
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Specifying Object-Oriented Programs:
Formalisms and Tools 2

In this chapter we give an overview of existing specification
languages for object-oriented programs. The specification lan-
guages can be roughly partitioned into those which focus on
formalizing protocol-oriented properties (all but the last three
categories listed below), and those focussing on data. All spec-
ification languages for protocol properties are based on some
form of histories (also known as traces): sequences of method
calls or returns. Languages focussing on data restrict the val-
ues of variables and fields in a program by means of logical
formulas. We describe whether the specification languages are
used in actual tools for static verification or run-time checking.

Sequence Diagrams A sequence diagram1 shows how mul-
tiple objects interact with each other over time. The diagram
depicts the messages exchanged between the objects, and the
order in which they are sent. In the context of object-oriented
programs, the messages in a sequence diagram correspond to
method calls. Since sequence diagrams visualize a single in-

1 See http://www.omg.org/spec/UML/ for the latest UML specification
of sequence diagrams.

13

2. Specifying Object-Oriented Programs: Formalisms
and Tools

teraction, one could select a set of sequence diagrams as a
specification of the behaviour of an object-oriented program,
by requiring that the methods in the program are executed in
the order specified by one of the sequence diagrams in the set.
The resulting specification language describes properties of the
protocol of the program.

While sequence diagrams have been used in theoretical stud-
ies for verification purposes [28, 62], to the best of our knowl-
edge, sequence diagrams as a specification language have not
been used in actual tools for static or run-time verification.
There are several reasons for this. First, any specification based
on visualization tends to become unclear and even infeasible for
describing large interactions. Second, the number of interac-
tions exhibited in programs are often unbounded due to loops
and recursion. Thus one would need an additional language for
characterizing infinite sets of sequence diagrams.

Regular Expressions A regular expression [56] is a declar-
ative notation for a regular language. A language is a set of
words. The words are usually (finite) strings of characters,
though more complex objects can be used as well. The regular
languages are those that can be obtained from a finite language
by union, concatenation and Kleene star (an infinite union of
finite concatenations of a language). If r1 and r2 are regular
expressions, the notation for these three operations is respec-
tively r1 + r2 (union), r1r2 (concatenation) and r1∗ (Kleene
star). As an example, the regular expression (ab)∗ denote the
language of all words starting with “a” in which “a” and “b” al-
ternate. The formal properties of regular languages have been
widely studied in the field of formal languages and theory of
computation, see for example the books [81, 63].

As a specification language for object-oriented programs,
regular expressions can be used to denote valid histories [21].
In this setting, the alphabet symbols correspond to method
names, histories are represented as sequences of such alphabet
symbols, and the valid histories are the words of the regular
language. Note that in contrast to the previous sequence di-
agrams, regular expressions support a convenient notation for
an infinite set of histories with the Kleene star.

14

There are various tools for run-time checking which sup-
port regular expressions: JmSeq [70], Tracematches [3] and
JavaMOP [20]. The run-time check corresponds to solving the
word problem (or parsing problem): decide whether the history
is a word of the language denoted by a given regular expres-
sion. This can be done efficiently. In particular, if a history is
valid according to a given regular expression, then parsing al-
gorithms exist that decide in constant time whether the history
resulting from appending a single call is also valid according to
the regular expression (for the full history, this leads to parsing
algorithms which are linear in the size of the history), see [41].
Moreover one does not need to store the full history, only the
“state” of the parser for the previous history, and the method
call which is added to the previous history are needed to de-
termine validity of the new history.

Context-Free Grammars A context-free grammar G is a
quadruple G = 〈V,Σ, P, S〉 where V is a set of non-terminals, Σ
is a set of terminal symbols, S is the start-symbol of the gram-
mar (a non-terminal), and P is a set of production rules. The
production rules specify how each non-terminal (independent of
the context in which that non-terminal occurs, hence the name
context-free) is allowed to be rewritten into a sequence of termi-
nals and non-terminals. The grammar generates a context-free
language, namely the set of all strings of terminal symbols that
can be obtained by repeatedly applying the production rules of
the grammar, starting from the start symbol of the grammar.
For example, the grammar below (the used notation for the
grammar is BNF [6]) with the non-terminal S as its start sym-
bol, and “a” and “b” as terminal symbols generates all words
of the form akbk, k ≥ 0 (in words: k a’s, followed by k b’s).
The symbol ε denotes the empty word.

S ::= a S b
| ε

Context-free grammars are strictly more expressive than
regular expressions. Using the so-called pumping lemma [81],
one can prove that there is no regular expression which denotes
the same language as the grammar above. However it is more

15

2. Specifying Object-Oriented Programs: Formalisms
and Tools

complex to parse a string in a given context-free grammar, than
in a regular expression. The currently best known practical
algorithms can parse a string of length n in (worst case) O(n3)
time.

When used as a specification language for object-oriented
programs, the terminal symbols are the method names, and the
grammar specifies the valid orderings in which these methods
are allowed to be called (in other words, the context-free gram-
mar generates the valid histories). The run-time check which
decides whether a history is valid consists of parsing the cur-
rent history in the given grammar. PQL [64] and JavaMOP [20]
are examples of tools that support run-time checking based on
context-free grammars.

Automata There are too many kinds of automata too list
them here exhaustively, but all of them contain at least two
things: a notion of a state, and a transition function between
states. A finite automaton, one of the simplest automata, con-
tains additionally a set of accepting states and a start state,
with the requirement that the set of states must be finite. Fi-
nite automata are equivalent in expressive power to regular ex-
pressions. A push-down automaton is an extension of a finite
automaton with a stack of infinite size. Push-down automata
are equivalent in expressive power to context-free grammars.

In general, automata can be seen as a representation of a
formal language: it takes a string as input, and accepts or
rejects it based on an acceptance condition (the specific accep-
tance condition varies greatly between the different kinds of
automata). However, unlike the above declarative formalisms
of regular expressions and context-free grammars, automata
tend to have an imperative flavor, focussing on how to parse a
formal language, as opposed to directly specifying the language
itself.

As a specification language for object-oriented programs,
JavaMOP [20] supports finite automata. LARVA [26] supports
a kind of automata called timed automata with stopwatches.

Temporal Logics Temporal logic [74] is a variant of Modal
Logic [39]. As the name indicates, the basis for temporal logics

16

is a notion of time on which the truth of a formula may de-
pend. In particular, as the system described a temporal logic
formula evolves from one state to the next, the truth value of
the formula can change. There are many kinds of temporal
logics, but they can roughly be classified as being linear-time
or branching-time. In linear-time logics, time is viewed as a set
of paths (the paths being sequences of “time instances”). LTL
[74] is a widely used linear-time logic. Branching-time logics
represent time as a tree in which the current time is the root,
and the branches are considered as “possible futures”. CTL
[24] is the main branching-time logic.

Temporal logics have been used extensively in model check-
ing [25], for example in the tools (there are too many others
to fully list here): BLAST [46] Java Pathfinder [87] NuSMV
[22] PRISM [60] SPIN [49] UPPAAL [11]. Temporal logics
have also been used in run-time checking, even for the func-
tional language Haskell [83]. Examples of run-time checkers of
temporal logic formulas for Java are JavaMOP [20] and Java
Pathfinder [5].

Process Algebras Process algebras [7, 45] have been used to
formally model concurrent systems. There exist a wide variety
of process algebras (or process calculi), but all approaches share
some basic characteristics.

Each approach has a notion of a basic process from which
larger processes are built using various operators (for example,
for parallel composition, sequential composition and recursion).
Message passing is used as the only way two different actors or
processes can interact (instead of for example, shared variable
concurrency). Finally, all approaches come with a set of alge-
braic laws (hence the name “process algebra”) which for exam-
ple can be used to show that syntactically different processes
are semantically equal (i.e. have the same behavior).

For reference we list some of the most used process algebras
here: CSP [48, 1], LOTOS [86], CCS [68], ACP [14] and the
more recent π-calculus [69, 78]. CSP has been used in the tool
Jass [8] for run-time checking object-oriented programs.

17

2. Specifying Object-Oriented Programs: Formalisms
and Tools

First-Order Logic First-order logic is a formal system for
specifying and reasoning about formulas about objects (or val-
ues) that range over some domain of discourse. All variables
and terms in a first-order formula range over objects of the
domain of discourse.

First-order logic can be used to specify programs by means
of assertions: a logical formula in which the free variables (i.e.
all variables not bound by ∀ and ∃) are program variables. As-
sertions are written in the source code of the program and must
be true whenever control passes over them. Floyd describes in
[38] a method for proving properties using first-order assertions.
His work was extended by Hoare in [47]. First-order logic also
forms the basis for dynamic logic and second- and higher-order
logic described below.

The popular tool-suite for JML [17] supports first-order as-
sertions for both static verification and run-time checking of
Java programs. The run-time checker for JML only checks for-
mulas involving bounded quantifiers: quantified variables that
range over a finite set of values. Validity of formulas involv-
ing unbounded quantifiers is in general undecidable, as already
noted in the previous chapter.

Dynamic Logic Like temporal logic, Dynamic Logic (DL)
[76, 42] is a variant of modal logic [39] which allows the direct
expression of program equivalence and weakest preconditions.
DL extends full first-order logic with two additional (mix-fix)
relations: < . > . (diamond) and [.] . (box). In both cases, the
first argument is a statement, whereas the second argument is
another DL formula. A formula < s > p is true if there exists
a terminating execution of s after which the formula p is true.
A formula [s]p is true after all terminating executions of s, the
formula p is true. For example, the formula <x=x-1;> (x ==
0) is equivalent to x = 1. Dynamic logic has been used as a
specification language in the static verifiers KeY [10] and KIV
[44].

Second- and Higher-Order Logic Second-Order logic is
a highly expressive formalism which allows quantification over
predicates and functions over the values of the underlying do-

18

main. This contrasts with first-order logic, in which only quan-
tification over values of the domain is allowed. The expres-
siveness comes at a price: no sound and complete proof sys-
tems (with decidable proof rules and axioms) can exist for full
second-order logic. Higher-Order logic is a generalization of
second-order and first-order logic which allows quantification
over objects of an arbitrary higher type (i.e. quantification
over predicates of predicates, and so on). There exist various
theorem provers for programs that support higher-order logic:
Isabelle/HOL [57], Why3 [36], PVS [85] and Coq [15].

Another relatively recent approach is Separation Logic [77],
which extensively uses inductively defined predicates (i.e. second-
order logic), but adds several non-standard logical connectives
to reason about heap properties, such as the separating con-
junction and the points-to predicate. These connectives sup-
port modularity, though they complicate proof theory (they
cannot be axiomatized [18]). Tools that support separation
logic for static verification of programs include: VeriFAST [51],
jStar [35], Slayer [13] and Smallfoot [12].

19

