANTLR avoids the cubic-time parsing inefficiency by only
supporting LL(*) grammars2. Due to the restriction, the pars-
ing algorithm used by ANTLR is for most grammars linear, and
quadratic in the worst case. A major disadvantage of ANTLR
is that it lacks support for incremental parsing: each time the
history is updated (i.e. a single terminal is added), the full
history has to be reparsed. Additionally the full history has
to be saved. Support for incremental parsing is planned by
the ANTLR developers. We have not been able to find any
Java parser generator which supports incremental parsing of
attribute grammars.

Assertion Checker We tested two state-based assertion lan-
guages: standard Java assertions and the Java Modeling Lan-
guage (JML). Both languages suffice for our purposes. A Java

2A strict subset of the context-free grammars. Left-recursive gram-
mars are not LL(*).

49

4. Implementation

assertions is a statement assert b; where b is a standard
boolean expressions. As a consequence, note that Java as-
sertions can contain calls to methods that return a boolean.
Though Java assertions can not contain quantifiers, it is to
some degree possible to simulate those using a method contain-
ing a loop. Java does not enforce assertions to be side-effect
free: one needs to check manually that only ‘pure’ assertions
are used.

JML is far more expressive than the standard Java asser-
tions. It allows unbounded quantification, in general any first-
order formula can be expressed in JML, and supports Design
by Contract (see also Section 5.1). JML also ensures that
assertions are side-effect free. Unfortunately the JML tool
support is not ready yet for industrial usage. In particular,
the last stable version of the JML run-time assertion checker
dates back over 8 years, when for instance generics were not
supported yet. The main reason is that JML’s run-time as-
sertion checker only works with a proprietary implementation
of the Java compiler, and unsurprisingly it is costly to up-
date the proprietary compiler each time the standard compiler
is updated. This problem is recognized by the JML devel-
opers [19]. OpenJML, a new alpha version of the JML run-
time assertion checker integrates into the standard Java com-
piler, and initial tests with it provided many valuable input for
real industrial size applications. See the Sourceforge tracker
of OpenJML at http://sourceforge.net/tracker/?group_

id=65346&atid=510629 for the kind of issues we have encoun-
tered when using OpenJML.

50

