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Chapter 1

Introduction

In this chapter, we review how to characterise inflation through cosmological
observations. After a brief description of FLRW cosmology, we describe slow-roll
inflation and the effect of possible transient reductions in the speed of sound of
the inflaton. Later we describe the Cosmic Microwave Background and how it
can be used to constrain features in the inflationary potential. Finally, we review
the statistical tools commonly used to achieve the characterisation of inflation
through general cosmological data sets.

For the sake of brevity, most of the detailed calculations are not shown. Ev-
erywhere in this thesis, we use natural units, c = ~ = 1, but keep the Newton’s
gravitational constant (and thus Planck mass) explicit .

1.1 Background Cosmology – Large scale geome-
try of the universe

1.1.1 Description and evolution of homogeneous cosmolo-
gies

We observe the CMB radiation and the LSS to be on large scales mostly isotropic.
Isotropy from here, combined with the Copernican principle – our place in the
Universe is not special – implies homogeneity of the space.

In this thesis we will always assume the space-time to be described on cosmo-
logical scales as a perfect fluid, determined by only two quantities, its density ρ
and pressure p, which is by definition homogeneous, isotropic, having no viscosity,
shear tension or energy conduction – it can just uniformly compress or expand.

To describe this system in the context of General Relativity, one normally
chooses a comoving frame in which the 3-surfaces of homogeneity are synchronous
and the same 3-d coordinates are assigned to the same particle of the fluid at all
times. In this frame, the metric describing the very large scales reads (we take
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1.1 Background Cosmology – Large scale geometry of the universe

c = 1)

ds2 = gµν dxµ dxν := −dt2 + a2(t) dl2 , (1.1)

where a(t) is a scale factor and dl2 is the metric of the 3-space:

dl2 := dχ2+Σ2(χ)
(
dθ2 + sin2 θdφ2

)
, Σ(χ) =

 sinhχ if κ = −1
χ if κ = 0

sinχ if κ = +1
, (1.2)

where κ is a parameter defining the 3-curvature, proportional to the Ricci scalar
of the 3-space.

We often define the conformal time, τ , by factoring out the scale factor:

ds2 = a2(τ)
(
−dτ2 + dl2

)
, dτ =

dt

a
. (1.3)

On the other side of the Einstein equation, the matter side, we have the stress-
energy tensor of a perfect fluid in comoving coordinates, which is simply

Tµν = diag (ρ, p gii) . (1.4)

Finally, from the Einstein equation and the continuity equation ∇αTαµ = 0
we derive the commonly used pair of Friedmann equations

3H2 + 3
κ

a2
− Λ = 8πGρ , (1.5a)

ρ̇+ 3H (ρ+ p) = 0 , (1.5b)

where we have introduced the Hubble parameter, H := d/dt log a = ȧ
a , and where Λ

is the Einstein’s Cosmological constant, and G is Newton’s gravitational constant.
The perfect fluid that fills the Universe has, from the very-large-scale gravi-

tational point of view, two different components: matter (M), and radiation (R),
with equations of state

p = ωρ with ω =


1
3 Radiation
0 Matter
−1 Dark Energy

. (1.6)

Note that we have included another component: Dark Energy, which is the effect
of the cosmological constant (Λ) in the dynamics of the Universe when treated
as a fluid, i.e. when taken to the RHS in eq. (1.5a); we can define ρΛ := Λ/8πG,
and, since ρΛ is constant, the continuity equation imposes ωΛ = −1. From the
continuity equation we can derive the evolution of the density of each species i
with a(t):

ρi = ρi,0

(
a

a0

)−3(1+ωi)

, (1.7)
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Introduction

where the sub-index 0 refers to the values in a particular instant, usually today.
The solution for a flat FLRW Universe dominated by a fluid satisfying the

strong energy condition ω > −1/3 (i.e. matter or radiation) is

a(t) = a0t
2

3(1+ω) . (1.8)

For Dark Energy, with equation of state given by ω = −1,

a(t) = a0e
Ht . (1.9)

It is useful to derive an equation for the acceleration of the scale factor a by
differentiating w.r.t. time eq. (1.5a) and inserting (1.5b):1

ä

a
= −4πG

3
(1 + 3ω)ρ . (1.10)

This equation makes clear that the expansion of the Universe accelerates when
it is dominated by species with ωi < −1/3, i.e. it decelerates whenever Matter
or Radiation dominate, and accelerates whenever Dark Energy dominates. The
order in which the different species dominate the expansion can be guessed from
eq. (1.7): radiation energy density decays the fastest with time, so at some point
matter takes over; finally, since the energy density of Dark Energy is constant, it
becomes eventually the dominating species. Therefore, unless something happens
which is extraneous to the model as defined so far, the dynamics are dominated
in order by

Radiation → Matter → Dark Energy .

According to the Supernovæ data [35, 34], the Universe reached a Dark-Energy-
dominated stage at t ' 9.8 Gyr, approximately 4 Gyr ago.

Data coming from different surveys, including CMB, Gravitational Lensing
and type Ia Supernovæ redshifts, point clearly towards a very close to flat Uni-
verse, κ/(aH)2 ' 0, populated today by an insignificant amount of radiation, a
significant amount matter and an even more significant proportion of Dark En-
ergy [36]. This, together with Standard Model particle physics, is the model of
the Universe we will assume for now.

1.1.2 Causal structure of the Universe – Horizons and Hub-
ble radius

Let us now talk about the causal structure of the universe: which events could ever
be influenced by which other events. We define the (comoving) particle horizon
of an observer at a time t as the sphere enclosing all points of the fluid that have

1Notice that this equation can also be obtained from the spatial component of the Einstein
equation.
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1.1 Background Cosmology – Large scale geometry of the universe

ever been in causal contact with the observer, i.e. from which a photon emitted
at any time may have ever reached the observer. Unsurprisingly, its radius is
equal to the (conformal) length that a photon has been able to travel since the
origin of the Universe t = δt (we admit that the FLRW is not valid from the very
beginning of the Universe t = 0, if it exists):

rp(t) :=

∫ t

δt

dt̃

a(t̃)
. (1.11)

If this integral is finite, there exists a particle horizon, meaning that there is a
distance such that two points which are separated by more than it, have never
been in causal contact by the time t. In a FLRW Universe dominated by radiation,
as ours is initially, eq. (1.8) tells us that the integral converges and is dominated
by its upper limit. A divergence in the integral (1.11) implies that every pair of
points in the fluid have already been in causal contact with each other by the
time t. It is obvious that the particle horizon can only grow with time: if a point
in the fluid was ever in the horizon, it will always be.

The equivalent concept towards the future is the (comoving) event horizon of
an observer at a time t: it is the sphere enclosing all points of the fluid at a time
t that will ever be in causal contact with us before the end of the Universe tend:

re(t) :=

∫ tend

t

dt̃

a(t̃)
. (1.12)

Again, this integral may diverge, meaning that we will be able to observe any
point of the Universe if we are patient enough. This is the case of a decelerating
Universe without a final singularity. In the opposite case of a converging integral,
e.g. for an ever-faster expanding Universe, as time goes by more and more distant
objects whose light ever reached us will never again be observable.

Let us now define the recessional velocity vrec and the radial peculiar velocity
vpec of a galaxy in a point χ of the fluid. The total velocity of an object today is
equal to the derivative of its physical distance d = aχ with respect to time

vtotal = ȧχ︸︷︷︸
vrec

+ aχ̇︸︷︷︸
vpec

. (1.13)

With this definition, a point of the fluid has only recessional velocity, and photons
have, on top of a recessional velocity, a peculiar velocity of vpec = c ≡ 1. Neither
the total or the recessional velocity are properly defined 4-speeds, as the peculiar
velocity is (notice how the velocities addition rule of Relativity is not applied here,
as it would be for local 4-speeds). Notice how this definition implies the Hubble
law automatically:

vrec =
ȧ

a
aχ = Hd . (1.14)
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Introduction

We define the comoving Hubble radius rH as the comoving distance to the
points of the fluid that recede from us at the speed of light, vrec = c ≡ 1:

rH(t) =
1

aH
, (1.15)

and the comoving Hubble sphere as the surface containing all such points. Reces-
sional velocities higher than the speed of light are possible (see e.g. [15]). Photons
emitted towards us from a superluminally receding galaxy actually recede from
us, while at the same time any photon overtakes any observer at the speed of
light, thus making no conflict with GR. The Hubble radius is always contained
between the particle and event horizons.

Since photons emitted from outside the Hubble sphere recede from us, one
would be tempted to think that the Hubble radius is the true event horizon:
galaxies outside it (super-Hubble), will never be observable. That is definitely not
true (see e.g. [16]): the size of the comoving Hubble sphere changes with time,
growing in decelerated Universes and shrinking in accelerated ones. A growing
Hubble sphere may overtake the receding photons emitted from a super-Hubble
galaxy, thus making it observable (see fig. 1.1). Notice that the physical Hubble
radius arH = H−1 grows for Universes dominated by physical fluids, ω > 1/3, and
stays constant for Dark Energy dominated Universes, ω = −1.

Figure 1.1: Sequence of the path of a photon (white spot) emitted by a super-
Hubble galaxy in a decelerating Universe: the supper-Hubble galaxy becomes
observable when the initially receding photon is overtaken by the expanding Hub-
ble sphere (dotted line). This only happens when the galaxy is sub-event-horizon
(continuous line) at the instant of emission. The arrow represents the total ve-
locity of the photon, as in eq. (1.13). The plot’s x direction represents physical
distances.
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1.2 The horizon problem and the need for inflation

1.2 The horizon problem and the need for inflation

1.2.1 The horizon problem

The CMB radiation was emitted when the radiation temperature of the Universe
was such that the electrons would fall into the nuclei to form atoms, leaving the
photons free to travel through the Universe. We call this moment, which has a
short but different-from-zero duration, recombination. The CMB is astonishingly
uniform, reproducing very precisely a black body spectrum with a temperature
TCMB = 2.725 K. On top of it, once known foreground effects have been accounted
for, one finds inhomogeneities of order 10−5TCMB, which are quite correlated on
all scales accessible to the current experiments.

Now let us do a small calculation: under the assumptions stated in section 1.1,
using eq. (1.11), we can calculate the size of the particle horizon at recombination
trec, the moment when the CMB radiation was emitted; then, we can calculate the
angle that separates today in the sky two points that were never in causal contact
– it turns out to be ' 2◦. This has a very simple consequence: points separated
in the sky by bigger angles should show fluctuations of their CMB temperature
of order 1 · TCMB, and those fluctuations should be uncorrelated, i.e. the CMB
temperature spectrum should be 0 for ` . 90 (we discuss the definition of the
CMB power spectrum later in section 1.4).

As we just stated, this is certainly not what happens. Either our calculation
of the particle horizon at recombination is wrong (i.e. the evolution of a(t) from
t = 0 to trec is not as we think it is), or the initial conditions of the Universe were
really special.

1.2.2 The flatness conundrum

Let us recover the curvature in the Friedmann equation (1.5a) (and include the
cosmological constant in the density term) and rewrite it as

1− 8πG

3H2
ρ︸ ︷︷ ︸

Ω

= − κ

(aH)
2 . (1.16)

Notice how the newly defined, positive quantity Ω controls the curvature of the
model: Ω < 1 if κ = −1

Ω = 1 if κ = 0
Ω > 1 if κ = +1

. (1.17)

Let us now show that the value for a flat Universe, Ω = 1, is unstable. For
that, let us calculate its derivative w.r.t. a:

d

da
(1− Ω) =

1 + 3ω

a
Ω (1− Ω) . (1.18)
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Notice the sign of the derivative:

sign

(
d

da
(1− Ω)

)
= sign (1 + 3ω) sign (1− Ω) . (1.19)

For matter and radiation (ω = 0, 1/3) the value of (1 − Ω) goes away from 0 as
a grows, curving the Universe more and more; instead, for a fluid with negative
pressure ω < −1/3, the Universe tends towards flatness.

Today [36], our bound for the curvature is |1 − Ω0| ' 0.05. Knowing (see
sec. 1.1) that the Universe spent most of its history dominated by matter and
radiation, we can extrapolate this value towards the early stages of the Universe,
e.g. at the epoch corresponding to energy scales of order 1016 GeV, where we find
|1 − Ω| ' 10−55, many orders of magnitude smaller. Thus, the Universe should
have started its history at stunningly low values of the curvature. This apparent
fine-tuning of the initial conditions could use a physical explanation.

1.2.3 Digression – Problems and conundrums

We just acknowledged two observations which are surprising when put into the
context of the cosmological model as we have established it so far. Are those
surprises physical problems, i.e. do they need to be addressed in order for the
theory to be correct or to be complete? In order to answer those questions, let us
consider the issue in a more abstract way.

Let’s first divide the predictions that models make into two types: determin-
istic and probabilistic. In turn, probabilistic predictions may come in the form of
a well-defined probability distribution function (pdf), or as a lack of predictivity
for a certain parameter or outcome, in which case only the main features of a
prior pdf are known (e.g. equal probability for unpreferred values).

One deterministic prediction would be e.g. how much will a spring elongate
when pulled with a certain amount of force. One probabilistic prediction is e.g.
the life of a radioactive nucleus, whose decay is a random process. When a
deterministic prediction is contradicted by a properly done experiment where
observational errors have been accounted for, we have a physical problem at hand:
our model for the phenomenon is apparently not correct, and we must explain the
new observation by modifying it.

When testing a probabilistic prediction the situation is more complicated,
since it depends on the amount of samples of the distribution that me have got
or may be able to get soon: without enough samples, we cannot characterise the
distribution with enough certainty. Regarding sample collection, we distinguish
two different situations2

2A word of caution: the ability to gather samples changes with time: we have continuously
achieved previously unimaginable measurements. Thus, questions that were previously philo-
sophical, or simply non-existing, turn suddenly into physical ones. This is often associated with
paradigm shifts [28].
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1.2 The horizon problem and the need for inflation

a) We have collected, or will be able to collect soon, enough samples to test the
features of a pdf. In this case, if there is a contradiction with the pdf predicted
by the model, or if the model does not predict a particular pdf, we do have
a physical problem: we have in the first case to modify our model, and in the
second one we should extend it to include the new information.

b) We have neither collected, nor will be able to collect soon, enough samples
to be able to tell anything about the pdf with minimum reliability. In this
case, the model, despite predicting a certain pdf, cannot be tested against the
data. Then, no contradiction between the model and the data can be claimed,
even if the data looks surprising, a situation which we often call fine-tuning.
There is no physical problem at hand, but a philosophical one; in the context
of physics, we can call this situations conundrums.

In conclusion, in order to call an apparently surprising result a physical prob-
lem, we need to be able to assess whether there is actually a contradiction between
the prediction and the observation. If we cannot properly perform such assess-
ment, we should call them something else, e.g. conundrums, since we cannot
resolve the situation using scientific methods. Answering conundrums is satis-
factory from the point of view of Physics, and can be argued to be part of the
scientific endeavour; but those answers cannot be falsified, so the quest is only
worthy when they are addressed by simple principles that at the same time solve
real physical problems. Solutions to conundrums are the icing on the cake, and
sometimes good indications of where our model may be extended, but they may
also be red herrings that distract us from looking at the real physical problems.

Now back to our apparent problems

Horizon problem The size of the particle horizon at recombination implies that
points in the sky separated by more than 2◦ should have big temperature
variations (of order the background temperature TCMB), which should be un-
correlated. The prediction is probabilistic – it is not impossible that there
are no such variations, just unlikely – and the pdf is not completely charac-
terised, but its central value, TCMB, is well determined. In this case, we do
have a big number of samples – every pair of regions in the sky separated
by > 2◦, the size of those regions being determined by the resolution of
the experiment. They provide a statistically very significant contradiction
of the predicted result: the variations on these scales are very small and
strongly correlated – here is a physical problem: our model is incomplete.

Flatness conundrum In a Universe dominated most of its history by matter
and radiation, as ours has been, the curvature grows with time, so finding
a very flat Universe today is quite unexpected, since it would imply an in-
credibly low amount of curvature in the past. Here, we have a deterministic
prediction: given a value of the curvature in the past, we would know the
current one. But we do not know the value in the past, only in the present
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day, so we are concerned by a different, probabilistic prediction: if we as-
sume that all values of the curvature were equally likely in the past (or at
least approximately so), we expect to find very high curvatures today, flat
Universes being highly unlikely. There is only one possible sample here,
which is the observable Universe. The fact that our Universe is very im-
probable may not be appealing, but with only one sample at hand we may
as well just have been lucky. There is no physical problem here, but an in-
teresting conundrum. We may state that solving this conundrum is possible
by modifying the model to increase the probability of a flat Universe today.

Any solution to the horizon problem (which also predicts the correct spectrum
for the anisotropies) is equally good, unless further evidence against it is found.
But those solutions that in addition address the flatness conundrum without in-
troducing new assumptions deserve special attention.

1.2.4 Inflation as a possible solution

Let us see how both the horizon problem and the flatness conundrum can be
addressed by assuming that the Universe during his very early moments underwent
a stage of accelerated expansion [1], or Inflation.

Consider the horizon problem. Given a long enough period of accelerated
expansion, it is intuitively immediate that every point in the Universe is causally
connected to every other one, since the points that appear to be today very far
away must have been very close in the past. To quantify this, let us solve the
particle horizon, eq. (1.11), for a flat Universe dominated by a particular fluid,
indicated by i, with equation of state parametrised by ωi:

rp =
C

1
2 (1 + 3ωi)

a
1
2 (1+3ωi)

∣∣∣arec
aini

, (1.20)

where C is a positive constant, irrelevant here, and aini and arec are respectively
the scale factor at the beginning of the Universe and at recombination. As eq.
(1.10) proves, for fluids with negative pressure such that ρ+ 3p < 0, or equation
of state ωi < −1/3, the expansion of the Universe is accelerated. In the particle
horizon, those values of ωi make the exponent of the a negative, turning the lower
bound into the biggest contribution: for values of the initial scale factor close to
zero, the size of the comoving particle horizon tends towards infinity. Our initial
intuition gets thus confirmed: an initial phase of accelerated inflation can solve
the horizon problem.

Since in our model the Universe starts dominated by radiation, in order to
get this phase of accelerated inflation we need to assume that the Universe was
initially dominated by a different fluid that later decayed into the Standard Model
species that constitute the Universe today, at energies such that they behave as
radiation. As we argued, this candidate must behave as a fluid with negative

21



1.2 The horizon problem and the need for inflation

pressure, ρ + 3p < 0 (ω < −1/3). We look for a substance with that feature, the
simplest one being a scalar field in a slow-roll regime, as we will describe.

Let us assume that at very early times the Universe’s dynamics is dominated
by a single, homogeneous scalar field φ(t,x) = φ(t), which we will call inflaton,
that is minimally coupled to gravity, with an action

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.21)

where MPl =
√

~c
8πG is the Planck mass, R is the 4-dimensional Ricci scalar and

V (φ) is a potential which is so far arbitrary. Using the Klein-Gordon equation
for the scalar field, and the Friedmann equations for its stress-energy tensor, we
arrive at the relations (of which only two are independent)

φ̈+ 3Hφ̇ = − dV

dφ
, H2 =

1

3MPl

(
1

2
φ̇2 + V

)
, Ḣ =

1

MPl

(
−1

2
φ̇2

)
.

(1.22)

From this point onwards, for the sake of simplicity, we take MPl = 1. Notice
how H2 is proportional to the sum of the kinetic (K ∼ 1/2 φ̇2) and the potential
energies of the scalar field, and how −Ḣ equals the kinetic energy. Calculating the
stress-energy tensor from the action above, and comparing with that of a perfect
fluid, eq. (1.4), we find the density and pressure of the scalar field:

ρφ =
1

2
φ̇2 + V , pφ =

1

2
φ̇2 − V . (1.23)

Now consider the limit K � V . In that limit, we immediately get accelerated
expansion: ρ+ 3p < 0, in particular with an equation of state for the scalar field
ωφ ' −1. From the third equation in (1.22), we get an almost constant Hubble
parameter, which implies that the scale factor behaves as

a ∝ eHt , H ' const . (1.24)

This allows us to define a useful new time scale, e-folds N , as dN = Hdt: during
one e-fold, the scale factor a grows by a factor of e.

One can now quantify how long Inflation must last in order to solve the horizon
problem, i.e. to get all the scales in the CMB sky into the particle horizon. This
turns out to be 50− 60 e-folds. With respect to the flatness conundrum, we can
see from eqs. (1.18) and (1.19) that flatness becomes an attractor for ρ+ 3p < 0,
so a flat Universe becomes more likely regardless of the original curvature before
Inflation. Notice how, unlike the horizon problem, the flatness conundrum has
no quantitative solution; but it is remarkable that it is addressed by the same
solution as the horizon problem, which speaks in favour of accelerated expansion
against other possible solutions that do not make the Universe flatten with time.
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Let us now talk some more about the physical meaning of this framework of
Inflation, and incidentally also about its duration. Inflation would last as long as
the approximationK � V holds. That condition describes the dynamics of a field
which is slowly rolling down a potential. This means that in the first equation in
(1.22) the acceleration is very small, and the evolution of the field is dominated by
the other terms: the friction term 3Hφ̇ and the slope of the potential dV/dφ. In fig.
1.2 we display two possible realisations of a slow-roll potential. We call this whole
setting single-field, slow-roll Inflation. A slow-roll setting can also be realised in
an effectively-single-field theory resulting from integrating out the heavy degrees
of freedom (though multiple-field scenarios in which more than one field is light
are also possible).

Figure 1.2: Depiction of two simple slow-roll potentials. In the left, the high
slope of the potential dV/dφ gets compensated by an equally large value of the
friction term 3Hφ̇. In the right, both the slope and the friction are smaller. In
both cases, inflation ends whenever one term becomes much bigger than the other,
creating a large acceleration.

In order to quantify the slow-roll condition K � V , we define the positive
quantity ε, called first slow-roll parameter :

ε := − Ḣ

H2
= −d logH

dN
=

1

3

K

K + V
< 1 . (1.25)

Its being smaller than 1 guarantees that ä > 0, hence the Universe’s expansion
is accelerated. In order for Inflation to last enough time we must also guarantee
that the slow-roll condition is satisfied for long enough, i.e. ε does not grow too
fast, which is given by the second slow-roll parameter :

|η| :=
∣∣∣∣ ε̇Hε

∣∣∣∣ =

∣∣∣∣d log ε

dN

∣∣∣∣ < 1 . (1.26)

We could keep adding higher derivative terms to the description, but this is enough
to describe the current data with sufficient precision.
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1.3 Primordial perturbations

1.3 Primordial perturbations
The former description of the Universe is so far missing a very important ingre-
dient: it is completely homogeneous, lacking any kind of actual structure, such
as clusters, galaxies, stars. . . . We expect small inhomogeneities to be created
at some point in the Universe history. In this section, we will see how they get
created by Inflation, how to treat them mathematically, and which are their main
features.

1.3.1 Primordial perturbations in quantized slow-roll infla-
tion

In order to study perturbations on top of the FLRW metric, we have to write
a perturbed version of the metric (1.1), g̃µν := gµν + δgµν . Its particular shape
depends upon some gauge freedom. In the context of Inflation, we normally work
in the comoving gauge, in which the choice of coordinates is such that the scalar
momentum density vanishes, i.e. the 3-surfaces of constant time are everywhere
orthogonal to the fluid’s flow. In this gauge, the spatial part of the perturbed
metric reads

δgij = a2(t)(−2)ζ(t,x)δij + a2(t)hij(t,x) , (1.27)

where ζ(t, x) is a scalar and hij(t,x) is a transverse, traceless tensor. In this
gauge, the curvature of the 3-surfaces of constant time is R = 4/a2∇2ζ. Hence, we
call the scalar ζ comoving curvature perturbation.3 On the other hand, the tensor
hij characterises the gravitational waves, which we will not study here.

The Einstein equations of the perturbed metric allow us to calculate the re-
maining metric perturbations δg0µ also in terms of (ζ, hij). Substituting them
into the action for the scalar field, eq. (1.22), and expanding in powers of ζ, we
arrive at the quadratic action for the comoving curvature perturbation (terms of
higher order are ignored)

S2 =
1

2

∫
d4x a3

(
φ̇

H

)2 [
ζ̇2 − 1

a2
(∂iζ)

2

]
. (1.28)

The definition of the comoving gauge, with synchronous 3-surfaces orthogonal
to the fluid’s flow, implies that the density of the fluid must be constant over
those surfaces, in this case φ(t,x) = φ̄(t) over those surfaces, since it is the only
fluid populating the Universe.

After all remaining gauge freedom is removed using the Einstein equations,
we are left with a single scalar degree of freedom, ζ, and two degrees of freedom
for each of the two independent tensor perturbations hij (spin 2, massless). All

3Notice that it is more common in the literature (see e.g. [40]) to refer to the comoving
curvature perturbation with the symbol R.
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five of them are sourced by the only degree of freedom of the theory: the scalar
field φ.

Now, one can solve the equations of motion for the comoving curvature pertur-
bation arising from the action (1.28). This is often done in terms of the Mukhanov
variable

v := zζ , z2 := 2a2ε . (1.29)

We quantise the action in terms of this variable and derive the equations of motion
in the Fourier transformed 3-space, named Mukhanov-Sasaki equation [33, 37]:

v′′k +

(
k2 − z′′

z

)
vk = 0 , (1.30)

where the primes mean derivatives with respect to conformal time. Convention-
ally, we impose as initial conditions at the beginning of Inflation, or choose as a
vacuum, that the mode functions are Minkowski states,

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ , (1.31)

a choice called Bunch-Davies vacuum [12]. Solving in the approximation H '
const, ε = const (quasi de-Sitter Universe), we arrive at the solution for the modes
of the comoving curvature perturbation in terms of the Mukhanov variable:

vk(τ) =
1√
2k

e−ikτ
(

1− i

kτ

)
. (1.32)

Note that this equation resembles that of an harmonic oscillator with a time
dependent massm2(τ) := −z′′/z ' 2/τ2, where the last approximation is true in the
quasi de-Sitter limit. It becomes immediately obvious that the modes of comoving
curvature perturbations are oscillatory unless the exponent kτ vanishes. In the
quasi de-Sitter approximation, H = const, ε = const, we have for a conformal
time interval τ ' (aH)−1. This means that whenever k � aH, the curvature
perturbations are constant :

lim
k/(aH)→0

ζ̇(t, k) = 0 . (1.33)

Remembering the definition of the comoving Hubble radius, eq. (1.15), rH = 1/aH,
we learn that this freeze-out scale corresponds precisely to the Hubble sphere.4

4It is common in the literature to refer to this scales as sub- or super-Hubble horizon, or
even worse, simply sub- or super-horizon. As explained in section 1.1.2, the Hubble radius is
not a cosmological horizon, as it is manifested in the context of Inflation by how scales exit and
re-enter it; instead, cosmological horizons can only ever be escaped (in the case of the event
horizon) or entered (in the case of the particle horizon) a single time, the reverse process not
being possible.
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1.3 Primordial perturbations

Thus, we state that the comoving curvature perturbation is conserved on super-
Hubble scales. Since in the de-Sitter Universe the Hubble sphere gets smaller with
time, as Inflation progresses modes of decreasing wavelengths get frozen as they
exit the Hubble sphere. Once Inflation is finished and we return to a radiation-
dominated Universe, the Hubble sphere starts growing, eventually allowing for
interactions between regions separated by previously frozen distances. Those
interactions give birth to the CMB anisotropies that we can see today, as explained
in section 1.4.

Figure 1.3: Depiction of how a mode of a particular comoving scale (dashed)
leaves the Hubble sphere (solid) during Inflation, getting frozen, and how it even-
tually re-enters during the radiation-dominated regime. Figure from [10].

In the next section, we will review the treatment of the correlation functions of
curvature perturbations, which ultimately determine the CMB observables. After
it, we will discuss the main features of the perturbations created in this inflation-
ary setting: namely, that they are nearly scale-invariant, and nearly gaussian.

1.3.2 Correlation functions – spectrum and bispectrum
Here we focus on studying the statistical properties of the perturbations, which
we assume to be generated by a random process. In particular, We are interested
in correlations between its values in different point of space. In Fourier space, the
n-point correlation functions are transformed simply to products of the function
itself. We define the 2- and 3-point correlation functions in the Fourier space,
called respectively power spectrum and bispectrum, as

(2π)3 δ
(3)
D (k1 + k2) Pζ(k1) := ζ(k1)ζ(k2) , (1.34a)

(2π)3 δ
(3)
D (k1 + k2 + k3) Bζ(k1,k2) := ζ(k1)ζ(k2)ζ(k3) . (1.34b)
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Of course, we can go on and study higher order correlation functions, but those
two are enough to describe the current data with enough precision.

We are interested in studying not the particular realisation of the perturbations
in our Universe, but the properties of the probability distribution that generated
them. These properties show up when averaging over the ensemble of all possible
realisations of the random field ζ which may have been generated by the same
physical mechanism. We will denote this ensemble average as 〈 〉. Since we expect
that mechanism to generate statistically isotropic perturbations, the spectrum and
bispectrum must depend on norms only, not directions, so the ensemble-averaged
correlation functions are

(2π)3 δ
(3)
D (k1 + k2) Pζ(k1) = 〈|ζ(k1)|2〉 , (1.35a)

(2π)3 δ
(3)
D (k1 + k2 + k3) Bζ(k1, k2, k3) := 〈ζ(k1)ζ(k2)ζ(k3)〉 . (1.35b)

Notice that in the spectrum formula we have made use of the fact that the cur-
vature perturbation is a real function in the space of positions. On the other
hand, notice that we have substituted the dependence of the bispectrum from
the vectors (k1, k2), to the norms (k1, k2, k3). We have done so because, though
the first two vectors and the delta completely determine the third vector, once
the ensemble average erases the direction information, the norms of the two first
vectors do not specify that of the third. There is a range of values of k3 allowed
for each pair (k1, k2), which are given by the triangle condition imposed by the
delta:

k1 + k2 + k3 = 0 . (1.36)

The triangle condition enforces the ki’s to live inside a regular-triangular pyra-
mid in the (k1, k2, k3) space (see fig. 1.4, and for a review see [31]). Using the
triangular inequality, for every permutation (i, j, k) ∈ Perm(1, 2, 3):

ki = −(kj + kk)⇒ ki = |kj + kk| ⇒ |kj − kk| ≤ ki ≤ kj + kk , (1.37)

where the equality in the last inequation defines the three sides of the pyramid
for i = 1, 2, 3.

Since our experiments have a limited precision, we assume that there is a
minimum scale accessible to us, i.e, a maximum wave number K such that ki ≤
K, ∀i, then

k1 + k2 + k3 ≤ |k1 + k2|+ k3 ≤ 2k3 ≤ 2K (1.38)

and the pyramid turns into a regular tetrahedron with base in the plane

k1 + k2 + k3 = 2K (1.39)
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1.3 Primordial perturbations

Figure 1.4: Regular Tetrahedron of allowed wave-numbers, limited by the con-
ditions of eq. (1.37) and (1.39). Figure from [31, fig. 2]

Regarding the shape of the (k1, k2, k3) triangles, three different limits are
often studied:

squeezed or local k3 � k1 ' k2 edges of the tetrahedron
equilateral k3 ' k1 ' k2 axis of the tetrahedron
flattened k3 ' k1 + k2 heights of the faces of the tetrahedron

1.3.3 Predictions of slow-roll inflation
Power spectrum – scale-invariance

In the QFT framework described in section 1.3.1, one can calculate the predicted
power spectrum for the comoving curvature perturbation [12]

Pζ(k) =
1

4k3

H2

ε

∣∣∣∣
k=aH

, (1.40)

where the spectrum for each comoving wavelength k can be evaluated when said
length becomes larger than the (shrinking) Hubble sphere, thus getting frozen.
We can define a dimensionless version of the power spectrum as

P(k) :=
k3

2π2
Pζ(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

. (1.41)
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What are the particular features of this spectrum? From the slow-roll con-
ditions we know that during Inflation H decreases slowly as ε grows slowly (i.e.
the kinetic energy increases), so for the smaller wavelengths (higher k) we expect
P(k) to slowly decrease, according to (1.41). The spectrum will thus be nearly
scale-invariant, with a little less power for higher k. Notice that scale-invariance
is a natural consequence of the lack of large-scale standard rulers in the early
Universe.

When dealing with constraining the power spectrum with observations, we
often prefer a more phenomenological parametrisation that reveals more directly
its dependence on the scale. We start by assuming a general power law spectrum,
P(k) ∼ kn, and then Taylor-expand it in its logarithm around a pivot scale k0:

log
P(k)

P(k0)
' 0 + (ns − 1) log

k

k0
+
αs

2

(
log

k

k0

)2

+ . . . , (1.42)

where we have defined the spectral index 5 ns and the running αs, and ignored
higher order terms. For a nearly scale invariant spectrum, we should get very
small values of ns − 1 and an even smaller for αs, which can often be neglected.
Calling As the value of the spectrum at the pivot scale, we arrive at the very well
known expression

P(k) ' As

(
k

k0

)ns−1

. (1.43)

The value of the spectral index can be calculated from eq. (1.40):

ns − 1 = −2ε− η , (1.44)

where we omit contributions from higher powers of ε and η. We don’t know the
precise values for ε and η, but we know that they result in a value for ns close
to 1 but slightly smaller. This small deviation from unity constitutes a strong
test for the Inflation framework described here: slow-roll, single-field inflation
with canonical kinetic terms and Bunch-Davies vacuum. This small deviation
was confirmed by WMAP and later by Planck. The latter finds a 95%c.l. interval
[8]

ns = 0.9616± 0.0094 . (1.45)

Bispectrum – gaussianity

One of the defining features of a Gaussian distribution is that it is completely
characterised by its mean and its variance, strictly its 1st order momentum and
2nd order central momentum. Higher order momenta, are completely determined
by those two. In particular, all the odd momenta are zero.

5We would normally call spectral index the n in P(k) ∼ kn, but in cosmology it is customary
to give that name to the difference ns − 1.
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1.3 Primordial perturbations

The fluctuations of the inflaton have a mean value of zero, and their higher
order momenta are given by its n-point correlation functions (we just described
the predicted 2-point correlation). If inflationary primordial fluctuations were
gaussian, they would be completely determined by a constant power spectrum,
and have an vanishing bispectrum.

The contributions to the bispectrum would arise mainly from the order-3 terms
in the action of the comoving curvature perturbation. Those terms account for
interactions between the fields present during inflation. Since the only field in
the theory is minimally coupled to gravity, we expect to have only a very small
contribution to the bispectrum. The full bispectrum for single-field, slow-roll
inflation was first calculated in [32, 4] and it is

Bζ(k1, k2, k3) =
(2π)4P(

∑
i ki)

2

(k1k2k3)
2

1

8k1k2k3
×

×

(3ε− 2η)

3∑
i=1

k3
i + ε

∑
i 6=j

kik
2
j + ε

4∑3
i=1 ki

∑
i 6=j

k2
i k

2
j

 .

(1.46)

Now, in the same way we did with the power spectrum, we often define a
dimensionless version of the bispectrum by factoring out (k1k2k3)−2, and, in order
to compare its value with that of the power spectrum, also a factor of P(

∑
i ki)

2,
defining the shape function S(k1, k2, k3):

S(k1, k2, k3) :=
(k1k2k3)

2

(2π)4P(
∑
k)2

Bζ(k1, k2, k3) . (1.47)

(Unfortunately, there is no unique convention in the literature for the prefactor)
Factoring out this scaling, we can now see how the bispectrum is suppressed

by O(ε, η) with respect to the power spectrum. We do not know the real value
of the slow-roll parameters, but the bounds given by eqs. (1.44) and (1.45) make
us expect a very small bispectrum, which, together with a nearly scale-invariant
power spectrum are a strong indication for slow-roll single-field inflation. Both
WMAP and Planck confirm the smallness of the bispectrum when fitting the
shape in eq. (1.46).

Notice that in the last sentence we explicitly stated which shape of the bis-
pectrum was fitted when quoting the amount of non-gaussianity. We must always
do so, and the reason is that the many possible configurations of momenta in
which the bispectrum can be evaluated (see fig. 1.4) leave room for very diverse
functional forms with very different dependencies on the configurations. Given a
data set containing a significant amount on non-gaussianity in a particular shape,
if we try to fit a shape much different from that of the signal we would get a
small amplitude for it. Being aware of this, we should be careful about mak-
ing general statements of the amount of non-gaussianity in e.g. the CMB data,
since this amount, in principle, depends on its shape. We are about to describe
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a model that predicts a distinct shape for the primordial bispectrum, and so do
other inflationary settings. A precise measurement of the cosmological observ-
ables which are most informative about the primordial bispectrum (specially the
CMB bispectrum) can be determinant to distinguish among different inflationary
scenarios.

1.3.4 Beyond the simplest model – Transient reductions in
the speed of sound

Inflation occurs at high energy scales in which our knowledge of the field content,
prior to cosmological constraints, is almost non-existent. The presence of multi-
ple fields during Inflation would produce a very rich phenomenology that could
also be constrained in principle by cosmological observations (different, also rich
phenomenology can arise too from other alternatives to the simplest inflationary
scenario, such as brief interruptions of the slow-roll regime or different choices of
the vacuum).

As we argued in the last section, the predictions of slow-roll, single-field in-
flation are well within the constraints of CMB observations, their most direct
probe. This fact motivates us to approach the presence of multiple fields during
inflation under the hypothesis that they are significantly heavy. In this regime,
we expect to be able to integrate out those heavy degrees of freedom and ob-
tain an effectively-single-field theory in which the effect of the background enters
through effective operators in the action, and the inflaton direction fulfils a slow-
roll regime. Small excitations of the heavy degrees of freedom during inflation
might produce, through the effective operators, potentially detectable deviations
from the predictions of a purely single-field framework.

To achieve that, several different approaches are possible. In this section
we will not discuss the details of the procedure, but instead we start from the
effective action, after integrating out the heavy degrees of freedom, of the field
π(t,x), which represents displacements along the background trajectory in the
effective potential. The quadratic and cubic action for this field are [13]

S2 =

∫
d4x a3εH2

(
π̇2

c2s
− 1

a2
(∇π)

2

)
, (1.48a)

S3 =

∫
d4x a3εH2×

×
{
−2Hsc−2

s ππ̇2 −
(
1− c−2

s

)
π

[
π̇2 − 1

a2
(∇π)

2

]}
, (1.48b)

where we are neglecting higher order slow-roll corrections. Notice the introduction
of the speed of sound cs, and the derived quantities u and s, defined as:

u := 1− c−2
s , s :=

ċs
csH

. (1.49)
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1.3 Primordial perturbations

The action above neglects terms of higher order in u and s. The speed of sound
in the effective field theory can be related to the angular velocity θ̇ of the field π
whenever it finds a turn in the inflationary trajectory:

c−2
s = 1 +

4θ̇2

k2

a2 +M2
eff

, (1.50)

where M2
eff is the effective mass of the mode perpendicular to the trajectory in

field space. Therefore, a turn between two straight segments of the trajectory
produces a momentary reduction in the speed of sound. As the action above is
perturbative in terms of u and s, the reduction in the speed of sound cannot be
too big nor too quick; at the same time, we keep at all times a slow-roll regime,
and expect the contribution of the slow-roll corrections to be much smaller than
that of the speed of sound, which must be dominating the evolution during the
turns. Altogether, the theoretical framework presented here is well defined in the
regime of mild and moderately sharp transient reductions:

O(ε, η)� max(u, s)� 1 . (1.51)

Now we will take a look at the possible observable consequences of this regime.
To do that, we need to relate the inflaton direction π with the comoving curvature
perturbation ζ:

ζ = −Hπ . (1.52)

In terms of the adiabatic curvature perturbation, the quadratic action of the
inflationary mode is

S2 =

∫
d4x a3ε

[
ζ̇2 − (∇ζ)

2

a2

]
︸ ︷︷ ︸

S2,0

+

∫
d4x a3ε(−u)ζ̇2︸ ︷︷ ︸

δS2

. (1.53)

Notice that the first part of the action, S2,0, corresponding to the case cs = 1, is
similar to the canonical slow-roll action eq. (1.28), and has the same phenomenol-
ogy, producing the well known power spectrum of eq. (1.41). The new, interesting
term δS2 accounts for the reductions in the speed of sound, and produces a per-
turbation of the (nearly) scale-invariant power spectrum, which can be calculated
using the in-in formalism [27, 41] for the case of a small, transient reduction in
cs, to first order in u ≡ 1− c−2

s [3]:

∆P
P (k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (1.54)

where k ≡ |k|, P is the featureless power spectrum with cs = 1 defined by
eq. (1.41), and τ is the conformal time. This very important expression shows
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precisely how changes in the speed of sound, within the regime described here,
seed features in the primordial power spectrum of curvature perturbations. Those
features are given by a simple Fourier transform in conformal time, assuming
cs = 1 at the beginning (τ = −∞) and the end of inflation (τ = 0).

We can also calculate the resulting bispectrum from the cubic action in terms
of the adiabatic curvature perturbation, using the in-in formalism, at first order
on u and s, and disregarding slow-roll contributions [3]:

∆Bζ(k1,k2,k3) =

(2π)4P2

(k1k2k3)2

{
− 3

2

k1k2

k3

[
1

2k

(
1 +

k3

2k

)
∆P
P − k3

4k2

d

d ln k

∆P
P

]
+ . . .

+
1

4

k2
1 + k2

2 + k2
3

k1k2k3

[
1

2k

(
4k2 − (k1k2 + . . .)− k1k2k3

2k

)
∆P
P

− k1k2 + . . .

2k

d

d ln k

∆P
P +

k1k2k3

4k2

(
d

d ln k

)2
∆P
P

]}
, (1.55)

where ki := |ki|, k := 1/2
∑2
i=1 ki, and P, ∆P/P and its derivatives are evaluated

at k. The ellipsis . . . means a sum over all possible permutations of (1, 2, 3) on the
indices of the term previous to it. Note that in the squeezed limit ki � kj ' kk
we recover the single-field consistency condition of [32, 14].

It becomes immediately clear how a reduction in the speed of sound seeds
correlated perturbations in both the power spectrum and bispectrum. In the first
part of this thesis, we study how this correlation can be exploited to try to detect
reductions in the speed of sound in CMB (and LSS) data.

As a final remark, note that, though we have related the reduction in the speed
of sound to the angular velocity along a turn, the result above is independent of
the physical origin of such reduction. Different high energy realisations of the
reduction would produce different effective operators in the cubic action, making
the realisations distinguishable at the level of the bispectrum [13, 2].

1.4 The Cosmic Microwave Background

1.4.1 Statistical properties – spectrum and bispectrum

We expect the temperature anisotropies in the CMB to be the most informative
probe of the primordial perturbations generated by inflation. As we will see later,
the statistical properties of the primordial n-point correlation functions are related
to the corresponding correlations of temperature anisotropies in the CMB sky. We
will leave the description of the physical effects leading from primordial to CMB
anisotropies for the next section, and we start here by describing the treatment
of correlation functions of the temperature anisotropies in the CMB sky.
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1.4 The Cosmic Microwave Background

Since the anisotropies are projected on the 2-sphere defined by all possible
directions in the sky given by the unit vector n̂, we use as the basis of the trans-
formation the spherical harmonics:

∆T

T
(n̂) =

∑
`m

a`mY`m(n̂) (1.56)

Notice how the harmonic-transformed perturbation, instead of a continuous func-
tion like the primordial perturbation ζ(k) was, is now a discrete series of coeffi-
cients a`m, due to the finitude of the space over which the transformation is taken:
a 2-sphere. The integer sub-index ` ≥ 0 characterises the angular periodicity of
Y`m, its period being (2π/`) rad or 360◦/`. For each `, the values of the integer
index m ∈ [−`, `] represent the different relative directions in which the angular
variation of Y`m can be realised.

As we did with primordial perturbations, we define the CMB power spectrum
C` as the 2-point correlation function averaged over all possible realisations of the
random fluctuations:

〈a`1m2
a∗`2m2

〉 = δ`1`2δm1m2
C`1 . (1.57)

In an analogous way to the primordial spectrum’s lack of information of direction,
P(k) ≡ P(k), the CMB power spectrum carries no information on direction either,
C`m ≡ C`, imposed by the delta δm1m2 .

Equivalently, one could have calculated directly the correlation between two
temperature anisotropies, and averaged them over all possible realisations of the
CMB sky, getting〈

∆T

T
(n̂1)

∆T

T
(n̂2)

〉
=
∑
`

2`+ 1

4π
C`P`(cos θ) , (1.58)

where P` are the Legendre polynomials and θ is the angle between the direction
n̂1 and n̂2.

We define the 3-point correlation function, or reduced CMB bispectrum as

〈a`1m1
a`2m2

a`3m3
〉 := Gm1m2m3

`1`2`3
b`1`2`3 , (1.59)

where we make use of the so-called Gaunt integral :

Gm1m2m3

`1`2`3
=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
,

(1.60)

where the matrices represent Wigner 3-j symbols (we will show the origin of the
Gaunt integral in the next section). We can also write the inverse equation to
(1.59):

b`1`2`3 =
∑
mi

Gm1m2m3

`1`2`3
〈a`1m1a`2m2a`3m3〉 . (1.61)
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Notice now that the reduced CMB bispectrum has no directional information
(mi), as expected, since we assumed isotropy. The only directional informa-
tion, which is geometrical, not physical, is inside the Gaunt integral, which takes
the rôle of the deltas in (1.57). Those deltas would impose some constraints on
〈a`1m2a

∗
`2m2
〉 which were not visibly present in C`. In the same way, the fact that

the Gaunt integral contains those two 3-j symbols imposes some selection rules
in 〈a`1m1

a`2m2
a`3m3

〉 that cannot be seen directly on b`1`2`3 . In particular, the
`i’s must form a triangle of even perimeter, i.e.6

`1 + `2 + `3
2

∈ Z , (1.62a)

|`j − `k| ≤ `i ≤ `j + `k , ∀(i, j, k) ∈ Perm(1, 2, 3) . (1.62b)

The second condition is analogous to the one imposed over the wave numbers
in the primordial bispectrum, (1.36): both wave numbers and harmonic indices
must form triangles in order to contribute to each bispectrum. In particular, in
the harmonic space, the triangle must have even perimeter.

The triangle condition determines a tetrahedral cone for the `i’s, as it did for
the ki’s. In the case of the wave numbers, the cone was cut into a pyramid by
the existence of a maximum observable wave number K. Here, correspondingly,
we assume a maximum precision L, such that `1, `2, `3 ≤ L. But here the lack of
a vectorial condition like

∑
i ki = 0 lets the cone be extended up to the edges of

the cube limited by L, forming not a pyramid but a bi-pyramid (see [19, fig. 2],
where it is called tetrapyd) with apices in (0, 0, 0) and (L,L,L), limited by the
planes

`i = `j + `k , `i = L , ∀(i, j, k) ∈ Perm(1, 2, 3) . (1.63)

Notice that the observed quantity in the sky is the angle-averaged CMB bis-
pectrum, defined as

B`1`2`3 :=
∑
mi

(
`1 `2 `3
m1 m2 m3

)
〈a`1m1

a`2m2
a`3m3

〉 , (1.64)

or, inversely

〈a`1m1
a`2m2

a`3m3
〉 =

(
`1 `2 `3
m1 m2 m3

)
B`1`2`3 , (1.65)

and which fulfils the following relation with the reduced bispectrum

B`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
b`1`2`3 . (1.66)

6Notice that the second condition, provided that all `i’s are positive numbers, needs only
be checked for a particular permutation of (1 , 2 , 3), which implies that it is satisfied for all of
them.
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1.4 The Cosmic Microwave Background

1.4.2 From inflationary primordial fluctuations to CMB
anisotropies

In section 1.3.1 we described the curvature perturbations created by slow-roll,
single-field inflation, and proved that their modes get frozen when their respective
wave length exists the Hubble sphere.7 The very fact that they remain frozen
while they are outside the Hubble sphere is what allows us to learns anything
about Inflation, since we know close to nothing about the physics going on right
after the end of inflation.

After the end of inflation, the Universe becomes filled with radiation (part of
which decouples as matter as some point), and the comoving curvature pertur-
bations created by Inflation source perturbations in the density of the radiation
field. In slow-roll, single field inflation the only degree of freedom present is the
scalar field, which sources curvature perturbations ζ in the syncronous 3-surfaces.
As the only degree of freedom driving the dynamics of the Universe, at each point
of the fluid, the curvature perturbation can be used as a clock tx = tx(ζ). Then,
the small spatial variations can be understood as inflation being slightly ahead
or behind at each point by a small quantity δt(x). This small, continuous time
shift causes the different regions to have expanded a slightly different amount –
the surfaces of constant time are not homogeneous any more, or, equivalently, the
surfaces of homogeneity are not flat anymore, which is another way to understand
why curvature perturbations in the 3-space are generated.

Let us look at the density perturbation of the fluid i at some point after
inflation, in a surface of constant time t. This 3-surface is nearly homogeneous,
with an energy density ρ̄i(t). The real, perturbed density of the fluid i, for a small
time shift, can be written as

ρi(t,x) = ρ̄i (t+ δt(x)) ' ρ̄i(t) + ˙̄ρi(t)δt(x) , (1.67)

and a similar expression for the pressure. Defining δρi(t,x) := ˙̄ρi(t)δt(x) and
substituting the time derivative of the density with the continuity equation (1.5b),
one arrives at the equality

δρi
ρi + pi

= −3Hδt(x) , (1.68)

where one should notice that the right term is independent of the species. This
independence of the particular fluid is a consequence of there being a single degree
of freedom δt(x) sourcing the perturbations, and defines adiabatic perturbations.

Before continuing, a caveat is in order: in general, the linear perturbations
of the different fluids, photons, baryons or CDM, are possibly coupled with each
other in different ways, depending on the mechanism that generated them. They

7Formally, we have only proven that perturbations are conserved during inflation, but still
would have to prove that they keep frozen after inflation has ended. The proof for adiabatic
perturbations can be found in [40], and in an alternative formulation in [39].
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can be expanded by two orthogonal components: entropy perturbation, which
imply local variations of the relative number density, but keeping the total en-
ergy density constant (and thus the curvature of the local space-time, hence also
called isocurvature perturbations); and adiabatic perturbations, in which there is
no energy exchange between the different fluids, and are defined by equation
(1.68). Slow-roll single-field inflation produces adiabatic perturbations, while in
multiple-field inflation we expect several degrees of freedom seeding perturbations,
thus creating a combination of adiabatic and isocurvature perturbations. Only
because we assumed slow-roll single-field inflation, we are able to choose such
a synchronous gauge that traces the perturbations in all fluids simultaneously,
showing explicitly the defining property of adiabatic perturbations, eq. (1.68).

Current CMB data clearly favours adiabatic perturbations as the only neces-
sary ones to describe the universe today, while restricting the size of isocurvature
perturbations to be negligible [6].

The next step to relate the primordial curvature perturbations with the CMB
temperature perturbations is to study the physical processes that the perturbation
modes undergo after entering the Hubble sphere. The nature of those processes
is well known, and can be summarised into a series of transfer functions ∆`(k),
which project the primordial curvature perturbation to the harmonic coefficients
of the CMB sky as

a`m = 4π(−i)`
∫

d3k

(2π)3
∆`(k)ζ(k)Y`m(k̂) . (1.69)

The effect of the transfer functions in the power spectrum can be divided
in two sets of contributions: those acting at scales which are super-Hubble at
the time of recombination, and those that had entered the Hubble sphere earlier,
divided approximately by the scale of the multipole ` ≈ 90, as discussed in section
1.2.1.

Of the first ones, the main contribution comes from the Sachs-Wolfe effect,
which is the gravitational redshift that the photons suffer at the last scatter-
ing surface due to the differences in the local gravitational potential. A smaller
contribution comes from the Integrated Sachs-Wolfe effect, which consists on the
gravitational redshift that the photons undergo during their journey to us, due
to the difference in energy between descending and climbing a potential in an
expanding, radiation- or dark matter-dominated Universe. The relevant part of
the power spectrum, l . 90, results in a direct processing of the primordial one,
keeping flat bar a factor `(`+ 1) coming from the projection of the flat waves in
k over the spherical sky.

At sub-Hubble scales, the cosmic fluid has been able to undergo local physi-
cal processes between leaving the Hubble-sphere and the last scattering surface.
Therefore, on top of the Sachs-Wolfe spectrum, we will see the effect of these pro-
cesses. The cold dark matter (CDM) fluid is decoupled from an initially coupled
fluid of baryons and photons. CDM dominates the gravitational potential, and
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the baryons+photons fluid oscillates inside the potential wells due to the photon
radiation pressure. These stationary oscillations produce, at the time of decou-
pling of photons and baryons in the last scattering surface, the series of acoustic
peaks that we can see on the CMB power spectrum. These peaks of approximately
equal height in the spectrum are actually damped at small scales by the fact that
the decoupling did not occur instantly, and the photons underwent scattering at
scales of their mean free path at that time. This last effect is called Silk damping.

The effect of those physical processes in the CMB power spectrum can be seen
in figure 1.5(a) of section 1.4.3. For a detailed study of them we refer the reader to
thorough reviews such as [17]. The transfer functions are often computed with the
help of cosmological codes, such as CLASS or CAMB. Here it is enough to keep
track of the parameters of the cosmological model implied in them: (1) the ones
referring to the ΛCDM background, namely the value of the expansion rate today
(H0) and the densities of baryons and CDM (Ωb and ΩCDM); (2) those referring
to late-time effects, the optical depth due to reionisation τreio being the only one
that we can constrain (the rest are treated as nuisance parameters, see later); and
(3) parameters describing experimental effects, e.g. effect of calibration, of the
particular survey, treated as nuisance parameters.

The equation (1.69) can be applied to the definitions of the CMB spectrum and
bispectrum, in order to relate them to their primordial counterparts eq. (1.35a)
and (1.35b). After some algebra (involving integrating angles between vectors ki’s,
using properties of spherical harmonics, expanding the Dirac delta in Legendre
polynomials. . . ) we arrive at the expressions:

〈a`1m2
a∗`2m2

〉 = δ`1`2δm1m2

2

π

∫ ∞
0

dk k2∆2
`(k)Pζ(k) , (1.70)

〈a`1m1
a`2m2

a`3m3
〉 = Gm1m2m3

`1`2`3

(
2

π

)3 ∫∫∫
dk1dk2dk3 (k1k2k3)2

∆`1(k1)∆`2(k2)∆`3(k3)Bζ(k1, k2, k3) J`1`2`3(k1, k2, k3) ,

(1.71)

where

J`1`2`3(k1, k2, k3) :=

∫
x2dx j`1(k1x)j`2(k2x)j`3(k3x) , (1.72)

and the already mentioned Gaunt integral is

Gm1m2m3

`1`2`3
:=

∫
dΩxY`1m1

(x̂)Y`2m2
(x̂)Y`3m3

(x̂) , (1.73)

whose solution is eq. (1.60) and whose properties we have already discussed.
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1.4.3 Experimental status
The CMB temperature power spectrum measured by the Planck satellite and
released in March 2013 [5] can be seen in figure 1.5(a), with the best-fit ΛCDM
model on top (solid line). As we can see, the concordance between the measured
power spectrum and the ΛCDM prediction is stunning.

The CMB bispectrum found by Planck can be seen in figure 1.5(b). Its small
size appears to fulfil the prediction for slow-roll inflation (see sec. 1.3.3), though
there are hints of an oscillatory pattern with possible primordial origin [7, sec.
7.3.3].

1.5 Constraining inflation with the CMB – param-
eter extraction

Now that we have proven how the properties of the perturbations generated by
inflation are imprinted in the CMB, we turn to the topic of how to extract that
information from the measured CMB data of a real survey. The result is given as
regions of the parameter space containing the most likely values of the cosmolog-
ical parameters that generated the data at hand. To achieve that result, we will
need a number of statistical tools, which we discuss in this section.

1.5.1 Bayes’ theorem
LetM be our model for the Universe, which depends on some parameters θ defined
over a parameter space Θ. Let D be a set of data that may be well described by
the modelM. We are interested in the probability distribution of the parameters
of the model P (θ | D,M), conditional on having observed the data D, which we
assume has been produced by the modelM. We call it posterior pdf 8. It is often
extracted from Bayes’ theorem, which states

P (θ | D,M) =
L (D |M(θ))

Z (D |M)
π (θ |M) . (1.74)

Here, we have introduced three more probability distributions:

π (θ |M), , called prior, is the pdf of the values of the parameters θ within the
modelM, which is assigned before knowing about the data D.

L (D |M(θ)), called likelihood, is the pdf of all possible outcomes of the survey
that produced the data D, assuming that the hypothetical modelM is true,
and the right values of its parameters are θ. It measures the compatibility
of the data with the hypothesis.

8The probability density function (pdf ) of a random variable x is a positive definite function
f(x) defined such that the probability of x being sampled in the (a, b) interval is equal to∫ b
a f(x) dx. The pdf must be normalised to 1 over the domain of x.
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(a) Temperature power spectrum of Planck on March 2013, from [5]. D` stands for
`(` + 1)C`/2π, and the shaded area represents the cosmic variance. The solid line is
the prediction of the best-fit ΛCDM model.

(b) Reconstructed bispectrum of Planck on March 2013, from [7] (in
colour).

Figure 1.5: CMB power spectrum and bispectrum from Planck’s data release of
March 2013.
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Z (D |M), called marginal likelihood or evidence, is the probability of all
possible outcomes of the survey that produced the data D, given that the
modelM is true, and having marginalised (i.e. integrated) over every pos-
sible value of the parameters θ.

We will describe the prior and likelihood pdf’s in the following sections, and
ignore the evidence for now, since when dealing with parameter extraction it only
amounts to an uninteresting normalisation constant. The result of the parameter
extraction process will therefore be the region of the parameter space Θ over
which the probability

P (θ | D,M) ∝ L (D |M(θ)) π (θ |M) , (1.75)

takes its highest values.

1.5.2 Prior
The prior pdf should encode two features:

Extension It should assign zero probability for those values of the theory which
are considered not valid for the model, e.g. negative values of a mass.

Distribution Different approaches are possible, but one often tries to assign
equal probability to values of the parameters among which there are no
preferred ones, e.g. a uniform pdf in time for an instantaneous phenomenon
whose timing we cannot predict. One can also choose a prior such that it lets
the data, through the likelihood, be most informative when determining the
constaints on the parameters (this priors are often called non-informative).
For an extended review on different criteria for prior choice, see [26].

These aspects of the prior may present some problems:

Extension Some parameters, such as those controlling a perturbative expansion,
have only soft limits, so their extension is not clear; e.g. the amplitude
controlling a perturbative expansion may have as an upper limit 10−1, 10−2,
10−3. . .

Distribution We will try to assign equal probabilities to unpreferred values of
the parameters, but what pdf this precisely means depends on the particular
parametrisation of the model, since lack of preference for a parameter θ
does not mean the same as lack of preference for θ2: a uniform pdf for θ
transforms into a 1

θ prior for θ2.

Despite the problems stated above, fortunately different choices of the prior
make a very small difference for highly predictive data which impose strong re-
strictions on the parameters’ values. In the pessimistic case of a not-so-restricted
model, where the choice of the priors is important, care must be taken in clearly
stating the choice of the prior and how it affects the result, by showing how the
posterior varies for different prior choices.
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1.5.3 Digression – Objectivity, frankness and Bayesian
statistics

Some people see the existence of prior pdf’s in Bayesian statistics as a flaw of
the approach which would introduce unnecessary subjectivity, since the prior I
am assigning may not be the same that someone else may assign. Let us argue
that it is not unnecessary, and it is not more subjective than any other model
assumption.

Necessity. Confindence intervals are regions of the parameter space built in
such a way that the probability of the underlying true value of the parameters
falling in those intervals, given the data, is equal to a certain value, usually 68% or
95%, which correspond respectively to the 1- and 2-σ intervals of a gaussian pdf.
Confidence intervals are built from posterior samples (likelihood samples in the
frequentist approach), such that they contain some fraction of the posterior mass
(i.e. the integral of the posterior over those intervals amounts to that fraction of
the total integral). It is easy to prove that the shape of those confidence intervals
unavoidably depends on the choice of parametrisation of the model. The frequen-
tist approach uses the Fischer information matrix to account for that dependence.
The Bayesian approach does it in a different way: different parametrisations are
equivalent to different prior choices. Therefore, in the introduction of prior pdf’s
is necessary in order to account for an effect that is already explicitly present in
the frequentist approach.

Subjectivity. Objectivity in science is about the methods applied to reach the
results, and about putting up-front every assumption of the model under test.
The assumptions themselves, though they must be sane from a scientific point
of view, are chosen subjectively, up to the physical intuition of the scientist,
and may change under certain circumstances. Again, it is being straightforward
about those assumptions which gives the scientific endeavour its objectivity. This
is precisely what Bayesian statistics does: discussing a prior choice is not a trick
to get the results that one desires; it is being frank about an unavoidable choice
of assumptions.

1.5.4 Likelihood

As we stated, the likelihood function L (D |M(θ)) is the probability that the data
D is an actual realisation of the modelM. In our particular case, the data is the
CMB power spectrum as measured from the map, while our model M is our
calculation of it starting from the primordial perturbations described in section
1.3 and projecting them in the CMB sky following section 1.4. Of course,M may
also be any modification of the ΛCDM model, like the one we test in chapters 2
and 3 of this thesis.
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When comparing them both, one has to take into account the spurious effects
that introduce differences between the power spectrum that we measure in the
CMB and the one our model predicts. Those effects may be intrinsic to the
instrument, such as the effect of the beam window function of the detector (real-
world detectors, when pointed to one direction, give back not exactly the signal
coming from that precise direction, but an integrated measurement that includes
some signal coming from the surroundings of the direction to which we point),
instrumental noise (some of the signal is generated by electronic noise in the
detectors) or differences in calibration between different instruments of the survey;
they may also be foregrounds, i.e. the physical effects that disturb the CMB
photons during their journey towards us.

A likelihood function must take into account those effects and model them as
effectively as possible. The likelihood function then takes the more exact form

L
(
Cmap
` |CM` (θ),M∗(η)

)
, (1.76)

where CM` (θ) is the CMB power spectrum predicted by our model and para-
metrised by θ, andM∗ models the aforementioned instrumental and foreground
effects, parametrised by η.

For didactic purposes, let us formulate a very basic likelihood function for a
very basic, fictional CMB survey. For starters, we will ignore foreground effects
on top of the CMB signal, assume full-sky coverage on a single frequency, and
correct only for the effects of the beam of the detector and its electronic noise,
and the fact that CMB maps have finite pixelisation.

The simplest data model hypothesis that we can make is

d := s+ n , (1.77)

where the components di of the vector d are the measured values of the tem-
perature anisotropy ∆T/T corresponding to the pixel i of the map, with a total
number of pixels Npix; we have divided this data into a linear combination of two
components: the underlying CMB signal s and the amount of signal given by
the noise, n. According to our cosmological model, the temperature anisotropies
caused by inflation are gaussian. Their covariance, 〈∆Ti/T · ∆Tj/T〉, is, according
to eq. (1.58)

〈sisj〉 =
∑
`

2`+ 1

4π
Ĉ` P`(αi,j) , (1.78)

where αi,j is the angle between the centres of the pixels i and j. The power
spectrum on the right hand side is directly calculated from the pixelised map. In
order to extract the power spectrum corresponding to the underlying CMB signal,
one has to take into account the effects of the finite beam of the expetiment and
that of the pixelisation.
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In any detector the signal measured in a direction n̂ does not just come from
it only, but also mixes in some signal from adjacent directions. This means that
in our map the temperature fluctuation measured as coming from n̂ is the result
of the convolution with a beam window function B:(

∆̂T

T

)
(n̂) =

∫
Ωr̂

(
∆T

T

)CMB

(r̂)B (cos(r̂, n̂)) dΩr̂ , (1.79)

where we integrate over all possible directions r̂. If we make now a spherical
transform, we get

â`m =

∫
Ωn̂

{∫
Ωr̂

(
∆T

T

)CMB

(r̂)B (cos(r̂, n̂)) dΩr̂

}
Y ∗`m(n̂) dΩn̂ = aCMB

`m B` .

(1.80)

Notice how the spherical harmonics transformation turns the convolution with
the beam window function into a product with the transformed beam window
function Bl. A typical shape for a beam is a gaussian one with variance σ2

B ,
whose spherical harmonic transform is B` = exp

(
−1/2 `(`+ 1)σ2

B

)
.

After applying this and a similar correction for the pixel window function
(each pixel integrates signal from a finite area) encoded by W` [24], we get the
variance of the signal as a function of the underlying CMB spectrum

〈sisj〉 =
∑
`

2`+ 1

4π
CCMB
` B2

`W
2
` P`(αi,j) , (1.81)

We know the probability distribution for the signal part of the data: it follows a
gaussian distribution with zero mean and the variance above. As for the electronic
noise, we often assume it to be gaussian, with a variance Ni,j (and zero mean).
The sum of two gaussians is a gaussian, whose mean and variance are the sum
of those of the components. Therefore, the pdf of the data in all pixels is the
multivariate gaussian

d ∼ N (0,Σ) , (Σ)i,j :=
∑
`

2`+ 1

4π
CCMB
` B2

`W
2
` P`(αi,j) +Ni,j . (1.82)

This probability distribution is, of course, conditional on the underlying modelM
giving the CMB power spectrum, parametrised by some variables θ, and on the
models for the beam and the noise, that we will ignore in the future. Therefore,
as this multivariate gaussian assigns a probability for the particular realisation of
the data given an underlying model, we have precisely the likelihood we wanted:

L (d |M(θ)) =
1

(2π)
Npix/2 |Σ|1/2

e
1
2dΣ−1d , (1.83)
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where the dependence on the model enters though the covariance matrix Σ (M (θ)).

The approach described above is a nice, simple one, but it is also doomed: in-
verting the matrix takes O(N3

pix) operation: two orders come from the dimensions
of the matrix, and the third one from the sum on `, since the larger the resolution
of the experiment is, `max, the finer the pixelisation needed. This approach makes
sense only for low-resolution maps aimed at characterising the spectrum at low
multipoles, ` . 50, and even in that case the joint analysis of maps with multiple
frequencies makes it computationally expensive, since we have to multiply Npix

by the number of maps. In addition to that, we still need to account for the effect
of foregrounds, which introduce further computational complications. Still, the
the method described here can be used as a basis for the temperature power spec-
trum likelihoods of Planck are formulated [5], in particular for ` < 50. For higher
multipoles, the central limit theorem can be exploited to gain some simplicity.

The low-` Planck C` likelihood

The low-` likelihood is based on a more sofisticated version of the method de-
scribed above. It is known as Commander, and it is presented in [18]. Let us
sketch it here. As a first step, we include different foregrounds effects as compo-
nents of the total temperature perturbation:

d := s+ n+
∑
i

f (i) . (1.84)

As for the CMB signal, we need a model for the foreground effects, M∗ with
parameters η. As this method is to be applied to small multipoles only, the
resolution of the sky maps is downgraded to gain some efficiency.

Let us now look at the joint pdf of the CMB signal s, its underlying estimated
power spectrum ĈCMB

` (notice the difference with CCMB
` , given by the model

M), and the foreground effects f (i), conditional to the measured temperature
anisotropy d, i.e. P

(
s, ĈCMB

` ,f (i) |d,M,M∗
)
. Marginalising over all possible

splittings between CMB signal part and foreground effects, we would get the de-
sired likelihood P

(
ĈCMB
` |M

)
. But that is a very complicated distribution with

lots of parameters coming both from the model for the CMB and the model for
the foregrounds, and not even using a Monte Carlo method, as the one described
in the next section, is this pdf easy to map out.

On the contrarly, its conditional distributions for each of s, ĈCMB
` or f (i) are

much simpler: the first one,

P
(
s | ĈCMB

` ,f (i),d,M,M∗
)
≡ P

(
s |f (i),d,M

)
, (1.85)

is, as we discussed, exactly a Gaussian distribution with covariance (1.81). The
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second,

P
(
ĈCMB
` | s,f (i),d,M,M∗

)
≡ P

(
ĈCMB
` | s

)
, (1.86)

can be easily calculated to be an inverse gamma distribution.9 The last one,

P
(
f (i) | s, ĈCMB

` ,d,M,M∗
)
≡ P

(
f (i) | s,d,M∗

)
, (1.87)

has no simple analytical form, but can be mapped out numerically without much
difficulty. When the single conditional distributions are simple enough, we can
take a Monte Carlo approach known as Gibbs sampling, consisting on applying
a Markov Chain algorithm on each of the distributions alternatively (the reader
may want to come back to this section once having read the next one): at a step
t of the chain, first sample a point st+1 from (1.85), then use the combination
(st+1, Ĉ

CMB
`,t ,f

(i)
t ) as a starting point to sample a point ĈCMB

`,t+1 from (1.86), and
lastly, using (st+1, Ĉ

CMB
`,t+1 ,f

(i)
t ) sample a point f (i)

t from (1.87), getting the fol-
lowing step of the chain, (st+1, Ĉ

CMB
`,t+1 ,f

(i)
t+1); repeat until achieving convergence.

Once we have enough samples, we can marginalise over s and the foregrounds and
use the result to create an approximated interpolating likelihood L

(
ĈCMB
` |M

)
.

The high-` Planck C` likelihood

For higher multipoles, we need higher resolution maps, which makes the method
above less eficient. Planck used the CamSpec algorithm [5, sec. 2.1], based on the
MASTER approach [25].

Let ã`m be the spherical transform in the pixelised map of the data d, including
the correction of a beam window function as in eq. (1.80). We can estimate from
them a power spectrum, that we call pseudo-C`, as

C̃` =
1

2`+ 1

∑
m

|ã`m|2 . (1.88)

This power spectrum contains contributions from the CMB and foregrounds, and
a contribution from the instrumental noise that can be minimised if we use ã`m
of different maps to calculate this square (the instrumental noise is uncorrelated
in the different instruments; though a small contribution is left, it is guaranteed
to be unbiased, i.e. to have zero mean). It can be proven [25] that the underlying
joint power spectrum of CMB and foregrounds, Ĉ`, can be recovered from the
pseudo-C` multiplying by a convolution matrixM``′ that accounts for the leaking
between multipoles due to the finite beam window function, the pixelisation of
the map and the use of non-full sky coverage (a big chunk of the sky, containing
the galactic plane up to a elevation and a number of point sources, is discarded

9See e.g. http://en.wikipedia.org/wiki/Inverse-gamma_distribution .
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to minimise the effect of the anisotropic part of the foregrounds). Since the
convolution matrix can be calculated explicitly (see [5, app. A.1]), we can work
directly with the pseudo-C`.

Working with the C̃` has an important advantage. Given isotropy of the
signal,10 for equal ` all the ã`m are distributed following the same pdf, with a
well-defined mean and variance. On the other hand, according to eq. (1.88), C̃`
is at each ` equal to the average of the ã`m over m. For high values of ` (remem-
ber, here ` > 50), up to a very good approximation the central limit theorem is
fulfilled:11 the pseudo-C` follow a simple gaussian distribution. Therefore, the
likelihood can simply be written as a multivariate gaussian – the product of a
gaussian for each `. The covariance matrix Σ of the multivariate gaussian, giving
the dependence between the different multipoles (and between different combina-
tions of frequencies) is estimated from simulations performed on a fiducial model.
Having precomputed it, the value of the gaussian likelihood can be computed in
a very small amount of time.

As in the low-` case, the likelihood is conditional on the models for the CMB
power spectrum and the isotropic foreground effects, as well here as on the differ-
ent calibration parameters for the maps used. Marginalising at the time of sam-
pling over these nuisance effects one can get the desired likelihood L

(
ĈCMB
` |M

)
.

1.5.5 Monte Carlo methods

Now that we have all the necessary ingredients to extract the posterior pdf of the
parameters of the model and characterise it around its maximum, we may try to
do so in the most naïve way: analytically maximising the product of prior and
likelihood using a gradient method, i.e. following the direction of the function
with the highest slope until we find its maximum. We will immediately find this
approach to be practically unfeasible, due to problems such as

Non-analyticity of the likelihood: In the particular case of the CMB, the cal-
culation of the CMB power spectrum from the primordial conditions, based
on eq. (1.69), cannot be done analytically, but is the result of numerical
solutions of a system of Boltzmann equations, often solved with the help of
computers [30, 11].

Cost of calculating the likelihood: In the particular case of the CMB, the
full calculation of the likelihood from the set of parameters of the model
may take up to a few seconds. This discourages us from attempting a
thorough sampling on a grid in the parameter space, aimed at constructing
an analytic approximation to the likelihood as an interpolating function.

10The most anysotropic foregrounds, Via Lactea and point sources, have been masked away.
The remaining ones are isotropic to a good approximation.

11See e.g. http://en.wikipedia.org/wiki/Central_limit_theorem .
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Size of the parameter space: The dimensionality of the typical parameter spaces,
including interesting parameters of the model and uninteresting parameters
modelling the survey’s shortcomings, easily goes to high values. This too
prevents us from searching an interpolating approximation of the likelihood
by sampling on a grid.

Complicated shape of the likelihood: Even in the optimistic case of an an-
alytic likelihood, it is usually a very complicated function with many local
maxima, in which a gradient method may get trapped.

This problems tell us about the desired features of an ideal solution: it needs a
mechanism for not getting trapped in local maxima, often realised through some
random jumping; it must sample as few points of the parameter space as possible,
and it must scale well with the dimensionality of the parameter space.

The result of this method must be a fair sample, or set of pairs of points in the
parameter space and their respective values of the likelihood, possibly including a
relative sampling weight. Fairness of the sample means that in every region, the
density of the sampling must be proportional to the probability density. If the
goal is to obtain constraints for the parameters of the model, the samples only
need to cover the region of the parameter space where the posterior has most of
its probability mass.

We call Monte Carlo methods a broad family of random sampling algorithms
aimed at solving this kind of problems.

1.5.6 Markov chain Monte Carlo
In this section we will start by briefly defining the general concept of a Markov
chain, its expected properties, and the Metropolis-Hastings algorithm. Details
and proofs can be found in [23, Ch. 1 & 4]

Let X0, X1, . . . , Xt be a sequence of random variables taking values on a state
space E. A (discrete time) Markov chain is a sequence of such random variables
X0, X1, . . . , Xt such that the probability of the random variable to take values in
a particular subset A ⊂ E in the next step depends only on the value taken in
the current step:

P (Xt+1 ∈ A |X0 = x0, X1 = x1, . . . , Xt = xt) = P (Xt+1 ∈ A |Xt = xt) .

(1.89)

A Markov chain is time-homogeneous or stationary whenever this probability does
not depend on the specific order of the step for which the last property is fulfilled:

P (Xt+1 ∈ A |Xt = x) = P (Xt ∈ A |Xt−1 = x) ∀t , (1.90)

i.e. P (Xt+1 ∈ A |Xt = x) is independent of the order of the step, and we call it
the transition kernel. The probability distribution of any step of a stationary
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Markov chain is completely specified by its transition kernel and the probability
distribution of the initial step.

A stationary Markov chain has stationary or invariant distribution ρ when,
being ρ the initial probability distribution at step t,

P (Xt+1 ∈ A |Xt ∼ ρ) = ρ(A) ∀t . (1.91)

Thus, the kernel of a stationary Markov chain is determined by its stationary
distribution.

As it should be obvious by now, we will try to build a Markov chain such that
the stationary distribution is the pdf that we wish to sample, in this case the
posterior pdf P (θ|D,M).

At this point, looking at eq. (1.91), it appears that the points in the chains
are drawn from the stationary pdf ρ. One would be tempted to estimate the
desired averages over ρ, 〈f(X)〉ρ, using averages over the states along the chain,
i.e. ergodic averages:

f̄n :=
1

n+ 1

n∑
i=0

f(Xi) , (1.92)

but there are two important caveats:

1. For the states of the chain to really be samples from ρ, according to eq.
(1.91) all the previous states must be so, including the initial state X0,
which obviously cannot be sampled from ρ yet, since sampling from ρ is
precisely the problem at hand. Therefore, we need to ensure that the initial
state will be forgotten at some point, leaving us with pure samples from ρ.
We achieve so by discarding a number of initial states of the chain when
calculating (1.92), which we call burn-in states.

2. Still, the samples are not independent from one another, but correlated
samples from ρ. This needs not be a problem, provided that the samples
are drawn in the correct proportion, i.e. drawing from A ⊂ E must be
proportional to ρ(A), i.e. the sample, though correlated, must be fair.

Ensuring this two requirements, or having convergence of the path-average f̄n
to the true expected value under the stationary pdf 〈f〉ρ, is defined as the Markov
chain being ergodic. In order to ensure ergodicity, one must prove three properties
of the chain: that it is irreducible, i.e. it explores all subsets A ⊂ E such that
ρ(A) 6= 0, recurrent, i.e. an infinite chain reaches said regions infinitely often, and
aperiodic, i.e. it does not transition cyclically through a fixed sequence of sets.

We now propose a very simple algorithm to build a Markov chain that is sta-
tionary and convergent, and which is the basis, with some improvements, of most
of the widespread cosmological MCMC codes [29, 9]. It is called the Metropolis-
Hastings algorithm.
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Suppose a proposal pdf φ(Y |Xt), where Xt is the value at the current step.
For example, φ(Y |Xt) ∼ N (Xt, C), a multivariate gaussian centred at Xt and
with a fixed covariance matrix C. Let us suppose the we draw a sample y from φ.
Assuming ρ to be the stationary pdf of the chain, we build the quantity

α(Xt, Y ) := min

(
1,
ρ(Y )

ρ(X)

φ(Xt |Y )

φ(Y |Xt)

)
. (1.93)

Notice that α ∈ [0, 1]. The new point Y is accepted or rejected as the next point
of the chain with probability α. If it is rejected, take Xt+1 = Xt. In any case,
repeat for Xt+2. Notice how in eq. (1.93) the ratio of the stationary distribution
drives the next step towards the maxima of this pdf. Notice too how the choice
of a gaussian proposal distribution implies that the second fraction has no effect.

The proposal distribution φ and the stationary distribution of the chain ρ is
all we need to build the Metropolis-Hasting Markov chain. It is easy to see that
its kernel is

P (Xt+1 |Xt) =φ(Xt+1 |Xt)α(Xt, Xt+1)+

I(Xt+1 = Xt)

[
1−

∫
φ(Y |Xt)α(Xt, Y ) dY

]
,

(1.94)

where I(cond) is a function valued 1 if cond is true and 0 otherwise.
It can be proven that this chain converges towards the stationary distribution

ρ regardless of the choice of the proposal distribution φ. This does not mean
that this is not an important choice: the convergence will be faster the closest
the proposal distribution is to the stationary distribution – a bad choice of φ will
have bad consequences in the efficiency of the sampling of ρ: if φ is much more
concentrated than ρ, we will not reach to explore the tails of the distribution ρ; if φ
is very spread, we will tend to draw candidate samples Y such that ρ(Y )� ρ(Xy),
away from the maxima, so we will very often reject them, resulting in a chain
with many repeated steps and few different ones. Therefore, assuming a nearly-
gaussian stationary pdf, one would ideally try to use a gaussian proposal pdf with
a covariance matrix as close as possible to that of the stationary distribution.12
In order to get such a covariance matrix, we can approximate it from the sample
covariance of a small chain of sample of ρ.

1.5.7 Final remarks
Having described the likelihood and prior pdf’s, and one of the Monte Carlo meth-
ods aimed at mapping the posterior, the next step is to actually use these tools to
tackle the two most common computational tasks in statistical inference: param-
eter inference and model selection (in frequentist terms, equivalent to hypothesis

12In fact, it is advisable to use a covariance matrix for the proposal distribution that is a little
broader than that of the stationary distribution, since the tails of the latter get better sampled
this way.
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testing). We will not go into much detail here, but just introduce how these two
problems have been approached in the research performed for this thesis.

Parameter inference

Parameter inference is the problem of, given a model with some parameters,
characterising the regions of the parameter space containing most of the posterior
probability, i.e. containing the most likely underlying parameter values. These
regions are called confidence level regions or intervals. Computing them requires a
sampling method that produces fair samples, since we will estimate the probability
corresponding to those regions with the proportion of the Monte Carlo samples
falling inside them. Since confidence level intervals are, of course, centred around
the maxima of the posterior, the sampling method used must guarantee that the
regions of higher posterior value are thoroughly explored, as Markov chain Monte
Carlo does.

If the resulting posterior is at least approximately gaussian, a set of nested
confidence level intervals (usually 68% and 95%) summarises the posterior pdf
well enough. In the opposite case, of very non-gaussian distribution with several
regions of high probability, not only confidence intervals are not enough to sum-
marise the information contained in the posterior, but also the simple Markov
chain approach explained in the last section needs a unmanageably large amount
of running time in order to guarantee that the sampling is fair. This is so because
the chain gets stuck around one of the several maxima (or modes), and only rarely
jumps between all of them, and only after a large number of exchanges between
the modes can their relative mass probabilities be fairly represented.

The case of a non-gaussian distribution with several modes is prone to pop
out whenever we attempt to constrain parameters of models which exploit small
anomalies close to the signal-to-noise ratio of the data set; this is what we do
in this study with CMB and LSS data. In these cases, one often prefers al-
ternative methods to Markov chain Monte Carlo, specially aimed at mapping
weirdly-shaped pdf’s, such as multi-modal nested sampling [38, 21, 22, 20]. In
the first part of this study, however, we managed to map a multi-modal posterior
using solely MCMC’s. The method we used is described in section 2.3.

Model selection

Model selection is the problem of assessing which one of a set of models is the
most likely to have generated the data at hand, or equivalently which one is the
most informative or predictive. The quantification of this predictivity is given
by the evidence, defined in section 1.5.1, which is the marginalisation of the data
likelihodd over the priors allowed by the theory, i.e. the total probability of the
model being the underlying one regardless of the values of its parameters. A
short review of the procedure followed in Bayesian model selection can be found
in section 3.3.
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In particular, in this study we do not aim to characterise the total evidence
of the model discussed in section 1.3.4, since we do not explore the full param-
eter region allowed by the model, but instead explore a significant patch of it
and use model selection arguments to argue about the consistency between can-
didate signals in CMB and LSS data. The reader is referred to chapter 3 for the
complete discussion. The sampling method used in this part of the study is the
aforementioned multi-modal nested sampling, which is briefly described in section
4.3.
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