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Chapter 2

Localized correlated features
in the CMB power spectrum
and primordial bispectrum
from a transient reduction in
the speed of sound

Foreword
This chapter is based on the published papers

Localized correlated features in the CMB power spectrum and pri-
mordial bispectrum from a transient reduction in the speed of sound

Ana Achúcarro, Vicente Atal, Pablo Ortiz, and Jesús Torrado

Published in Physical Review D89 (2014) 103006

Preprint in arXiv:1311.2552 [astro-ph.CO]

and
Inflation with moderately sharp features in the speed of sound: GSR
and in-in formalism for power spectrum and bispectrum

Ana Achúcarro, Vicente Atal, Bin Hu, Pablo Ortiz, and Jesús Torrado

Published in Physical Review D90 (2014) 023511

Preprint in arXiv:1404.7522 [astro-ph.CO]

The results presented in them and reproduced here are the product of the com-
bined effort of all its authors, who, as is customary in Theoretical Cosmology,
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2.1 Introduction

appear in alphabetical order.
As part of this Ph.D. thesis, I reproduce a major part both of the original

publications, focusing on the parts in which my contribution was most significant,
specially the sections concerning the parameter estimation and the interpretation
of the results.

Abstract

We perform a search for localized oscillatory features in the Planck CMB power
spectrum of the first year of observations, assuming that said features are caused
by a transient reduction in the speed of sound of the adiabatic mode during
effectively single-field, uninterrupted slow-roll inflation.

We find several fits, in which we perform several consistency checks and further
analyses, such as its reproduction by the a different Boltzmann code, the study
of their polarization signal in the CMB and their local significance at different
angular scales.

For each of the best fits, we calculate the expected correlated signal in the pri-
mordial bispectrum, and compare it to the search for scale dependent bispectrum
features carried out by the Planck collaboration. Where both searches overlap,
we reproduce the Planck results reasonably well. In addition, some of our best
fits lie outside the scales and frequency ranges searched by Planck, which calls
for an extension in frequencies and envelopes of the templates used in Planck’s
search.

By exploiting correlations between different observables, our results strongly
suggest that current and data, including the imminent 2014 Data Release of
Planck, might already be sensitive enough to detect transient reductions in the
speed of sound as mild as a few percent, opening a new window for the presence
of extra degrees of freedom during inflation.

2.1 Introduction

The paradigm of inflation [47, 71, 72, 70, 55, 18] in its simplest realizations is con-
sistent with the latest data releases from the Planck [7] and WMAP [28] satellites.
However, hints of a primordial oscillatory signal in the CMB bispectrum [10] and
of anomalies in the CMB power spectrum [28, 9] motivate a search for correlated
features produced by inflationary scenarios beyond canonical single-field.1 Such
correlation is in general expected and will differ depending on its physical origin
[34], so it can be used to discriminate among inflationary mechanisms.

On the theory side, several mechanisms that produce oscillatory features are
being investigated. As first noted in [73], a step in the inflaton potential causes

1By canonical single-field we mean slow-roll regime, Bunch-Davies vacuum, canonical kinetic
terms and minimal coupling to gravity, with speed of sound cs = 1.
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features in the spectra [77, 6, 45, 21, 33, 19, 57, 12, 20, 75, 23], and novel method-
ologies have been developed in [74, 35, 38, 15, 63, 16] for more generic transient
slow-roll violations. The effect of a variable speed of sound has also been analysed
both in the power spectrum [2, 50, 5] (for sudden variations see [66, 63, 64, 24, 23])
and bispectrum [5, 16, 68] (see [24, 23] for sudden variations). Different initial
vacuum states (see e.g. [37, 46, 61, 51]) or multi-field dynamics [44, 43, 69, 65]
may also cause oscillations in the primordial spectra.

On the observational side, searches in the CMB power spectrum data have
been performed for a variety of scenarios, such as transient slow-roll violations
[36, 12, 26, 13, 25, 48, 27, 63], superimposed oscillations in the primordial power
spectrum [56, 42, 17, 58, 67, 60, 59] and more general parametric forms (see [9] and
references therein). In addition, the Planck collaboration searched for features in
the CMB bispectrum for a number of theoretically motivated templates [10]. In
none of these cases the statistical significance of the extended models has been
found high enough to claim a detection. Still, it is becoming clear that hints of
new physics (if any) are most likely to be detected in the correlation between
different observables.

In this spirit, in the two papers presented in this chapter we search for transient
reductions in the speed of sound of the adiabatic mode consistent with (effectively)
single-field inflation and uninterrupted slow-roll. We do this by exploiting a very
simple correlation between power spectrum and bispectrum noted in [5] and pre-
sented in section 1.3.4. While more general situations are possible, and have been
considered elsewhere [15, 16], there is a particularly interesting regime for which
the complete primordial bispectrum is obtained to leading order in slow-roll [5].
The amplitude and the rate of change of the speed of sound must be large enough
to dominate over slow-roll effects while being small enough to allow a perturbative
calculation of the effect on the power spectrum and bispectrum. We call transient
reductions in this regime mild and moderately sharp.

Our test case consists of a gaussian reduction in the speed of sound occurring
within the window of e-folds in which the scales corresponding to the angular
scales probed by Planck exit the Hubble sound horizon. The functional form
is inspired by soft turns along a multi-field inflationary trajectory with a large
hierarchy of masses, a situation that is consistently described by an effective single-
field theory [3, 2, 31, 4] (see also [44, 43]). Nevertheless we stress that reductions
in the speed of sound are a more general phenomenon within effective field theory
(and hence may have diverse physical origins).

Our statistical analysis of the Planck CMB power spectrum reveals several
fits with a moderately improved likelihood compared to the best ΛCDM fit. We
performed different tests to check the robustness of the fits found. For each
of those fits we give the associated full primordial bispectrum. At the time of
writing this thesis, the Planck bispectrum data have not yet been released but,
due to a lucky coincidence, templates very similar to our predictions have already
been tested by Planck [10] (inspired by a step in the potential). We find that the
predicted bispectra for some of our fits are reasonably consistent with the best fits
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2.2 Our test case – A gaussian in e-folds

of Planck. In addition, some of our best fits lie on a region of the parameter space
not yet analysed by Planck. If confirmed, these correlations would constitute
evidence for transient reductions in the speed of sound. It is interesting that
rather mild reductions of the order of a few percent may already be observable in
the data.

2.2 Our test case – A gaussian in e-folds

In this chapter, we attempt to fit to the CMB data the kind of features described
in section 1.3.4. The features in the CMB temperature power spectrum originate
from the perturbations in the scalar primordial power spectrum given by eq.
(1.54), in terms of a reduction in the speed of sound cs(τ).

We have chosen to parametrise the reduction in the speed of sound as a gaus-
sian in e-folds N . This functional form is inspired by soft turns along a multi-field
inflationary trajectory with a large hierarchy of masses, a situation that is con-
sistently described by an effective single-field theory and uninterrupted slow roll
[3, 2, 31, 4, 44, 43]. Our parametrisation reads:

u = 1− c−2
s = B e−β(N−N0)2 = B e

−β
(

ln τ
τ0

)2

, (2.1)

where β > 0 is the sharpness, B < 0 is the amplitude, and N0 (or τ0) is the instant
of maximal reduction. Assuming slow-roll, the conformal time τ is related to the
e-folds of inflation through ln (−τ) = (Nin −N)− ln (ainH0), where ain = a(Nin)
and Nin is the time when the last ∼ 60 e-folds of inflation start. Notice that
the quantity Nin is irrelevant, since all the quantities in e-folds are defined with
respect to Nin.

There are two main criteria that we followed in order to determine the param-
eter regions that we would explore:

(a) The SRFT calculation of the power spectrum and the bispectrum is valid
for mild and moderately sharp reductions of the speed of sound. Also, the
slow-roll contributions to the bispectrum are disregarded with respect to the
terms arising from the reduced speed of sound (see [5] or section 1.3.4). This
means that the amplitude |u| and the rate of change s ≡ ċs

csH
must be much

smaller than one, while being (at least one of them) much larger than the
slow-roll parameters. The rate of change s of the speed of sound (2.1) reads:

s(N) =
dcs
csdN

= −Bβ(N −N0) e−β(N−N0)2

1−B e−β(N−N0)2
. (2.2)

Since we have to impose |s| � 1 for all values of N , it suffices to impose this
condition at the point where |s| takes its maximum value |s(N∗)| = |s|max,
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determined by

N∗ = N0 ±
1√
2β

√
1 +O(B) ' N0 ±

1√
2β

, (2.3)

which approximately corresponds to one standard deviation of our gaussian,
and we have used that |B| � 1. Then the condition |s|max � 1 translates
into β � 2e

B2 + O(B−1). Altogether, the allowed region of our parameter
space taking into account these constraints is

O(ε, η)� |B| � 1 , (2.4a)

βmin � β � 2e

B2
, (2.4b)

Nbb < N0 < Nend , (2.4c)

where Nbb and Nend are respectively the (unknown) instants, in e-folds scale,
of the beginning and the end of inflation; on the other hand, βmin corresponds
to the case in which |s|max ∼ O(ε, η). Notice that it is only necessary to satisfy
one of the lower limits of eqs. (2.4a) or (2.4b).

(b) The angular scales probed by Planck (` = 2 − 2500) roughly correspond
to the momentum scales crossing the Hubble sound horizon during the first
NCMB ' 7 e-folds of the last ∼ 60 e-folds of inflation. If the data resembles
features due to a reduced speed of sound, it is most likely to find them within
this CMB window (we choose to look under the lamppost). This translates
into constraints on the parameters that determine the position and width of
the feature, namely the sharpness β and the instant N0. They are chosen
so that the reduction happens well within this CMB window. We took a
very conservative definition for the total width of the reduction (in e-folds):
ten standard deviations of the gaussian, ∆N = 10/

√
2β, must fit within

the observable window [Nin, Nin + NCMB]. Then, the position N0 and the
sharpness β should satisfy

50

N2
CMB

< β , (2.5a)

5√
2β

< N0 −Nin < NCMB −
5√
2β

. (2.5b)

This is a very conservative choice (or, the lamppost reaches actually further):
(2.5a) and (2.5b) are more restrictive than the condition that the feature
be observable: for example, any feature happening in a particular window
has an effect on the modes that leave the horizon after the reduction in cs
has finished, as is shown by the fact that the transfer functions that relate
primordial scales when they leave the Hubble sphere to scales in the CMB
have a non-zero, finite width. In exchange for a more restrictive constraint,
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2.3 Methodology of the search

we avoid degeneracies with the spectral index ns and the optical depth τreio
that could be caused by reductions with a very long wavelength in the power
spectrum.

Finally, putting together the constraints described above, and prioritising the
most restrictive of them in each case, we get the final set of bounds

O(ε, η)� |B| � 1 , (2.6a)
50

N2
CMB

< β � 2e

B2
, (2.6b)

5√
2β

< N0 −Nin < NCMB −
5√
2β

. (2.6c)

For computational purposes, we use the parameter ln(−τ0) instead of N0 for
the data analysis. The range for this parameter is taken to be more strongly
restricted than by (2.6c):

4.4 ≤ ln(−τ0) ≤ 6 . (2.7)

The features in the power spectrum and bispectrum are linearly oscillating, as
well as those tested in one of the searches for bispectrum features by the Planck
collaboration [10, sec. 7.3.3]. The oscillatory frequency is determined by τ0, and
the range of frequencies covered in Planck’s bispectrum analysis is equivalent to
the interval ln(−τ0) ∈ [4.43, 5.34]. This motivates us to search in the interval
given above, which contains and slightly enlarges that of Planck’s search, while as
the same time avoids highly oscillating features (larger values of |τ0|) that make
computational control difficult.

As a final step, we choose priors for the three parameters of the feature. In
particular, we choose uniform priors in B, lnβ and ln(−τ0), within the limits
given respectively by eqs. (2.6a), (2.6b) and (2.7). The model-dependent bound
|B| � O(ε, η) is ignored a priori.

2.3 Methodology of the search
The power spectrum features caused by a transient reduction in the speed of sound
described by eq. (2.1), are combined with the primordial spectrum of the ΛCDM
Planck baseline model described in [11, sec. 2], parametrized by an amplitude As
and a spectral index ns. To do so, we solve the integral in eq. (1.54) using a Fast
Fourier Transform. The primordial perturbations evolve in a flat FLRW universe
parametrized by the densities of baryonic and cold dark matter, Ωb and Ωcdm, and
the current expansion rate H0. The damping due to reionisation is parametrized
by the optical depth τreio. Those 6 standard plus 3 feature parameters describe
our cosmological model.

The evolution of the perturbations and their projection onto the CMB power
spectrum is calculated with the Boltzmann code CLASS [52, 29]. In order to
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incorporate our features to the primordial power spectrum, we needed to develop
an extension to CLASS, which is described in chapter 4.

The resulting CMB is fitted to the ESA Planck mission temperature data of
March 2013, using the likelihood provided by the experiment [8], and the low-`
CMB polarization data of the WMAP experiment [28]. We use flat priors on
the 6 ΛCDM parameters and the 14 nuisance parameters of the likelihood [8].
For the parameters of the feature, we use the priors described in the last section.
The posterior probability is then maximized over the prior bounds using Markov-
Chain Monte-Carlo (MCMC) methods, making use of the MCMC sampler Monte
Python [22].

Multi-modal sampling with Markov Chain Monte Carlo

As is usual when fitting small features on top of a large data set, we found the
likelihood pdf (and hence the posterior) to be multi-modal. Although multi-
modal distributions are sampled more efficiently with methods such as multi-
modal nested sampling [41, 40], we managed to sample the posterior pdf by using
only MCMC methods. As we explained in section 1.5.7, the reason why MCMC
methods fall short when exploring multi-modal pdf’s is the need for a very long
sampling time in order for the jumping between different modes to occur enough
to, at the same time, (1) sampling each of the modes fairly with respect to each
other, and (2) finely sampling around each one of them. It is easy to show why
it is difficult to have both: finely sampling around each of the modes requires
a proposal distribution as close as possible to that of the mode itself, which
automatically sets the step size in the parameter space to be much smaller than
the distance between well-separated modes, making jumps between them unlikely;
on the other hand, an extended proposal distribution characterises better the
position of the different modes, but sets the step-size so large that the estimation
of the confidence intervals of each of the modes is quite inaccurate, since the
sampling around each of the maxima is scarce.

In this work, instead of finding a compromise solution, we took a two-steps
approach. First, we sampled the posterior pdf with an extended proposal distri-
bution, in order to find the rough position and shape of the different modes, but
renouncing to get accurate parameter constrains for now.2 After obtaining a big
number of samples, we inspected the resulting profile of the posterior pdf in a
grid – the profile pdf P(αi) in a grid cell i with respect to a subset of the full
set of parameters {α} ⊂ {θ} is the maximised pdf with respect to the remaining
parameters and the cell volume, P(αi) = max{θ}−{α},iP(θ). Why the profile and
not, as it is usual, the marginal pdf? Because the large extent of the proposal

2It is common in MCMC samplers, when there is no good estimate of the proposal distribu-
tion, to start the sampling process with an inaccurate estimate, and then use some of the first
samples to obtain a more accurate one and to automatically restart the sampling with this one.
Needless to say, in this setting this approach is not appropriate, since we do prefer a rough,
long-tailed, inaccurate proposal pdf to be constant during the whole sampling process.
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2.4 Summary and analysis of the results

distribution produces a very scarce sampling that makes the different modes only
barely visible as over-densities of samples (as local maxima of the marginal like-
lihood); instead, they are easier to see by directly inspecting the values of the
likelihood on a coarse grid.

Second, once the rough shape of the pdf is known, provided that the different
modes are clearly separated, one can crop regions of the parameter space con-
taining each a single mode. Over each of those regions, using a rough estimate of
the single-mode proposal distribution, one can obtain confidence intervals for the
different parameters as one would normally do for uni-modal pdf’s. Finally, each
of the modes must be assigned a relative probability proportional to the total pdf
mass under said mode.

Going back to the particular case under study, as our features are small and
affect only a fraction of the data set, we expect to find only mild degeneracies of the
feature parameters with the cosmological parameters. Due to the mild character
of the degeneracies (that we confirmed a posteriori, cf. fig. 2.2), we expect the
likelihood to show its multi-modal character only within the parameter subspace
of the feature. Therefore, we started our search by mapping the multi-modal
likelihood on this 3-dimensional subspace.

We started our analysis by sampling the parameter sub-space of the feature,
(B, lnβ, ln(−τ0)), with very long tailed chains, of order 5% of the width of the
prior in each direction. After obtaining a big number of samples, we inspected the
profile posterior in the plane (lnβ, ln(−τ0)); it revealed the position and rough size
of the different modes, and we used that information to crop uni-modal regions.
We then reassessed the shape of the modes by sampling over the feature parame-
ters only, and when their position and extension were sufficiently well determined,
we resampled them allowing now the baseline ΛCDM and nuisance parameters to
vary. With this, we got the definitive posterior probability distribution functions
for the different modes.

In the following, χ2 refers to the so-called effective χ2 defined as χ2
eff = −2 lnL

(see [76, p. 10]); in turn, ∆χ2 stands for the difference with the corresponding
best fit value of Planck baseline model, using the likelihoods mentioned above
[11]: χ2

eff, best-fit = 9805.90.

2.4 Summary and analysis of the results

The result of our search, having discarded small signals with ∆χ2 > −2 over
ΛCDM, is a series of five well-isolated bands with almost constant ln(−τ0) (i.e.
frequency of oscillation of the feature in the primordial spectrum), in which the
likelihood is improved with variable significance. We will call them, in order of
decreasing ln(−τ0), modes A to E . The resulting profile likelihood can be seen
in figure 2.1. For each of the modes showed in the figure, the relevant parameter
data is given in table 2.1: the numbers in parentheses are the best fit values, and
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2 3 4 5 6 7

lnβ
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−2∆lnL

Figure 2.1: Profile of ∆χ2 = −2∆ lnL for the features in the CMB power
spectrum in the (lnβ, ln(−τ0)) plane. We name each of the bands, in descending
order of ln(−τ0), modes A to E . Regions with improvements of −∆χ2 < 2 have
been discarded and are not shown in the plot.

Mode −B × 102 lnβ ln(−τ0) ∆χ2 smax

A (4.5) 3.7 +1.6
−3.0 (5.7) 5.7 +0.9

−1.0 (5.895) 5.910 +0.027
−0.035 −4.3 0.33

B (4.2) 4.3 ± 2.0 (6.3) 6.3 +1.2
−0.4 (5.547) 5.550 +0.016

−0.015 −8.3 0.42

C (3.6) 3.1 +1.6
−1.9 (6.5) 5.6 +1.9

−0.7 (5.331) 5.327 +0.026
−0.034 −6.2 0.40

D (4.4) (6.5) (5.06) −3.3 0.48

E ∗ (1.5) (4.0) (4.61) −2.2 0.05

Table 2.1: CMB power spectrum best fits (in parentheses), 68% c.l. intervals,
effective ∆χ2 at the best fit value, and maximum value of the speed of sound
derivative smax, for each of the modes. The prediction for the bispectrum for E
is not reliable (see text).

the parameter ranges, when given, are 68% c.l. regions.
The amplitude B of the fits is rather small, O(10−2), and therefore comparable

with neglected slow-roll terms. This means the bispectrum is dominated by terms
of order s = ċs/(Hcs). The maximum values of s at the best fits for the modes
A to E in table 2.1 are respectively 0.33, 0.42, 0.40, 0.48, 0.05. Notice that
the value of s for E is also comparable to neglected terms, so the prediction for
the bispectrum based on eq. (1.55) cannot be trusted in this case. We therefore
disregard this mode in the comparison with the bispectrum.
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B lnβ

ln(
−τ 0

) ωB ωC H 0 A s n s τ rei
o

B

lnβ

ln(−τ0 )

ωB

ωC

H0

As

ns

τreio

−0.34 −0.02 −0.06 −0.05 −0.00 −0.01 −0.01 0.01

−0.34 0.16 0.02 −0.00 0.03 −0.01 0.03 −0.02

−0.02 0.16 −0.00 −0.09 0.08 0.00 0.07 0.03

−0.06 0.02 −0.00 −0.57 0.72 0.20 0.59 0.30

−0.05 −0.00 −0.09 −0.57 −0.97 −0.09 −0.80 −0.33

−0.00 0.03 0.08 0.72 −0.97 0.13 0.82 0.35

−0.01 −0.01 0.00 0.20 −0.09 0.13 0.21 0.96

−0.01 0.03 0.07 0.59 −0.80 0.82 0.21 0.39

0.01 −0.02 0.03 0.30 −0.33 0.35 0.96 0.39

Figure 2.2: Correlation coefficients between the feature and the cosmological
parameters for the mode B. Notice the small correlations between the two sets of
parameters, and the rather large negative correlation between B and lnβ.

For the modes A, B and C the table 2.1 shows the 68% c.l. ranges. For bands B
and C we were unable to put an upper bound on lnβ due to a degeneracy between
that parameter and the amplitude |B|, as we will explain below. For those two
modes, the upper bound on lnβ is set by the prior s < 1 in eq. (2.6b), which is
saturated at lnβ ' 7.5.

The lower bands D (and E) are less significant and their likelihoods much less
gaussian, so we only show their best fits. Despite their low significance, they are
worthy of mention because they fall in the region overlapping with Planck’s search
for features in the bispectrum (see below).

The best fits and 68% c.l. ranges of the six ΛCDM parameters [11]3 are quite
accurately reproduced, see table 2.2. As expected, we find only small degenera-
cies4 (|ρ| ≤ 0.15) between the feature parameters and the ΛCDM parameters for
modes A, B and C. The correlation matrix for the mode B is shown in fig. 2.2. For
the less significant modes D and E , some of the correlations grow up to |ρ| ≤ 0.30.

3See also the parameter tables at http://www.sciops.esa.int/wikiSI/planckpla/index.
php?title=File:Grid_limit68.pdf&instance=Planck_Public_PLA.

4The correlation matrix is defined as ρij ≡ Cij/
√
Cii · Cjj , where Cij are the covariance

matrix elements corresponding to the parameters with indices i and j.
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Figure 2.3: Profile of ∆χ2 = −2∆ lnL for the mode B in the (lnβ, B) plane,
showing the ρ = −0.34 degeneracy between those two parameters. Some lines of
smax = const are shown. Notice how the mode extends beyond the s = 1 prior
limit.

This is expected, since for lower ln(−τ0) the frequency of the fits drops, getting
closer to the frequency of the acoustic oscillations.

A gain of |∆χ2| . 10 is common in similar searches (see section 2.4.4 for a
comparison with other searches for features in the CMB power spectrum), which
suggests that CMB power spectrum data alone cannot justify the introduction
of these features. Nevertheless, the aim of this chapter is to show that low-
significance fits can still predict correlated features in the bispectrum which are
possibly observable with the current data. Model selection should be done using
the full parameter ranges allowed by the theory and taking into account both
power spectrum and bispectrum, and, if possible, adding other data sets with
uncorrelated systematic effects, such as Large Scale Structure (see chapter 3).

2.4.1 The degeneracy of B and ln β – upper limit of ln β

In this section we comment on one characteristic of the modes B and C (and also
D): a positive correlation between lnβ and |B|: the CMB temperature data is
not able to restrict the maximum value of lnβ, as one can see in figure 2.1 and in
the 1D marginalized likelihood of lnβ in figure 2.6 (middle-right panel). In each
mode, after some value of lnβ, the likelihood reaches a plateau with constant
ln(−τ0); along this direction of increasing lnβ, the best-fit amplitude B grows
(see fig. 2.3), correlated with lnβ with correlation coefficient of order ρ ∼ −0.3
(cf. fig. 2.2). The simultaneous growth of |B| and lnβ in some of these plateaus
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2.4 Summary and analysis of the results

causes that at some point the prior limit s < 1 in eq. (2.6b) gets saturated, in
particular at lnβ ' 7.5 (see figure 2.3), and hence the prior sets the upper bound
for lnβ.

From the CMB power spectrum point of view, the reason for this to happen
is the following: along the direction of simultaneous increase of lnβ and |B|,
the feature in the primordial power spectrum broadens towards smaller scales,
while the amplitude of the tail on the larger scales remains almost constant (see
2.4, top). Since at smaller scales much of the primordial signal is suppressed by
diffusion damping in the CMB, no significance is gained along the degeneracy
direction, causing a plateau in ∆χ2. This can be seen illustrated for mode B in
figure 2.4: we compare two of the best fits of this mode, one sitting well within
the prior bounds (white circle in figure 2.3), and a similar fit (grey circle in figure
2.3) that improves ∆χ2 marginally and saturates the s = 1 bound. In figure 2.4
we can see the effect of those fits in the primordial and CMB temperature power
spectrum. Notice how the big difference between both fits in the former gets
diluted in the latter.

Can we resolve this ambiguity? Probably: photon diffusion at the last scatter-
ing surface has the effect of polarizing the CMB signal through Thomson scatter-
ing, so at smaller scales the polarization spectrum will contain information about
the primordial spectrum, complementary to that of the temperature spectrum.
Therefore, the difference at small scales between two fits in the same plateau
(here, the dashed and dotted spectra in figure 2.4) is larger in the TE and EE
CMB polarization spectra (see fig. 2.5). This suggests that the high-` Planck
polarization data, expected to be released along 2014, may be able to set stringer
bounds on the maximum value of lnβ, as well as confirm that we are not fitting
noise.

2.4.2 Cross-check with a different Boltzmann code

In order to make our results from CLASS+Monte Python more reliable, we
cross-checked them with an independent Einstein-Boltzmann solver and a different
MCMC sampler, namely CAMB [54] and CosmoMC [53]. As an example, in fig.
2.6 and tab. 2.2 we explicitly show this comparison for the most significant mode
B by varying both the primary ΛCDM parameters and the additional sound speed
reduction parameters. We find excellent agreement between these two results.

2.4.3 Local improvement at different angular scales: ∆χ2(`)

Given a fit to the CMB power spectrum of some feature model, it is interesting to
know in which ranges of multipoles the feature describes the data better than the
baseline ΛCDM model. This kind of local improvement can only be calculated
approximately, since the temperature data points at different multipoles are in
general correlated. Nevertheless, even a qualitative analysis can shed some light
on where the feature fits better the data than the baseline model.
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Figure 2.4: Comparison of the two fits indicated in figure 2.3 with a white circle
(dotted line) and a grey circle (dashed line), in the primordial power spectrum
and the TT CMB power spectrum.
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Figure 2.5: Comparison of the two fits indicated in figure 2.3 with a white circle
(dotted line) and a grey circle (dashed line), in the TE and EE CMB power
spectra.
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Figure 2.6: CAMB+CosmoMC vs. CLASS+Monte Python consistency
check: 1D and 2D marginalized posterior distributions of the sound speed re-
duction parameters for the mode B.

We have studied the local improvements along the multipoles of the four rel-
evant fits, modes A to D (we show the result for mode B in figure 2.7). To do
that, we have binned the multipoles with ∆` = 20 and substituted pieces of the
best fit for each mode into the best fit of the ΛCDM baseline model. For the
sake of simplicity, we use for this analysis the preliminary fits found by keeping
the cosmological and nuisance parameters fixed to their best fit values (hence the
small difference in the total ∆χ2 between fig. 2.7 and tab. 2.1).

The results show that mode A gains its significance mostly in the first and
third peak and loses some of it in the second; mode B (see fig. 2.7) and C gain
most of their significance in the third peak, lose some of it in the fourth peak and
improve a little again in the fifth and sixth. The mode D does not fit well the
first and second peaks, gains most of its significance in the third peak, and some
more in the fifth and sixth peaks.
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Planck+WP
Parameter CAMB CLASS Baseline [11]
100Ωbh

2 2.208± 0.027 2.214± 0.029 2.205± 0.028
Ωch2 0.1204± 0.0026 0.1203± 0.0027 0.1199± 0.0027
τreio 0.089± 0.013 0.090± 0.013 0.089+0.012

−0.014
H0 67.16± 1.14 67.29± 1.21 67.3± 1.2
ns 0.9600± 0.0070 0.9598± 0.0074 0.9603± 0.0073
ln(1010As) 3.090± 0.023 3.088± 0.024 3.089+0.024

−0.027

B −0.045+0.045
−0.034 (95%c.l.) −0.041+0.041

−0.031 (95%c.l.) —
lnβ 6.00+1.50

−3.00 (95%c.l.) 6.06+1.44
−2.18 (95%c.l.) —

ln(−τ0) 5.55± 0.06 (95%c.l.) 5.55± 0.05 (95%c.l.) —
χ2

bf 9797.25 9797.58 9805.90

Table 2.2: CAMB+CosmoMC vs. CLASS+Monte Python consistency
check: mean values and 68% (or 95% where indicated) confidence intervals for
the primary ΛCDM parameters and the additional sound speed reduction param-
eters for the mode B. We also show the parameter ranges found by the Planck
collaboration [11] for a featureless model.
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Figure 2.7: Local gain in the likelihood of the best fit of mode B along the
multipoles. The grey area shows the local difference in each bin, and the black
line shows the accumulated difference for increasing multipoles.

2.4.4 Comparison with other searches for features in the
CMB power spectrum

Due to the Fourier transform in eq. (1.54), our features oscillate as exp (i2kτ0).
Thus it is natural to compare to other searches for linearly oscillating features in
the Planck CMB power spectrum.

Ref. [59] searches for non-localized features with frequencies that compare to
ours as ω2 = 2|τ0|. In the overlapping region, ω2 ∈ [160, 810], they find peaks
at roughly ln(−τ0) ∼ {5.0, 5.1, 5.3, 5.6, 5.7} (|∆χ2

bf| ' 8). We find three peaks in
this region with similar significance; it could be that the discrepancies come from
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signals at scales at which our (localized) features are negligible.
Also, the Planck collaboration [9, sec. 8] searches for features motivated by

step-inflation, using the parametrization proposed in [13] with a frequency ηf =
|τ0|. The profile likelihood in [9, fig. 19, middle] reveals peaks at ln ηf ∈ [4.5, 4.8]
(|∆χ2

bf| ' 2) and ln ηf ∈ [5.3, 5.7] (|∆χ2
bf| ' 8), which is consistent with our

results.
It is worth noting that in both searches above the overall best fit occurs at

ln(−τ0) ' 8.2 (|∆χ2
bf| ∼ 14), too high a frequency for the scope of this work. In

[9], and also later in [25, 62], this particular fit has been interpreted as a signal
from a step in the inflationary potential. However, in [14, 30] it is argued that
the best-fit values of the feature parameters lie outside the allowed theoretical
bounds, making its interpretation as a step in the potential inconsistent.

2.5 Comparison with the search for features in
Planck’s bispectrum

Now that we have put the reliability of our results to the test, we are in a good
place to make predictions on the kind of features we expect to see in the bispec-
trum of the next data release of Planck, if any. They are simply those given by eq.
(1.55) evaluated within the c.l. intervals in table 2.1, with relative probabilities to
be found given by the best fit likelihood values of each mode. As an example, the
bispectrum corresponding to the best fit of mode B can be seen in fig. 2.8). While
we wait for the next data release of the Planck survey, we can try to assess the
fulfilment of this predictions based on the preliminary results for the bispectrum
published in the Planck data release of March 2013 [10].

A search for linearly oscillatory features was performed in Planck’s bispectrum
(cf. [10, sec. 7.3.3]), using as a template [32]

B(k1, k2, k3) =
6A2f featNL
(k1k2k3)2

sin

(
2π

∑3
i=1 ki
3kc

+ φ

)
, (2.8)

where A = Ask
1−ns
∗ , As and ns being the amplitude and spectral index of the

primordial power spectrum, and k∗ = 0.05 Mpc−1 a pivot scale. They sampled
the amplitude f featNL over a coarse grid of wavelengths kc and phases φ.

Our features also present a linearly oscillatory pattern, which comes from
the Fourier transform in (1.54). These oscillations enter the bispectrum approx-
imately as exp(i

∑
i kiτ0), cf. eq. (1.55) and (1.54), which compares to Planck’s

search as τ0 ≈ 2π/(3kc). Thus, Planck’s search falls inside ln(−τ0) ∈ [4.43, 5.34],
while ours spans up to ln(−τ0) = 6

(
kc = 0.00519 Mpc−1

)
. The overlap includes

our modes C and D (and also the discarded E). For every combination of the fea-
ture parameter values in the regions of high likelihood, one can find a combination
of the parameters in [10] (including a gaussian envelope as described there) such
that the correlation between both shapes at the primordial level is al least 95%.
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(a) Full 3D primordial bispectrum (in colour in the the on-line
version of [1]
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of the first four acoustic peaks in the CMB power spectrum, and a
zoom-out is shown at the lower-left corner. Most of the signal at
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when transferred to the CMB.

Figure 2.8: Prediction for the primordial bispectrum for the best fit of mode B,
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The search in [10] is later supplemented with a gaussian envelope centred at
scales corresponding to the first acoustic peak, which dampens the signal in subse-
quent peaks for decreasing values of a falloff ∆k.5 The envelope generally improves
the significance, except for the 2σ signal at kc = 0.01375 , 0.01500 Mpc−1. This
suggests that this band’s significance comes mostly from the second and third
peaks (the signal from the fourth on would be most likely damped out).

In comparison, our best fits to the power spectrum predict bispectrum features
which are mild at the first peak and more intense from the second peak onwards.
The higher the value of lnβ, the smaller the scale at which the feature peaks. In
the range of ln(−τ0) probed here, we were not able to reproduce the improvement
Planck appears to see for features at the first peak. On the other hand, we find
good matching around the second and third peak scales between the best fit of D
with kc = 0.01327 Mpc−1 and the 2.3σ signal of Planck at kc = 0.01375 Mpc−1

with f featNL = 345 and φ = π/2 (see fig. 2.9). A similar but milder qualitative
matching also occurs on the same scales between the best fit of C with kc =
0.01014 Mpc−1 and Planck’s 2.6σ signal with kc = 0.01125 Mpc−1. Although
these matchings are not easy to quantify at the moment of writing this thesis,
they suggest enlarging the search in [10] to test envelopes centred at smaller scales,
and also to cover the frequencies corresponding to modes A and B.

Note that we have quoted the fits to the Bispectrum of Planck without ap-
plying the look-elsewhere effect. This effect will be properly taken into account
when a full study of the Bayesian evidence is performed in a future work, and it
is expected to reduce the significance in a much smaller amount [39] than that
quoted in [10], since the signals in both data sets, spectrum and bispectrum, are
sampled over a single parameter space.

2.6 Conclusions and discussion
We have carried out a statistical search for localized oscillatory features in the
CMB power spectrum produced by a transient reduction in the speed of sound.
We have found a number of fits and we have performed additional tests to the
results. Namely, we have tried to replicate them using independent codes and
found practically equal results; we have studied more explicitly the small degen-
eracies among the cosmological and feature parameters, and proposed the CMB
TE and EE polarization spectra as a way to break degeneracies among the latter;
and finally we have investigated at which multipoles each of our fits describe the
CMB temperature data better than the baseline ΛCDM model.

For each of the modes, we have calculated the associated primordial bispectra.
Because of the small amplitude at the best fits, the bispectrum prediction closely
resembles that of step inflation, tested by the Planck collaboration, since a tran-
sient slow-roll violation switches on the same operator in the cubic action. It is
then straightforward to compare our prediction with the templates used in that

5James Fergusson, private communication.
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(a) Comparison of Planck’s CMB power spectrum (dotted) and the
corresponding best fit of the mode D (solid).
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(b) Comparison along the equilateral direction of Planck’s 2.3σ pri-
mordial bispectrum fit with kc = 0.01375 Mpc−1 (dashed), and
the expected signal in the primordial bispectrum for the best fit
of D (solid). Both bispectra are normalized by f(k1, k2, k3) =

(10/3)
(

(2π)2Ask
1−ns
∗

)−2∏
i k

3
i /
∑
i k

3
i . The grey stripes show

the approximate scales corresponding to the first four acoustic
peaks in the CMB power spectrum. Although our signal extends
beyond those scales (see zoom-out at the lower-left corner), from
the third peak on, the primordial signal is highly suppressed by
diffusion damping when transferred to the CMB.

Figure 2.9: Features corresponding to the best fit of the mode D (see table 2.1),
for which the comparison with Planck analysis for the bispectrum is possible.
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search, and the agreement is surprisingly good. This is remarkable, considering
that these bispectrum features are predicted from a search in the CMB power
spectrum with a very simple ansatz for cs.

The functional form chosen for the reduction in the speed of sound is inspired
by soft turns in a multi-field inflationary trajectory with a large hierarchy of
masses, a situation that is consistent with an effectively single-field description
with uninterrupted slow-roll. Other functional forms and parameter ranges are
under investigation. We stress that our analysis is independent of the physical
mechanism behind the reduction.

We emphasize that the CMB power spectrum data alone can hardly justify
the introduction of features on top of the ΛCDM model; a gain of |∆χ2| . 10
is not uncommon. However, as we have shown, low-significance fits in the power
spectrum can still predict correlated features that may be observable in the CMB
bispectrum. Therefore, model selection should take into account both observables
simultaneously.

The ability to make predictions in a wider region of the parameter space of
features is of particular relevance, since new data sets may allow us to explore
it. Besides, since different experiments generally have different foregrounds and
systematics, a joint analysis could reduce the contamination of the primordial
signal on the overlapping scales. In particular, we later extended our search to
large scale structure surveys, see [49] or chapter 3.

Our results suggest that, by exploiting correlations between different observ-
ables, current data might already be sensitive enough to detect transient reduc-
tions in the speed of sound as mild as a few percent, opening a new window for
the presence of extra degrees of freedom during inflation.
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