
A search for transient reductions in the inflaton speed of sound in
cosmological data, and other topics
Torrado Cacho, J.

Citation
Torrado Cacho, J. (2015, March 31). A search for transient reductions in the inflaton speed of
sound in cosmological data, and other topics. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/32593
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32593
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32593


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32593  holds various files of this Leiden University 
dissertation 
 
Author: Torrado Cacho, Jesús 
Title: A search for transient reductions in the speed of sound of the inflaton in 

cosmological data, and other topics 
 Issue Date: 2015-03-31 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32593


Chapter 3

Adding Large Scale Structure
data into the search

Foreword

This chapter is based on the e-print (submitted to Physical Review D)

Searching for primordial localized features with CMB
and LSS spectra

Bin Hu, Jesús Torrado

Submitted to Physical Review D

Preprint in arXiv:1410.4804 [astro-ph.CO]

The results presented in it and reproduced here are the product of the combined
effort of all its authors, who, as is customary in Theoretical Cosmology, appear in
alphabetical order. In this short chapter, I reproduce a major part of the original
publication, omitting the introductory content which has already been presented
in the previous chapters.

Abstract

Inspired by the study of mild transient reductions in the speed of sound of the
adiabatic mode during inflation, we search for a primordial localized feature im-
printed in cosmic microwave background and large-scale structure formation ob-
servables. We find some common oscillatory patterns both in the Planck CMB
temperature power spectrum and the WiggleZ galaxy spectrum. By performing
independent searches with these two data sets, we find a coincidence in the most
significant mode previously found by Achúcarro et al. 2013 by using only Planck
data. Furthermore, the joint data analysis shows that the oscillation frequency of
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3.1 Introduction

the feature gets better constrained, and the amplitude marginally deviates from
zero, unlike what was observed using only Planck data. Besides the parameter
estimation, we also discuss the Bayesian evidence. The addition of WiggleZ data
mildly enhances the significance of the best mode found in the Planck data.

3.1 Introduction

As discussed in the last chapter there exist several hints of oscillatory signals in
the CMB power spectrum [10, 7] and bispectrum [8]. This motivates a search for
such kind of features produced by inflationary scenarios beyond canonical single-
field.1 A short review of the literature on those attempts can be seen in the
Introduction of the last chapter. In none of those cases the statistical significance
of the extended models has been found to be high enough to claim a detection,
with the improvement of experimental accuracy we are now at the threshold of
verifying or falsifying these models.

In this thesis we focus on searching for oscillatory features in the scenario of
a transient reduction in the speed of sound, reviewed in section 1.3.4. Our test
case, introduced in the last chapter (and in [2]), consists of a gaussian reduction
in the speed of sound occurring within the window of e-folds corresponding to
the angular scales probed by CMB and large-scale structure (LSS) surveys. Its
functional form is consistent with a reduction in the speed of sound resulting from
a soft turn along the inflationary trajectory in a multi-field theory in which the
mass hierarchy is large enough to allow for an effective single-field description
[4, 3, 12, 5] (though one should keep in mind that a similar reduction in the speed
of sound may result from a different high-energy completion of the effective field
theory).

Since it is the same curvature perturbations that set the initial conditions for
CMB anisotropies and large-scale structure distributions, the primordial oscilla-
tory signals should be imprinted in all the observables of CMB anisotropy and LSS
tracers, like CMB spectra, bispectra, galaxy spectra, etc. Based on this consider-
ation, in this chapter and in the original publication [17] we search for primordial
oscillatory features from a transient reduction in the speed of sound of adiabatic
curvature perturbations via both CMB anisotropy temperature spectrum of the
Planck satellite as well as galaxy distribution spectrum of the WiggleZ telescope.
The rest of this chapter is organised as follows. In sec. 3.2, we will briefly review
the theoretical set-up. In sec. 3.3, we will introduce the methodology of parameter
estimation and model selection which is adopted in this work as well as the data
sets used. Then, we arrive at our results and discuss them in sec. 3.4. Finally, we
conclude in sec. 3.5.

1By canonical single-field we mean slow-roll regime, Bunch-Davies vacuum, canonical kinetic
terms and minimal coupling to gravity, with speed of sound cs = 1.
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Adding Large Scale Structure data into the search

3.2 Review of the model

In this chapter and the original publication [17], we search for localised features
due to a transient reduction in the speed of sound of the adiabatic mode during
inflation (see sec. 1.3.4) parametrised as a gaussian in e-folds. The shape tested
here is the same previously tested against Planck CMB data only, and it is de-
scribed in detail in section 2.2 in the last chapter, together with the allowed ranges
of its parameters. Very briefly, the resulting feature in the primordial spectrum
is

∆P
P (k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (3.1)

where the reduction in the speed of sound is parametrised as

u = 1− c−2
s = B e−β(N−N0)2 = B e

−β
(

ln τ
τ0

)2

. (3.2)

The parameters of the feature: the amplitude B < 0, the sharpness β > 0, and
the instant of maximal reduction N0 (or τ0 < 0) fall within the region

O(ε, η)� |B| � 1 , (3.3a)
50

N2
CMB

< β � 2e

B2
, (3.3b)

4.3 ≤ ln (−τ0) ≤ 6.0 . (3.3c)

For the precise meaning of the quantities that appear here, see sec. 2.2.

3.3 Methodology and data sets

In this work we solve the Einstein-Boltzmann hierarchy by using CAMB [20]
and sample the parameter space using different approaches in order to fulfil two
different purposes. On one hand, for parameter estimation, we use the thermody-
namic Markov chain Monte Carlo (MCMC) sampler, CosmoMC [19]. In detail,
we use a Metropolis-Hastings algorithm to generate chains of samples for a set
of cosmological parameters. On the other hand, for Bayesian evidence computa-
tion and model selection, we adopt the multi-modal nested sampler, MultiNest
[15, 16, 14] which implements an extended form of the nested sampling algorithm
[28, 27, 22, 21, 26]. This is because the dependence of the evidence on the prior
requires that the prior space is adequately sampled, even in the regions of low
likelihood. This makes evidence evaluation at least an order of magnitude more
costly than parameter estimation.

In what follows we make a brief review of the concepts of evidence and Bayesian
ratio. The Bayesian ratio is defined as the ratio of the probabilities of each of the

87



3.3 Methodology and data sets

two models being the true one underlying a given a set of data D:

R =
P (M1|D)

P (M0|D)
=
Z1

Z0

P (M1)

P (M0)
=
Z1

Z0
. (3.4)

Here, P (M1)/P (M0) is the probability ratio for the two models a priori, which
is conventionally set to unity; the evidence Z of a model M is the marginalised
likelihood of the data, i.e. the probability of having obtained the data D integrated
over all possible values of the model parameters θ:

Z =

∫
L(D|M(θ))π(θ) dDθ , (3.5)

where L(D|M(θ)), π(θ) and D are, respectively, the likelihood of the data, the
prior of the parameters in the model and the dimensionality of the parameter
space. In this work, we will use M1 and M0 to denote the feature and featureless
ΛCDM models; the cosmological parameter ranges we studied are listed in table
3.1. And the multidimensional integration in eq. (3.5) was sampled via the multi-
modal implementation of the nested sampling algorithm MultiNest [15, 16, 14].

Parameter Range (min, max)
Ωbh

2 (0.005, 0.100)
Ωch

2 (0.01, 0.99)
100ϑ∗ (0.5, 10.0)
τreio (0.01, 0.80)
ns (0.9, 1.1)

ln(1010A2
s) (2.7, 4.0)

B (−0.2, 0)
lnβ (0, 7.5)

ln(−τ0) (4.3, 6.0)

Table 3.1: List of the parameters used in the multi-modal nested sampling. Be-
sides these parameters, we also sample and marginalise over the fourteen nuisance
parameters of the Planck likelihood and one bias parameter of the WiggleZ likeli-
hood. We have sampled B up to −0.5, but nothing interesting was found beyond
the upper value cited in this table.

The Bayesian evidence measures the predictivity of a model: the integral in
eq. (3.5) is bigger the more amount of likelihood mass falls inside the regions
with substantial prior probability, and also the smaller is the volume V of the
parameter space allowed by the theory, since the prior distribution goes roughly
like π ∼ V−1. In turn, the Bayesian ratio quantifies the relative predictivity of
two models given a data set: if its value is much smaller than one, the model M0

is a more likely explanation of the data than the modelM1, and vice versa. In the
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Adding Large Scale Structure data into the search

frequentist approach, this is comparable to the increase of p-values2 due to the
look-elsewhere effect. For example, in particle physics, if one allows the predicted
mass of a particle to vary within a broad range, the p-value of an apparent peak in
particle production with a corresponding mass within this range will increase, just
because a wider range of energies makes a random, non-physical peak-like feature
more likely. Correspondingly, this indicates that the evidence of this model with
a new parameter, like the new particle’s mass, gets reduced.

On the other hand, the Bayesian ratio can also be used as an indicator of the
correlation between two data sets with respect to an extended model M1 based
on a simpler model M0: if the predictivity of the extended model with respect
to the basis model increases when adding the new data set, this is an indication
of the regions of high probability in the likelihood of the extended model being
similar in the two data sets. Otherwise, the product of the likelihoods of both
data sets would amount to a smaller evidence ratio than that of the single data
sets.

As for the data sets, we use the measurements of CMB temperature anisotropy3
[9] from the first data release of the Planck survey. Its temperature power-
spectrum likelihood is divided into low-` (` < 50) and high-` (` ≥ 50) parts
(see sec. 1.5.4). In order to break the well-known parameter degeneracy between
the reionisation optical depth τreio and the scalar index ns, the low-` WMAP
polarisation likelihood (WP) is used [9]. Finally, the unresolved foregrounds are
marginalised over, assuming wide priors on the relevant nuisance parameters as
described in [6].

Since several interesting feature modes are hinted at by using only Planck
temperature spectrum (see chapter 2 or [2]), a natural step is to cross check these
results with other observables seeded by the same initial conditions, coming from
different experiments whose systematic uncertainties are different from Planck’s.
We use the measurements of the galaxy power spectrum made by the WiggleZ
Dark Energy Survey.4 As described in [24], we use the power spectrum measured
from spectroscopic redshifts of 170 352 blue emission line galaxies over a volume
of ∼ 1 Gpc3 [13]. The covariance matrices as given in [24] are computed using
the method described by [11]. The best model proposed for non-linear corrections
to the matter power spectrum was calibrated against simulations. It has already
been demonstrated that linear theory predictions are as good a fit to the data as
the calibrated model up to k ∼ 0.2h/Mpc [24, 25]. For these reasons we restrict
ourselves to scales smaller than kmax = 0.2h/Mpc and use the linear theory
prediction only. We also marginalise over a linear galaxy bias for each of the four

2From Wikipedia.org, a p-value is the probability of obtaining a test statistic result at least
as extreme as the one that was actually observed, assuming that the null hypothesis is true. A
researcher will often “reject the null hypothesis" when the p-value turns out to be less than a
predetermined significance level, often 0.05 or 0.01. Such a result indicates that the observed
result would be highly unlikely under the null hypothesis.

3http://pla.esac.esa.int/pla/aio/planckProducts.html
4http://smp.uq.edu.au/wigglez-data

89

http://en.wikipedia.org/wiki/P-value
http://pla.esac.esa.int/pla/aio/planckProducts.html
http://smp.uq.edu.au/wigglez-data


3.4 Results and discussion

redshift bins.

3.4 Results and discussion

In order to justify or falsify this model, we should go beyond CMB observables
from the Planck satellite. A feature in the primordial spectrum of density pertur-
bations will seed both CMB anisotropies and the tracers of matter perturbation,
such as the galaxy distribution. Thus, if those features are big enough we should
observe them via all those windows.

Based on the findings of the previous study with Planck temperature power
spectrum (see chapter 2 and [2, 1]), we sample the same region of the parameter
space using only the galaxy power spectrum from the WiggleZ Dark Energy Sur-
vey. The result is shown in fig. 3.1(a). In particular we show the profile likelihood
of the sample in the plane (lnβ,− ln(−τ0)). The upper limit of ln(−τ0) has been
slightly extended, and the lower one slightly shrunk, in order to limit the interval
to the region in which the improvement in the likelihood is significant (but we
will later restore the limits of chapter 2 in the evidence computation).

As we can see, in the WiggleZ posterior there exist three diffused modes. In
particular, comparing figs. 3.1(a) and 3.1(b) with the naked eye there seems to
exist a coincidence between WiggleZ and Planck results around ln(−τ0) ∼ 6.0,
ln(−τ0) ∼ 5.55 and ln(−τ0) ∼ 5.3, which were three of the most significant modes
detected in the previous work [2], named respectively modes A, B and C (see
table 2.1). In order to test such coincidence, we repeated the search combining
both data sets. The results are reported in fig. 3.1(c). The well-isolated modes
previously found in the Planck data are accurately reproduced (compare figs.
3.1(b) and 3.1(c), and also see fig. 3.2(a)). In addition we observe an unfolding
of mode A and a new mode at ln(−τ0) ∼ 6.3 which survives the addition of
the WiggleZ data; both of them will be the subject of future work. We have
checked that there exists an enhancement of more than 20% in the value of the
likelihood improvement (∆ lnL) in modes B and C, while that of mode A shows
no enhancement.

Later, we isolated and re-sampled using MCMC methods each of the four
individual modes found in [2] (see fig. 3.2) with the joint data sets. The cor-
responding results are shown in the fig. 3.2(a). We can see that the individual
modes are separated quite well in the ln(−τ0) direction.

If we force ourselves to focus on one particular mode, such as mode B, we can
obtain quite stringent constraints on the feature parameters, like those demon-
strated in chapter 2, e.g. in table 2.1 or fig. 2.6. However, finding stringent
constraints does not mean that this result has a very strong statistical signifi-
cance, because the parameter space volume of the feature model is much larger
than that of the vanilla ΛCDM model. So, even if there exists a local patch in
the parameter space with highly peaked likelihood, the evidence of this signature
could still be suppressed greatly by the big volume of the extra parameter space,
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(c) Planck+WiggleZ

Figure 3.1: Profile parameter distribution of the MCMC sampling in the
(lnβ,− ln(−τ0)) plane, for the different combinations of data sets. It shows the
coincidence between the fits found in Planck and WiggleZ at ln(−τ0) ∼ 5.3 and
ln(−τ0) ∼ 5.55, and their enhancement of 20% in likelihood improvement. The
difference in the likelihood (∆) is calculated against the best fit value of ΛCDM
in the different data sets. The regions where there is no significant improvement
over the best fit of the ΛCDM model are not shown.
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as discussed in the previous section.
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(b) Multi-modal nested sampling

Figure 3.2: Profile likelihood in the (ln(−τ0), B) plane for Planck+WiggleZ,
for the different sampling methods. It demonstrates how the multi-modal nested
sampling algorithm samples more thoroughly the regions of low likelihood. The
regions not samples are shown in white (in the B&W version, not to be confused
with the light grey areas of high likelihood). The difference in the likelihood (∆)
is calculated against the best fit value of ΛCDM in the different data sets.

Inspired by the fact that there exists a relatively significant reduction in the
likelihood value of the feature model in the best fits compared with that of the
featureless ΛCDM model, (e.g. for mode B the joint data analysis gives−2∆ lnL ∼
10), we are motivated to compute the Bayesian ratio of the feature model. The
statistical results are summarised in table 3.2, fig. 3.2(b) and fig. 3.3.

A comparison between the results of the MCMC and multi-modal nested sam-
plings, showing the consistency between them, can be seen in fig. 3.2. The main
difference between both sub-plots is due to the more thorough sampling of the
tails of the distribution (points in parameter space with low likelihood value)
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Model Data set −2 lnL lnZ R
M1 Planck 9801.918 (9796.27) −4955.61± 0.31

exp(0.46) ' 1.6
M0 Planck 9807.154 (9805.90) −4956.07± 0.31
M1 Planck+WiggleZ 10253.570 (10249.20) −5183.05± 0.32

exp(0.62) ' 1.9
M0 Planck+WiggleZ 10262.042 (10258.80) −5183.67± 0.31

Table 3.2: Multi-modal nested sampling results of feature (M1) and non-feature
(M0) models with the different data sets. The likelihood values in the third
column are given at the best fit, first the nested sampling value, and second, in
parenthesis, the MCMC sampling value.

achieved by multi-modal nested sampling: these points are crucial to get a reli-
able evidence estimation, which is the goal of the nested-sampling algorithms, but
almost irrelevant to parameter estimation, at which MCMC excel. In table 3.2,
we can see that the resulting best-fit likelihood values from multi-modal nested
sampling are also consistent with those coming from MCMC sampling, though, as
expected, the former a little bit lower than the latter, since the sampling around
the maxima is more thorough in MCMC’s.

In the first place, the Bayesian ratios listed in table 3.2 tell us that, taking
into account only the part of the parameter space described in sec. 2.2, there
would apparently exist a slightly positive preference for the feature model: R ∼
1.9 (Planck + WiggleZ) vs. 1.6 (Planck) (though, according to the conventional
criterion [18] it is barely worth mentioning). We must emphasise that in this
paper we did not cover all the parameter regime allowed by theory, which sets no
lower bound for τ0, but instead the regime in which the features are most likely to
be detectable by Planck. Despite the expected corrections, the slightly favourable
value of the Bayesian evidence in the observable regime makes us optimistic about
the enlargement of the parameter space and the addition of new data sets, namely
Planck’s polarisation power spectrum and bispectrum. This optimism is also
backed up by how, as discussed in the sec. 3.3, the increase in the Bayesian
ratio when adding the WiggleZ data indicates a positive correlation between the
features found in both data sets; nevertheless, when put into the context of the
error bars for the evidences cited in table 3.2, the claim gets milder.

Also, on the positive side, as can be seen in fig. 3.3, the addition of the WiggleZ
data set clearly pushes the marginalised distribution towards bigger amplitudes
of the feature with respect to using Planck data only, which on the one hand is
an indication of a positive correlation between the sets, and on the other hand
reinforces the overall likelihood of the presence of a feature against the null hy-
pothesis.

3.5 Conclusions and outlook
In this chapter we searched for primordial oscillatory signals inspired by a tran-
sient reduction in the sound speed of the adiabatic curvature perturbation via
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(c) Marginalised posterior for
Planck+WiggleZ

Figure 3.3: Multi-modal nested sampling results: 1D marginalised posterior
distribution for the feature parameters and 2D marginalised posterior distribution
in the plane (lnβ,B), with and without the WiggleZ data set. Notice how the
addition of the WiggleZ data set increases the overall likelihood of a feature with
a non-zero amplitude.

CMB (Planck) and LSS (WiggleZ) windows. First of all, by analysing both data
sets separately, we found some common oscillatory patterns both in the Planck
CMB temperature power spectrum and the WiggleZ galaxy spectrum. Interest-
ingly, we found a coincidence in the most significant mode previously found by
Achúcarro et al. 2013 [2] by using only Planck data. Second, the joint data anal-
ysis showed that the oscillation frequency of the feature gets better constrained,
and the amplitude marginally deviates from zero, unlike what was observed by
using only Planck data. Besides parameter estimation, we also calculated the
Bayesian evidence for the purpose of model selection by using multi-modal nested
sampling. For a full model selection study, the prior must be extended and sam-
pled in the full parameter range allowed by the theory. Our results show that,
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if we were to ignore the parts of the parameter space not sampled here, there
would exist a slightly positive preference for the feature model, Bayesian factor
R ∼ 1.9 (Planck + WiggleZ), vs. 1.6 (Planck). Therefore, we are optimistic about
enlarging the sampled parameter range and using additional data sets, specially
Planck’s polarisation power spectra and temperature bispectrum.

The Bayesian evidence analysis shows that although there exists a relatively
large improvement in the likelihood value (−2∆ lnL ∼ 10) in several particular
parameter regimes, due to the relatively large number of extra parameters (3) and
their broad ranges of variation (look-elsewhere effect), the present Planck tem-
perature and WiggleZ matter power spectra data still lack significance to claim
a detection. However, due to the correlations between temperature and polarisa-
tion modes of the power spectrum and the correlations with the bispectra given
by the model of transient reductions in the speed of sound, the present results
have specific predictions for the TE cross-correlation spectrum (CTE

` ) [1] and the
temperature bispectrum (BTTT

`1`2`3
) [2, 1] which can be detected with the upcoming

Planck data release 2014. Particularly, the new fast bispectrum estimator of os-
cillatory features from [23] should be able to cover the frequency where the most
significant mode that we found is located.

In the light of the additional WiggleZ data, we update the predictions stated in
chapter 2 and [2, 1], based on the high correlation between the bispectrum features
studied there and the phenomenological oscillatory shape tested by the Planck
collaboration and given in [8, eq. (16)].5 In the parameters used by the Planck
collaboration, we expect to find a feature with zero phase, and wavelength in the
95% c.l. interval kc ∈ (0.0078, 0.0083) from mode B, or kc ∈ (0.0099, 0.0110) from
mode C. As happened when using only Planck data [1], a degeneracy between
B and lnβ prevents us from setting accurate predictions for the amplitude and
envelope of the feature. Nevertheless, for all values of the parameters along the
degeneracy, the signal is most significant on the scales beyond the second acoustic
peak, and reaches its maximum around the third or fourth peak.
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