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Chapter 5

Classification of symmetric
toroidal orbifolds

Foreword
This chapter is based on the published paper

Classification of symmetric toroidal orbifolds

Maximilian Fischer, Michael Ratz, Jesús Torrado, and
Patrick K.S. Vaudrevange

Published in the Journal of High Energy Physics 1301 (2013) 084

Preprint in arXiv:1209.3906 [hep-th]

The results presented in it are the product of the combined effort of all its authors,
with a special mention to Maximilian Fischer (though, as is customary in High
Energy Theoretical Physics, the order of the authors is alphabetical).

As part of this Ph.D. thesis, I reproduce literally a major part of the original
publication. In the parts in which my contribution was not significant, only
the main results are shown, and discussions are referred to the published paper.
This includes, in particular, the calculation of the residual SUSY and the Hodge
numbers, and the classification of the non-Abelian cases. In addition, I made
a major contribution to the ancillary products of the paper, both to the results
and the algorithms used to compute them. These are not reproduced here for
reasons of space, but they can be found in http://einrichtungen.ph.tum.de/
T30e/codes/ClassificationOrbifolds.
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5.1 Introduction

Abstract

We provide a complete classification of six-dimensional symmetric toroidal orb-
ifolds which yield N ≥ 1 supersymmetry in 4D for the heterotic string. Our
strategy is based on a classification of crystallographic space groups in six di-
mensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with
Abelian point groups such as Z3, Z4, Z6-I etc. and 358 with non-Abelian point
groups such as S3, D4, A4 etc. We also briefly explore the properties of some
orbifolds with Abelian point groups and N = 1; in particular we comment on the
possible mechanisms (local or non-local) of gauge symmetry breaking.

5.1 Introduction

Heterotic string model building has received an increasing attention in the past
few years. The perhaps simplest heterotic compactifications are based on Abelian
toroidal orbifolds [18, 19]. Unlike in the supergravity compactifications on Calabi-
Yau manifolds one has a clear string theory description. In addition, the scheme
is rich enough to produce a large number of candidate models that may yield a
stringy completion of the (supersymmetric) standard model [35, 12] (for a review
see e.g. [45]). At the same time, symmetric orbifolds have a rather straightforward
geometric interpretation (cf. e.g. [40, 27, 13]). In fact, the geometric properties
often have immediate consequences for the phenomenological features of the re-
spective models. One obtains an intuitive understanding of discrete R symmetries
in terms of remnants of the Lorentz group of compact space, of the appearance of
matter as complete multiplets of the Grand Unified Theory (GUT), due to local-
ization properties and gauge group topographies, as well as of flavor structures.

Despite their simplicity, symmetric toroidal orbifolds provide us with a large
number of different settings, which have, rather surprisingly, not been fully ex-
plored up to now. In the past, different attempts of classifying parts of these com-
pactifications have been made [3, 21, 26, 17]. As we shall see (in Section 5.5.1)
some of these classifications are mutually not consistent, and incomplete. The
perhaps most complete classification is due to Donagi and Wendland (DW) [21],
who focus on Z2×Z2 orbifolds. In this chapter (and in the original publication) we
provide a complete classification of symmetric Abelian and non-Abelian heterotic
orbifolds that lead to N ≥ 1 supersymmetry (SUSY) in four dimensions.

The structure of this chapter is as follows: in Section 5.2 we discuss the tools
used to construct toroidal orbifolds. Later, in Section 5.3, we present a way
from crystallography to classify all possible space groups and apply it to string
compactifications. Then, in Section 5.4 we impose the condition of N = 1 SUSY
in 4D (though in this chapter only a general explanation of the procedure is given,
see the original publication [25] for details). Section 5.5 is devoted to a survey
of the resulting orbifolds, and to a comparison with previous results from the
literature [3, 21, 26, 17]. Finally, in Section 5.6 we briefly discuss our results.
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Classification of symmetric toroidal orbifolds

In various appendices we collect more detailed information on our classification
program. Appendix 5.A contains some details on lattices, in Appendix 5.B we
survey the already known 2D orbifolds. The original publication [25] contains an
additional appendix containing detailed tables of our results.

5.2 Construction of toroidal orbifolds
We start our discussion with the construction of toroidal orbifolds [18, 19]. There
are two equivalent ways of constructing such objects: (i) one can start from the
Euclidean space Rn and divide out a discrete group S, the so-called space group.
(ii) Alternatively, one can start with an n-dimensional lattice Λ, to be defined in
detail in Section 5.2.2, which determines a torus Tn and divide out some discrete
symmetry group G. Note that G, the so-called orbifolding group as defined in
Section 5.2.5, is in general not equal to the point group introduced in Section 5.2.3.
That is, a toroidal orbifold is defined as

O = Rn/S = Tn/G . (5.1)

Even though we are mostly interested in the case n = 6 we will keep n arbitrary. In
the following, we will properly define the concepts behind Equation (5.1), closely
following [10].

5.2.1 The space group S
Let S be a discrete subgroup of the group of motions in Rn, i.e. every element of
S leaves the metric of the space invariant. If S contains n linearly independent
translations, then it is called a space group (of degree n). Such groups appear
already in crystallography: they are the symmetry groups of crystal structures,
which in turn are objects whose symmetries comprise discrete translations.

Every element g of a space group S can be written as a composition of a
mapping ϑ that leaves (at least) one point invariant and a translation by some
vector λ, i.e. g = λ ◦ ϑ for g ∈ S (one can think of ϑ as a discrete rotation or
inversion). This suggests to write a space group element as1

g = (ϑ,λ) , (5.2)

and it acts on a vector v ∈ Rn as

v
g7−→ ϑv + λ . (5.3)

Let h = (ω, τ ) ∈ S be another space group element. Then the composition h ◦ g
is given by (ω ϑ, ω λ+ τ ).

1In the mathematical literature the reverse notation g = (λ, ϑ) is also common, since the
normal subgroup element is usually written to the left, and the lattice Λ is a normal subgroup
of the space group.
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5.2 Construction of toroidal orbifolds

5.2.2 The lattice Λ

Let S be a space group. The subgroup Λ of S consisting of all translations in S
is the lattice of the space group. Note that for a general element g = (ϑ,λ) ∈ S
the vector λ does not need to be a lattice vector. Elements g = (ϑ,λ) ∈ S with
λ /∈ Λ are called roto-translations.

Since a space group is required to contain n linear independent translations,
every lattice contains a basis e = {ei}i∈{1,...,n} and the full lattice is spanned
by the ei (with integer coefficients), i.e. an element λ ∈ Λ can be written as
λ = ni ei, summing over i = 1, . . . , n and ni ∈ Z. Clearly, the choice of basis is
not unique. For example, for a given lattice Λ take two bases e = {e1, . . . , en} and
f = {f1, . . . ,fn} and define Be and Bf as matrices whose columns are the basis
vectors in e and f, respectively. Then the change of basis is given by a unimodular
matrix M (i.e. M ∈ GL(n,Z)) as

BeM = Bf . (5.4)

On the other hand, one can decide whether two bases e and f span the same
lattice by computing the matrix M = B−1

e Bf and checking whether or not it is
an element of GL(n,Z).

5.2.3 The point group P

For a space group S with elements of the form (ϑ,λ), the set P of all ϑ forms a
finite group ([10, p. 15]), the so-called point group of S. The elements of a point
group are sometimes called twists or rotations. However, in general a point group
can also contain inversions and reflections, i.e. ϑ ∈ O(n).

The point group P of S maps the lattice of S to itself. Hence, similarly to the
change of lattice bases, point group elements can be represented by GL(n,Z) (i.e.
unimodular) matrices. When written in the GL(n,Z) basis, we append the twists
by an index indicating the lattice basis, while the O(n) (or SO(n)) representation
of the twist is denoted without an index. For example, the twist ϑ ∈ O(n) is
denoted as ϑe in the lattice basis e = {e1, . . . , en} such that ϑ ei = (ϑe)ji ej and
ϑe = B−1

e ϑBe. Furthermore, under a change of basis as in Equation (5.4) the
twist transforms according to

ϑf = M−1 ϑeM . (5.5)

Given these definitions, and because the lattice is always a normal subgroup of
the space group (i.e. rotation ◦ translation ◦ (rotation)−1 = translation), the space
group S has a semi-direct product structure iff the point group P is a subgroup
of it, i.e. P ⊂ S. In that case

S = P n Λ , (5.6)
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Classification of symmetric toroidal orbifolds

and one can write the orbifold as

O = Rn/(P n Λ) = Tn/P . (5.7)

In general, however, the point group is not a subgroup of the space group
and thus the space group is not necessarily a semi-direct product of its point
group with its lattice. More precisely, in general the point group P is not equal
to the orbifolding group G of Equation (5.1) because of the possible presence of
roto-translations, as we will see in an example in Section 5.2.4.

5.2.4 Examples: space groups with Z2 point group
In this section, we give two examples of space groups in two dimensions with Z2

point group (see app. 5.B) in order to illustrate the discussion of the previous
sections.

(a) (b)

Figure 5.1: Two-dimensional examples: (a) “pillow” and (b) Klein bottle. In case
(a) the arrows indicate a wrap-around and the symbols indicate fixed points.

A simple example: the “pillow”

The first of our examples is the well known two-dimensional “pillow”, see Fig-
ure 5.1(a). The space group S is generated as

S = 〈(1, e1), (1, e2), (ϑ,0)〉 , (5.8)

and can be realized as the semi-direct product of the oblique lattice Λ (see Ap-
pendix 5.A.3) and the point group P = {1, ϑ}. In detail, the lattice is given as
Λ = {n1 e1 + n2 e2, ni ∈ Z} using the basis e = {e1, e2}. ϑ is a rotation by π, i.e.
it acts on the lattice basis vectors as

ϑ ei = − ei for i = 1, 2 . (5.9)

Therefore, it can be represented by a GL(2,Z) matrix

ϑe =

(
−1 0
0 −1

)
. (5.10)

Since ϑ2 = 1, the point group is Z2.
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5.3 Equivalences of space groups

Another example: the Klein bottle

Let us take a look at a more advanced example: the space group of a Klein
bottle, see Figure 5.1(b). Here, the space group is generated by two orthogonal
lattice vectors (which thus span a primitive rectangular lattice Λ) {e1, e2}, and
an additional element g,

S = 〈(1, e1), (1, e2), g〉 with g =
(
ϑ, 1

2e1

)
and ϑe =

(
1 0
0 −1

)
.

(5.11)

g acts on a vector v = v1e1 + v2e2 as

v
g7−→ ϑv +

1

2
e1 = v1 e1 − v2 e2 +

1

2
e1 . (5.12)

Notice that even though the point group is Z2 (i.e. ϑ2 = 1), g generates a finite
group isomorphic to Z2 only on the torus T2 = R2/Λ, but not on the Euclidean
space R2, because g2 = (1, e1) 6= (1,0). In other words, since the generator
g also contains a translation 1

2e1 /∈ Λ, it is not a point group element but a
roto-translation.

Obviously, this space group cannot be written as a semi-direct product of a
lattice and a point group, as is always the case when we have roto-translations.

5.2.5 The orbifolding group G
Due to the possible presence of roto-translations, it is clear that in general space
groups cannot be described by lattices and point groups only. Therefore, we will
need to define an additional object, the orbifolding group (see [21]). Loosely
speaking, the orbifolding group G is generated by those elements of S that have
a non-trivial twist part, identifying elements which differ by a lattice translation.
Hence, if there are no roto-translations the orbifolding group G is equal to the
point group P . In other words, the orbifolding group may contain space group ele-
ments with non-trivial, non-lattice translational parts. Combining the orbifolding
group G and the torus lattice Λ generates the space group S = 〈{G,Λ}〉.

Hence, we can define the orbifold as

O = Rn/S = Rn/〈{G,Λ}〉 = (Rn/Λ)/G = Tn/G . (5.13)

Orbifolds can be manifolds (see e.g. Figure 5.1(b)), but in general, they come with
singularities which can not be endowed with smooth maps (see e.g. Figure 5.1(a)).

5.3 Equivalences of space groups
In the context of string orbifold compactifications, some physical properties of a
given model directly depend on the choice of its space group. These features are
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Classification of symmetric toroidal orbifolds

affine classes⊂Z-classes⊂Q-classes

Figure 5.2: Sketch of the classification of space groups.

common to whole sets of space groups and can be related to some mathematical
properties. Using the latter, one can define equivalence classes of space groups. In
detail, there are three kinds of equivalence classes suitable to sort space groups S
with certain physical and corresponding mathematical properties. These classes
are:

1. the Q-class (see Section 5.3.3) determines the point group P contained in
S and hence the number of supersymmetries in 4D and the number of geo-
metrical moduli;

2. the Z-class (see Section 5.3.2) determines the lattice Λ of S and hence the
nature of the geometrical moduli;

3. the affine class (see Section 5.3.1) determines the flavor group and the na-
ture of gauge symmetry breaking (i.e. local vs. non-local gauge symmetry
breaking).

Each Q-class can contain several Z-classes and each Z-class can contain several
affine classes, see Figure 5.2. In other words, for every point group there can be
several inequivalent lattices and for every lattice there can be several inequivalent
choices for the orbifolding group (i.e. with or without roto-translations).

In the following, we will discuss in detail why the concept of affine classes is
advantageous to classify physically inequivalent space groups. This is standard
knowledge among crystallographers and can for instance be found in more detail
in [10].

5.3.1 Affine classes of space groups
Two space groups S1 and S2 of degree n belong to the same affine class (i.e.
S1 ∼ S2) if there is an affine mapping f : Rn → Rn such that

f−1 S1 f = S2 . (5.14)

An affine mapping f = (A, t) on Rn consists of a translation t and a linear mapping
A, that is, it allows for rescalings and rotations. Therefore, this definition enables
us to distinguish between space groups that actually describe different symmetries
and space groups which are just the ones we already know, looked upon from
a different angle or distance. Then, for a given representative space group of
an affine class a non-trivial affine transformation A that leaves the point group
invariant (i.e. A−1 P A = P ) corresponds to a change of the geometrical data. In
the context of superstring compactifications this corresponds to a change of values
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5.3 Equivalences of space groups

of the geometrical moduli. That is, affine transformations amount to moving in the
moduli space of the respective compactification. Hence, we will only be interested
in one representative for every affine class.

It turns out that, for a given dimension n, there exists only a finite number
of affine classes of space groups [10, p. 10]. Hence, classifying all affine classes of
space groups enables a complete classification of orbifolds for a fixed number of
dimensions. In this chapter, we focus on the six-dimensional case.

Example in two dimensions

Let us illustrate this at the T2/Z2 example, or “pillow”, with ϑ = −1 given in
Section 5.2.4. As discussed there, the lattice is oblique, i.e. one can choose any
linear independent vectors e1 and e2 as basis vectors. Define a space group S by
choosing

e1 =

(
r1

0

)
and e2 =

(
r2 cos(α)
r2 sin(α)

)
. (5.15)

This space group is in the same affine class as S̃ with basis vectors

ẽ1 =

(
1
0

)
and ẽ2 =

(
0
1

)
. (5.16)

This can be seen explicitly using the affine transformation f = (A,0) with

A =

(
r1 r2 cos(α)
0 r2 sin(α)

)
and A−1 =

(
1
r1
− 1
r1 tan(α)

0 1
r2 sin(α)

)
. (5.17)

Take an arbitrary element g = (ϑ, niei) with ni ∈ Z for i = 1, 2. Then(
f−1 g f

)
(x) =

(
f−1 g

)
(Ax) = f−1(ϑAx+ niei) (5.18a)

= ϑx+A−1(niei) = ϑx+ ni ẽi = g̃ x (5.18b)

for x ∈ R2 and g̃ = (ϑ, niẽi) ∈ S̃. Therefore, S ∼ S̃ and there is only one affine
class of T2/Z2 space groups with ϑ = −1.

This should be compared with the T2/Z3 orbifold (see app. 5.B), where the
angle between the basis vectors ei and their length ratio are fixed, such that
the corresponding moduli space is different. Hence, it is clear that T2/Z2 and
T2/Z3 are two different orbifolds. This demonstrates the advantages of using
affine classes for the classification of space groups.

5.3.2 Z-classes of space groups
As discussed above, we can sort space groups into affine classes. This can be
refined further by grouping affine classes according to common properties of their
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Classification of symmetric toroidal orbifolds

point groups. Following the argument in Section 5.2.3, the elements of the point
group can be written in the lattice basis as elements of GL(n,Z). Therefore, a
point group is a finite subgroup of the unimodular group on Z.

Take two space groups S1 and S2. For i = 1, 2, the space group Si contains
a lattice Λi and its point group in the lattice basis is denoted by Pi, i.e. Pi ⊂
GL(n,Z). Then, the two space groups belong to the same Z-class (or in other
words to the same arithmetic crystal class) if there exists an unimodular matrix U
(i.e. U ∈ GL(n,Z)) such that (cf. the parallel discussion around Equation (5.14))

U−1 P1 U = P2 , (5.19)

see Equation (5.5). That is, if the point groups are related by a change of lattice
basis (using U), the space groups belong to the same Z-class. Hence, Z-classes
classify the inequivalent lattices.

If two space groups belong to the same Z-class, they have the same form space
(see app. 5.A.1) and, physically, they possess the same amount and nature of
geometrical moduli. However, as we have stressed before, space groups from the
same Z-class are not necessarily equivalent because of the possible presence of
roto-translations. In other words, space groups from the same Z-class can belong
to different affine classes and can hence be inequivalent.

5.3.3 Q-classes of space groups

As before in Section 5.3.2, take two space groups S1 and S2. For i = 1, 2, the
point group in the lattice basis associated to the space group Si is denoted by
Pi, i.e. Pi ⊂ GL(n,Z). Then, the two space groups belong to the same Q-class
(or in other words to the same geometric crystal class) if there exists a matrix
V ∈ GL(n,Q) such that

V −1 P1 V = P2 . (5.20)

Obviously, if two space groups belong to the same Z-class they also belong to
the same Q-class, hence the inclusion sketch in Figure 5.2. In contrast to Z-
classes, Q-classes do not distinguish between inequivalent lattices. However, if
two space groups belong to the same Q-class, the commutation relations and
the orders of the corresponding point groups are the same. Therefore, they are
isomorphic as crystallographic point groups. They also possess form spaces of the
same dimension, i.e. they have the same number of moduli. What is important
for physics is that all space groups in the same Q-class share a common holonomy
group (cf. Section 5.4). This allows us to identify settings that yield N = 1 SUSY
in 4D. In particular, in order to determine the number of SUSY generators, it is
sufficient to consider only one representative from every Q-class.
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5.3 Equivalences of space groups

f2

e1 ≡ f1 ≡ e′1 ≡ f ′1

f ′2

e2

e′2

Figure 5.3: Two different bases for the p-rectangular lattice: e = {e1, e2} and
f = {f1,f2}, and the action of the point group generator (primed vectors).

5.3.4 Some examples

Before going to six dimensions, let us illustrate the above definitions with some
easy examples of two-dimensional Z2 orbifolds, taken from Appendix 5.B.

Space groups in the same Z-class

Consider the affine class Z2-II–1–1, as defined in Appendix 5.B. As there are
no roto-translations, the orbifolding group is equal to the point group and is
generated by ϑ, a reflection at the horizontal axis. Now, let this reflection act on
a lattice, first spanned by the basis vectors e = {e1, e2} and second spanned by
f = {f1,f2}, see Figure 5.3. The two corresponding space groups read

Se = 〈(ϑ,0), (1, e1), (1, e2)〉 with ϑe =

(
1 0
0 −1

)
, (5.21)

Sf = 〈(ϑ,0), (1,f1), (1,f2)〉 with ϑf =

(
1 2
0 −1

)
, (5.22)

where ϑe 6= ϑf because they are given in their corresponding lattice bases. How-
ever, it is easy to see that they are related by the GL(2,Z) transformation

U =

(
1 1
0 1

)
with U−1 ϑe U = ϑf , (5.23)

cf. Equation (5.19). Therefore, they belong to the same Z-class. Hence, as we
actually knew from the start, they act on the same lattice and the matrix U just
defines the associated change of basis precisely as in Equation (5.4).
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Space groups in the same Q-class, but different Z-classes

Next, consider the space groups,

S1–1 = 〈(ϑ1–1, 0), (1, e1), (1, e2)〉 with ϑ1–1,e =

(
1 0
0 −1

)
, (5.24)

S2–1 = 〈(ϑ2–1, 0), (1,f1), (1,f2)〉 with ϑ2–1,f =

(
0 1
1 0

)
, (5.25)

with lattices spanned by e1 = (1, 0), e2 = (0, 1) and f1 = (1/2, 1/2), f2 =
(1/2,−1/2), respectively. The first space group belongs to the affine class Z2-
II–1–1 and the second one to Z2-II–2–1, see Appendix 5.B. If we try to find the
transformation V from Equation (5.20) that fulfills V −1 ϑ1–1,e V = ϑ2–1,f we see
that

V =

(
x x
y −y

)
with x, y ∈ Q . (5.26)

But for all values of x and y for which V −1 exists, either V or V −1 has non-integer
entries. Therefore, the space groups Z2-II–1–1 and Z2-II–2–1 belong to the same
Q-class, but to different Z-classes. In other words, these space groups are defined
with inequivalent lattices. Indeed, the first space group possesses a primitive
rectangular lattice, while the second one has a centered rectangular lattice, as we
will see in detail in the following.

The effect of including additional translations

There is an alternative way of seeing the relationship between the two space groups
of the last example: one can amend one of the space groups by an additional
translation. In general, this gives rise to a new lattice, and consequently to a
different Z-class.

In our case, let us take the Z2-II–1–1 affine class and add the non-lattice
translation

τ =
1

2
(e1 + e2) (5.27)

to its space group. If we incorporate this translation into the lattice, we notice
that this element changes the original primitive rectangular lattice to a centered
rectangular lattice, with a fundamental cell of half area. The new lattice (see
Figure 5.4) can be spanned by the basis vectors τ and e1 − τ .

We can interpret the inclusion of this additional translation as a “change of
basis”, see Equation (5.4), but now generated by a matrix M ∈ GL(2,Q) instead
of one from GL(2,Z). The transformation looks like

BeM = Bτ with M =

(
1/2 1/2
1/2 −1/2

)
, (5.28)
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5.3 Equivalences of space groups

e2

e1

τ

e1 − τ

Figure 5.4: Change of a lattice by an additional translation: the basis of the orig-
inal lattice is solid, the basis of the new one dashed. The additional lattice points
are light gray. The action of ϑ is a reflection at the horizontal axis. Therefore, it
maps e1 to itself, e2 to its negative and interchanges τ and e1 − τ .

where Be and Bτ are matrices whose columns are (e1, e2) and (τ , e1 − τ ), re-
spectively. M is precisely the matrix in Equation (5.26) with values x = y = 1/2.
Performing this basis change, the twist has to be transformed accordingly. Hence,
the two Z-classes are related by a GL(2,Q) transformation M and the new space
group with lattice Bτ is Z2-II–2–1. The geometrical action of the twist, however,
is the same in both cases: it is a reflection at the horizontal axis (see Figure 5.4).
That is the reason for the name geometrical crystal classes for Q-classes. A general
method for including additional translations can be found in Appendix 5.A.2.

The method of using additional translations has been used in [21] and [17]
in order to classify six-dimensional space groups with point groups ZN × ZN for
N = 2, 3, 4, 6 (the classification of [17] is not fully exhaustive, see Section 5.5.1).
In these works, the authors start with factorized lattices, i.e. lattices which are
the orthogonal sum of three two-dimensional sublattices, on which the twists act
diagonally. Then, in a second step additional translations are introduced. As we
have shown here, adding such translations is equivalent to switching between Z-
classes in the same Q-class. Hence, if one considers all possible lattices (Z-classes)
additional translations do not give rise to new orbifolds.

Space groups in different Q-classes

Finally, consider the affine classes Z2-I–1–1 and Z2-II–1–1 defined in Appendix 5.B.
If we try to find a transformation between both space groups generators, see Equa-
tion (5.20),

V −1

(
−1 0
0 −1

)
V =

(
1 0
0 −1

)
⇔
(
−1 0
0 −1

)
V = V

(
1 0
0 −1

)
,

(5.29)
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we obtain

V =

(
0 x
0 y

)
/∈ GL(2,Q) ∀x, y . (5.30)

Therefore, the space groups Z2-I–1–1 and Z2-II–1–1 belong to different Q-classes
(and also to different Z-classes). That is, the point groups are inequivalent: the
twist of the first point group is a reflection at the origin and the twist of the
second point group is a reflection at the horizontal axis.

5.4 Classification of space groups
In this section we describe our strategy to classify all inequivalent space groups
for the compactification of the heterotic string to four dimensions with N = 1
SUSY.

5.4.1 Classification strategy
The amount of residual supersymmetry exhibited by the 4D effective theory is
related to the holonomy group of the compact space [14]. In detail, for the het-
erotic string the number N of residual SUSY in 4D is given by the number of
covariantly constant spinors and, therefore, depends on the holonomy group. For
example, a trivial holonomy group yields four covariantly constant spinors and
hence N = 4 in 4D. On the other hand, one gets N = 1 SUSY in 4D for SU(3)
holonomy.

In the context of orbifolds, one can relate the holonomy group to the point
group [19]. Orbifold compactifications preserve four-dimensional supersymmetry
if the point group is a discrete subgroup of SU(3). The holonomy group and hence
the amount of unbroken SUSY is the same for all members of a given Q-class.
Therefore, we start our classification with the identification of all Q-classes (i.e.
point groups) that are subgroups of SU(3). Then, for each Q-class we identify all
Z-classes (i.e. lattices) and finally construct for each Z-class all affine classes (i.e.
roto-translations).

In more detail, our strategy reads:

1. Choose a Q-class and find a representative P of it.2

2. Check that P is a subgroup of SO(6) rather than O(6).

3. Verify that P is a subgroup of SU(3).

4. Find every possible Z-class inside that Q-class.

5. Find every possible affine class inside each one of those Z-classes.
2A discussion about the possible orders of the elements of the point group, and therefore the

possible point groups, can be found in Appendix 5.B.
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There exists a catalog of every possible affine class in up to six dimensions
classified into Z- and Q-classes [47]. Furthermore, one can access this catalog
easily using the software carat [48]. In detail, the command Q_catalog lists all
Q-classes, the command QtoZ lists all Z-classes of a given Q-class and, finally,
the command Extensions lists all affine classes of a given Z-class. Hence, the
main open question is to decide whether a given representative of a Q-class is a
subgroup of SU(3).

5.4.2 Residual SUSY
We start by verifying that P ⊂ SO(6). carat offers representatives for all Q-
classes, i.e. it gives the generators of the point group P in some (unspecified)
lattice basis e as GL(6,Z) matrices ϑe. One can check whether or not the deter-
minant equals +1 for all generators of P in the GL(6,Z) form given by carat.
This allows us to determine whether or not P ⊂ SO(6).

Next, we recall that the matrices ϑe ∈ P originate from the six-dimensional
representation 6 of SO(6). One way to check that P is a subgroup of SU(3) is to
consider the breaking of the 6 into representations of SU(3),

6 → 3⊕ 3̄ . (5.31)

On the other hand, the six-dimensional representation is, in general, a reducible
representation of the point group P . Hence, it can be decomposed

6 → a⊕ b⊕ . . . (5.32)

into irreducible representations a, b, . . . of P .
If P is a subgroup of SU(3) this decomposition has to be of the kind

6 → a⊕ ā , (5.33)

where a denotes some (in general reducible) representation of P originating from
the 3 of SU(3) and ā its complex conjugate (from 3̄ of SU(3)). In addition, one
needs to know the explicit matrix representation of a in order to check that the
determinant is +1. Then P ⊂ SU(3) and at least N = 1 SUSY survives the
compactification of the heterotic string on the corresponding orbifold.

The full detailed procedure can be found in section 4.2 of the original publi-
cation [25].

5.5 Results: classification of toroidal orbifolds
We perform a systematic classification of space groups that keep (at least) N = 1
SUSY in four dimensions unbroken. As discussed in Section 5.3, the amount of
unbroken supersymmetry depends only on the Q-class (i.e. point group). Using
carat we know that there are 7103 Q-classes in six dimensions. Out of those,
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we find 60 Q-classes with N ≥ 1 SUSY where 52 lead to precisely N = 1, see
Table 5.1 for a summary of the results. The 60 cases split into 22 Abelian and
38 non-Abelian Q-classes, where the Abelian cases were already known in the
literature. By contrast, most of the 38 non-Abelian Q-classes have not been
used in orbifold compactifications before. Starting from these 60 Q-classes we
construct all possible Z- and affine classes (i.e. lattices and roto-translations). In
the following we discuss them in detail: Sections 5.5.1 and 5.5.2 are devoted to
the Abelian and non-Abelian case, respectively.

# of generators # of SUSY Abelian non-Abelian
1 N = 4 1 0

N = 2 4 0
N = 1 9 0

14 0
2 N = 4 0 0

N = 2 0 3
N = 1 8 32

8 35
3 N = 4 0 0

N = 2 0 0
N = 1 0 3

0 3
total: N = 4 1 0

N = 2 4 3
N = 1 17 35

22 38

Table 5.1: Summary of the classification of all point groups with at least N = 1
SUSY. Out of 7103 cases obtained from carat there are 60 point groups with
N ≥ 1 SUSY where 52 have exactly N = 1.

5.5.1 Abelian toroidal orbifolds
Our results

Restricting ourselves to Abelian point groups, we find 17 point groups with N = 1
SUSY, four cases withN = 2 and one case (i.e. the trivial point group) withN = 4
supersymmetry. Next, we classify all Z- and affine classes. For the 17 point groups
with N = 1 it turns out that there are in total 138 inequivalent space groups with
Abelian point group and N = 1. Many of them were unknown before. The
results are summarized in Table 5.2. More details including the generators of the
orbifolding group G, the nature of gauge symmetry breaking (i.e. local or non-
local) and the Hodge numbers (h(1,1), h(2,1)) can be found in Appendix C.1 in the
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original publication [25], which also includes, on the corresponding section to the
present one, a comment on the distribution of the Hodge numbers and the effect
of them in the amount of Standard Model generations.

label of twist # of # of affine
Q-class vector(s) Z-classes classes

Z3
1
3 (1, 1,−2) 1 1

Z4
1
4 (1, 1,−2) 3 3

Z6-I 1
6 (1, 1,−2) 2 2

Z6-II 1
6 (1, 2,−3) 4 4

Z7
1
7 (1, 2,−3) 1 1

Z8-I 1
8 (1, 2,−3) 3 3

Z8-II 1
8 (1, 3,−4) 2 2

Z12-I 1
12 (1, 4,−5) 2 2

Z12-II 1
12 (1, 5,−6) 1 1

Z2 × Z2
1
2 (0, 1,−1) , 1

2 (1, 0,−1) 12 35
Z2 × Z4

1
2 (0, 1,−1) , 1

4 (1, 0,−1) 10 41
Z2 × Z6-I 1

2 (0, 1,−1) , 1
6 (1, 0,−1) 2 4

Z2 × Z6-II 1
2 (0, 1,−1) , 1

6 (1, 1,−2) 4 4
Z3 × Z3

1
3 (0, 1,−1) , 1

3 (1, 0,−1) 5 15
Z3 × Z6

1
3 (0, 1,−1) , 1

6 (1, 0,−1) 2 4
Z4 × Z4

1
4 (0, 1,−1) , 1

4 (1, 0,−1) 5 15
Z6 × Z6

1
6 (0, 1,−1) , 1

6 (1, 0,−1) 1 1

# of Abelian N = 1 60 138

Table 5.2: Summary of all space groups with Abelian point group and N = 1
SUSY. The corresponding table in the original publication [25] also contains the
identification information of each of these Q-classes in carat and the “GAPID”
of their point groups in the algebra software GAP.

The results are also available as input for the orbifolder [46], a tool to study
the low energy phenomenology of heterotic orbifolds. We have created input files
for the orbifolder, which we have made available at

http://einrichtungen.physik.tu-muenchen.de/T30e/codes/
ClassificationOrbifolds/ .

There is a geometry file for each of the 138 affine classes, and one model file per
Q-class, that contains a model with standard embedding for each of the corre-
sponding affine classes in that Q-class.

In addition, we find 23 inequivalent space groups (i.e. affine classes) with
Abelian point group and N = 2. These space groups are based on the well-known
four Abelian point groups Z2, Z3, Z4 and Z6. However, the inequivalent lattices
and roto-translations were unknown before. They are summarized in Table 5.3.
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label of # of # of affine
Q-class Z-classes classes

Z2 3 5
Z3 3 5
Z4 3 9
Z6 1 4

# of Abelian N = 2 10 23

Table 5.3: Summary of all space groups with N > 1 SUSY for Abelian point
groups P . In addition, there is the trivial Q-class with N = 4 SUSY, with one
Z- and one affine class. The corresponding table in the original publication [25]
also contains the identification information of each of these Q-classes in carat
and the “GAPID” of their point groups in the algebra software GAP.

Previous classifications

There have been several attempts in the literature to classify six-dimensional
N = 1 SUSY preserving Abelian toroidal orbifolds. For example, Bailin and
Love [3] give a classification for ZN orbifolds using root lattices of semi-simple
Lie algebras of rank six as lattices Λ and the (generalized) Coxeter element as the
generator of the point group P . However, as also discussed in Appendix 5.A.3,
they overcount the geometries and, in addition, miss a few cases. A detailed
comparison to our results can be found in Table 5.4.

For Z2 × Z2 orbifolds there have been two approaches for the classification of
geometries. In the first one, the classification is based on Lie lattices [26], see also
[39]. Again, this classification is somewhat incomplete: it misses four lattices and,
in addition, neglects the possibility of roto-translations. In a second approach by
DW [21] (based on [20]), a classification for Z2×Z2 is given, which, as we find, is
complete, see Table 5.5 for a comparison. In addition, we were able to resolve an
ambiguity between the models 3–1 and 3–2 of DW.

Furthermore, based on the strategy of DW [21], there is an (incomplete) clas-
sification of ZN × ZN for N = 3, 4 and 6 [17]. For both Z3 × Z3 and Z4 × Z4

he identifies 8 out of 15 affine classes (compare Section 2.3 of [17] to the table in
Appendix C.1 in the original publication [25]). The Hodge numbers agree with
our findings except for case IV.7 (i.e. Z4×Z4 with (38, 0)). Finally, in the case of
Z6 × Z6 [17] correctly identifies that there is only one possible geometry but the
Hodge numbers disagree with ours, i.e. [17] finds (80, 0) and we have (84, 0).

Fundamental groups

The fundamental group of a toroidal orbifold with space group S is given as
[19, 11]

π1 = S/〈F 〉 , (5.34)
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Q-class Z-class corresponding root lattice(s)

Z3 1 SU(3)3

Z4 1 SO(5)2 × SU(2)2

2 SO(5)× SU(4)× SU(2)

3 SU(4)2

Z6-I 1 (G2)
2 × SU(3) and

(
SU(3)[2]

)2 × SU(3)
2 —

Z6-II 1 G2 × SU(3)× SU(2)2 and
SU(3)[2] × SU(3)× SU(2)2

2 —
3 SO(8)× SU(3) and SO(7)× SU(3)× SU(2) and

SU(4)[2] × SU(3)× SU(2)
4 SU(6)× SU(2)

Z7 1 SU(7)

Z8-I 1 SO(9)× SO(5) and SO(8)[2] × SO(5)
2 —
3 —

Z8-II 1 SO(8)[2] × SU(2)2 and SO(9)× SU(2)2

2 SO(10)× SU(2)

Z12-I 1 F4 × SU(3) and SO(8)[3] × SU(3)
2 E6

Z12-II 1 SO(4)× F4 and SO(8)[3] × SU(2)2

Table 5.4: Matching between our classification of ZN space groups and the tra-
ditional notation of lattices as root lattices of semi-simple Lie algebras of rank
six, see e.g. Table 3 of [3] and Table D.1 of [51]. Cases previously not known are
indicated with a dash.

where 〈F 〉 is the group generated by those space group elements that leave some
points fixed.

The fundamental groups of most of the Abelian orbifolds discussed here are
trivial, for in those cases 〈F 〉 ≡ S. The only non-trivial cases are the following
(see the table in Appendix C.1 in the original publication [25]):

• 21 space groups from the Z2 × Z2 Q-class as already calculated in [21]. See
Table 5.5, where

– 0 means a trivial fundamental group

– S means the fundamental group equals the space group (no fixed points,
hence 〈F 〉 = {1})

– A means a Z2 n Z2 fundamental group
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Here Donagi Förste et al. π1

et al. [21] [26]
1–1 0–1 SU(2)6 0
1–2 0–2 — 0
1–3 0–3 — A
1–4 0–4 — S
2–1 1–6 SU(3)× SU(2)4 0
2–2 1–8 — 0
2–3 1–10 — A
2–4 1–7 — C
2–5 1–9 — A
2–6 1–11 — S
3–1 2–9 — 0
3–2 2–10 — 0
3–3 2–11 — A
3–4 2–12 — S
4–1 2–13 SU(3)2 × SU(2)2-I 0
4–2 2–14 — D
5–1 1–1 SU(4)× SU(2)3 C
5–2 1–3 — C
5–3 1–2 — 0
5–4 1–4 — A
5–5 1–5 — S
6–1 2–6 SU(3)2 × SU(2)2-II 0
6–2 2–7 — C
6–3 2–8 — A
7–1 3–3 — 0
7–2 3–4 — C
8–1 4–1 — 0
9–1 2–3 SU(4)× SU(3)× SU(2) C
9–2 2–5 — D
9–3 2–4 — 0
10–1 3–5 — C
10–2 3-6 — 0
11–1 3–1≡3–2 SU(3)3 0
12–1 2–1 SU(4)2 D
12–2 2–2 — C

Table 5.5: Comparison of the affine classes of Z2 × Z2 between our classification
and the ones in [21] and [26]. In our case, the two numbers enumerate the Z- and
affine classes, respectively.
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– C means a Z2 fundamental group
– D means a (Z2)2 fundamental group

• 6 space groups from the Z2 × Z4 Q-class. In detail, the affine classes 1–6,
2–4, 3–6, 4–4, 6-5 and 8–3 posses a Z2 fundamental group.

• 4 space groups from the Z3 × Z3 Q-class. In detail, the affine classes 1–4,
2–4, 3–3 and 4–3 posses a Z3 fundamental group.

Elements of the space group that leave no fixed points are called freely acting.
A non-trivial fundamental group signals the presence of non-decomposable freely
acting elements in the space group, i.e. freely acting elements that cannot be
written as a combination of non-freely acting elements. In the cases Z2 × Z4 and
Z3 × Z3, the non-decomposable freely acting elements belong to the orbifolding
group. On the other hand, for Z2×Z2 those elements are pure lattice translations
in the cases C and D, while in the cases A they are both pure lattice translations
and elements of the orbifolding group.

In the context of heterotic compactifications, the phenomenologically appeal-
ing feature of non-local GUT symmetry breaking is due to the presence of non-
decomposable freely acting space group elements with a non-trivial gauge em-
bedding. In total we find 31 affine classes based on Abelian point groups with
non-trivial fundamental groups. their phenomenology will be studied elsewhere.

5.5.2 Non-Abelian toroidal orbifolds
Six-dimensional orbifolds with non-Abelian point groups have not been studied
systematically up to now and the literature is limited to examples only [37, 44,
28, 23, 41].

Our classification results in 35 point groups with N = 1 SUSY and three cases
with N = 2 SUSY. Next, we have classified all Z- and affine classes. It turns out
that there are in total 331 inequivalent space groups with non-Abelian point group
and N = 1 SUSY and 27 inequivalent space groups with non-Abelian point group
and N = 2. Most of them were unknown before. The results are summarized in
tables 5.6 and 5.7 of the original publication [25], together with the discussion of
a particular example, T6/D6; and the full details can be found in Appendix C.2
there.

The results presented in this chapter were used in a follow-up study of non-
Abelian orbifolds by two of the authors of the original publication in [24].

5.6 Summary and discussion
We have classified all symmetric orbifolds that give N ≥ 1 supersymmetry in four
dimensions. Our main results are as follows:

1. In total we find 60 Q-classes (point groups) that lead to N ≥ 1 SUSY.
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2. These Q-classes decompose in

• 22 with an Abelian point group with one or two generators, i.e. ZN or
ZN × ZM , out of which 17 lead to exactly N = 1 SUSY, and

• 38 with a non-Abelian point group with two or three generators, such
as S3 or ∆(216), out of which 35 lead to exactly N = 1 SUSY.

That is, there are 52 Q-classes that can lead to models yielding the supersymmet-
ric standard model.

As we have explained in detail, Q-classes (or point groups) can come with in-
equivalent lattices, classified by the so-called Z-classes. In the traditional orbifold
literature, Z-classes are given by Lie lattices and a given choice fixes an orbifold
geometry. However, as we have pointed out, not all lattices can be described by
Lie lattices.

Our results on Q-classes potentially relevant for supersymmetric model build-
ing are as follows.

3. We find that there are 186 Z-classes, or, in other words, orbifold geometries
that lead to N ≥ 1 SUSY.

4. These Z-classes decompose in

• 71 with an Abelian point group, out of which 60 lead to exactly N = 1
SUSY, and

• 115 with a non-Abelian point group, out of which 108 lead to exactly
N = 1 SUSY.

Furthermore, space groups can be extended by so-called roto-translations, a com-
bination of a twist and a (non-lattice) translation. We provide a full classification
of all roto-translations in terms of affine classes, which are, as we discuss, the
most suitable objects to classify inequivalent space groups.

5. We find 520 affine classes that lead to N ≥ 1 SUSY.

6. These affine classes decompose in

• 162 with an Abelian point group, out of which 138 lead to exactly
N = 1 SUSY, and

• 358 with a non-Abelian point group, out of which 331 lead to exactly
N = 1 SUSY.

An important aspect of our classification is that we provide the data for all 138
space groups with Abelian point group and N = 1 SUSY required to construct
the corresponding models with the C++ orbifolder [46]. Among other things, this
allows one to obtain a statistical survey of the properties of the models, which
has so far only been performed for the Z6-II orbifold [42].
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Our classification also has conceivable importance for phenomenology. For
instance, one of the questions is how the ten-dimensional gauge group (i.e. E8×E8

or SO(32)) of the heterotic string gets broken by orbifolding. In most of the models
discussed so far, the larger symmetry gets broken locally at some fixed point. Yet
it has been argued that ‘non-local’ GUT symmetry breaking, as utilized in the
context of smooth compactifications of the heterotic string [6, 9, 8, 2], has certain
phenomenological advantages [33, 1]. Explicit MSSM candidate models, based on
the DW classification, featuring non-local GUT breaking have been constructed
recently [4, 38]. As we have seen, there are 31 affine classes of space groups,
based on the Q-classes Z2 × Z2, Z2 × Z4 and Z3 × Z3, that lead to an orbifold
with a non-trivial fundamental group, thus allowing us to introduce a Wilson line
that breaks the GUT symmetry. In other words, we have identified a large set of
geometries that can give rise to non-local GUT breaking. This might also allow
for a dynamical stabilization of some of the moduli in the early universe, similar
as in toroidal compactifications [7].

In this study, we have focused on symmetric toroidal orbifolds, which have a
rather clear geometric interpretation, such that crystallographic methods can be
applied in a straightforward way. We have focused on the geometrical aspects.
On the other hand, it is known that background fields, i.e. the so-called discrete
Wilson lines [36] and discrete torsion [53, 54, 52, 29, 50], play a crucial role
in model building. It will be interesting to work out the conditions on such
background fields in the geometries of our classification. Further, it is, of course,
clear that there are other orbifolds, such as T-folds [34, 16], asymmetric and/or
non-toroidal orbifolds, whose classification is beyond the scope of this study. Let
us also mention, we implicitly assumed that the radii are away from the self-
dual point. As we are using crystallographic methods our classification strategy
is independent of this assumption. Still, it might be interesting to study what
happens if one sends one or more T -moduli to the self-dual values. In this case
one may make contact with the free fermionic formulation, where also interesting
models have been constructed [15]. In addition, our results may also be applied
to compactifications of type II string theory on orientifolds (see e.g. [30, 22, 31]
for some interesting models and [5] for a review).

Appendices

5.A Details on lattices

5.A.1 Bravais types and form spaces

One can classify lattices by the symmetry groups they obey. This is the concept
of Bravais equivalent lattices. In more detail, denote the symmetry group of some
lattice Λ as G ⊂ GL(n,Z). Obviously, the point group P ⊂ G, is a subgroup of
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it. Now, if two lattices give rise to the same finite unimodular group G, we call
them Bravais equivalent. This equivalence generates a finite number of Bravais
types of lattices for every dimension n. They have been classified for dimensions
up to six [49].

The interesting task would now be to decide which Bravais type a given lattice
belongs to. This can be done using the notion of form spaces [47]. The form
space F(G) of some finite group G ⊂ GL(n,Z) is defined as the vector space of
all symmetric matrices left invariant by G, i.e.

F(G) = {F ∈ Rn×nsym | gT F g = F for all g ∈ G} . (5.35)

On the other hand, we define the Gram matrix of the lattice basis e = {e1, . . . , en}
as

Gr(e)ij = (ei, ej) = (B T
e Be)ij , (5.36)

where the parentheses (ei, ej) denote the standard scalar product. By definition,
the Gram matrix is a symmetric, positive definite matrix. Under a change of
lattice basis, represented by a unimodular matrix M , the Gram matrix changes
as MTGr(e)M , c.f. Section 5.2.2. By contrast, elements of the point group leave
the Gram matrix invariant, i.e. for ϑ ∈ P

Gr(e)
ϑ7−→ ϑTGr(e)ϑ = Gr(e) . (5.37)

Hence, a form space is in direct correspondence to a Bravais type of lattice, i.e.
every lattice Λ has a basis e = {e1, . . . , en} such that its Gram matrix Gr(e) is an
element of the form space of a finite subgroup P of GL(n,Z), i.e. Gr(e) ∈ F(P )
[10]. But in order to see that one lattice belongs to a given form space, it needs
to be in this special basis, which is canonically chosen to be the so-called shortest
possible basis for that lattice [10]. Fortunately, algorithms for precisely that task
do exist, cf. e.g. [43] (though one should be careful: the shortest basis of a lattice
is in general not unique).

Note that physically the Gram matrix is the metric of the torus defined by
the lattice Λ and the dimension of the form space F(P ) is exactly the number of
(untwisted) moduli the orbifold offers.

Let us consider an example in two dimensions. Take the point group defined
by

P = {1 = ϑ2, ϑ} ∼= Z2 with ϑ =

(
1 0
0 −1

)
. (5.38)

It leaves invariant the form space

F(P ) =

(
a 0
0 b

)
. (5.39)

That form space corresponds to the Bravais type called p-rectangular lattice (cf.
Appendix 5.A.3), consisting of two arbitrarily long, orthogonal vectors.
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5.A.2 Introducing an additional shift
DW [21] starts with an orthonormal lattice in six dimensions. Then, in a second
step, additional shifts, which are linear combinations of the (orthonormal) lattice
vectors with rational coefficients, are included in the space group. As we have seen
in the second example in Section 5.3.4, those additional shifts can be incorporated
to the lattice itself. Here we show in detail how to transform the space group
accordingly.

The perhaps most elegant procedure is to perform a change of basis, but using
transformations from GL(n,Q). Hence, we are selecting a different Z-class from
the same Q-class, cf. Section 5.3. Let us list the necessary steps and illustrate
them with an example:

1. The additional shift is a linear combination with rational coefficients of some
of the lattice vectors. Exchange one of the old lattice vectors (that appears
in the linear combination) by the new additional shift.

2. Write the transformation matrixM : start with the identity matrix and sub-
stitute the column corresponding to the exchanged vector by the coefficients
of the linear combination.

3. Transform your space group using M accordingly: see Equation (5.4) and
Equation (5.5).

4. (Optional) In order to see the geometry more clearly, one can perform a basis
reduction (e.g. using the LLL algorithm, cf. [43]), which is a transformation
from GL(n,Z).

As an example, take the Z2×Z2 model named (1–1) in DW [21], which consists
of an orthogonal lattice (p-cubic) with orthonormal basis e and an additional shift

τ =
1

2
(e2 + e4 + e6) . (5.40)

We will restrict the discussion to the three-dimensional (sub-)lattice Λ spanned
by the basis e = {e2, e4, e6}.

The basis matrix, Gram matrix and point group generators read

Be =

 1 0 0
0 1 0
0 0 1

 , Gr(e) =

 1 0 0
0 1 0
0 0 1

 , (5.41a)

ϑe =

 1 0 0
0 −1 0
0 0 −1

 , ωe =

 −1 0 0
0 1 0
0 0 −1

 . (5.41b)

Let us follow the steps described above:
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1. We choose to exchange the 3rd (originally 6th) vector for the additional shift:
the new basis f is spanned by f = {e2, e4, τ}. Notice that f is not a basis of
the lattice Λ, but one of a new, different lattice Σ.

2. In accordance with our choice, the transformation matrix is

M =

 1 0 1/2
0 1 1/2
0 0 1/2

 . (5.42)

3. We perform the transformation using M . For the new lattice Σ in the new
basis f, the quantities we are interested in look like

Bf =

 1 0 1/2
0 1 1/2
0 0 1/2

 , Gr(f) =

 1 0 1/2
0 1 1/2

1/2 1/2 3/4

 , (5.43a)

ϑf =

 1 0 1
0 −1 0
0 0 −1

 , ωf =

 −1 0 0
0 1 1
0 0 −1

 . (5.43b)

4. Next, we perform a LLL reduction, which is a change of basis to a reduced
one r, and transform the point group elements accordingly,

Br =

 1/2 1/2 −1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2

 , Gr(r) =
1

4

 3 −1 −1
−1 3 −1
−1 −1 3

 ,

(5.44a)

ϑr =

 0 1 −1
1 0 −1
0 0 −1

 , ωr =

 0 −1 1
0 −1 0
1 −1 0

 . (5.44b)

Last, we compare the Gram matrix Gr(r) with Table 5.6. We see that intro-
ducing the additional shift τ into the p-cubic lattice is equivalent to work with
the appropriately transformed point group in an i-cubic lattice.

A remark is in order. The form space left invariant by the Z2×Z2 point group
in the (reduced) basis of Equation (5.44) is

F(P ) =

 a b c
b a −a− b− c
c −a− b− c a

 . (5.45)

This form space is the one of a three-parametric, i-orthogonal lattice, which
contains as possible realizations the i-cubic and the f-cubic lattices (both one-
parametric, see table 5.6). Therefore, model (1–1) in [21] corresponds to model
A4 of Förste et al. [26], i.e. to the Lie lattice SU(4) × SU(2)3 where the SU(4)
part is an f-cubic lattice, see Table 5.5.
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5.A.3 Bravais types and Lie lattices
It is common in the string-orbifold literature to describe lattices as root lattices
of (semi-simple) Lie algebras. On the one hand, this makes it easy to identify
the point group, i.e. a discrete subgroup of SU(3), using Weyl reflections and the
Coxeter element. However, we find this practice to be problematic for at least
three different reasons:

Redundancies

A root lattice is the lattice spanned by the simple roots of a certain (semi-simple)
Lie algebra. Even if the simple roots of two non-equivalent (semi-simple) Lie
algebras are different, the lattices they span might not. For example, the lattices
spanned by the root systems of SU(3) and G2 are the same (see Figure 5.5). Some
more examples are provided in Table 5.6.

Figure 5.5: The hexagonal lattice: the lines on the left form the SU(3) root
system, and the lines on the right form the G2 root system. Simple roots are also
indicated with solid arrows, as well as the fundamental cells (shaded).

Missing lattices

When considering the redundancy of root lattices, one might think that there are
more root lattices than types of lattices and that the situation could be resolved by
introducing some clever convention to avoid this overcounting. But the problem
exists in the other direction too: the set of all possible root lattices does not
exhaust the whole family of Bravais types, i.e. there are Bravais types of lattices
which are not generated by any root system. The lowest dimension in which this
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occurs is three and the most basic example is the body centered cubic lattice, also
known as bcc or i-cubic to crystallographers (see Table 5.6). The bcc lattice is a
cubic lattice with an additional lattice point in the center of the fundamental cell.
Its only free parameter is the size of the system (e.g. the edge length of the cube).
One possible way to convince oneself that there is no root lattice that can generate
this Bravais lattice is taking every rank three root lattice and calculating which
Bravais lattice it generates. We find that the i-cubic lattice has no description as
root lattice (see Table 5.6).

Continuous parameters

Every Bravais type allows for a set of continuous deformations which conserve its
symmetries. Those deformations are encoded and made explicit in the form space
that defines that particular Bravais type (cf. Appendix 5.A.1). The form space
tells us how many deformation parameters one Bravais type allows for, and what
is the effect of them (to change lengths of or angles between basis vectors). The
realization of that freedom in the context of root lattices is very limited: lattices
of Lie algebras allow for just one parameter, the size of the system; and if one
includes semi-simple Lie algebras (direct products of simple ones), one can choose
different sizes for different sublattices, but never the angles between vectors, which
are fixed to a limited set of values. So, for example, a two-dimensional oblique
lattice, in which the angle between the basis vectors is arbitrary, could never be
unambiguously expressed in terms of Lie root lattices.

In conclusion, the language of root lattices is incomplete and ambiguous, and
is lacking geometrical insight with respect to the language of Bravais types and
form spaces, which is, therefore, the one used in this chapter.

Nevertheless, in order to justify some of the matchings between our classifi-
cation of space groups and the ones already existing in the literature, we present
in Table 5.6 a classification of all of the Bravais types of lattices in 1, 2 and 3
dimensions, together with their equivalent root lattices, if there are any. There,
in order to overcome the discussed ambiguities in the root lattice language, some
conventions have been used:

• ⊕ means orthogonal product. Unspecified products should be understood
orthogonal.

• � means free-angle product. The scalar product of the roots is indicated
as a subindex. Notice that in the cases in which we have used this product
there is actually no equivalent Lie lattice description: a non-orthogonal
product of semi-simple Lie algebras is not a semi-simple Lie algebra. These
possibilities are written in italics.

• ←↩ means a product with the leftmost factor.

• Equal subindices mean equal length of the roots or equal scalar products.
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• A subindex in an algebra whose simple roots are of different length stands
for the squared length of the shortest simple root, e.g. G2,a means that the
shortest simple root of G2 has length squared a.

Gram matrix lattice name Lie algebra notation

1 dimension(
a
)

Ruler r SU(2)
2 dimensions(

a 0
a

)
Square tp SO(5), SU(2)a⊕ SU(2)a(

a ±a/2
a

)
Hexagonal hp SU(3)a, G2,a(

a 0
b

)
p-Rectangular op SU(2)a⊕SU(2)b(

a b
a

)
c-Rectangular oc SU(2)a�b SU(2)a(

a c
b

)
Oblique mp SU(2)a�c SU(2)b

3 dimensionsa 0 0
a 0

a

 p-Cubic cP SO(7), SU(2)a⊕ SU(2)a⊕ SU(2)aa a/2 a/2
a a/2

a

 f-Cubic cF SU(4), Sp(6)a −a/3 −a/3
a −a/3

a

 i-Cubic cI (none)a ±a/2 0
a 0

b

 p-Hexagonal hP [SU(3)a or G2,a]⊕ SU(2)ba b b
a b

a

 r-Hexagonal hR SU(2)a�b SU(2)a�b SU(2)a�b←↩a 0 0
a 0

b

 p-Tetragonal tP [SU(2)a⊕ SU(2)a or SO(5)]⊕ SU(2)ba+ 2b −a −b
a+ 2b −b

a+ 2b

 i-Tetragonal tI (no simple expr.)a 0 0
b 0

c

 p-Orthorhombic oP SU(2)a⊕ SU(2)b⊕ SU(2)ca c 0
a 0

b

 c-Orthorhombic oC SU(2)a�c SU(2)a⊕SU(2)ba+ b a b
a+ c c

b+ c

 f-Orthorhombic oF (no simple expr.)a+ b+ c −a −b
a+ b+ c −c

a+ b+ c

 i-Orthorhombic oI (no simple expr.)a c 0
b 0

d

 p-Monoclinic mP SU(2)a�c SU(2)b⊕SU(2)d

continued . . .
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Gram matrix lattice name Lie algebra notationa c d
a d

b

 c-Monoclinic mC SU(2)a�c SU(2)a�d SU(2)b�d←↩a d f
b e

c

 Triclinic aP SU(2)a�d SU(2)b�e SU(2)c�f ←↩

Table 5.6: List of Bravais types in 1, 2 and 3 dimensions, together with possible
root lattice expressions. The following prefixes and suffixes are used for the
lattice names: p primitive, c centered (in 2D) or base-centered (in 3D), f face-
centered, i body-centered, and r rhombohedral.

In general, Bravais types with two or more parameters in the form space
contain as specific cases other types with a lower number of parameters. For
example, if we set the off diagonal parameter to zero in the two-dimensional
oblique lattice (mp) (i.e. we take the basis vectors to be orthogonal), we get a
p-rectangular (op) lattice. If we set now the diagonal elements of the form space
to be equal (i.e. we take the basis vectors to have equal length), we get a square
lattice (tp). These three lattices form the embedding chain tp↪→op↪→mp.

A graph containing all of the existing embeddings of that kind in two and
three dimensions can be seen in Figure 5.6. For further information about this
topic, the standard reference is [32].

5.B Two-dimensional orbifolds
In order to illustrate some of the concepts addressed in this chapter, we reproduce
here the list of all possible two-dimensional space groups, also known as wallpaper
groups. They are well-known, and their classification can be found for instance in
[10].

The possible orders m of (irreducible) point group elements in n dimensions
are given by the equation

φ(m) ≤ n , (5.46)

where φ is the Euler φ-function. For dimension two, this leaves only elements with
order in {1, 2, 3, 4, 6} as possible point group elements. In six dimensions, this
gets extended to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}. Nevertheless, in dimensions
n ≥ 2, one can find point group elements with order m such that φ(m) > n.
This can be realized by building a point group element as the direct sum of two
point group elements of dimensions that add up to n. In that case, the order
of the point group element would obviously be the least common multiple of the
orders of the factors. For example, in six dimensions there exist point groups
with elements of order 30, which are a direct sum of a four-dimensional order 10
element and a two-dimensional order 3 element.

As discussed in Section 5.3, one can classify the 17 two-dimensional space
groups by their Q-classes. Those can be found in Table 5.7. There, Dn is the
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Figure 5.6: Graph of Bravais types embeddings in 2D and 3D.

dihedral group of order 2n and Sn is the symmetric group of order n!. In Table 5.8
the specific information of every affine class is shown: the Q-, Z- and affine class to
which they belong, its Bravais type of lattice (cf. Table 5.6), its orbifolding group
generators in augmented matrix notation and a name, description and image of
its topology. The augmented matrix of some element ge = (ϑe, λiei) ∈ S is given
by

ge =

(
ϑe λi
0 1

)
, (5.47)

using the lattice basis e. This matrix acts on an augmented vector (x, 1) by simple
matrix-vector multiplication.
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label of # of # of affine
Q-class Z-classes classes

id 1 1
Z2-I 1 1
Z2-II 2 3
Z2 × Z2

∼= D2 2 4
Z4 1 1
Z2 n Z4

∼= D4 2 2
Z3 1 1
Z2 n Z3

∼= S3
∼= D3 2 2

Z6 1 1
Z2 n Z6

∼= D6 1 1

Table 5.7: Q-classes in two dimensions.

Q–Z–aff. class
Lattice

Generators Name &
description

Image

id–1–1

Oblique

Torus

Manifold

Z2-I–1–1

Oblique

−1 0 0
0 −1 0
0 0 1

 Pillow

Orbifold, 4 singulari-
ties with cone-angle π

Z2-II–1–1

p-Rectangular

 1 0 0
0 −1 0
0 0 1

 Pipe

Manifold, 2 bound-
aries

Z2-II–1–2

p-Rectangular

 1 0 1/2
0 −1 0
0 0 1

 Klein bottle

Manifold, non-
orientable

Z2-II–2–1

c-Rectangular

 0 1 0
1 0 0
0 0 1


Möbius strip

Manifold, non-
orientable, 1 bound-
ary

Z2 × Z2–1–1

p-Rectangular

−1 0 0
0 −1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 1

 Rectangle

Manifold, 1 boundary

continued . . .
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Q–Z–aff. class
Lattice

Generators Name &
description

Image

Z2 × Z2–1–2

p-Rectangular
−1 0 0

0 −1 0
0 0 1

 ,

 1 0 0
0 −1 1/2
0 0 1


Cut pillow

Orbifold, 2 singular-
ities with cone-angle
π, 1 boundary

Z2 × Z2–1–3

p-Rectangular

−1 0 0
0 −1 0
0 0 1

 ,

 1 0 1/2
0 −1 1/2
0 0 1

Cross-cap pillow

Orbifold, 2 singulari-
ties with cone-angle π

Z2 × Z2–2–1

c-Rectangular
−1 0 0

0 −1 0
0 0 1

 ,

 0 1 0
1 0 0
0 0 1


Jester’s hat

Orbifold, 1 singular-
ity with cone-angle π,
1 boundary

Z4–1–1

Square
 0 −1 0

1 0 0
0 0 1


Triangle pillow

Orbifold, 2 sin-
gularities with
cone-angle π/2, 1
singularity with
cone-angle π

Z2 n Z4–1–1

Square

 1 0 0
0 −1 0
0 0 1

 ,

 0 −1 0
1 0 0
0 0 1


Triangle

Manifold, one bound-
ary, 1 angle of π/2 and
2 of π/4

Z2 n Z4–1–2

Square
 1 0 1/2

0 −1 1/2
0 0 1

 ,

 0 −1 0
1 0 0
0 0 1


Jester’s hat

Orbifold, 1 singu-
larity with cone-
angle π/2, 1 boundary

Z3–1–1

Hexagonal

 0 −1 0
1 −1 0
0 0 1

 Triangle pillow

Orbifold, 3 sin-
gularities with
cone-angle 2π/3

Z2 n Z3–1–1

Hexagonal

 0 −1 0
−1 0 0
0 0 1

 ,

 0 −1 0
1 −1 0
0 0 1

 Triangle

Manifold, 3 bound-
ary, all angles π/3

Z2 n Z3–2–1

Hexagonal
 0 1 0

1 0 0
0 0 1

 ,

 0 −1 0
1 −1 0
0 0 1


Jester’s hat

Orbifold, 1 singu-
larity with cone-
angle 2π/3, 1 bound-
ary

continued . . .
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Q–Z–aff. class
Lattice

Generators Name &
description

Image

Z6–1–1

Hexagonal
 1 −1 0

1 0 0
0 0 1


Triangle pillow

Orbifold, 3 singulari-
ties with cone-angles
2π/3, π/3 and π

Z2 n Z6–1–1

Hexagonal
 0 1 0

1 0 0
0 0 1

 ,

 1 −1 0
1 0 0
0 0 1


Triangle

Manifold, 1 bound-
ary, with angles π/2,
π/3 and π/6

Table 5.8: List of all possible two-dimensional orbifolds. Q-classes are sepa-
rated by double lines.

Sometimes it is of interest to know the fundamental groups of the resulting
orbifolds. Among the two-dimensional space groups, most of the fundamental
groups are trivial with the following exceptions: the torus has a fundamental
group of (Z)2, the pipe and the Möbius strip Z, the cross-cap pillow (a projective
plane) Z2 and the Klein bottle’s one is its own space group, with group structure

S =
{
anbm | m,n ∈ Z , b a = a−1 b

}
. (5.48)
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