
Combining Monitoring with Run-time Assertion Checking
Gouw, C.P.T. de

Citation
Gouw, C. P. T. de. (2013, December 18). Combining Monitoring with Run-time Assertion
Checking. Retrieved from https://hdl.handle.net/1887/22891

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/22891

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/22891

Cover Page

The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University
dissertation

Author: Gouw, Stijn de
Title: Combining monitoring with run-time assertion checking
Issue Date: 2013-12-18

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/22891

Introduction 1

According to a study in 2002 commisioned by a US Depart-
ment, software bugs annually costs the US economy an esti-
mated $59 billion1. A more recent study in 2013 by Cambridge
University estimated that the global cost has risen to $312 bil-
lion globally2.

1.1 Prevention, Isolation and Fixing Bugs

There exists various ways to prevent, isolate and fix software
bugs, ranging from lightweight methods that are (semi)-automatic,
to heavyweight methods that require significant user interac-
tion. To put our own proposal in the right context, we first
briefly look at the main existing approaches. The ones we con-
sider all are based on some form of annotation of the source
code of the program by the user. The annotations can also
be used in their own right as a form of documentation of the
source code (to varying levels of detail, depending on the exact
nature of the annotations).

1 http://web.archive.org/web/20090610052743/http://www.nist.

gov/public_affairs/releases/n02-10.htm
2 http://www.prweb.com/releases/2013/1/prweb10298185.htm

1

1. Introduction

Type-Checking

A relatively successfull and widely adopted method is type-
checking [73]. The programmer annotates source-code3, speci-
fying for each variable and function over which values they may
range, this is called the type. Subsequently there is a check, the
‘type check’, which determines whether the values assigned to
the variable matches the type of the variable (and similarly for
functions and expressions in general) and prevents further com-
pilation and displays a type error when they do not. It is clearly
desirable to perform this check early and automate it as much
as possible, so that errors in the development development are
caught at an early stage. The extend to which automation
and early checks are possible depends on the expressiveness of
the type system: what types can be used. Type systems with
limited expressiveness either reject programs which in reality
do not contain errors, or accept programs which actually con-
tain errors, but the type system cannot determine this due to
the limited expressiveness. However, type systems with strong
expressiveness tend to be undecidable, which means roughly
that no terminating algorithm exists to perform the type check.
Compilers for the most used imperative languages, C, C++ and
Java all perform the type checks at compile-time. In general
there is a trade-off between the expressiveness of the type sys-
tem, and the degree of automation of the corresponding type
checks. Current research focuses on finding more expressive
typesystems which are also efficiently decidable.

Static Verification

Given a formal specification of a program, a static verifier
proves (or disproves) whether all executions of the program
satisfy that specification. The specification is a formal descrip-
tion that expresses what the program (or parts of the program)
is supposed to do. There are two main branches of static veri-
fiers: model checkers and theorem provers (though static type
checkers can also been seen as a form of static verification).

3 There are also type systems which automatically infer types, with-
out requiring annotations. Such type inference is typically supported by
compilers for functional languages.

2

1.1. Prevention, Isolation and Fixing Bugs

Model checkers do not check whether the given property holds
on the actual program. Instead, they determine whether it
holds on a (typically finite) model of the program. The most
used specification languages in model checking are based on
temporal logics [74], which express whether a property holds
at certain points in time. A simple example is: whenever a
request is made, eventually access will be granted. The model
is a simplified version of the program and usually only models
are allowed for which it is possible to decide fully automatically
whether the property holds. The reason that model checkers
work on a model of the program instead of the actual program is
that even for seemingly very simple properties (like the halting
problem, which asks whether it is possible to decide whether a
program terminates), it is undecidable whether that property
holds of the actual program. However, since the model is dif-
ferent from the program, this raises the question whether the
program satisfies a given property if the model does. There
is ongoing research on constructing the smallest possible mod-
els which only abstract away parts of the program irrelevant
for the given property [53]. Another challenge in this field is
the development of algorithms which check the properties as
efficiently as possible.

Theorem provers work on the actual program and determine
correctness of the program by repeatedly applying proof rules.
The problem of determining whether the program satisfies a
given property reduces in this setting to checking whether that
property is derivable by applying finitely many proof rules. In
general, even for very weak specification languages, this will
be undecidable (see the next section), though there is a much
wider class of specification languages that are semi-decidable
(i.e. the true properties of the program are recursively enumer-
able). For efficiency reasons, usually much user interaction and
an in-depth knowledge of the program is needed to guide the
proof search. Specification languages used in theorem provers
include first-order logic, higher-order logic, dynamic logic and
separation logic. These are further discussed in Chapter 3.

3

1. Introduction

Run-Time Checking

Given a program and a specification, a run-time verifier inserts
checks in the code which determine whether the specification
is satisfied. The check is triggered during an actual execution
of the program. Thus in contrast to static verification, where
properties are checked with respect to all executions (possibly
there are infinitely many), run-time checkers only consider a
single execution of the program. There is a wide range of spec-
ification languages used in run-time verification. They can be
partitioned into two categories: languages that focus on the
control-flow (these approaches are also called “monitoring”),
and those focussing on data-flow.

As an example, one can use regular expressions to specify
the order in which functions or methods in a program should
be called [21]. Such specifications describe the control-flow of
the program. Other formalisms for specifying control-flow are
temporal logics, various kinds of automata and context-free
grammars. For these formalisms, checking whether a given
property holds of the current execution involves parsing a word
(where the word is some representation of the trace of method
calls in the current execution) in an automata. Generally only
formalisms are chosen with a decidable parsing problem (in
particular, this is the case for regular expressions, context-free
grammars and most automata), so that everything can be au-
tomated. Specification languages for monitoring are discussed
in more detail in the next chapter.

Approaches that specify data-flow usually do so by annotat-
ing the source code with assertions: logical formulas that must
be true whenever control passes them. The formulas constrain
the values of the program variables. If assertions are expressed
in first-order logic with arithmetic, it is in general undecidable
due to unbounded quantification (i.e. ranging over an infinite
number of values) whether the assertion is true, thus usually
the assertions are restricted in some way. For instance, Java
contains an assert-statement which restricts to quantifier-free
formulas (i.e. Boolean expressions). Design by Contract [65]
provides a systematic way of using assertions to specify classes,
interfaces and methods with respectively class invariants and
pre- and postconditions. It was first used in the programming

4

1.2. Object Orientation

language Eiffel, and subsequently has also been applied to many
other programming languages. For example, JML [17] is one of
the most popular specification languages for Java and supports
Design by Contract. JML also supports unbounded quantifi-
cation, though assertions containing unbounded quantifiers are
not checked by the JML run-time assertion checker.

While type checking for the most used imperative languages
is done fully automatically at compile-time, run-time checking
is done (also fully automatically) during execution, and proper-
ties are only checked for the current execution. This generally
allows more expressive specifications compared to type check-
ers. Static verification cannot be automated. In particular,
even if one restricts pre- and postconditions to just the for-
mulas true and false, the resulting specification language is
still undecidable (such assertions suffice to express the halting
problem).

Our own proposal is a method for run-time check-
ing of object-oriented programs. We discuss below
in more detail how run-time checking applies to the
specific context of object-oriented programming, fo-
cussing first on single-threaded Java, and then de-
scribe an extension to concurrency.

1.2 Object Orientation

Two of the basic features of object-oriented programming are
data abstraction and encapsulation. In the design of software,
these features support the methodology of programming to in-
terfaces [40]. This methodology allows the developer of client
code to abstract from irrelevant implementation details. Com-
bined with the design by contract principle [65], programming
by interfaces is one of the main approaches to mastering the
complexity of software today.

One of the main formal behavioral interface specification
languages for Java, the Java Modeling Language (JML) [17],
is inherently state-based ; i.e., JML mainly provides support
for the specification of classes in terms of their fields, includ-
ing so-called model fields that represent certain aspects of the
data structures underlying the implementation. JML does not

5

1. Introduction

provide explicit support for the specification of the interaction
between objects, in contrast to other formalisms such as mes-
sage sequence charts and UML sequence diagrams [27, 50].

On the other hand, the very semantic foundations of object-
oriented programming are defined in terms of sequences of mes-
sages. In [52], a fully abstract trace semantics for a core Java-
like language is given, where traces (or communication histo-
ries) are (finite) sequences of messages. A fully abstract se-
mantics in general captures the observable behavior abstracting
from implementation details. Such an abstraction is required in
for example a proper semantic definition of behavioral subtyping
as is illustrated by the fragile base class problem [66]: Accord-
ing to the initial/final state semantics the class B (Figure 1.1)
and its revised version in Figure 1.2 below are behaviorally
equivalent.

class B {

int x = 0;

void m() {

x = x+1;

}

void n() {

x = x+1

}

}

Figure 1.1: First version of a base class B

However the behavior of the subclass M defined in Figure 1.3
is clearly different for the two versions of the base class. In fact,
when using the revised version of the base class, the definitions
of the methods m and n in the subclass M are mutually recursive,
giving rise to a non-terminating loop.

It is worthwhile to observe the analogy between this anomaly
with repect to the substitutivity of (behaviorally) equivalent
classes and the following basic counter-example to the compo-
sitionality of the initial/final state semantics for multi-threaded
programs. Both threads T 1 and T 2 of Figure 1.4 have the
same initial/final state semantics, however the initial/final state

6

1.2. Object Orientation

class B {

int x = 0;

void m() {

this.n();

}

void n() {

x = x+1;

}

}

Figure 1.2: New version of a base class B

class M extends B {

void n() {

this.m();

}

}

Figure 1.3: Subclass of the base class

semantics of the interleaving of T 1 and thread T clearly differs
from that of T 2 and T, if assignments are treated atomically.

thread T_1 { x=x+1; x=x+1 }

thread T_2 { x= x+2; }

thread T { x=0 }

Figure 1.4: Multi-Threaded Programs

This counter-example shows that for a compositional se-
mantics of multi-threaded programs we need more specific in-
formation about the underlying implementation, namely infor-
mation about how the final state is generated from the initial
state. The minimal information needed is captured by a fully
abstract semantics (see [67] for a definition of the full abstrac-
tion problem). In general fully abstract semantics of concurrent
systems are based on some form of trace semantics. Of interest

7

1. Introduction

here is that the above work on fully abstract semantics for a
core Java-like language shows that some form of trace seman-
tics is needed even for sequential (single threaded) programs.
More specifically, [52] shows that a form of trace semantics for
object-oriented programs indeed guarantees substitutivity as-
suming encapsulation of the object state. Consequently, also
the fragile base class problem, as shown above, can only be
resolved by some form of trace semantics of behavioral subtyp-
ing. In this case, the sequences of internal communication dis-
tinguishes the classes in Figure 1.1 and Figure 1.2. Fischer and
Wehrheim [37] further investigate behavioral subtyping based
on histories for object-oriented languages.

1.3 Extension to Concurrency

The standard Java concurrency model, based on threads and
locks, is too low-level, error-prone and insufficiently modular
for many applications areas [80]. Instead of extending our run-
time checker for single threaded Java programs to the usual
multithreading4, we investigate instead how to run-time check
programs that use the actor-like concurrency model of [80].
In that paper, Schaefer et al. extend Java with a concur-
rency model based on the notion of concurrently running ob-
ject groups, so-called coboxes, which provide a powerful gen-
eralization of the concept of active objects. Coboxes can be
dynamically created and objects within a cobox have only di-
rect access to the fields of the other objects belonging to the
same cobox. Since one of the main requirements of the design
of coboxes is a smooth integration with object-oriented lan-
guages like Java, coboxes themselves do not have an identity,
e.g., all communication between coboxes refer to the objects
within coboxes. Communication between coboxes is based on
asynchronous method calls with standard objects as targets.
An asynchronous method call spawns a local thread within the
cobox to which the targeted object belongs. Such a thread

4A simple way to extend our results to standard mutlithreading would
consider histories per thread (i.e. project the global history upon each
thread). This does not require significant modifications in either the the-
ory or the tool described in the next chapters.

8

1.3. Extension to Concurrency

consists of the usual stack of internal method calls. Coboxes
support multiple local threads which are executed in an inter-
leaved manner. The local threads of a cobox are scheduled
cooperatively, along the lines of the Creol modeling language
described in [55]. This means that at most one thread can be
active in a cobox at a time, and that the active thread has to
give up its control explicitly to allow other threads of the same
cobox to become active.

The following question arises: how to bridge the gap be-
tween the semantic foundations of Java and the abstraction
level of formal behavioral interface specification languages like
JML? To this end we aim to find a formalism and correspond-
ing tool support which:

1. Integrates properties of the control-flow and data-flow.

2. Is at the same abstraction level as the object-oriented
programming model.

3. Is sufficiently expressive.

4. Is user-friendly, i.e., fairly close to the familiar surface
syntax of the programming language.

5. Supports automated run-time checking.

6. Adds as little overhead as possible.

7. Contains some form of error reporting.

Outline

Chapter 2 contains a survey of existing formalisms and tools
for specifying object-oriented programs.

Chapter 3 presents our own formalism for single-threaded
object-oriented programs. The basic notions of a communica-
tion view, attribute grammars and assertions in attribute gram-
mars are introduced. The chapter concludes with a motivation
for the design choices that were taken during the development
of the specification language.

Chapter 4 describes the architecture of SAGA, a tool for
run-time checking the previously presented formalism. First,

9

1. Introduction

the components of a generic tool architecture are identified.
Second, each component is instantiated with different tools
which are then evaluated.

Chapter 5 contains two case studies. First we specify a
small but very common Java library: a Stack. Subsequently we
consider a larger industrial case from the e-commerce company
Fredhopper. The chapter finishes with an evaluation based on
the two cases.

Chapter 6 contains an extension to concurrency. The under-
lying concurrency model is based on concurrent object groups,
also known as coboxes. First, the semantics of concurrent pro-
grams, which is based on histories, is formalized. The rest of
the chapter explains how such programs can be specified and
checked at run-time. To this end, we extend the formalism
in Chapter 3 to deal with concurrency, and discuss the corre-
sponding tool support.

In the final Chapter 7 we specify various properties of the
previous case studies using the tools PQL, Jassda, LARVA and
MOP. We directly compare the results with our own from Chap-
ter 5, dicussing expressivity, learnability and adoptability.

The work reported in this book is based on the following
selection of my publications: [30, 29, 32, 34, 31]. Other publi-
cations [70, 33, 4] are less relevant in the context of this book.

“Run-Time Assertion Checking of Data- and Protocol-
Oriented Properties of Java Programs: An Indus-
trial Case Study” [29]

Is a journal paper which forms the basis of Chapter 3 and Chap-
ter 5. This paper also introduces the implementation based on
aspect-oriented programming as described in Chapter 4.

“Prototyping a tool environment for run-time as-
sertion checking in JML with communication his-
tories” [30]

Reports on the work in Chapter 3 and the Stack case study in
Chapter 5.

“Run-Time Verification of Black-Box Components
using Behavioral Specifications: An Experience Re-
port on Tool Development” [32]

10

1.3. Extension to Concurrency

Forms the basis of Chapter 4.

“Run-time checking of data- and protocol-oriented
properties of Java programs: an industrial case study”
[34]

Reports on the Fredhopper case study and forms the basis of
Chapter 5 and Chapter 7.

“Run-Time Verification of Coboxes” [31]

Describes the extension to concurrency given in Chapter 6.

11

