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Chapter 1

Introduction

1.1 Preface

Majorana zero-modes, also referred to as Majorana bound states or Majorinos,
are states in the middle of the excitation gap of a superconductor (so at
zero excitation energy), bound to a magnetic vortex or other defect. The
name goes back to a concept introduced by the Italian physicist Ettore
Majorana [1], of a charge-neutral fermionic particle that is identical to
its anti-particle. Such Majorana fermions may or may not be realized as
fundamental particles in high energy physics, but in superconductors
they appear naturally when a Cooper pair breaks up [2].

In field theory, particles that are their own anti-particles must be
described by a real field, as the complex conjugate of a field creates the
anti-particle. It is quite common for a bosonic particle to be described
by a real field, the electromagnetic field of a photon being a familiar
example. However, the field of a fermion is described by the Dirac
equation, which is a complex wave equation. This led Paul Dirac to
predict the existence of positrons as the anti-particles of electrons, given
by a complex conjugate solution of his equation. What seemed to be a
mathematical necessity was challenged in 1937 by Majorana, who showed
that the Dirac equation allowed for real solutions. This opened up the
possibility for the existence of charge-neutral fermions that would be
their own anti-particle.

The search for Majorana fermions in particle physics focuses on the
detection of the annihilation of pairs of neutrinos, to demonstrate the
identity of neutrino and antineutrino [3]. But so far whether neutrinos
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are Majorana fermions is still an open question.
The situation is altogether different in superconductors: There Majo-

rana fermions appear naturally as non-fundamental quasiparticles either
localized or propagating inside specific solid state systems as a result of
an unpaired electron can be seen equally well as a charge excess or a
charge deficit of e. In an effective mean-field description the quasipar-
ticle charge is therefore only conserved modulo 2e, and this makes it
possible to construct a coherent superposition of empty and filled states,
i. e. electrons and holes, which is described by a real wave equation of
the Majorana type. Pairs of superconducting quasiparticles, known as
Bogoliubov quasipartiles which is a coherent supperposition of electrons
and holes, can annihilate upon collision, demonstrating their Majorana
nature [4].

Majorana fermions can be bound to a defect [5, 6]. The identity of
particle and antiparticle then demands that this bound state is at zero
energy, in the middle of the excitation gap. This socalled Majorana zero-
mode is no longer a fermion, instead its statistics upon pairwise exchange
depends on the order of the exchange operation [7]. Such non-Abelian
statistics can be used to perform logical operations [8], an application
known as topological quantum computation [9].

Although the earliest proposals to realize Majorana zero-modes in
superconductors go back many decades [6, 7], these required an exotic
form of pairing inside chiral p-wave superconductors. It was only realized
recently that conventional s-wave pairing is sufficient in combination with
spin-orbit coupling [10–13]. By now there is a great variety of systems
in which Majorana zero-modes have been predicted [14–18], and there
is mounting experimental evidence for their observation [19–23]. One
such observation is shown in Figure 1.1 in a system of one dimensional
semicondctor InSb nanowire with proximity to Nb superconducting
reservoir.

In this thesis three platforms for Majorana zero-modes are inves-
tigated theoretically: one dimensional nanowires (Chapter 2), two di-
mensional topological insulators (Chapters 3, 4), and zero dimensional
quantum dots (Chapters 5, 6). In this introductory chapter I will give an
overview of the basic concept of a Majorana zero-mode, explaining the
role played by superconductivity, followed by a discussion of identify-
ing signatures and applications to quantum computation. Then a brief
summary of each of the following chapters is given.
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Figure 1.1. The first experimental observation of a Majorana zero-mode in a
measurement of the differential conductance of an InSb nanowire coupled to
a Nb superconductor. The zero-mode shows up as a zero-bias peak, emerging
and persisting over a range of magnetic fields. Pictures taken from Ref. [19].
Reprinted with permission from AAAS.

1.2 The basics of Majorana zero-modes

1.2.1 The key role played by superconductivity

To construct a charge-neutral Majorana fermion in condensed matter
one has to start with building blocks which are charged, electrons and
holes. The hole is a vacancy state created below the Fermi level when
an electron is excited above the Fermi sea. One can combine an electron
and a hole to make a charge-neutral quasiparticle called an exciton. Since
the exciton is a two-particle state combining a pair of half-integer-spin
fermions, it is an integer-spin boson, like a photon.

To make a charge-neutral fermion, one needs to create a single-particle
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state as a coherent superposition of electron and hole. Such a coherent
superposition requires a superconducting condensate. The idea is based
on the understanding that the ground state of a superconductor is a
collective condensate of pairs of electrons with opposite momentum and
spin, socalled Cooper pairs. As illustrated in Fig. 1.2, an unpaired electron
then differs from an unpaired hole by one Cooper pair. Scattering pro-
cesses that convert an electron into a hole, known as Andreev scattering
or Andreev reflection, preserve energy and momentum but charge, and
switch spin bands. It then becomes possible by adding or removing
a Cooper pair from the condensate without consuming extra energy.
This coupling of electron and hole degrees of freedom makes it possible
to create a coherent superposition of oppositely charged quasiparticles.
This charge-neutral excitation, a socalled Bogoliubov quasiparticle, is the
superconducting analogue of a Majorana fermion.

To go from a Majorana fermion to a Majorana zero-mode we need to
confine the quasiparticle. Fig. 1.3 shows the spectrum of bound states,
socalled Andreev levels, existing within the superconducting gap in the
core of a magnetic vortex. Due to particle-hole symmetry, the energy
spectrum is symmetric with respect to the Fermi level at ε = 0, halfway
within the gap at ±∆. In a conventional superconductor the zero-point
motion prevents the appearance of a level at ε = 0. All levels then
come in ±ε pairs. An unpaired level at ε = 0 appears in a topological
superconductor. This zero-mode is pinned, and it cannot move up or
down in energy without breaking particle-hole symmetry. Because it is
at zero excitation energy, it is half-particle and half-hole, so it is its own
antiparticle. Hence the name Majorana zero-mode.

1.2.2 Majorana operators

The properties of Majorana zero-modes are conveniently described in
second quantization representation, in terms of identical creation and
annihilation operators. To introduce these, we consider the simplest
case of one fermionic state. It can be either an empty state |0〉 ≡ (1

0) or
an occupied state |1〉 ≡ (0

1). We can define creation and annihilation
operators by

c†
1 = |1〉〈0| =

(
0 0
1 0

)
, c1 = |0〉〈1| =

(
0 1
0 0

)
. (1.1)
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Figure 1.2. Panels (a) and (b) illustrate that an unpaired electron in a sea of
Cooper pairs is equivalent to an unpaired hole. Panel (c) shows the conversion
of an electron into a hole by Andreev reflection at the interface between a normal
metal and a superconductor.

These operators satisfy fermionic anti-commutation relations,

{ci , c†
j } = δij, {ci , cj } = {c†

i , c†
j } = 0. (1.2)

Majorana operators are constructed from the creation and annihilation
operators,

γ1 =c1 + c†
1 =

(
0 1
1 0

)
= σx, (1.3)

γ2 =− i(c1 − c†
1) =

(
0 −i
i 0

)
= σy, (1.4)

c†
1 =

γ1 − iγ2

2
, c1 =

γ1 + iγ2

2
. (1.5)

These are Hermitian operators, γi = γ†
i (γ2

i = γ†2
i = 1), obeying a

modified anti-commutation relation:

{γi, γj} = 2δij. (1.6)

In the terms of the Majorana operators the fermion number operator
takes the form

N̂ = c†
1c1 =

1− iγ2γ1

2
, (1.7)

and the fermion parity operator is

P̂ = iγ2γ1 = σz = (−1)N̂ = eiπN̂ =

(
1 0
0 −1

)
. (1.8)
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Figure 1.3. The distinction between the excitation spectrum of a conventional
superconductor (left panel) and a topological superconductor (right panel). In
both cases the spectrum has ±E symmetry, but the topological superconductor
has an unpaired zero mode.

The fermion parity is +1 for the unoccupied state |0〉, and −1 for the
occupied state |1〉. Note that {γi, P̂} = 0.

We may generalize this construction to an N-fermion state, giving
rise to 2N Majorana operators,

γ2i−1 = ci + c†
i , c†

i =
γ2i−1 − iγ2i

2
,

γ2i = −i(ci − c†
i ), ci =

γ2i−1 + iγ2i

2
.

(1.9)

The corresponding fermion number and parity operators are given by

N̂i = c†
i ci =

1− iγ2iγ2i−1

2
, (1.10)

P̂ = iγ2Nγ2N−1 · · · iγ2γ1 = (−1)∑N
i=1 N̂i . (1.11)

It is worth to note that any Hamiltonian which is quadratic in the
fermionic creation and annihilation operators preserves fermion parity,
i. e. [P̂ , Ĥ] = 0. Therefore, the Hilbert space of 2N Majorana operators
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divides into even and odd fermion number sectors, each of dimension
2N−1.

1.2.3 Kitaev chain and Majorana zero-modes

As a simple example for the appearance of Majorana zero-modes, we
now discuss the Kitaev chain model of a topological superconductor [24].
In this model the pair potential ∆ involves electrons with the same spin
on neighboring sites of the chain, so the spin degree of freedom can
be ignored. Including also the nearest neighbor hopping energy t and
chemical potential µ on N sites of the chain, the Hamiltonian is

H = µ
N

∑
i

c†
i ci −

N−1

∑
i=1

[
t
(

c†
i ci+1 + c†

i+1ci

)
+ ∆

(
ci ci+1 + c†

i+1c†
i

)]
. (1.12)

Upon Fourier transformation,

ci =
1√
N

+∞

∑
k=−∞

e−ik·xi ck , c†
i =

1√
N

+∞

∑
k=−∞

e+ik·xi c†
k , (1.13)

the Hamiltonian can be rewritten in a matrix form in Nambu space,

H =
1
2

∞

∑
k=0

(
c†

k c−k
)

hBdG

(
ck

c†
−k

)
, (1.14)

where hBdG is the socalled Bogoliubov-de Gennes Hamiltonian. For the
Kitaev model it has the form

hBdG = (µ− 2t cos k)τz + (2∆ sin k)τy = εkτz + ∆kτy = d · τ, (1.15)

where d = (0, ∆k, εk) and τ = (τx, τy, τz). The energy spectrum is given

by Ek = ±
√

ε2
k + ∆2

k = ±|d|. When k runs over the Brillouin zone
k ∈ [0, 2π] the vector d(k) forms a closed loop winding around the
origin an even number of times, i.e. the topologically trivial case, or an
odd number of times, i.e. the topologically nontrivial case. The former
corresponds to |µ| > |2t|, while the latter corresponds to |µ| < |2t|.

The topologically nontrivial case |µ| < |2t| has Majorana zero-modes
at the end points of the chain. To see this, we transform from the
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tµ/2

Figure 1.4. A schematic demonstration of the appearance of unpaired Majorana
zero-modes (red dots) at the end points of the Kitaev chain. The shadow area
indicates a site of the lattice, with a fermionic operator ci represented by a pair
of Majorana operators γ2i−1 and γ2i.

operators cn to the Majorana operators γn defined in Eq. (1.10),

H =
µ

2

N

∑
n=1

(1− iγ2nγ2n−1)

+ i
N−1

∑
n=1

[
(∆ + t)

2
γ2n+2γ2n−1 +

(∆− t)
2

γ2n+1γ2n

]
. (1.16)

For t = −∆, µ = 0 the Hamiltonian simplifies to

H = ∆
N−1

∑
n=1

iγ2n+1γ2n. (1.17)

The operators γ1 and γ2N do not appear in the Hamiltonian (1.17),
and they commute with the Hamiltonian, i. e. [γ1, H] = [γ2N , H] = 0.
These two unpaired Majorana operators define the Majorana zero-modes.
They correspond to a fermion state c = 1

2 (γ1 + iγ2N) which splits over the
two end points of the chain (see Fig. 1.4). In this topologically nontrivial
case, the Hamiltonian has two degenerate ground states at zero energy,
distinguished by the occupation number of the fermionic state. This
degeneracy has been proposed by Kitaev as a way to store information
in a quantum computer. Because the information is distributed over
the two ends of the chain, it is believed to be less sensitive to external
perturbations than information that is stored locally.

1.2.4 Experimental signatures

There exists a variety of experimental features that can serve as a “smok-
ing gun” for the existence of Majorana zero-modes. The first experiments
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focused on the zero-bias peak of the tunnelling conductance. Due to
perfect Andreev reflection at the zero-mode, the zero-temperature, zero-
voltage limit of the differential conductance is quantized to 2e2/h [25].
In the experiment [19], see Fig.1.1, the zero-bias conductance peak is
an order of magnitude smaller, presumbaly because of thermal averag-
ing. This complicates the unambiguous interpretation of the experiment,
because there are other mechanisms that could give a non-quantized
zero-bias peak [26, 27]. (One such mechanism is discussed in Chapter 5
of this thesis.)

Another feature of Majorana zero-modes is the so called 4π-periodic
Josephson effect [10, 24, 28]. The energy spectrum of a Josephson junc-
tion containing a pair of Majorana zero-modes, separated by a tunnel
barrier, is 4π-periodic in the phase difference φ across the junction. This
corresponds to a flux periodicity of h/e, twice the usual h/2e periodicity.
One can understand the change from 2e to e as a manifestation of the
fact that a Majorana fermion is only half an electron.

1.2.5 Non-Abelian statistics

Unlike Majorana fermions, which have the usual fermionic statistics (a
sign change of the wave function upon pairwise exchange), the exchange
statistics of Majorana zero-modes is non-Abelian, it depends on the order
of the exchange operations [7].

Quite generally, for Abelian statistics the exchange of a pair of in-
distinguishable particles multiplies the wave function by a phase factor,
ψ 7→ eiθψ. The phase θ can be 0 (bosons), π (fermions) or any other value
θ ∈ (0, π) (anyons). Different exchanges commute with each other.

For non-Abelian statistics the exchange operates on a manifold of
degenerate states (all zero-modes are at ε = 0), mapping one state on
another via a unitary transformation, ψ 7→ Uψ. Because matrix multipli-
cation does not commute, the order of the exchange operations matters.
Specifically the exchange of two Majorana zero-modes i, j corresponds to
an unitary operator U(Tij) which is given by

U(Tij) =
1− γiγj√

2
, U(Tij)

† = U(Tij)
−1 =

1 + γiγj√
2

. (1.18)
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The Majorana operators transform as follows:

U(Tij)γiU(Tij)
† = γj,

U(Tij)γjU(Tij)
† =− γi,

U(Tij)γkU(Tij)
† = γk (k 6= i, j).

(1.19)

If we take three Majorana zero-modes {γi, γj, γk} the pairwise ex-
changes i ↔ j and j ↔ k do not commute, because the two operators
U(Tij) = (1− γiγj)/

√
2 and U(Tjk) = (1− γjγk)/

√
2 do not commute,

i. e. the commutator [U(Tij), U(Tjk)] = γiγk is non-zero. Such non-
commuting sequence of pairwise exchanges is called “braiding”.

Braiding of Majorana zero-modes is not sufficiently powerful to pro-
duce all logical operations, but a subset of operations can be obtained
in this way [9]. Braiding is insensitive to local sources of decoherence,
because it does not involve phase shifts as for ordinary unitary evolution
of a quantum state. One says that the braiding operation has “topological
protection”. Quantum computations assisted by braiding operations are
called topological quantum computations.

1.3 This thesis

1.3.1 Chapter 2

To explain the experimental results in InSb nanowires achieved by the
Delft group [19], we investigate whether the appearance of a soft gap
in the differential conductance can be reconciled with the existence of
Majorana zero-modes. From our simulation and calculation, we conclude
that the combination of weak disorder with a partial coverage of the wire
by the superconductor does indeed give rise to a softening of the induced
superconducting gap. We find that the soft gap does not prohibit the
presence of Majorana zero-modes, supporting an interpretation of the
observed zero-bias conductance peak in these terms. We also point out
that the minimal gap in such a nanowire is very small, thus it severely
limits the lifetime of a Majorana qubit.

1.3.2 Chapter 3

The quantum spin Hall effect is an analogue of the quantum Hall effect
in a system where time-reversal symmetry is not broken by a magnetic
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field [30–35]. The edge of a quantum spin Hall insulator has coun-
terpropagating helical modes, with the direction of motion tied to the
spin direction. As long as time-reversal symmetry is preserved, there
can be no backscattering in the helical mode. When superconductivity
is induced at the edge, a Majorana zero-mode is predicted to appear
[10, 11]. The advantages of this system over the nanowire, are that the
conduction happens in a single mode and that disorder cannot cause any
backscattering. The disadvantage is that one cannot create an electrostatic
barrier in this system, since the absence of backscattering prohibits that.
A ferromagnetic insulator does form a tunnel barrier, but this material
is experimentally inconvenient. As an alternative, we suggest a gate
controllable metallic puddle with weak disorder and weak magnetic field
to induce back scattering of the edge state. We show that the zero-bias
peak from the Majorana zero-mode is hidden in a single conductance
measurement, but is revealed upon averaging over gate voltages. Using
this geometry as a building block, we design a flux-controlled circuit to
perform a braiding operation.

1.3.3 Chapter 4

We continue our study of the quantum spin Hall effect, to explain a re-
markable finding by the group from Rice University [36]: in InAs/GaSb
quantum wells the helical edge conduction persists in perpendicular mag-
netic fields as large as 8 T, when we would expect strong backscattering
from time-reversal symmetry breaking. We cannot quite explain the
experimental data, but we do find an unusual phase diagram in our
model calculation: The critical breakdown field for helical edge conduc-
tion splits into two fields with increasing disorder, an upper critical field
for the transition into a quantum Hall insulator (supporting chiral edge
conduction) and a lower critical field for the transition to bulk conduction
in a quasi-metallic regime. The spatial separation of the inverted bands,
typical for broken-gap InAs/GaSb quantum wells, is essential for the
magnetic-field induced bulk conduction — there is no such regime in the
HgTe quantum wells studied by the Würzburg group [34].

1.3.4 Chapter 5

The characteristic feature of the Delft experiment [19] is a resonant peak
around zero bias-voltage V that does not split upon variation of a mag-
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netic field B. In the B − V plane the conductance peaks trace out an
unusual Y-shaped profile, distinct from the more common X-shaped
profile of peaks that meet and immediately split again. It is tempting to
think that the absence of a splitting of the zero-bias conductance peak
demonstrates unambiguously that the quasi-bound state is nondegen-
erate, hence Majorana. However, as found in Ref. [26], the Y-shaped
conductance profile is generic for superconductors with broken spin-
rotation symmetry and broken time-reversal symmetry, irrespective of
the presence or absence of Majorana zero-modes. In this chapter we inves-
tigate the appearance of such “fake Majorana peaks” in the framework of
random-matrix theory. We contrast the two ensembles with broken time-
reversal symmetry, in the presence of spin-rotation symmetry (symmetry
class C), or in its absence (class D). The poles of the scattering matrix in
the complex plane, encoding the center and width of the resonance, are
repelled from the imaginary axis in class C, but attracted to it in class D.
This explains the appearance of Andreev resonances that are are pinned
to the middle of the gap and produce a zero-bias conductance peak that
does not split over a range of parameter values (Y-shaped profile).

1.3.5 Chapter 6

In this chapter, we demonstrate how the superconducting phase dif-
ference in a Josephson junction may be used to remove the Kramers
degeneracy of the Andreev levels, producing a nondegenerate two-level
system that can be used as a qubit for quantum information processing.
The splitting is known to be small in two-terminal Josephson junctions,
but when there are three or more terminals the splitting becomes compa-
rable to the superconducting gap. Application of a phase difference can
then cause the switch of the ground state fermion parity from even to
odd, observed as a crossing of the Andreev levels at the Fermi energy.
In essence, the multi-terminal Josephson junction realizes a “discrete
vortex” in the junction, which may eventually be used to trap Majorana
zero-modes.
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