
A search for transient reductions in the inflaton speed of sound in
cosmological data, and other topics
Torrado Cacho, J.

Citation
Torrado Cacho, J. (2015, March 31). A search for transient reductions in the inflaton speed of
sound in cosmological data, and other topics. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/32593

Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32593

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32593

Cover Page

The handle http://hdl.handle.net/1887/32593 holds various files of this Leiden University
dissertation

Author: Torrado Cacho, Jesús
Title: A search for transient reductions in the speed of sound of the inflaton in

cosmological data, and other topics
 Issue Date: 2015-03-31

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32593

Chapter 4

Peer-reviewed and published
cosmological code

4.1 Introduction

In this chapter we describe some pieces of code which were developed in order to
be able to tackle some of the problems presented in the previous chapters, and to
prepare the tools for future research.

Calculating is a fundamental part of Theoretical Physics research. The very
act of carrying out the algebraic or numeric integral of a 2-loop process is arguably
not Physics per se – as some of my professors would say, it is just cranking
the mathematical coffee mill. Physics is to be found in the motivation of the
problem, in the choice of the integration method, in the approximations made
and those deliberately not made, in the method used to test the result, and in
the interpretation of it in the context of the theory.

Together with algebraic calculations, computer-assisted calculations are essen-
tial in Theoretical Physics, specially when heavy numerical computations, ran-
domisation or simulations are involved. The challenge in this cases is often carry-
ing out the calculations in a manageable amount of time, controlling all possible
errors.

Creating the tools for computer-assisted calculations, programming or coding,
is Physics research in the same way as algebraic calculations are: Physics is in
the choice of the algorithms, the approximations, the means to control the errors,
the interpretation of the result. . . all that based on the nature of the problem and
its physical context.

In order to carry out the research presented in this thesis, and also in order
to facilitate similar research by our peers, we created a small number of tools
that have been published under an open source license as an integral part of
two Cosmological codes, CLASS and Monte Python, having previously been

99

4.2 Arbitrary Primordial Power Spectrum for CLASS

reviewed by the authors of the respective codes. In the next sections we describe
them briefly.

4.2 Arbitrary Primordial Power Spectrum for
CLASS

In chapter 2, we have attempted to fit a modified shape of the slow-roll, single
field primordial power spectrum to the Planck CMB data. In order to accomplish
that, we needed to integrate into a cosmological code the ability to start from
an arbitrary primordial power spectrum. It would be desirable for the primordial
power spectrum to be at the same time (1) calculated on-the-fly from a series
of parameters, (2) easily modified without the need to maintain many different
compiled versions of the cosmological code, and (3) the relevant parameters should
be easily handled by a Monte Carlo sampler.

We found those requirements to be satisfied more easily when integrating them
into the Boltzmann code CLASS [2], due, among other things, to the cleanness
and modularity of its code and the effective support from its authors in imple-
menting the modifications presented here.

With the requirements stated above at hand, we opted for modifying CLASS
minimally to allow it to launch an external program and retrieve from it the
primordial power spectrum as a table in plain text, from which CLASS creates
an internal interpolating function. The external power spectrum generator gets
the values of the necessary parameters through CLASS itself, either as defined
in a CLASS input file or fed by a Monte Carlo sampler. This way, CLASS does
not need to be recompiled when modifying the shape of the primordial power
spectrum, and the external generator can be coded in any language that appeals
the researcher, following minimum requirements. Even the case of a precomputed
table of values of the primordial power spectrum is trivially included, through the
use of the cat command of Unix-like systems.

The main disadvantage of this external-program approach, as opposed to hard
coding the power spectrum, is the delay inherent to interfacing through plain text.
Fortunately, this delay is small compared to the most time-consuming part of the
cosmological code: the calculation of the transfer functions.

This modification of CLASS, together with the necessary documentation writ-
ten by the author of this thesis, was reviewed by one of the authors of CLASS,
Julien Lesgourgues, and integrated into the main code and released to the com-
munity in CLASS version 2.1, on March 2014.

As a simple example we show here how easy it is to implement an oscillatory
feature on top of the primordial scalar power spectrum:

P(k) =

(
As

(
k

k0

)ns−1
)(

1 +B sin

(
2π

k

kl
+ φ

))
. (4.1)

100

Peer-reviewed and published cosmological code

P_k_ini type = external_Pk
command = python external_Pk/generate_Pk_sin.py
custom1 = 0.05 # Pivot scale
custom2 = 2.215e-9 # Amplitude of the power spectrum
custom3 = 0.9624 # Spectral index of the power spectrum
custom4 = 0.0 # Amplitude of the feature
custom5 = 0.002 # Wavelength of the feature
custom6 = 0 # Phase of the feature

Retr iev ing the necessary parameters
import sys
k_0 = f loat (sys . argv [1]) # Pivot sca l e
A = f loat (sys . argv [2]) # Amplitude of the power spectrum
n_s = f loat (sys . argv [3]) # Spectra l index of the power spectrum
B = f loat (sys . argv [4]) # Amplitude of the fea ture
k_l = f loat (sys . argv [5]) # Wavelength of the fea ture
phi = f loat (sys . argv [6]) # Phase of the fea ture

P(k) ca l cu l a t i on
from math import exp , s in , p i
def P(k) :

return (A ∗ (k/k_0)∗∗(n_s−1.) ∗
(1 + B ∗ s i n (2∗ pi ∗k/k_l + phi)))

Limits for k and prec i s ion
k_min , k_max = 1 . e−6, 0 .75
k_per_decade_primordial = 1000 .

Producing the va lues of P(k)
k = k_min
while k <= k_max :

print "%.18g␣%.18g" % (k , P(k))
k = k ∗ 10 .∗∗ (1 . / f loat (k_per_decade_primordial))

Figure 4.1: Top: lines of the CLASS input file defining the use of the oscillatory
spectrum. Bottom: Python script that generates the spectrum of eq. (4.1).

As we see, the whole spectrum is parametrised by the global amplitude As and
spectral index ns, together with the oscillation amplitude B, its wavelength kl
and its phase φ. In order for CLASS to use that as a primordial spectrum, it is
enough to add to the CLASS input file the lines on the upper box of figure 4.1,
where the contents of the file generate_Pk_sin.py can be seen in the bottom of
the same figure. Such a simple code fulfils all the necessary requirements. The
resulting primordial and CMB spectra can be seen in figure 4.2.

4.3 Interfacing of MultiNest into Monte Python

Bayesian statistics judges the adequacy of some physical models over others in
terms of their predictivity: more predictive models are preferred over less pre-
dictive ones. Predictivity of a model is the joint effect of how well it describes
the data together with how restricted is its range of predictions. The joint mea-
surement of both aspects is the Bayesian evidence, equal to the integral of the

101

4.3 Interfacing of MultiNest into Monte Python

10-4 10-3 10-2 10-1

k (Mpc−1)

1.0

1.5

2.0

2.5

3.0

3.5

P
(k

)

1e 9

ΛCDM

ΛCDM +sin

2 10 50 500 1000 1500 2000

0

1000

2000

3000

4000

5000

6000

7000

`(
`
+

1)

2π
C

T
T

`
 (
µ
K

2
)

ΛCDM

ΛCDM +sin

2 10 50 500 1000 1500 2000

Multipole, `

150

100

50

0

50

100

150

`(
`
+

1)

2π
∆
C

T
T

`
 (
µ
K

2
)

Figure 4.2: Top: Primordial scalar power spectrum of eq. (4.1), assuming
Planck’s best fit values for As and ns, and some random values for the param-
eters of the oscillation. Bottom: Resulting (lensed) CMB temperature power
spectrum.

102

Peer-reviewed and published cosmological code

likelihood and the prior :

BM =

∫
Ω

L(D|M(ω))π(ω|M) dω , (4.2)

D being a set of data, andM a physical model parametrised by the quantities ω,
which take values on a set Ω with probability π(ω|M).

Computing the Bayesian evidence is a hard task to accomplish, which in gen-
eral requires methods different from those used for parameter inference (i.e. esti-
mating the parameter values that best fit the data and their distribution around
those values). While Markov chain Monte Carlo methods (MCMC) are one effi-
cient method for parameter inference, they fall short when used for computation
of the Bayesian evidence, mostly due to their lack of sampling in the areas of
the parameter space away from the best fit, which in practice do not affect the
confidence intervals of the parameters, but can add up to a significant fraction of
the total value of the evidence. An alternative sampling method is needed.

Nested sampling [8] is one of those methods aimed at calculating accurately
the Bayesian evidence. Its adequacy arises, on the one hand, from how it samples
the parameter space, climbing from the lowest to the highest values of the likeli-
hood allowed by the prior ranges; and, on the other hand, on its slow scaling with
the number of dimensions of the parameter space. One particular enhancement
over nested sampling is the MultiNest algorithm [5, 6, 4]. MultiNest improves
on nested sampling by adding an ellipsoidal-decomposition algorithm that allows
both for sampling of weirdly-shaped distributions and for simultaneous sampling
of multiple modes, or regions of high probability, in complicated probability distri-
butions that may contain several of them (this is precisely our case, see chapters
2 and 3). In addition to an accurate calculation of the Bayesian evidence of com-
plicated distributions, MultiNest is also able to produce a fair sample of the
parameter space under the likelihood, that can be used for parameter inference
in a similar way as the chains of samples coming from MCMC’s.1

All that makes MultiNest a very interesting tool for data analysis, which
would be desirable to use along the common MCMC methods. In order to do so,
we wish to combine MultiNest with the necessary computational cosmological
tools, mainly Boltzmann codes and experimental likelihoods. This is naturally
achieved by interfacing MultiNest through an already established cosmological
MCMC sampler, such as CosmoMC [7] or Monte Python [1]. Since the Boltz-
mann code used in this thesis was initially mostly CLASS [2], it made sense to
create this interface for the companion sampler Monte Python.

The interface written by the author of this thesis and the main author of
Monte Python, Benjamin Audren, starts from PyMultiNest, the Python
wrapper of MultiNest written by Johannes Buchner [3], which takes care of the

1Since the samples of MultiNest are scarcer, but the sampling is faster, the sample from
MultiNest can also be used to roughly estimate the covariance matrix of the likelihood, and
then use it to make more efficient an MCMC, which will characterise the distribution around
the minimum more thoroughly – a great idea of Benjamin Audren.

103

4.3 Interfacing of MultiNest into Monte Python

FORTRAN–Python communication in a neat way. MultiNest’s input, both
physical and sampling parameters, is passed through the standard input methods
of Monte Python (parameter file and command line, respectively), and the
output of MultiNest is simultaneously

• kept unmodified in its raw format in a separate folder for later additional
analyses;

• used to create MCMC-like samples in Monte Python format from the fair
samples of MultiNest, in order to use the same Monte Python analysis
tools. The different modes are separated in different, independent chain
folders.

In addition, our interface adds the capability, not present in the current version
of MultiNest, of using as clustering parameters any combination of them, not
necessarily those in the first positions.

This interface, together with the necessary documentation written by the au-
thor of this thesis, was integrated into the main code and released to the commu-
nity with Monte Python version 2.0, on March 2014.

Together with the interface, we created a simple example likelihood with 3
distinct modes:

L (D |v) =

3∏
i=1

exp

{
−1

2
(v − µi)Σ−1

i (v − µi)
}
, (4.3)

where v := (H0, ωb, ωCDM) are the parameters of the model and the data D
enters through the central values µi and the covariance matrices Σi:

µ1 = (67.0, 0.02225, 0.0120) , Σ1 =

 0.1 2·10−5 2·10−4

2·10−5 2·10−7 2.4·10−7

2·10−4 2.4·10−7 5·10−6

 , (4.4a)

µ2 = (69.5, 0.02300, 0.0170) , Σ2 =

 0.3 2·10−5 3.5·10−4

2·10−5 1.2·10−7 1.4·10−7

3.5·10−4 1.4·10−7 2·10−6

 , (4.4b)

µ3 = (71.5, 0.02180, 0.0100) , Σ3 =

 0.2 5.5·10−5 3·10−4

5.5·10−5 4·10−7 5·10−7

3·10−4 5·10−7 5·10−6

 . (4.4c)

The result of the sampling of this likelihood using MultiNest through the
interface described in this section is show in fig. 4.3. The dashed lines show the
cubic prior regions corresponding to each of the modes, cut automatically by
MultiNest and stored as three different Monte Python chains.

104

Peer-reviewed and published cosmological code

67 68 69 70 71 72

H0

0.0216

0.0218

0.0220

0.0222

0.0224

0.0226

0.0228

0.0230

ω
b

67 68 69 70 71 72

H0

0.006

0.008

0.010

0.012

0.014

0.016

0.018

ω
cd

m

0.006 0.008 0.010 0.012 0.014 0.016 0.018

ωcdm

0.0216

0.0218

0.0220

0.0222

0.0224

0.0226

0.0228

0.0230

ω
b

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

−
ln
L

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

−
ln
L

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

−
ln
L

Figure 4.3: Profile of the sampling of the likelihood given by eq. (4.3), using
MultiNest interfaced through Monte Python.

105

4.3 Bibliography

Bibliography
[1] Benjamin Audren, Julien Lesgourgues, Karim Benabed, and Simon Prunet.

Conservative Constraints on Early Cosmology: an illustration of the Monte
Python cosmological parameter inference code. JCAP, 1302:001, 2013,
1210.7183.

[2] Diego Blas, Julien Lesgourgues, and Thomas Tram. The Cosmic Linear
Anisotropy Solving System (CLASS) II: Approximation schemes. JCAP,
1107:034, 2011, 1104.2933.

[3] J. Buchner, A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, et al. X-ray
spectral modelling of the AGN obscuring region in the CDFS: Bayesian model
selection and catalogue. 2014, 1402.0004.

[4] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt. Importance Nested
Sampling and the MultiNest Algorithm. ArXiv e-prints, June 2013, 1306.2144.

[5] F. Feroz, M.P. Hobson, and M. Bridges. MultiNest: an efficient
and robust Bayesian inference tool for cosmology and particle physics.
Mon.Not.Roy.Astron.Soc., 398:1601–1614, 2009, 0809.3437.

[6] Farhan Feroz and M.P. Hobson. Multimodal nested sampling: an efficient
and robust alternative to MCMC methods for astronomical data analysis.
Mon.Not.Roy.Astron.Soc., 384:449, 2008, 0704.3704.

[7] Antony Lewis and Sarah Bridle. Cosmological parameters from CMB and
other data: a Monte- Carlo approach. Phys. Rev., D66:103511, 2002, astro-
ph/0205436.

[8] John Skilling. Nested sampling. AIP Conference Proceedings, 735(1):395–405,
2004.

106

