
A search for transient reductions in the inflaton speed of sound in
cosmological data, and other topics
Torrado Cacho, J.

Citation
Torrado Cacho, J. (2015, March 31). A search for transient reductions in the inflaton speed of
sound in cosmological data, and other topics. Casimir PhD Series. Retrieved from
https://hdl.handle.net/1887/32593
 
Version: Not Applicable (or Unknown)

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/32593
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/32593


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/32593  holds various files of this Leiden University 
dissertation 
 
Author: Torrado Cacho, Jesús 
Title: A search for transient reductions in the speed of sound of the inflaton in 

cosmological data, and other topics 
 Issue Date: 2015-03-31 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/32593


A search for transient reductions
in the speed of sound of the inflaton
in cosmological data, and other topics

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,
volgens besluit van het College voor Promoties

te verdedigen op dinsdag 31 maart 2015
klokke 13.45 uur

door

Jesús Torrado Cacho

geboren te Badajoz (Spanje)
in 1984



Promotiecommissie:

Promotor: Prof. dr. Ana Achúcarro

Overige leden: Dr. J. Lesgourges (CERN, Genève, Zwitserland)
Dr. E.I. Zavala (Swansea University, Swansea, VK)
Dr. E. Pajer (ITF Utrecht)
Prof. dr. E.R. Eliel
Prof. dr. K.E. Schalm
Dr. W. Valkenburg

Casimir PhD series Delft-Leiden 2015-4

ISBN 978-90-8593-212-3

An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

Part of this research is supported by the Graduate School “Particle Physics at the
Energy Frontier of New Phenomena”, which is funded by the German Research
Foundation (DFG).

The cover shows a triangular section of Planck’s 2013 CMB sky (?), reflected
several times along its sides to form a 2-dimensional orbifold with the symmetry
of a hexagonal lattice, gathering both of the topics of this thesis (but bearing no
physical meaning).
The font used on the cover is Fjalla, Copyright 2011 by Sorkin Type Co, under
SIL Open Font license v1.1.

(?) Copyright: ESA and the Planck Collaboration. Reproduced here for educational purposes.
No endorsement from ESA is implied.

https://openaccess.leidenuniv.nl


To my parents, thanks to whom I am not just a physicist,
but a person in all its dimensions.

And to Berenice, who walked along the valley with me –
without your support this thesis would have never been possible.





Contents

Foreword 7

I Constraints on cosmic inflation with transient reduc-
tions in the speed of sound of the inflaton 11

1 Introduction 13
1.1 Background Cosmology – Large scale geometry of the universe . . 13
1.2 The horizon problem and the need for inflation . . . . . . . . . . . 18
1.3 Primordial perturbations . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4 The Cosmic Microwave Background . . . . . . . . . . . . . . . . . 33
1.5 Constraining inflation with the CMB – parameter extraction . . . 39
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2 Localized correlated features in the CMB power spectrum and
primordial bispectrum from a transient reduction in the speed
of sound 57
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.2 Our test case – A gaussian in e-folds . . . . . . . . . . . . . . . . . 60
2.3 Methodology of the search . . . . . . . . . . . . . . . . . . . . . . . 62
2.4 Summary and analysis of the results . . . . . . . . . . . . . . . . . 64
2.5 Comparison with the search for features in Planck’s bispectrum . . 73
2.6 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 75
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Adding Large Scale Structure data into the search 85
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Review of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3 Methodology and data sets . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . 93
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5



4 Peer-reviewed and published cosmological code 99
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Arbitrary Primordial Power Spectrum for CLASS . . . . . . . . . 100
4.3 Interfacing of MultiNest into Monte Python . . . . . . . . . . 101
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

II Geometry of Heterotic Orbifolds 107

5 Classification of symmetric toroidal orbifolds 109
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Construction of toroidal orbifolds . . . . . . . . . . . . . . . . . . . 111
5.3 Equivalences of space groups . . . . . . . . . . . . . . . . . . . . . 114
5.4 Classification of space groups . . . . . . . . . . . . . . . . . . . . . 121
5.5 Results: classification of toroidal orbifolds . . . . . . . . . . . . . . 122
5.6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . 128
5.A Details on lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.B Two-dimensional orbifolds . . . . . . . . . . . . . . . . . . . . . . . 137
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Summary 147

Samenvatting 151

List of publications 156

Curriculum vitæ 159

Acknowledgements 161



Foreword

This thesis consists of two different parts, separating research projects carried out
in two different groups.

In the first and longest part of this thesis, we attempt to fit the signal for a
reduction in the speed of sound of the inflaton. In chapter 1, we shortly introduce
the topics discussed in this thesis, namely ΛCDM cosmology, transient reduction
in the speed of sound during inflation, and Bayesian statistical inference. After-
wards, we attempt to fit a particular hypothesis for the speed of sound reduction
using Cosmic Microwave Background data (chapter 2) and later adding Large
Scale Structure data to the search (chapter 3). Finally, in chapter 4 we present
two pieces of code that were elaborated for the research in this thesis, and later
released to the community.

In the second part, consisting solely of chapter 5, we present a classification
of all possible 6-dimensional symmetric toroidal orbifolds over which Heterotic
String Theory leads to a supersymmetric model. To do that, we made use of
standard crystallographic tools.
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Abbreviations

CMB Cosmic Microwave Background radiation

(C)DM (Cold) Dark Matter

ΛCDM Dark Energy, Cold Dark Matter cosmological model

EFT Effective Field Theory

FLRW Friedmann-Lemaître-Robertson-Walker, either meaning simply the so-
called metric, or the full homogeneous and isotropic cosmology

GR General Relativity

GSR Generalised Slow-Roll

GUT Grand Unification Theory

LSS Large Scale Structure

MCMC Markov chain Monte Carlo

pdf Probability Density Function (often in low caps)

QFT Quantum Field Theory

SRFT Slow-Roll Fourier Transform

SUSY Super-symmetry

WMAP(#) The Wilkinson Microwave Anisotropy Probe; a number # after it
refers to the data release corresponding to the #-th year of the survey.

WP WMAP low-` polarisation likelihood.
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Part I

Constraints on cosmic
inflation with transient

reductions in the speed of
sound of the inflaton
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Chapter 1

Introduction

In this chapter, we review how to characterise inflation through cosmological
observations. After a brief description of FLRW cosmology, we describe slow-roll
inflation and the effect of possible transient reductions in the speed of sound of
the inflaton. Later we describe the Cosmic Microwave Background and how it
can be used to constrain features in the inflationary potential. Finally, we review
the statistical tools commonly used to achieve the characterisation of inflation
through general cosmological data sets.

For the sake of brevity, most of the detailed calculations are not shown. Ev-
erywhere in this thesis, we use natural units, c = ~ = 1, but keep the Newton’s
gravitational constant (and thus Planck mass) explicit .

1.1 Background Cosmology – Large scale geome-
try of the universe

1.1.1 Description and evolution of homogeneous cosmolo-
gies

We observe the CMB radiation and the LSS to be on large scales mostly isotropic.
Isotropy from here, combined with the Copernican principle – our place in the
Universe is not special – implies homogeneity of the space.

In this thesis we will always assume the space-time to be described on cosmo-
logical scales as a perfect fluid, determined by only two quantities, its density ρ
and pressure p, which is by definition homogeneous, isotropic, having no viscosity,
shear tension or energy conduction – it can just uniformly compress or expand.

To describe this system in the context of General Relativity, one normally
chooses a comoving frame in which the 3-surfaces of homogeneity are synchronous
and the same 3-d coordinates are assigned to the same particle of the fluid at all
times. In this frame, the metric describing the very large scales reads (we take

13



1.1 Background Cosmology – Large scale geometry of the universe

c = 1)

ds2 = gµν dxµ dxν := −dt2 + a2(t) dl2 , (1.1)

where a(t) is a scale factor and dl2 is the metric of the 3-space:

dl2 := dχ2+Σ2(χ)
(
dθ2 + sin2 θdφ2

)
, Σ(χ) =

 sinhχ if κ = −1
χ if κ = 0

sinχ if κ = +1
, (1.2)

where κ is a parameter defining the 3-curvature, proportional to the Ricci scalar
of the 3-space.

We often define the conformal time, τ , by factoring out the scale factor:

ds2 = a2(τ)
(
−dτ2 + dl2

)
, dτ =

dt

a
. (1.3)

On the other side of the Einstein equation, the matter side, we have the stress-
energy tensor of a perfect fluid in comoving coordinates, which is simply

Tµν = diag (ρ, p gii) . (1.4)

Finally, from the Einstein equation and the continuity equation ∇αTαµ = 0
we derive the commonly used pair of Friedmann equations

3H2 + 3
κ

a2
− Λ = 8πGρ , (1.5a)

ρ̇+ 3H (ρ+ p) = 0 , (1.5b)

where we have introduced the Hubble parameter, H := d/dt log a = ȧ
a , and where Λ

is the Einstein’s Cosmological constant, and G is Newton’s gravitational constant.
The perfect fluid that fills the Universe has, from the very-large-scale gravi-

tational point of view, two different components: matter (M), and radiation (R),
with equations of state

p = ωρ with ω =


1
3 Radiation
0 Matter
−1 Dark Energy

. (1.6)

Note that we have included another component: Dark Energy, which is the effect
of the cosmological constant (Λ) in the dynamics of the Universe when treated
as a fluid, i.e. when taken to the RHS in eq. (1.5a); we can define ρΛ := Λ/8πG,
and, since ρΛ is constant, the continuity equation imposes ωΛ = −1. From the
continuity equation we can derive the evolution of the density of each species i
with a(t):

ρi = ρi,0

(
a

a0

)−3(1+ωi)

, (1.7)

14



Introduction

where the sub-index 0 refers to the values in a particular instant, usually today.
The solution for a flat FLRW Universe dominated by a fluid satisfying the

strong energy condition ω > −1/3 (i.e. matter or radiation) is

a(t) = a0t
2

3(1+ω) . (1.8)

For Dark Energy, with equation of state given by ω = −1,

a(t) = a0e
Ht . (1.9)

It is useful to derive an equation for the acceleration of the scale factor a by
differentiating w.r.t. time eq. (1.5a) and inserting (1.5b):1

ä

a
= −4πG

3
(1 + 3ω)ρ . (1.10)

This equation makes clear that the expansion of the Universe accelerates when
it is dominated by species with ωi < −1/3, i.e. it decelerates whenever Matter
or Radiation dominate, and accelerates whenever Dark Energy dominates. The
order in which the different species dominate the expansion can be guessed from
eq. (1.7): radiation energy density decays the fastest with time, so at some point
matter takes over; finally, since the energy density of Dark Energy is constant, it
becomes eventually the dominating species. Therefore, unless something happens
which is extraneous to the model as defined so far, the dynamics are dominated
in order by

Radiation → Matter → Dark Energy .

According to the Supernovæ data [35, 34], the Universe reached a Dark-Energy-
dominated stage at t ' 9.8 Gyr, approximately 4 Gyr ago.

Data coming from different surveys, including CMB, Gravitational Lensing
and type Ia Supernovæ redshifts, point clearly towards a very close to flat Uni-
verse, κ/(aH)2 ' 0, populated today by an insignificant amount of radiation, a
significant amount matter and an even more significant proportion of Dark En-
ergy [36]. This, together with Standard Model particle physics, is the model of
the Universe we will assume for now.

1.1.2 Causal structure of the Universe – Horizons and Hub-
ble radius

Let us now talk about the causal structure of the universe: which events could ever
be influenced by which other events. We define the (comoving) particle horizon
of an observer at a time t as the sphere enclosing all points of the fluid that have

1Notice that this equation can also be obtained from the spatial component of the Einstein
equation.
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1.1 Background Cosmology – Large scale geometry of the universe

ever been in causal contact with the observer, i.e. from which a photon emitted
at any time may have ever reached the observer. Unsurprisingly, its radius is
equal to the (conformal) length that a photon has been able to travel since the
origin of the Universe t = δt (we admit that the FLRW is not valid from the very
beginning of the Universe t = 0, if it exists):

rp(t) :=

∫ t

δt

dt̃

a(t̃)
. (1.11)

If this integral is finite, there exists a particle horizon, meaning that there is a
distance such that two points which are separated by more than it, have never
been in causal contact by the time t. In a FLRW Universe dominated by radiation,
as ours is initially, eq. (1.8) tells us that the integral converges and is dominated
by its upper limit. A divergence in the integral (1.11) implies that every pair of
points in the fluid have already been in causal contact with each other by the
time t. It is obvious that the particle horizon can only grow with time: if a point
in the fluid was ever in the horizon, it will always be.

The equivalent concept towards the future is the (comoving) event horizon of
an observer at a time t: it is the sphere enclosing all points of the fluid at a time
t that will ever be in causal contact with us before the end of the Universe tend:

re(t) :=

∫ tend

t

dt̃

a(t̃)
. (1.12)

Again, this integral may diverge, meaning that we will be able to observe any
point of the Universe if we are patient enough. This is the case of a decelerating
Universe without a final singularity. In the opposite case of a converging integral,
e.g. for an ever-faster expanding Universe, as time goes by more and more distant
objects whose light ever reached us will never again be observable.

Let us now define the recessional velocity vrec and the radial peculiar velocity
vpec of a galaxy in a point χ of the fluid. The total velocity of an object today is
equal to the derivative of its physical distance d = aχ with respect to time

vtotal = ȧχ︸︷︷︸
vrec

+ aχ̇︸︷︷︸
vpec

. (1.13)

With this definition, a point of the fluid has only recessional velocity, and photons
have, on top of a recessional velocity, a peculiar velocity of vpec = c ≡ 1. Neither
the total or the recessional velocity are properly defined 4-speeds, as the peculiar
velocity is (notice how the velocities addition rule of Relativity is not applied here,
as it would be for local 4-speeds). Notice how this definition implies the Hubble
law automatically:

vrec =
ȧ

a
aχ = Hd . (1.14)
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We define the comoving Hubble radius rH as the comoving distance to the
points of the fluid that recede from us at the speed of light, vrec = c ≡ 1:

rH(t) =
1

aH
, (1.15)

and the comoving Hubble sphere as the surface containing all such points. Reces-
sional velocities higher than the speed of light are possible (see e.g. [15]). Photons
emitted towards us from a superluminally receding galaxy actually recede from
us, while at the same time any photon overtakes any observer at the speed of
light, thus making no conflict with GR. The Hubble radius is always contained
between the particle and event horizons.

Since photons emitted from outside the Hubble sphere recede from us, one
would be tempted to think that the Hubble radius is the true event horizon:
galaxies outside it (super-Hubble), will never be observable. That is definitely not
true (see e.g. [16]): the size of the comoving Hubble sphere changes with time,
growing in decelerated Universes and shrinking in accelerated ones. A growing
Hubble sphere may overtake the receding photons emitted from a super-Hubble
galaxy, thus making it observable (see fig. 1.1). Notice that the physical Hubble
radius arH = H−1 grows for Universes dominated by physical fluids, ω > 1/3, and
stays constant for Dark Energy dominated Universes, ω = −1.

Figure 1.1: Sequence of the path of a photon (white spot) emitted by a super-
Hubble galaxy in a decelerating Universe: the supper-Hubble galaxy becomes
observable when the initially receding photon is overtaken by the expanding Hub-
ble sphere (dotted line). This only happens when the galaxy is sub-event-horizon
(continuous line) at the instant of emission. The arrow represents the total ve-
locity of the photon, as in eq. (1.13). The plot’s x direction represents physical
distances.

17



1.2 The horizon problem and the need for inflation

1.2 The horizon problem and the need for inflation

1.2.1 The horizon problem

The CMB radiation was emitted when the radiation temperature of the Universe
was such that the electrons would fall into the nuclei to form atoms, leaving the
photons free to travel through the Universe. We call this moment, which has a
short but different-from-zero duration, recombination. The CMB is astonishingly
uniform, reproducing very precisely a black body spectrum with a temperature
TCMB = 2.725 K. On top of it, once known foreground effects have been accounted
for, one finds inhomogeneities of order 10−5TCMB, which are quite correlated on
all scales accessible to the current experiments.

Now let us do a small calculation: under the assumptions stated in section 1.1,
using eq. (1.11), we can calculate the size of the particle horizon at recombination
trec, the moment when the CMB radiation was emitted; then, we can calculate the
angle that separates today in the sky two points that were never in causal contact
– it turns out to be ' 2◦. This has a very simple consequence: points separated
in the sky by bigger angles should show fluctuations of their CMB temperature
of order 1 · TCMB, and those fluctuations should be uncorrelated, i.e. the CMB
temperature spectrum should be 0 for ` . 90 (we discuss the definition of the
CMB power spectrum later in section 1.4).

As we just stated, this is certainly not what happens. Either our calculation
of the particle horizon at recombination is wrong (i.e. the evolution of a(t) from
t = 0 to trec is not as we think it is), or the initial conditions of the Universe were
really special.

1.2.2 The flatness conundrum

Let us recover the curvature in the Friedmann equation (1.5a) (and include the
cosmological constant in the density term) and rewrite it as

1− 8πG

3H2
ρ︸ ︷︷ ︸

Ω

= − κ

(aH)
2 . (1.16)

Notice how the newly defined, positive quantity Ω controls the curvature of the
model: Ω < 1 if κ = −1

Ω = 1 if κ = 0
Ω > 1 if κ = +1

. (1.17)

Let us now show that the value for a flat Universe, Ω = 1, is unstable. For
that, let us calculate its derivative w.r.t. a:

d

da
(1− Ω) =

1 + 3ω

a
Ω (1− Ω) . (1.18)

18
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Notice the sign of the derivative:

sign

(
d

da
(1− Ω)

)
= sign (1 + 3ω) sign (1− Ω) . (1.19)

For matter and radiation (ω = 0, 1/3) the value of (1 − Ω) goes away from 0 as
a grows, curving the Universe more and more; instead, for a fluid with negative
pressure ω < −1/3, the Universe tends towards flatness.

Today [36], our bound for the curvature is |1 − Ω0| ' 0.05. Knowing (see
sec. 1.1) that the Universe spent most of its history dominated by matter and
radiation, we can extrapolate this value towards the early stages of the Universe,
e.g. at the epoch corresponding to energy scales of order 1016 GeV, where we find
|1 − Ω| ' 10−55, many orders of magnitude smaller. Thus, the Universe should
have started its history at stunningly low values of the curvature. This apparent
fine-tuning of the initial conditions could use a physical explanation.

1.2.3 Digression – Problems and conundrums

We just acknowledged two observations which are surprising when put into the
context of the cosmological model as we have established it so far. Are those
surprises physical problems, i.e. do they need to be addressed in order for the
theory to be correct or to be complete? In order to answer those questions, let us
consider the issue in a more abstract way.

Let’s first divide the predictions that models make into two types: determin-
istic and probabilistic. In turn, probabilistic predictions may come in the form of
a well-defined probability distribution function (pdf), or as a lack of predictivity
for a certain parameter or outcome, in which case only the main features of a
prior pdf are known (e.g. equal probability for unpreferred values).

One deterministic prediction would be e.g. how much will a spring elongate
when pulled with a certain amount of force. One probabilistic prediction is e.g.
the life of a radioactive nucleus, whose decay is a random process. When a
deterministic prediction is contradicted by a properly done experiment where
observational errors have been accounted for, we have a physical problem at hand:
our model for the phenomenon is apparently not correct, and we must explain the
new observation by modifying it.

When testing a probabilistic prediction the situation is more complicated,
since it depends on the amount of samples of the distribution that me have got
or may be able to get soon: without enough samples, we cannot characterise the
distribution with enough certainty. Regarding sample collection, we distinguish
two different situations2

2A word of caution: the ability to gather samples changes with time: we have continuously
achieved previously unimaginable measurements. Thus, questions that were previously philo-
sophical, or simply non-existing, turn suddenly into physical ones. This is often associated with
paradigm shifts [28].
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1.2 The horizon problem and the need for inflation

a) We have collected, or will be able to collect soon, enough samples to test the
features of a pdf. In this case, if there is a contradiction with the pdf predicted
by the model, or if the model does not predict a particular pdf, we do have
a physical problem: we have in the first case to modify our model, and in the
second one we should extend it to include the new information.

b) We have neither collected, nor will be able to collect soon, enough samples
to be able to tell anything about the pdf with minimum reliability. In this
case, the model, despite predicting a certain pdf, cannot be tested against the
data. Then, no contradiction between the model and the data can be claimed,
even if the data looks surprising, a situation which we often call fine-tuning.
There is no physical problem at hand, but a philosophical one; in the context
of physics, we can call this situations conundrums.

In conclusion, in order to call an apparently surprising result a physical prob-
lem, we need to be able to assess whether there is actually a contradiction between
the prediction and the observation. If we cannot properly perform such assess-
ment, we should call them something else, e.g. conundrums, since we cannot
resolve the situation using scientific methods. Answering conundrums is satis-
factory from the point of view of Physics, and can be argued to be part of the
scientific endeavour; but those answers cannot be falsified, so the quest is only
worthy when they are addressed by simple principles that at the same time solve
real physical problems. Solutions to conundrums are the icing on the cake, and
sometimes good indications of where our model may be extended, but they may
also be red herrings that distract us from looking at the real physical problems.

Now back to our apparent problems

Horizon problem The size of the particle horizon at recombination implies that
points in the sky separated by more than 2◦ should have big temperature
variations (of order the background temperature TCMB), which should be un-
correlated. The prediction is probabilistic – it is not impossible that there
are no such variations, just unlikely – and the pdf is not completely charac-
terised, but its central value, TCMB, is well determined. In this case, we do
have a big number of samples – every pair of regions in the sky separated
by > 2◦, the size of those regions being determined by the resolution of
the experiment. They provide a statistically very significant contradiction
of the predicted result: the variations on these scales are very small and
strongly correlated – here is a physical problem: our model is incomplete.

Flatness conundrum In a Universe dominated most of its history by matter
and radiation, as ours has been, the curvature grows with time, so finding
a very flat Universe today is quite unexpected, since it would imply an in-
credibly low amount of curvature in the past. Here, we have a deterministic
prediction: given a value of the curvature in the past, we would know the
current one. But we do not know the value in the past, only in the present
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day, so we are concerned by a different, probabilistic prediction: if we as-
sume that all values of the curvature were equally likely in the past (or at
least approximately so), we expect to find very high curvatures today, flat
Universes being highly unlikely. There is only one possible sample here,
which is the observable Universe. The fact that our Universe is very im-
probable may not be appealing, but with only one sample at hand we may
as well just have been lucky. There is no physical problem here, but an in-
teresting conundrum. We may state that solving this conundrum is possible
by modifying the model to increase the probability of a flat Universe today.

Any solution to the horizon problem (which also predicts the correct spectrum
for the anisotropies) is equally good, unless further evidence against it is found.
But those solutions that in addition address the flatness conundrum without in-
troducing new assumptions deserve special attention.

1.2.4 Inflation as a possible solution

Let us see how both the horizon problem and the flatness conundrum can be
addressed by assuming that the Universe during his very early moments underwent
a stage of accelerated expansion [1], or Inflation.

Consider the horizon problem. Given a long enough period of accelerated
expansion, it is intuitively immediate that every point in the Universe is causally
connected to every other one, since the points that appear to be today very far
away must have been very close in the past. To quantify this, let us solve the
particle horizon, eq. (1.11), for a flat Universe dominated by a particular fluid,
indicated by i, with equation of state parametrised by ωi:

rp =
C

1
2 (1 + 3ωi)

a
1
2 (1+3ωi)

∣∣∣arec
aini

, (1.20)

where C is a positive constant, irrelevant here, and aini and arec are respectively
the scale factor at the beginning of the Universe and at recombination. As eq.
(1.10) proves, for fluids with negative pressure such that ρ+ 3p < 0, or equation
of state ωi < −1/3, the expansion of the Universe is accelerated. In the particle
horizon, those values of ωi make the exponent of the a negative, turning the lower
bound into the biggest contribution: for values of the initial scale factor close to
zero, the size of the comoving particle horizon tends towards infinity. Our initial
intuition gets thus confirmed: an initial phase of accelerated inflation can solve
the horizon problem.

Since in our model the Universe starts dominated by radiation, in order to
get this phase of accelerated inflation we need to assume that the Universe was
initially dominated by a different fluid that later decayed into the Standard Model
species that constitute the Universe today, at energies such that they behave as
radiation. As we argued, this candidate must behave as a fluid with negative
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1.2 The horizon problem and the need for inflation

pressure, ρ + 3p < 0 (ω < −1/3). We look for a substance with that feature, the
simplest one being a scalar field in a slow-roll regime, as we will describe.

Let us assume that at very early times the Universe’s dynamics is dominated
by a single, homogeneous scalar field φ(t,x) = φ(t), which we will call inflaton,
that is minimally coupled to gravity, with an action

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.21)

where MPl =
√

~c
8πG is the Planck mass, R is the 4-dimensional Ricci scalar and

V (φ) is a potential which is so far arbitrary. Using the Klein-Gordon equation
for the scalar field, and the Friedmann equations for its stress-energy tensor, we
arrive at the relations (of which only two are independent)

φ̈+ 3Hφ̇ = − dV

dφ
, H2 =

1

3MPl

(
1

2
φ̇2 + V

)
, Ḣ =

1

MPl

(
−1

2
φ̇2

)
.

(1.22)

From this point onwards, for the sake of simplicity, we take MPl = 1. Notice
how H2 is proportional to the sum of the kinetic (K ∼ 1/2 φ̇2) and the potential
energies of the scalar field, and how −Ḣ equals the kinetic energy. Calculating the
stress-energy tensor from the action above, and comparing with that of a perfect
fluid, eq. (1.4), we find the density and pressure of the scalar field:

ρφ =
1

2
φ̇2 + V , pφ =

1

2
φ̇2 − V . (1.23)

Now consider the limit K � V . In that limit, we immediately get accelerated
expansion: ρ+ 3p < 0, in particular with an equation of state for the scalar field
ωφ ' −1. From the third equation in (1.22), we get an almost constant Hubble
parameter, which implies that the scale factor behaves as

a ∝ eHt , H ' const . (1.24)

This allows us to define a useful new time scale, e-folds N , as dN = Hdt: during
one e-fold, the scale factor a grows by a factor of e.

One can now quantify how long Inflation must last in order to solve the horizon
problem, i.e. to get all the scales in the CMB sky into the particle horizon. This
turns out to be 50− 60 e-folds. With respect to the flatness conundrum, we can
see from eqs. (1.18) and (1.19) that flatness becomes an attractor for ρ+ 3p < 0,
so a flat Universe becomes more likely regardless of the original curvature before
Inflation. Notice how, unlike the horizon problem, the flatness conundrum has
no quantitative solution; but it is remarkable that it is addressed by the same
solution as the horizon problem, which speaks in favour of accelerated expansion
against other possible solutions that do not make the Universe flatten with time.
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Let us now talk some more about the physical meaning of this framework of
Inflation, and incidentally also about its duration. Inflation would last as long as
the approximationK � V holds. That condition describes the dynamics of a field
which is slowly rolling down a potential. This means that in the first equation in
(1.22) the acceleration is very small, and the evolution of the field is dominated by
the other terms: the friction term 3Hφ̇ and the slope of the potential dV/dφ. In fig.
1.2 we display two possible realisations of a slow-roll potential. We call this whole
setting single-field, slow-roll Inflation. A slow-roll setting can also be realised in
an effectively-single-field theory resulting from integrating out the heavy degrees
of freedom (though multiple-field scenarios in which more than one field is light
are also possible).

Figure 1.2: Depiction of two simple slow-roll potentials. In the left, the high
slope of the potential dV/dφ gets compensated by an equally large value of the
friction term 3Hφ̇. In the right, both the slope and the friction are smaller. In
both cases, inflation ends whenever one term becomes much bigger than the other,
creating a large acceleration.

In order to quantify the slow-roll condition K � V , we define the positive
quantity ε, called first slow-roll parameter :

ε := − Ḣ

H2
= −d logH

dN
=

1

3

K

K + V
< 1 . (1.25)

Its being smaller than 1 guarantees that ä > 0, hence the Universe’s expansion
is accelerated. In order for Inflation to last enough time we must also guarantee
that the slow-roll condition is satisfied for long enough, i.e. ε does not grow too
fast, which is given by the second slow-roll parameter :

|η| :=
∣∣∣∣ ε̇Hε

∣∣∣∣ =

∣∣∣∣d log ε

dN

∣∣∣∣ < 1 . (1.26)

We could keep adding higher derivative terms to the description, but this is enough
to describe the current data with sufficient precision.
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1.3 Primordial perturbations

1.3 Primordial perturbations
The former description of the Universe is so far missing a very important ingre-
dient: it is completely homogeneous, lacking any kind of actual structure, such
as clusters, galaxies, stars. . . . We expect small inhomogeneities to be created
at some point in the Universe history. In this section, we will see how they get
created by Inflation, how to treat them mathematically, and which are their main
features.

1.3.1 Primordial perturbations in quantized slow-roll infla-
tion

In order to study perturbations on top of the FLRW metric, we have to write
a perturbed version of the metric (1.1), g̃µν := gµν + δgµν . Its particular shape
depends upon some gauge freedom. In the context of Inflation, we normally work
in the comoving gauge, in which the choice of coordinates is such that the scalar
momentum density vanishes, i.e. the 3-surfaces of constant time are everywhere
orthogonal to the fluid’s flow. In this gauge, the spatial part of the perturbed
metric reads

δgij = a2(t)(−2)ζ(t,x)δij + a2(t)hij(t,x) , (1.27)

where ζ(t, x) is a scalar and hij(t,x) is a transverse, traceless tensor. In this
gauge, the curvature of the 3-surfaces of constant time is R = 4/a2∇2ζ. Hence, we
call the scalar ζ comoving curvature perturbation.3 On the other hand, the tensor
hij characterises the gravitational waves, which we will not study here.

The Einstein equations of the perturbed metric allow us to calculate the re-
maining metric perturbations δg0µ also in terms of (ζ, hij). Substituting them
into the action for the scalar field, eq. (1.22), and expanding in powers of ζ, we
arrive at the quadratic action for the comoving curvature perturbation (terms of
higher order are ignored)

S2 =
1

2

∫
d4x a3

(
φ̇

H

)2 [
ζ̇2 − 1

a2
(∂iζ)

2

]
. (1.28)

The definition of the comoving gauge, with synchronous 3-surfaces orthogonal
to the fluid’s flow, implies that the density of the fluid must be constant over
those surfaces, in this case φ(t,x) = φ̄(t) over those surfaces, since it is the only
fluid populating the Universe.

After all remaining gauge freedom is removed using the Einstein equations,
we are left with a single scalar degree of freedom, ζ, and two degrees of freedom
for each of the two independent tensor perturbations hij (spin 2, massless). All

3Notice that it is more common in the literature (see e.g. [40]) to refer to the comoving
curvature perturbation with the symbol R.
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five of them are sourced by the only degree of freedom of the theory: the scalar
field φ.

Now, one can solve the equations of motion for the comoving curvature pertur-
bation arising from the action (1.28). This is often done in terms of the Mukhanov
variable

v := zζ , z2 := 2a2ε . (1.29)

We quantise the action in terms of this variable and derive the equations of motion
in the Fourier transformed 3-space, named Mukhanov-Sasaki equation [33, 37]:

v′′k +

(
k2 − z′′

z

)
vk = 0 , (1.30)

where the primes mean derivatives with respect to conformal time. Convention-
ally, we impose as initial conditions at the beginning of Inflation, or choose as a
vacuum, that the mode functions are Minkowski states,

lim
τ→−∞

vk(τ) =
1√
2k
e−ikτ , (1.31)

a choice called Bunch-Davies vacuum [12]. Solving in the approximation H '
const, ε = const (quasi de-Sitter Universe), we arrive at the solution for the modes
of the comoving curvature perturbation in terms of the Mukhanov variable:

vk(τ) =
1√
2k

e−ikτ
(

1− i

kτ

)
. (1.32)

Note that this equation resembles that of an harmonic oscillator with a time
dependent massm2(τ) := −z′′/z ' 2/τ2, where the last approximation is true in the
quasi de-Sitter limit. It becomes immediately obvious that the modes of comoving
curvature perturbations are oscillatory unless the exponent kτ vanishes. In the
quasi de-Sitter approximation, H = const, ε = const, we have for a conformal
time interval τ ' (aH)−1. This means that whenever k � aH, the curvature
perturbations are constant :

lim
k/(aH)→0

ζ̇(t, k) = 0 . (1.33)

Remembering the definition of the comoving Hubble radius, eq. (1.15), rH = 1/aH,
we learn that this freeze-out scale corresponds precisely to the Hubble sphere.4

4It is common in the literature to refer to this scales as sub- or super-Hubble horizon, or
even worse, simply sub- or super-horizon. As explained in section 1.1.2, the Hubble radius is
not a cosmological horizon, as it is manifested in the context of Inflation by how scales exit and
re-enter it; instead, cosmological horizons can only ever be escaped (in the case of the event
horizon) or entered (in the case of the particle horizon) a single time, the reverse process not
being possible.
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1.3 Primordial perturbations

Thus, we state that the comoving curvature perturbation is conserved on super-
Hubble scales. Since in the de-Sitter Universe the Hubble sphere gets smaller with
time, as Inflation progresses modes of decreasing wavelengths get frozen as they
exit the Hubble sphere. Once Inflation is finished and we return to a radiation-
dominated Universe, the Hubble sphere starts growing, eventually allowing for
interactions between regions separated by previously frozen distances. Those
interactions give birth to the CMB anisotropies that we can see today, as explained
in section 1.4.

Figure 1.3: Depiction of how a mode of a particular comoving scale (dashed)
leaves the Hubble sphere (solid) during Inflation, getting frozen, and how it even-
tually re-enters during the radiation-dominated regime. Figure from [10].

In the next section, we will review the treatment of the correlation functions of
curvature perturbations, which ultimately determine the CMB observables. After
it, we will discuss the main features of the perturbations created in this inflation-
ary setting: namely, that they are nearly scale-invariant, and nearly gaussian.

1.3.2 Correlation functions – spectrum and bispectrum
Here we focus on studying the statistical properties of the perturbations, which
we assume to be generated by a random process. In particular, We are interested
in correlations between its values in different point of space. In Fourier space, the
n-point correlation functions are transformed simply to products of the function
itself. We define the 2- and 3-point correlation functions in the Fourier space,
called respectively power spectrum and bispectrum, as

(2π)3 δ
(3)
D (k1 + k2) Pζ(k1) := ζ(k1)ζ(k2) , (1.34a)

(2π)3 δ
(3)
D (k1 + k2 + k3) Bζ(k1,k2) := ζ(k1)ζ(k2)ζ(k3) . (1.34b)
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Of course, we can go on and study higher order correlation functions, but those
two are enough to describe the current data with enough precision.

We are interested in studying not the particular realisation of the perturbations
in our Universe, but the properties of the probability distribution that generated
them. These properties show up when averaging over the ensemble of all possible
realisations of the random field ζ which may have been generated by the same
physical mechanism. We will denote this ensemble average as 〈 〉. Since we expect
that mechanism to generate statistically isotropic perturbations, the spectrum and
bispectrum must depend on norms only, not directions, so the ensemble-averaged
correlation functions are

(2π)3 δ
(3)
D (k1 + k2) Pζ(k1) = 〈|ζ(k1)|2〉 , (1.35a)

(2π)3 δ
(3)
D (k1 + k2 + k3) Bζ(k1, k2, k3) := 〈ζ(k1)ζ(k2)ζ(k3)〉 . (1.35b)

Notice that in the spectrum formula we have made use of the fact that the cur-
vature perturbation is a real function in the space of positions. On the other
hand, notice that we have substituted the dependence of the bispectrum from
the vectors (k1, k2), to the norms (k1, k2, k3). We have done so because, though
the first two vectors and the delta completely determine the third vector, once
the ensemble average erases the direction information, the norms of the two first
vectors do not specify that of the third. There is a range of values of k3 allowed
for each pair (k1, k2), which are given by the triangle condition imposed by the
delta:

k1 + k2 + k3 = 0 . (1.36)

The triangle condition enforces the ki’s to live inside a regular-triangular pyra-
mid in the (k1, k2, k3) space (see fig. 1.4, and for a review see [31]). Using the
triangular inequality, for every permutation (i, j, k) ∈ Perm(1, 2, 3):

ki = −(kj + kk)⇒ ki = |kj + kk| ⇒ |kj − kk| ≤ ki ≤ kj + kk , (1.37)

where the equality in the last inequation defines the three sides of the pyramid
for i = 1, 2, 3.

Since our experiments have a limited precision, we assume that there is a
minimum scale accessible to us, i.e, a maximum wave number K such that ki ≤
K, ∀i, then

k1 + k2 + k3 ≤ |k1 + k2|+ k3 ≤ 2k3 ≤ 2K (1.38)

and the pyramid turns into a regular tetrahedron with base in the plane

k1 + k2 + k3 = 2K (1.39)
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1.3 Primordial perturbations

Figure 1.4: Regular Tetrahedron of allowed wave-numbers, limited by the con-
ditions of eq. (1.37) and (1.39). Figure from [31, fig. 2]

Regarding the shape of the (k1, k2, k3) triangles, three different limits are
often studied:

squeezed or local k3 � k1 ' k2 edges of the tetrahedron
equilateral k3 ' k1 ' k2 axis of the tetrahedron
flattened k3 ' k1 + k2 heights of the faces of the tetrahedron

1.3.3 Predictions of slow-roll inflation
Power spectrum – scale-invariance

In the QFT framework described in section 1.3.1, one can calculate the predicted
power spectrum for the comoving curvature perturbation [12]

Pζ(k) =
1

4k3

H2

ε

∣∣∣∣
k=aH

, (1.40)

where the spectrum for each comoving wavelength k can be evaluated when said
length becomes larger than the (shrinking) Hubble sphere, thus getting frozen.
We can define a dimensionless version of the power spectrum as

P(k) :=
k3

2π2
Pζ(k) =

1

8π2

H2

ε

∣∣∣∣
k=aH

. (1.41)
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What are the particular features of this spectrum? From the slow-roll con-
ditions we know that during Inflation H decreases slowly as ε grows slowly (i.e.
the kinetic energy increases), so for the smaller wavelengths (higher k) we expect
P(k) to slowly decrease, according to (1.41). The spectrum will thus be nearly
scale-invariant, with a little less power for higher k. Notice that scale-invariance
is a natural consequence of the lack of large-scale standard rulers in the early
Universe.

When dealing with constraining the power spectrum with observations, we
often prefer a more phenomenological parametrisation that reveals more directly
its dependence on the scale. We start by assuming a general power law spectrum,
P(k) ∼ kn, and then Taylor-expand it in its logarithm around a pivot scale k0:

log
P(k)

P(k0)
' 0 + (ns − 1) log

k

k0
+
αs

2

(
log

k

k0

)2

+ . . . , (1.42)

where we have defined the spectral index 5 ns and the running αs, and ignored
higher order terms. For a nearly scale invariant spectrum, we should get very
small values of ns − 1 and an even smaller for αs, which can often be neglected.
Calling As the value of the spectrum at the pivot scale, we arrive at the very well
known expression

P(k) ' As

(
k

k0

)ns−1

. (1.43)

The value of the spectral index can be calculated from eq. (1.40):

ns − 1 = −2ε− η , (1.44)

where we omit contributions from higher powers of ε and η. We don’t know the
precise values for ε and η, but we know that they result in a value for ns close
to 1 but slightly smaller. This small deviation from unity constitutes a strong
test for the Inflation framework described here: slow-roll, single-field inflation
with canonical kinetic terms and Bunch-Davies vacuum. This small deviation
was confirmed by WMAP and later by Planck. The latter finds a 95%c.l. interval
[8]

ns = 0.9616± 0.0094 . (1.45)

Bispectrum – gaussianity

One of the defining features of a Gaussian distribution is that it is completely
characterised by its mean and its variance, strictly its 1st order momentum and
2nd order central momentum. Higher order momenta, are completely determined
by those two. In particular, all the odd momenta are zero.

5We would normally call spectral index the n in P(k) ∼ kn, but in cosmology it is customary
to give that name to the difference ns − 1.
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1.3 Primordial perturbations

The fluctuations of the inflaton have a mean value of zero, and their higher
order momenta are given by its n-point correlation functions (we just described
the predicted 2-point correlation). If inflationary primordial fluctuations were
gaussian, they would be completely determined by a constant power spectrum,
and have an vanishing bispectrum.

The contributions to the bispectrum would arise mainly from the order-3 terms
in the action of the comoving curvature perturbation. Those terms account for
interactions between the fields present during inflation. Since the only field in
the theory is minimally coupled to gravity, we expect to have only a very small
contribution to the bispectrum. The full bispectrum for single-field, slow-roll
inflation was first calculated in [32, 4] and it is

Bζ(k1, k2, k3) =
(2π)4P(

∑
i ki)

2

(k1k2k3)
2

1

8k1k2k3
×

×

(3ε− 2η)

3∑
i=1

k3
i + ε

∑
i 6=j

kik
2
j + ε

4∑3
i=1 ki

∑
i 6=j

k2
i k

2
j

 .

(1.46)

Now, in the same way we did with the power spectrum, we often define a
dimensionless version of the bispectrum by factoring out (k1k2k3)−2, and, in order
to compare its value with that of the power spectrum, also a factor of P(

∑
i ki)

2,
defining the shape function S(k1, k2, k3):

S(k1, k2, k3) :=
(k1k2k3)

2

(2π)4P(
∑
k)2

Bζ(k1, k2, k3) . (1.47)

(Unfortunately, there is no unique convention in the literature for the prefactor)
Factoring out this scaling, we can now see how the bispectrum is suppressed

by O(ε, η) with respect to the power spectrum. We do not know the real value
of the slow-roll parameters, but the bounds given by eqs. (1.44) and (1.45) make
us expect a very small bispectrum, which, together with a nearly scale-invariant
power spectrum are a strong indication for slow-roll single-field inflation. Both
WMAP and Planck confirm the smallness of the bispectrum when fitting the
shape in eq. (1.46).

Notice that in the last sentence we explicitly stated which shape of the bis-
pectrum was fitted when quoting the amount of non-gaussianity. We must always
do so, and the reason is that the many possible configurations of momenta in
which the bispectrum can be evaluated (see fig. 1.4) leave room for very diverse
functional forms with very different dependencies on the configurations. Given a
data set containing a significant amount on non-gaussianity in a particular shape,
if we try to fit a shape much different from that of the signal we would get a
small amplitude for it. Being aware of this, we should be careful about mak-
ing general statements of the amount of non-gaussianity in e.g. the CMB data,
since this amount, in principle, depends on its shape. We are about to describe
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a model that predicts a distinct shape for the primordial bispectrum, and so do
other inflationary settings. A precise measurement of the cosmological observ-
ables which are most informative about the primordial bispectrum (specially the
CMB bispectrum) can be determinant to distinguish among different inflationary
scenarios.

1.3.4 Beyond the simplest model – Transient reductions in
the speed of sound

Inflation occurs at high energy scales in which our knowledge of the field content,
prior to cosmological constraints, is almost non-existent. The presence of multi-
ple fields during Inflation would produce a very rich phenomenology that could
also be constrained in principle by cosmological observations (different, also rich
phenomenology can arise too from other alternatives to the simplest inflationary
scenario, such as brief interruptions of the slow-roll regime or different choices of
the vacuum).

As we argued in the last section, the predictions of slow-roll, single-field in-
flation are well within the constraints of CMB observations, their most direct
probe. This fact motivates us to approach the presence of multiple fields during
inflation under the hypothesis that they are significantly heavy. In this regime,
we expect to be able to integrate out those heavy degrees of freedom and ob-
tain an effectively-single-field theory in which the effect of the background enters
through effective operators in the action, and the inflaton direction fulfils a slow-
roll regime. Small excitations of the heavy degrees of freedom during inflation
might produce, through the effective operators, potentially detectable deviations
from the predictions of a purely single-field framework.

To achieve that, several different approaches are possible. In this section
we will not discuss the details of the procedure, but instead we start from the
effective action, after integrating out the heavy degrees of freedom, of the field
π(t,x), which represents displacements along the background trajectory in the
effective potential. The quadratic and cubic action for this field are [13]

S2 =

∫
d4x a3εH2

(
π̇2

c2s
− 1

a2
(∇π)

2

)
, (1.48a)

S3 =

∫
d4x a3εH2×

×
{
−2Hsc−2

s ππ̇2 −
(
1− c−2

s

)
π

[
π̇2 − 1

a2
(∇π)

2

]}
, (1.48b)

where we are neglecting higher order slow-roll corrections. Notice the introduction
of the speed of sound cs, and the derived quantities u and s, defined as:

u := 1− c−2
s , s :=

ċs
csH

. (1.49)
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The action above neglects terms of higher order in u and s. The speed of sound
in the effective field theory can be related to the angular velocity θ̇ of the field π
whenever it finds a turn in the inflationary trajectory:

c−2
s = 1 +

4θ̇2

k2

a2 +M2
eff

, (1.50)

where M2
eff is the effective mass of the mode perpendicular to the trajectory in

field space. Therefore, a turn between two straight segments of the trajectory
produces a momentary reduction in the speed of sound. As the action above is
perturbative in terms of u and s, the reduction in the speed of sound cannot be
too big nor too quick; at the same time, we keep at all times a slow-roll regime,
and expect the contribution of the slow-roll corrections to be much smaller than
that of the speed of sound, which must be dominating the evolution during the
turns. Altogether, the theoretical framework presented here is well defined in the
regime of mild and moderately sharp transient reductions:

O(ε, η)� max(u, s)� 1 . (1.51)

Now we will take a look at the possible observable consequences of this regime.
To do that, we need to relate the inflaton direction π with the comoving curvature
perturbation ζ:

ζ = −Hπ . (1.52)

In terms of the adiabatic curvature perturbation, the quadratic action of the
inflationary mode is

S2 =

∫
d4x a3ε

[
ζ̇2 − (∇ζ)

2

a2

]
︸ ︷︷ ︸

S2,0

+

∫
d4x a3ε(−u)ζ̇2︸ ︷︷ ︸

δS2

. (1.53)

Notice that the first part of the action, S2,0, corresponding to the case cs = 1, is
similar to the canonical slow-roll action eq. (1.28), and has the same phenomenol-
ogy, producing the well known power spectrum of eq. (1.41). The new, interesting
term δS2 accounts for the reductions in the speed of sound, and produces a per-
turbation of the (nearly) scale-invariant power spectrum, which can be calculated
using the in-in formalism [27, 41] for the case of a small, transient reduction in
cs, to first order in u ≡ 1− c−2

s [3]:

∆P
P (k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (1.54)

where k ≡ |k|, P is the featureless power spectrum with cs = 1 defined by
eq. (1.41), and τ is the conformal time. This very important expression shows

32



Introduction

precisely how changes in the speed of sound, within the regime described here,
seed features in the primordial power spectrum of curvature perturbations. Those
features are given by a simple Fourier transform in conformal time, assuming
cs = 1 at the beginning (τ = −∞) and the end of inflation (τ = 0).

We can also calculate the resulting bispectrum from the cubic action in terms
of the adiabatic curvature perturbation, using the in-in formalism, at first order
on u and s, and disregarding slow-roll contributions [3]:

∆Bζ(k1,k2,k3) =

(2π)4P2

(k1k2k3)2

{
− 3

2

k1k2

k3

[
1

2k

(
1 +

k3

2k

)
∆P
P − k3

4k2

d

d ln k

∆P
P

]
+ . . .

+
1

4

k2
1 + k2

2 + k2
3

k1k2k3

[
1

2k

(
4k2 − (k1k2 + . . .)− k1k2k3

2k

)
∆P
P

− k1k2 + . . .

2k

d

d ln k

∆P
P +

k1k2k3

4k2

(
d

d ln k

)2
∆P
P

]}
, (1.55)

where ki := |ki|, k := 1/2
∑2
i=1 ki, and P, ∆P/P and its derivatives are evaluated

at k. The ellipsis . . . means a sum over all possible permutations of (1, 2, 3) on the
indices of the term previous to it. Note that in the squeezed limit ki � kj ' kk
we recover the single-field consistency condition of [32, 14].

It becomes immediately clear how a reduction in the speed of sound seeds
correlated perturbations in both the power spectrum and bispectrum. In the first
part of this thesis, we study how this correlation can be exploited to try to detect
reductions in the speed of sound in CMB (and LSS) data.

As a final remark, note that, though we have related the reduction in the speed
of sound to the angular velocity along a turn, the result above is independent of
the physical origin of such reduction. Different high energy realisations of the
reduction would produce different effective operators in the cubic action, making
the realisations distinguishable at the level of the bispectrum [13, 2].

1.4 The Cosmic Microwave Background

1.4.1 Statistical properties – spectrum and bispectrum

We expect the temperature anisotropies in the CMB to be the most informative
probe of the primordial perturbations generated by inflation. As we will see later,
the statistical properties of the primordial n-point correlation functions are related
to the corresponding correlations of temperature anisotropies in the CMB sky. We
will leave the description of the physical effects leading from primordial to CMB
anisotropies for the next section, and we start here by describing the treatment
of correlation functions of the temperature anisotropies in the CMB sky.
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Since the anisotropies are projected on the 2-sphere defined by all possible
directions in the sky given by the unit vector n̂, we use as the basis of the trans-
formation the spherical harmonics:

∆T

T
(n̂) =

∑
`m

a`mY`m(n̂) (1.56)

Notice how the harmonic-transformed perturbation, instead of a continuous func-
tion like the primordial perturbation ζ(k) was, is now a discrete series of coeffi-
cients a`m, due to the finitude of the space over which the transformation is taken:
a 2-sphere. The integer sub-index ` ≥ 0 characterises the angular periodicity of
Y`m, its period being (2π/`) rad or 360◦/`. For each `, the values of the integer
index m ∈ [−`, `] represent the different relative directions in which the angular
variation of Y`m can be realised.

As we did with primordial perturbations, we define the CMB power spectrum
C` as the 2-point correlation function averaged over all possible realisations of the
random fluctuations:

〈a`1m2
a∗`2m2

〉 = δ`1`2δm1m2
C`1 . (1.57)

In an analogous way to the primordial spectrum’s lack of information of direction,
P(k) ≡ P(k), the CMB power spectrum carries no information on direction either,
C`m ≡ C`, imposed by the delta δm1m2 .

Equivalently, one could have calculated directly the correlation between two
temperature anisotropies, and averaged them over all possible realisations of the
CMB sky, getting〈

∆T

T
(n̂1)

∆T

T
(n̂2)

〉
=
∑
`

2`+ 1

4π
C`P`(cos θ) , (1.58)

where P` are the Legendre polynomials and θ is the angle between the direction
n̂1 and n̂2.

We define the 3-point correlation function, or reduced CMB bispectrum as

〈a`1m1
a`2m2

a`3m3
〉 := Gm1m2m3

`1`2`3
b`1`2`3 , (1.59)

where we make use of the so-called Gaunt integral :

Gm1m2m3

`1`2`3
=

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
,

(1.60)

where the matrices represent Wigner 3-j symbols (we will show the origin of the
Gaunt integral in the next section). We can also write the inverse equation to
(1.59):

b`1`2`3 =
∑
mi

Gm1m2m3

`1`2`3
〈a`1m1a`2m2a`3m3〉 . (1.61)
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Notice now that the reduced CMB bispectrum has no directional information
(mi), as expected, since we assumed isotropy. The only directional informa-
tion, which is geometrical, not physical, is inside the Gaunt integral, which takes
the rôle of the deltas in (1.57). Those deltas would impose some constraints on
〈a`1m2a

∗
`2m2
〉 which were not visibly present in C`. In the same way, the fact that

the Gaunt integral contains those two 3-j symbols imposes some selection rules
in 〈a`1m1

a`2m2
a`3m3

〉 that cannot be seen directly on b`1`2`3 . In particular, the
`i’s must form a triangle of even perimeter, i.e.6

`1 + `2 + `3
2

∈ Z , (1.62a)

|`j − `k| ≤ `i ≤ `j + `k , ∀(i, j, k) ∈ Perm(1, 2, 3) . (1.62b)

The second condition is analogous to the one imposed over the wave numbers
in the primordial bispectrum, (1.36): both wave numbers and harmonic indices
must form triangles in order to contribute to each bispectrum. In particular, in
the harmonic space, the triangle must have even perimeter.

The triangle condition determines a tetrahedral cone for the `i’s, as it did for
the ki’s. In the case of the wave numbers, the cone was cut into a pyramid by
the existence of a maximum observable wave number K. Here, correspondingly,
we assume a maximum precision L, such that `1, `2, `3 ≤ L. But here the lack of
a vectorial condition like

∑
i ki = 0 lets the cone be extended up to the edges of

the cube limited by L, forming not a pyramid but a bi-pyramid (see [19, fig. 2],
where it is called tetrapyd) with apices in (0, 0, 0) and (L,L,L), limited by the
planes

`i = `j + `k , `i = L , ∀(i, j, k) ∈ Perm(1, 2, 3) . (1.63)

Notice that the observed quantity in the sky is the angle-averaged CMB bis-
pectrum, defined as

B`1`2`3 :=
∑
mi

(
`1 `2 `3
m1 m2 m3

)
〈a`1m1

a`2m2
a`3m3

〉 , (1.64)

or, inversely

〈a`1m1
a`2m2

a`3m3
〉 =

(
`1 `2 `3
m1 m2 m3

)
B`1`2`3 , (1.65)

and which fulfils the following relation with the reduced bispectrum

B`1`2`3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)
b`1`2`3 . (1.66)

6Notice that the second condition, provided that all `i’s are positive numbers, needs only
be checked for a particular permutation of (1 , 2 , 3), which implies that it is satisfied for all of
them.
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1.4.2 From inflationary primordial fluctuations to CMB
anisotropies

In section 1.3.1 we described the curvature perturbations created by slow-roll,
single-field inflation, and proved that their modes get frozen when their respective
wave length exists the Hubble sphere.7 The very fact that they remain frozen
while they are outside the Hubble sphere is what allows us to learns anything
about Inflation, since we know close to nothing about the physics going on right
after the end of inflation.

After the end of inflation, the Universe becomes filled with radiation (part of
which decouples as matter as some point), and the comoving curvature pertur-
bations created by Inflation source perturbations in the density of the radiation
field. In slow-roll, single field inflation the only degree of freedom present is the
scalar field, which sources curvature perturbations ζ in the syncronous 3-surfaces.
As the only degree of freedom driving the dynamics of the Universe, at each point
of the fluid, the curvature perturbation can be used as a clock tx = tx(ζ). Then,
the small spatial variations can be understood as inflation being slightly ahead
or behind at each point by a small quantity δt(x). This small, continuous time
shift causes the different regions to have expanded a slightly different amount –
the surfaces of constant time are not homogeneous any more, or, equivalently, the
surfaces of homogeneity are not flat anymore, which is another way to understand
why curvature perturbations in the 3-space are generated.

Let us look at the density perturbation of the fluid i at some point after
inflation, in a surface of constant time t. This 3-surface is nearly homogeneous,
with an energy density ρ̄i(t). The real, perturbed density of the fluid i, for a small
time shift, can be written as

ρi(t,x) = ρ̄i (t+ δt(x)) ' ρ̄i(t) + ˙̄ρi(t)δt(x) , (1.67)

and a similar expression for the pressure. Defining δρi(t,x) := ˙̄ρi(t)δt(x) and
substituting the time derivative of the density with the continuity equation (1.5b),
one arrives at the equality

δρi
ρi + pi

= −3Hδt(x) , (1.68)

where one should notice that the right term is independent of the species. This
independence of the particular fluid is a consequence of there being a single degree
of freedom δt(x) sourcing the perturbations, and defines adiabatic perturbations.

Before continuing, a caveat is in order: in general, the linear perturbations
of the different fluids, photons, baryons or CDM, are possibly coupled with each
other in different ways, depending on the mechanism that generated them. They

7Formally, we have only proven that perturbations are conserved during inflation, but still
would have to prove that they keep frozen after inflation has ended. The proof for adiabatic
perturbations can be found in [40], and in an alternative formulation in [39].
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can be expanded by two orthogonal components: entropy perturbation, which
imply local variations of the relative number density, but keeping the total en-
ergy density constant (and thus the curvature of the local space-time, hence also
called isocurvature perturbations); and adiabatic perturbations, in which there is
no energy exchange between the different fluids, and are defined by equation
(1.68). Slow-roll single-field inflation produces adiabatic perturbations, while in
multiple-field inflation we expect several degrees of freedom seeding perturbations,
thus creating a combination of adiabatic and isocurvature perturbations. Only
because we assumed slow-roll single-field inflation, we are able to choose such
a synchronous gauge that traces the perturbations in all fluids simultaneously,
showing explicitly the defining property of adiabatic perturbations, eq. (1.68).

Current CMB data clearly favours adiabatic perturbations as the only neces-
sary ones to describe the universe today, while restricting the size of isocurvature
perturbations to be negligible [6].

The next step to relate the primordial curvature perturbations with the CMB
temperature perturbations is to study the physical processes that the perturbation
modes undergo after entering the Hubble sphere. The nature of those processes
is well known, and can be summarised into a series of transfer functions ∆`(k),
which project the primordial curvature perturbation to the harmonic coefficients
of the CMB sky as

a`m = 4π(−i)`
∫

d3k

(2π)3
∆`(k)ζ(k)Y`m(k̂) . (1.69)

The effect of the transfer functions in the power spectrum can be divided
in two sets of contributions: those acting at scales which are super-Hubble at
the time of recombination, and those that had entered the Hubble sphere earlier,
divided approximately by the scale of the multipole ` ≈ 90, as discussed in section
1.2.1.

Of the first ones, the main contribution comes from the Sachs-Wolfe effect,
which is the gravitational redshift that the photons suffer at the last scatter-
ing surface due to the differences in the local gravitational potential. A smaller
contribution comes from the Integrated Sachs-Wolfe effect, which consists on the
gravitational redshift that the photons undergo during their journey to us, due
to the difference in energy between descending and climbing a potential in an
expanding, radiation- or dark matter-dominated Universe. The relevant part of
the power spectrum, l . 90, results in a direct processing of the primordial one,
keeping flat bar a factor `(`+ 1) coming from the projection of the flat waves in
k over the spherical sky.

At sub-Hubble scales, the cosmic fluid has been able to undergo local physi-
cal processes between leaving the Hubble-sphere and the last scattering surface.
Therefore, on top of the Sachs-Wolfe spectrum, we will see the effect of these pro-
cesses. The cold dark matter (CDM) fluid is decoupled from an initially coupled
fluid of baryons and photons. CDM dominates the gravitational potential, and
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the baryons+photons fluid oscillates inside the potential wells due to the photon
radiation pressure. These stationary oscillations produce, at the time of decou-
pling of photons and baryons in the last scattering surface, the series of acoustic
peaks that we can see on the CMB power spectrum. These peaks of approximately
equal height in the spectrum are actually damped at small scales by the fact that
the decoupling did not occur instantly, and the photons underwent scattering at
scales of their mean free path at that time. This last effect is called Silk damping.

The effect of those physical processes in the CMB power spectrum can be seen
in figure 1.5(a) of section 1.4.3. For a detailed study of them we refer the reader to
thorough reviews such as [17]. The transfer functions are often computed with the
help of cosmological codes, such as CLASS or CAMB. Here it is enough to keep
track of the parameters of the cosmological model implied in them: (1) the ones
referring to the ΛCDM background, namely the value of the expansion rate today
(H0) and the densities of baryons and CDM (Ωb and ΩCDM); (2) those referring
to late-time effects, the optical depth due to reionisation τreio being the only one
that we can constrain (the rest are treated as nuisance parameters, see later); and
(3) parameters describing experimental effects, e.g. effect of calibration, of the
particular survey, treated as nuisance parameters.

The equation (1.69) can be applied to the definitions of the CMB spectrum and
bispectrum, in order to relate them to their primordial counterparts eq. (1.35a)
and (1.35b). After some algebra (involving integrating angles between vectors ki’s,
using properties of spherical harmonics, expanding the Dirac delta in Legendre
polynomials. . . ) we arrive at the expressions:

〈a`1m2
a∗`2m2

〉 = δ`1`2δm1m2

2

π

∫ ∞
0

dk k2∆2
`(k)Pζ(k) , (1.70)

〈a`1m1
a`2m2

a`3m3
〉 = Gm1m2m3

`1`2`3

(
2

π

)3 ∫∫∫
dk1dk2dk3 (k1k2k3)2

∆`1(k1)∆`2(k2)∆`3(k3)Bζ(k1, k2, k3) J`1`2`3(k1, k2, k3) ,

(1.71)

where

J`1`2`3(k1, k2, k3) :=

∫
x2dx j`1(k1x)j`2(k2x)j`3(k3x) , (1.72)

and the already mentioned Gaunt integral is

Gm1m2m3

`1`2`3
:=

∫
dΩxY`1m1

(x̂)Y`2m2
(x̂)Y`3m3

(x̂) , (1.73)

whose solution is eq. (1.60) and whose properties we have already discussed.

38



Introduction

1.4.3 Experimental status
The CMB temperature power spectrum measured by the Planck satellite and
released in March 2013 [5] can be seen in figure 1.5(a), with the best-fit ΛCDM
model on top (solid line). As we can see, the concordance between the measured
power spectrum and the ΛCDM prediction is stunning.

The CMB bispectrum found by Planck can be seen in figure 1.5(b). Its small
size appears to fulfil the prediction for slow-roll inflation (see sec. 1.3.3), though
there are hints of an oscillatory pattern with possible primordial origin [7, sec.
7.3.3].

1.5 Constraining inflation with the CMB – param-
eter extraction

Now that we have proven how the properties of the perturbations generated by
inflation are imprinted in the CMB, we turn to the topic of how to extract that
information from the measured CMB data of a real survey. The result is given as
regions of the parameter space containing the most likely values of the cosmolog-
ical parameters that generated the data at hand. To achieve that result, we will
need a number of statistical tools, which we discuss in this section.

1.5.1 Bayes’ theorem
LetM be our model for the Universe, which depends on some parameters θ defined
over a parameter space Θ. Let D be a set of data that may be well described by
the modelM. We are interested in the probability distribution of the parameters
of the model P (θ | D,M), conditional on having observed the data D, which we
assume has been produced by the modelM. We call it posterior pdf 8. It is often
extracted from Bayes’ theorem, which states

P (θ | D,M) =
L (D |M(θ))

Z (D |M)
π (θ |M) . (1.74)

Here, we have introduced three more probability distributions:

π (θ |M), , called prior, is the pdf of the values of the parameters θ within the
modelM, which is assigned before knowing about the data D.

L (D |M(θ)), called likelihood, is the pdf of all possible outcomes of the survey
that produced the data D, assuming that the hypothetical modelM is true,
and the right values of its parameters are θ. It measures the compatibility
of the data with the hypothesis.

8The probability density function (pdf ) of a random variable x is a positive definite function
f(x) defined such that the probability of x being sampled in the (a, b) interval is equal to∫ b
a f(x) dx. The pdf must be normalised to 1 over the domain of x.
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1.5 Constraining inflation with the CMB – parameter extraction

(a) Temperature power spectrum of Planck on March 2013, from [5]. D` stands for
`(` + 1)C`/2π, and the shaded area represents the cosmic variance. The solid line is
the prediction of the best-fit ΛCDM model.

(b) Reconstructed bispectrum of Planck on March 2013, from [7] (in
colour).

Figure 1.5: CMB power spectrum and bispectrum from Planck’s data release of
March 2013.
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Z (D |M), called marginal likelihood or evidence, is the probability of all
possible outcomes of the survey that produced the data D, given that the
modelM is true, and having marginalised (i.e. integrated) over every pos-
sible value of the parameters θ.

We will describe the prior and likelihood pdf’s in the following sections, and
ignore the evidence for now, since when dealing with parameter extraction it only
amounts to an uninteresting normalisation constant. The result of the parameter
extraction process will therefore be the region of the parameter space Θ over
which the probability

P (θ | D,M) ∝ L (D |M(θ)) π (θ |M) , (1.75)

takes its highest values.

1.5.2 Prior
The prior pdf should encode two features:

Extension It should assign zero probability for those values of the theory which
are considered not valid for the model, e.g. negative values of a mass.

Distribution Different approaches are possible, but one often tries to assign
equal probability to values of the parameters among which there are no
preferred ones, e.g. a uniform pdf in time for an instantaneous phenomenon
whose timing we cannot predict. One can also choose a prior such that it lets
the data, through the likelihood, be most informative when determining the
constaints on the parameters (this priors are often called non-informative).
For an extended review on different criteria for prior choice, see [26].

These aspects of the prior may present some problems:

Extension Some parameters, such as those controlling a perturbative expansion,
have only soft limits, so their extension is not clear; e.g. the amplitude
controlling a perturbative expansion may have as an upper limit 10−1, 10−2,
10−3. . .

Distribution We will try to assign equal probabilities to unpreferred values of
the parameters, but what pdf this precisely means depends on the particular
parametrisation of the model, since lack of preference for a parameter θ
does not mean the same as lack of preference for θ2: a uniform pdf for θ
transforms into a 1

θ prior for θ2.

Despite the problems stated above, fortunately different choices of the prior
make a very small difference for highly predictive data which impose strong re-
strictions on the parameters’ values. In the pessimistic case of a not-so-restricted
model, where the choice of the priors is important, care must be taken in clearly
stating the choice of the prior and how it affects the result, by showing how the
posterior varies for different prior choices.
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1.5.3 Digression – Objectivity, frankness and Bayesian
statistics

Some people see the existence of prior pdf’s in Bayesian statistics as a flaw of
the approach which would introduce unnecessary subjectivity, since the prior I
am assigning may not be the same that someone else may assign. Let us argue
that it is not unnecessary, and it is not more subjective than any other model
assumption.

Necessity. Confindence intervals are regions of the parameter space built in
such a way that the probability of the underlying true value of the parameters
falling in those intervals, given the data, is equal to a certain value, usually 68% or
95%, which correspond respectively to the 1- and 2-σ intervals of a gaussian pdf.
Confidence intervals are built from posterior samples (likelihood samples in the
frequentist approach), such that they contain some fraction of the posterior mass
(i.e. the integral of the posterior over those intervals amounts to that fraction of
the total integral). It is easy to prove that the shape of those confidence intervals
unavoidably depends on the choice of parametrisation of the model. The frequen-
tist approach uses the Fischer information matrix to account for that dependence.
The Bayesian approach does it in a different way: different parametrisations are
equivalent to different prior choices. Therefore, in the introduction of prior pdf’s
is necessary in order to account for an effect that is already explicitly present in
the frequentist approach.

Subjectivity. Objectivity in science is about the methods applied to reach the
results, and about putting up-front every assumption of the model under test.
The assumptions themselves, though they must be sane from a scientific point
of view, are chosen subjectively, up to the physical intuition of the scientist,
and may change under certain circumstances. Again, it is being straightforward
about those assumptions which gives the scientific endeavour its objectivity. This
is precisely what Bayesian statistics does: discussing a prior choice is not a trick
to get the results that one desires; it is being frank about an unavoidable choice
of assumptions.

1.5.4 Likelihood

As we stated, the likelihood function L (D |M(θ)) is the probability that the data
D is an actual realisation of the modelM. In our particular case, the data is the
CMB power spectrum as measured from the map, while our model M is our
calculation of it starting from the primordial perturbations described in section
1.3 and projecting them in the CMB sky following section 1.4. Of course,M may
also be any modification of the ΛCDM model, like the one we test in chapters 2
and 3 of this thesis.
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When comparing them both, one has to take into account the spurious effects
that introduce differences between the power spectrum that we measure in the
CMB and the one our model predicts. Those effects may be intrinsic to the
instrument, such as the effect of the beam window function of the detector (real-
world detectors, when pointed to one direction, give back not exactly the signal
coming from that precise direction, but an integrated measurement that includes
some signal coming from the surroundings of the direction to which we point),
instrumental noise (some of the signal is generated by electronic noise in the
detectors) or differences in calibration between different instruments of the survey;
they may also be foregrounds, i.e. the physical effects that disturb the CMB
photons during their journey towards us.

A likelihood function must take into account those effects and model them as
effectively as possible. The likelihood function then takes the more exact form

L
(
Cmap
` |CM` (θ),M∗(η)

)
, (1.76)

where CM` (θ) is the CMB power spectrum predicted by our model and para-
metrised by θ, andM∗ models the aforementioned instrumental and foreground
effects, parametrised by η.

For didactic purposes, let us formulate a very basic likelihood function for a
very basic, fictional CMB survey. For starters, we will ignore foreground effects
on top of the CMB signal, assume full-sky coverage on a single frequency, and
correct only for the effects of the beam of the detector and its electronic noise,
and the fact that CMB maps have finite pixelisation.

The simplest data model hypothesis that we can make is

d := s+ n , (1.77)

where the components di of the vector d are the measured values of the tem-
perature anisotropy ∆T/T corresponding to the pixel i of the map, with a total
number of pixels Npix; we have divided this data into a linear combination of two
components: the underlying CMB signal s and the amount of signal given by
the noise, n. According to our cosmological model, the temperature anisotropies
caused by inflation are gaussian. Their covariance, 〈∆Ti/T · ∆Tj/T〉, is, according
to eq. (1.58)

〈sisj〉 =
∑
`

2`+ 1

4π
Ĉ` P`(αi,j) , (1.78)

where αi,j is the angle between the centres of the pixels i and j. The power
spectrum on the right hand side is directly calculated from the pixelised map. In
order to extract the power spectrum corresponding to the underlying CMB signal,
one has to take into account the effects of the finite beam of the expetiment and
that of the pixelisation.
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In any detector the signal measured in a direction n̂ does not just come from
it only, but also mixes in some signal from adjacent directions. This means that
in our map the temperature fluctuation measured as coming from n̂ is the result
of the convolution with a beam window function B:(

∆̂T

T

)
(n̂) =

∫
Ωr̂

(
∆T

T

)CMB

(r̂)B (cos(r̂, n̂)) dΩr̂ , (1.79)

where we integrate over all possible directions r̂. If we make now a spherical
transform, we get

â`m =

∫
Ωn̂

{∫
Ωr̂

(
∆T

T

)CMB

(r̂)B (cos(r̂, n̂)) dΩr̂

}
Y ∗`m(n̂) dΩn̂ = aCMB

`m B` .

(1.80)

Notice how the spherical harmonics transformation turns the convolution with
the beam window function into a product with the transformed beam window
function Bl. A typical shape for a beam is a gaussian one with variance σ2

B ,
whose spherical harmonic transform is B` = exp

(
−1/2 `(`+ 1)σ2

B

)
.

After applying this and a similar correction for the pixel window function
(each pixel integrates signal from a finite area) encoded by W` [24], we get the
variance of the signal as a function of the underlying CMB spectrum

〈sisj〉 =
∑
`

2`+ 1

4π
CCMB
` B2

`W
2
` P`(αi,j) , (1.81)

We know the probability distribution for the signal part of the data: it follows a
gaussian distribution with zero mean and the variance above. As for the electronic
noise, we often assume it to be gaussian, with a variance Ni,j (and zero mean).
The sum of two gaussians is a gaussian, whose mean and variance are the sum
of those of the components. Therefore, the pdf of the data in all pixels is the
multivariate gaussian

d ∼ N (0,Σ) , (Σ)i,j :=
∑
`

2`+ 1

4π
CCMB
` B2

`W
2
` P`(αi,j) +Ni,j . (1.82)

This probability distribution is, of course, conditional on the underlying modelM
giving the CMB power spectrum, parametrised by some variables θ, and on the
models for the beam and the noise, that we will ignore in the future. Therefore,
as this multivariate gaussian assigns a probability for the particular realisation of
the data given an underlying model, we have precisely the likelihood we wanted:

L (d |M(θ)) =
1

(2π)
Npix/2 |Σ|1/2

e
1
2dΣ−1d , (1.83)
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where the dependence on the model enters though the covariance matrix Σ (M (θ)).

The approach described above is a nice, simple one, but it is also doomed: in-
verting the matrix takes O(N3

pix) operation: two orders come from the dimensions
of the matrix, and the third one from the sum on `, since the larger the resolution
of the experiment is, `max, the finer the pixelisation needed. This approach makes
sense only for low-resolution maps aimed at characterising the spectrum at low
multipoles, ` . 50, and even in that case the joint analysis of maps with multiple
frequencies makes it computationally expensive, since we have to multiply Npix

by the number of maps. In addition to that, we still need to account for the effect
of foregrounds, which introduce further computational complications. Still, the
the method described here can be used as a basis for the temperature power spec-
trum likelihoods of Planck are formulated [5], in particular for ` < 50. For higher
multipoles, the central limit theorem can be exploited to gain some simplicity.

The low-` Planck C` likelihood

The low-` likelihood is based on a more sofisticated version of the method de-
scribed above. It is known as Commander, and it is presented in [18]. Let us
sketch it here. As a first step, we include different foregrounds effects as compo-
nents of the total temperature perturbation:

d := s+ n+
∑
i

f (i) . (1.84)

As for the CMB signal, we need a model for the foreground effects, M∗ with
parameters η. As this method is to be applied to small multipoles only, the
resolution of the sky maps is downgraded to gain some efficiency.

Let us now look at the joint pdf of the CMB signal s, its underlying estimated
power spectrum ĈCMB

` (notice the difference with CCMB
` , given by the model

M), and the foreground effects f (i), conditional to the measured temperature
anisotropy d, i.e. P

(
s, ĈCMB

` ,f (i) |d,M,M∗
)
. Marginalising over all possible

splittings between CMB signal part and foreground effects, we would get the de-
sired likelihood P

(
ĈCMB
` |M

)
. But that is a very complicated distribution with

lots of parameters coming both from the model for the CMB and the model for
the foregrounds, and not even using a Monte Carlo method, as the one described
in the next section, is this pdf easy to map out.

On the contrarly, its conditional distributions for each of s, ĈCMB
` or f (i) are

much simpler: the first one,

P
(
s | ĈCMB

` ,f (i),d,M,M∗
)
≡ P

(
s |f (i),d,M

)
, (1.85)

is, as we discussed, exactly a Gaussian distribution with covariance (1.81). The
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second,

P
(
ĈCMB
` | s,f (i),d,M,M∗

)
≡ P

(
ĈCMB
` | s

)
, (1.86)

can be easily calculated to be an inverse gamma distribution.9 The last one,

P
(
f (i) | s, ĈCMB

` ,d,M,M∗
)
≡ P

(
f (i) | s,d,M∗

)
, (1.87)

has no simple analytical form, but can be mapped out numerically without much
difficulty. When the single conditional distributions are simple enough, we can
take a Monte Carlo approach known as Gibbs sampling, consisting on applying
a Markov Chain algorithm on each of the distributions alternatively (the reader
may want to come back to this section once having read the next one): at a step
t of the chain, first sample a point st+1 from (1.85), then use the combination
(st+1, Ĉ

CMB
`,t ,f

(i)
t ) as a starting point to sample a point ĈCMB

`,t+1 from (1.86), and
lastly, using (st+1, Ĉ

CMB
`,t+1 ,f

(i)
t ) sample a point f (i)

t from (1.87), getting the fol-
lowing step of the chain, (st+1, Ĉ

CMB
`,t+1 ,f

(i)
t+1); repeat until achieving convergence.

Once we have enough samples, we can marginalise over s and the foregrounds and
use the result to create an approximated interpolating likelihood L

(
ĈCMB
` |M

)
.

The high-` Planck C` likelihood

For higher multipoles, we need higher resolution maps, which makes the method
above less eficient. Planck used the CamSpec algorithm [5, sec. 2.1], based on the
MASTER approach [25].

Let ã`m be the spherical transform in the pixelised map of the data d, including
the correction of a beam window function as in eq. (1.80). We can estimate from
them a power spectrum, that we call pseudo-C`, as

C̃` =
1

2`+ 1

∑
m

|ã`m|2 . (1.88)

This power spectrum contains contributions from the CMB and foregrounds, and
a contribution from the instrumental noise that can be minimised if we use ã`m
of different maps to calculate this square (the instrumental noise is uncorrelated
in the different instruments; though a small contribution is left, it is guaranteed
to be unbiased, i.e. to have zero mean). It can be proven [25] that the underlying
joint power spectrum of CMB and foregrounds, Ĉ`, can be recovered from the
pseudo-C` multiplying by a convolution matrixM``′ that accounts for the leaking
between multipoles due to the finite beam window function, the pixelisation of
the map and the use of non-full sky coverage (a big chunk of the sky, containing
the galactic plane up to a elevation and a number of point sources, is discarded

9See e.g. http://en.wikipedia.org/wiki/Inverse-gamma_distribution .
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to minimise the effect of the anisotropic part of the foregrounds). Since the
convolution matrix can be calculated explicitly (see [5, app. A.1]), we can work
directly with the pseudo-C`.

Working with the C̃` has an important advantage. Given isotropy of the
signal,10 for equal ` all the ã`m are distributed following the same pdf, with a
well-defined mean and variance. On the other hand, according to eq. (1.88), C̃`
is at each ` equal to the average of the ã`m over m. For high values of ` (remem-
ber, here ` > 50), up to a very good approximation the central limit theorem is
fulfilled:11 the pseudo-C` follow a simple gaussian distribution. Therefore, the
likelihood can simply be written as a multivariate gaussian – the product of a
gaussian for each `. The covariance matrix Σ of the multivariate gaussian, giving
the dependence between the different multipoles (and between different combina-
tions of frequencies) is estimated from simulations performed on a fiducial model.
Having precomputed it, the value of the gaussian likelihood can be computed in
a very small amount of time.

As in the low-` case, the likelihood is conditional on the models for the CMB
power spectrum and the isotropic foreground effects, as well here as on the differ-
ent calibration parameters for the maps used. Marginalising at the time of sam-
pling over these nuisance effects one can get the desired likelihood L

(
ĈCMB
` |M

)
.

1.5.5 Monte Carlo methods

Now that we have all the necessary ingredients to extract the posterior pdf of the
parameters of the model and characterise it around its maximum, we may try to
do so in the most naïve way: analytically maximising the product of prior and
likelihood using a gradient method, i.e. following the direction of the function
with the highest slope until we find its maximum. We will immediately find this
approach to be practically unfeasible, due to problems such as

Non-analyticity of the likelihood: In the particular case of the CMB, the cal-
culation of the CMB power spectrum from the primordial conditions, based
on eq. (1.69), cannot be done analytically, but is the result of numerical
solutions of a system of Boltzmann equations, often solved with the help of
computers [30, 11].

Cost of calculating the likelihood: In the particular case of the CMB, the
full calculation of the likelihood from the set of parameters of the model
may take up to a few seconds. This discourages us from attempting a
thorough sampling on a grid in the parameter space, aimed at constructing
an analytic approximation to the likelihood as an interpolating function.

10The most anysotropic foregrounds, Via Lactea and point sources, have been masked away.
The remaining ones are isotropic to a good approximation.

11See e.g. http://en.wikipedia.org/wiki/Central_limit_theorem .
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Size of the parameter space: The dimensionality of the typical parameter spaces,
including interesting parameters of the model and uninteresting parameters
modelling the survey’s shortcomings, easily goes to high values. This too
prevents us from searching an interpolating approximation of the likelihood
by sampling on a grid.

Complicated shape of the likelihood: Even in the optimistic case of an an-
alytic likelihood, it is usually a very complicated function with many local
maxima, in which a gradient method may get trapped.

This problems tell us about the desired features of an ideal solution: it needs a
mechanism for not getting trapped in local maxima, often realised through some
random jumping; it must sample as few points of the parameter space as possible,
and it must scale well with the dimensionality of the parameter space.

The result of this method must be a fair sample, or set of pairs of points in the
parameter space and their respective values of the likelihood, possibly including a
relative sampling weight. Fairness of the sample means that in every region, the
density of the sampling must be proportional to the probability density. If the
goal is to obtain constraints for the parameters of the model, the samples only
need to cover the region of the parameter space where the posterior has most of
its probability mass.

We call Monte Carlo methods a broad family of random sampling algorithms
aimed at solving this kind of problems.

1.5.6 Markov chain Monte Carlo
In this section we will start by briefly defining the general concept of a Markov
chain, its expected properties, and the Metropolis-Hastings algorithm. Details
and proofs can be found in [23, Ch. 1 & 4]

Let X0, X1, . . . , Xt be a sequence of random variables taking values on a state
space E. A (discrete time) Markov chain is a sequence of such random variables
X0, X1, . . . , Xt such that the probability of the random variable to take values in
a particular subset A ⊂ E in the next step depends only on the value taken in
the current step:

P (Xt+1 ∈ A |X0 = x0, X1 = x1, . . . , Xt = xt) = P (Xt+1 ∈ A |Xt = xt) .

(1.89)

A Markov chain is time-homogeneous or stationary whenever this probability does
not depend on the specific order of the step for which the last property is fulfilled:

P (Xt+1 ∈ A |Xt = x) = P (Xt ∈ A |Xt−1 = x) ∀t , (1.90)

i.e. P (Xt+1 ∈ A |Xt = x) is independent of the order of the step, and we call it
the transition kernel. The probability distribution of any step of a stationary
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Markov chain is completely specified by its transition kernel and the probability
distribution of the initial step.

A stationary Markov chain has stationary or invariant distribution ρ when,
being ρ the initial probability distribution at step t,

P (Xt+1 ∈ A |Xt ∼ ρ) = ρ(A) ∀t . (1.91)

Thus, the kernel of a stationary Markov chain is determined by its stationary
distribution.

As it should be obvious by now, we will try to build a Markov chain such that
the stationary distribution is the pdf that we wish to sample, in this case the
posterior pdf P (θ|D,M).

At this point, looking at eq. (1.91), it appears that the points in the chains
are drawn from the stationary pdf ρ. One would be tempted to estimate the
desired averages over ρ, 〈f(X)〉ρ, using averages over the states along the chain,
i.e. ergodic averages:

f̄n :=
1

n+ 1

n∑
i=0

f(Xi) , (1.92)

but there are two important caveats:

1. For the states of the chain to really be samples from ρ, according to eq.
(1.91) all the previous states must be so, including the initial state X0,
which obviously cannot be sampled from ρ yet, since sampling from ρ is
precisely the problem at hand. Therefore, we need to ensure that the initial
state will be forgotten at some point, leaving us with pure samples from ρ.
We achieve so by discarding a number of initial states of the chain when
calculating (1.92), which we call burn-in states.

2. Still, the samples are not independent from one another, but correlated
samples from ρ. This needs not be a problem, provided that the samples
are drawn in the correct proportion, i.e. drawing from A ⊂ E must be
proportional to ρ(A), i.e. the sample, though correlated, must be fair.

Ensuring this two requirements, or having convergence of the path-average f̄n
to the true expected value under the stationary pdf 〈f〉ρ, is defined as the Markov
chain being ergodic. In order to ensure ergodicity, one must prove three properties
of the chain: that it is irreducible, i.e. it explores all subsets A ⊂ E such that
ρ(A) 6= 0, recurrent, i.e. an infinite chain reaches said regions infinitely often, and
aperiodic, i.e. it does not transition cyclically through a fixed sequence of sets.

We now propose a very simple algorithm to build a Markov chain that is sta-
tionary and convergent, and which is the basis, with some improvements, of most
of the widespread cosmological MCMC codes [29, 9]. It is called the Metropolis-
Hastings algorithm.
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Suppose a proposal pdf φ(Y |Xt), where Xt is the value at the current step.
For example, φ(Y |Xt) ∼ N (Xt, C), a multivariate gaussian centred at Xt and
with a fixed covariance matrix C. Let us suppose the we draw a sample y from φ.
Assuming ρ to be the stationary pdf of the chain, we build the quantity

α(Xt, Y ) := min

(
1,
ρ(Y )

ρ(X)

φ(Xt |Y )

φ(Y |Xt)

)
. (1.93)

Notice that α ∈ [0, 1]. The new point Y is accepted or rejected as the next point
of the chain with probability α. If it is rejected, take Xt+1 = Xt. In any case,
repeat for Xt+2. Notice how in eq. (1.93) the ratio of the stationary distribution
drives the next step towards the maxima of this pdf. Notice too how the choice
of a gaussian proposal distribution implies that the second fraction has no effect.

The proposal distribution φ and the stationary distribution of the chain ρ is
all we need to build the Metropolis-Hasting Markov chain. It is easy to see that
its kernel is

P (Xt+1 |Xt) =φ(Xt+1 |Xt)α(Xt, Xt+1)+

I(Xt+1 = Xt)

[
1−

∫
φ(Y |Xt)α(Xt, Y ) dY

]
,

(1.94)

where I(cond) is a function valued 1 if cond is true and 0 otherwise.
It can be proven that this chain converges towards the stationary distribution

ρ regardless of the choice of the proposal distribution φ. This does not mean
that this is not an important choice: the convergence will be faster the closest
the proposal distribution is to the stationary distribution – a bad choice of φ will
have bad consequences in the efficiency of the sampling of ρ: if φ is much more
concentrated than ρ, we will not reach to explore the tails of the distribution ρ; if φ
is very spread, we will tend to draw candidate samples Y such that ρ(Y )� ρ(Xy),
away from the maxima, so we will very often reject them, resulting in a chain
with many repeated steps and few different ones. Therefore, assuming a nearly-
gaussian stationary pdf, one would ideally try to use a gaussian proposal pdf with
a covariance matrix as close as possible to that of the stationary distribution.12
In order to get such a covariance matrix, we can approximate it from the sample
covariance of a small chain of sample of ρ.

1.5.7 Final remarks
Having described the likelihood and prior pdf’s, and one of the Monte Carlo meth-
ods aimed at mapping the posterior, the next step is to actually use these tools to
tackle the two most common computational tasks in statistical inference: param-
eter inference and model selection (in frequentist terms, equivalent to hypothesis

12In fact, it is advisable to use a covariance matrix for the proposal distribution that is a little
broader than that of the stationary distribution, since the tails of the latter get better sampled
this way.
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testing). We will not go into much detail here, but just introduce how these two
problems have been approached in the research performed for this thesis.

Parameter inference

Parameter inference is the problem of, given a model with some parameters,
characterising the regions of the parameter space containing most of the posterior
probability, i.e. containing the most likely underlying parameter values. These
regions are called confidence level regions or intervals. Computing them requires a
sampling method that produces fair samples, since we will estimate the probability
corresponding to those regions with the proportion of the Monte Carlo samples
falling inside them. Since confidence level intervals are, of course, centred around
the maxima of the posterior, the sampling method used must guarantee that the
regions of higher posterior value are thoroughly explored, as Markov chain Monte
Carlo does.

If the resulting posterior is at least approximately gaussian, a set of nested
confidence level intervals (usually 68% and 95%) summarises the posterior pdf
well enough. In the opposite case, of very non-gaussian distribution with several
regions of high probability, not only confidence intervals are not enough to sum-
marise the information contained in the posterior, but also the simple Markov
chain approach explained in the last section needs a unmanageably large amount
of running time in order to guarantee that the sampling is fair. This is so because
the chain gets stuck around one of the several maxima (or modes), and only rarely
jumps between all of them, and only after a large number of exchanges between
the modes can their relative mass probabilities be fairly represented.

The case of a non-gaussian distribution with several modes is prone to pop
out whenever we attempt to constrain parameters of models which exploit small
anomalies close to the signal-to-noise ratio of the data set; this is what we do
in this study with CMB and LSS data. In these cases, one often prefers al-
ternative methods to Markov chain Monte Carlo, specially aimed at mapping
weirdly-shaped pdf’s, such as multi-modal nested sampling [38, 21, 22, 20]. In
the first part of this study, however, we managed to map a multi-modal posterior
using solely MCMC’s. The method we used is described in section 2.3.

Model selection

Model selection is the problem of assessing which one of a set of models is the
most likely to have generated the data at hand, or equivalently which one is the
most informative or predictive. The quantification of this predictivity is given
by the evidence, defined in section 1.5.1, which is the marginalisation of the data
likelihodd over the priors allowed by the theory, i.e. the total probability of the
model being the underlying one regardless of the values of its parameters. A
short review of the procedure followed in Bayesian model selection can be found
in section 3.3.
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In particular, in this study we do not aim to characterise the total evidence
of the model discussed in section 1.3.4, since we do not explore the full param-
eter region allowed by the model, but instead explore a significant patch of it
and use model selection arguments to argue about the consistency between can-
didate signals in CMB and LSS data. The reader is referred to chapter 3 for the
complete discussion. The sampling method used in this part of the study is the
aforementioned multi-modal nested sampling, which is briefly described in section
4.3.
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Chapter 2

Localized correlated features
in the CMB power spectrum
and primordial bispectrum
from a transient reduction in
the speed of sound

Foreword
This chapter is based on the published papers

Localized correlated features in the CMB power spectrum and pri-
mordial bispectrum from a transient reduction in the speed of sound

Ana Achúcarro, Vicente Atal, Pablo Ortiz, and Jesús Torrado

Published in Physical Review D89 (2014) 103006

Preprint in arXiv:1311.2552 [astro-ph.CO]

and
Inflation with moderately sharp features in the speed of sound: GSR
and in-in formalism for power spectrum and bispectrum

Ana Achúcarro, Vicente Atal, Bin Hu, Pablo Ortiz, and Jesús Torrado

Published in Physical Review D90 (2014) 023511

Preprint in arXiv:1404.7522 [astro-ph.CO]

The results presented in them and reproduced here are the product of the com-
bined effort of all its authors, who, as is customary in Theoretical Cosmology,
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appear in alphabetical order.
As part of this Ph.D. thesis, I reproduce a major part both of the original

publications, focusing on the parts in which my contribution was most significant,
specially the sections concerning the parameter estimation and the interpretation
of the results.

Abstract

We perform a search for localized oscillatory features in the Planck CMB power
spectrum of the first year of observations, assuming that said features are caused
by a transient reduction in the speed of sound of the adiabatic mode during
effectively single-field, uninterrupted slow-roll inflation.

We find several fits, in which we perform several consistency checks and further
analyses, such as its reproduction by the a different Boltzmann code, the study
of their polarization signal in the CMB and their local significance at different
angular scales.

For each of the best fits, we calculate the expected correlated signal in the pri-
mordial bispectrum, and compare it to the search for scale dependent bispectrum
features carried out by the Planck collaboration. Where both searches overlap,
we reproduce the Planck results reasonably well. In addition, some of our best
fits lie outside the scales and frequency ranges searched by Planck, which calls
for an extension in frequencies and envelopes of the templates used in Planck’s
search.

By exploiting correlations between different observables, our results strongly
suggest that current and data, including the imminent 2014 Data Release of
Planck, might already be sensitive enough to detect transient reductions in the
speed of sound as mild as a few percent, opening a new window for the presence
of extra degrees of freedom during inflation.

2.1 Introduction

The paradigm of inflation [47, 71, 72, 70, 55, 18] in its simplest realizations is con-
sistent with the latest data releases from the Planck [7] and WMAP [28] satellites.
However, hints of a primordial oscillatory signal in the CMB bispectrum [10] and
of anomalies in the CMB power spectrum [28, 9] motivate a search for correlated
features produced by inflationary scenarios beyond canonical single-field.1 Such
correlation is in general expected and will differ depending on its physical origin
[34], so it can be used to discriminate among inflationary mechanisms.

On the theory side, several mechanisms that produce oscillatory features are
being investigated. As first noted in [73], a step in the inflaton potential causes

1By canonical single-field we mean slow-roll regime, Bunch-Davies vacuum, canonical kinetic
terms and minimal coupling to gravity, with speed of sound cs = 1.
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features in the spectra [77, 6, 45, 21, 33, 19, 57, 12, 20, 75, 23], and novel method-
ologies have been developed in [74, 35, 38, 15, 63, 16] for more generic transient
slow-roll violations. The effect of a variable speed of sound has also been analysed
both in the power spectrum [2, 50, 5] (for sudden variations see [66, 63, 64, 24, 23])
and bispectrum [5, 16, 68] (see [24, 23] for sudden variations). Different initial
vacuum states (see e.g. [37, 46, 61, 51]) or multi-field dynamics [44, 43, 69, 65]
may also cause oscillations in the primordial spectra.

On the observational side, searches in the CMB power spectrum data have
been performed for a variety of scenarios, such as transient slow-roll violations
[36, 12, 26, 13, 25, 48, 27, 63], superimposed oscillations in the primordial power
spectrum [56, 42, 17, 58, 67, 60, 59] and more general parametric forms (see [9] and
references therein). In addition, the Planck collaboration searched for features in
the CMB bispectrum for a number of theoretically motivated templates [10]. In
none of these cases the statistical significance of the extended models has been
found high enough to claim a detection. Still, it is becoming clear that hints of
new physics (if any) are most likely to be detected in the correlation between
different observables.

In this spirit, in the two papers presented in this chapter we search for transient
reductions in the speed of sound of the adiabatic mode consistent with (effectively)
single-field inflation and uninterrupted slow-roll. We do this by exploiting a very
simple correlation between power spectrum and bispectrum noted in [5] and pre-
sented in section 1.3.4. While more general situations are possible, and have been
considered elsewhere [15, 16], there is a particularly interesting regime for which
the complete primordial bispectrum is obtained to leading order in slow-roll [5].
The amplitude and the rate of change of the speed of sound must be large enough
to dominate over slow-roll effects while being small enough to allow a perturbative
calculation of the effect on the power spectrum and bispectrum. We call transient
reductions in this regime mild and moderately sharp.

Our test case consists of a gaussian reduction in the speed of sound occurring
within the window of e-folds in which the scales corresponding to the angular
scales probed by Planck exit the Hubble sound horizon. The functional form
is inspired by soft turns along a multi-field inflationary trajectory with a large
hierarchy of masses, a situation that is consistently described by an effective single-
field theory [3, 2, 31, 4] (see also [44, 43]). Nevertheless we stress that reductions
in the speed of sound are a more general phenomenon within effective field theory
(and hence may have diverse physical origins).

Our statistical analysis of the Planck CMB power spectrum reveals several
fits with a moderately improved likelihood compared to the best ΛCDM fit. We
performed different tests to check the robustness of the fits found. For each
of those fits we give the associated full primordial bispectrum. At the time of
writing this thesis, the Planck bispectrum data have not yet been released but,
due to a lucky coincidence, templates very similar to our predictions have already
been tested by Planck [10] (inspired by a step in the potential). We find that the
predicted bispectra for some of our fits are reasonably consistent with the best fits
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of Planck. In addition, some of our best fits lie on a region of the parameter space
not yet analysed by Planck. If confirmed, these correlations would constitute
evidence for transient reductions in the speed of sound. It is interesting that
rather mild reductions of the order of a few percent may already be observable in
the data.

2.2 Our test case – A gaussian in e-folds

In this chapter, we attempt to fit to the CMB data the kind of features described
in section 1.3.4. The features in the CMB temperature power spectrum originate
from the perturbations in the scalar primordial power spectrum given by eq.
(1.54), in terms of a reduction in the speed of sound cs(τ).

We have chosen to parametrise the reduction in the speed of sound as a gaus-
sian in e-folds N . This functional form is inspired by soft turns along a multi-field
inflationary trajectory with a large hierarchy of masses, a situation that is con-
sistently described by an effective single-field theory and uninterrupted slow roll
[3, 2, 31, 4, 44, 43]. Our parametrisation reads:

u = 1− c−2
s = B e−β(N−N0)2 = B e

−β
(

ln τ
τ0

)2

, (2.1)

where β > 0 is the sharpness, B < 0 is the amplitude, and N0 (or τ0) is the instant
of maximal reduction. Assuming slow-roll, the conformal time τ is related to the
e-folds of inflation through ln (−τ) = (Nin −N)− ln (ainH0), where ain = a(Nin)
and Nin is the time when the last ∼ 60 e-folds of inflation start. Notice that
the quantity Nin is irrelevant, since all the quantities in e-folds are defined with
respect to Nin.

There are two main criteria that we followed in order to determine the param-
eter regions that we would explore:

(a) The SRFT calculation of the power spectrum and the bispectrum is valid
for mild and moderately sharp reductions of the speed of sound. Also, the
slow-roll contributions to the bispectrum are disregarded with respect to the
terms arising from the reduced speed of sound (see [5] or section 1.3.4). This
means that the amplitude |u| and the rate of change s ≡ ċs

csH
must be much

smaller than one, while being (at least one of them) much larger than the
slow-roll parameters. The rate of change s of the speed of sound (2.1) reads:

s(N) =
dcs
csdN

= −Bβ(N −N0) e−β(N−N0)2

1−B e−β(N−N0)2
. (2.2)

Since we have to impose |s| � 1 for all values of N , it suffices to impose this
condition at the point where |s| takes its maximum value |s(N∗)| = |s|max,
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determined by

N∗ = N0 ±
1√
2β

√
1 +O(B) ' N0 ±

1√
2β

, (2.3)

which approximately corresponds to one standard deviation of our gaussian,
and we have used that |B| � 1. Then the condition |s|max � 1 translates
into β � 2e

B2 + O(B−1). Altogether, the allowed region of our parameter
space taking into account these constraints is

O(ε, η)� |B| � 1 , (2.4a)

βmin � β � 2e

B2
, (2.4b)

Nbb < N0 < Nend , (2.4c)

where Nbb and Nend are respectively the (unknown) instants, in e-folds scale,
of the beginning and the end of inflation; on the other hand, βmin corresponds
to the case in which |s|max ∼ O(ε, η). Notice that it is only necessary to satisfy
one of the lower limits of eqs. (2.4a) or (2.4b).

(b) The angular scales probed by Planck (` = 2 − 2500) roughly correspond
to the momentum scales crossing the Hubble sound horizon during the first
NCMB ' 7 e-folds of the last ∼ 60 e-folds of inflation. If the data resembles
features due to a reduced speed of sound, it is most likely to find them within
this CMB window (we choose to look under the lamppost). This translates
into constraints on the parameters that determine the position and width of
the feature, namely the sharpness β and the instant N0. They are chosen
so that the reduction happens well within this CMB window. We took a
very conservative definition for the total width of the reduction (in e-folds):
ten standard deviations of the gaussian, ∆N = 10/

√
2β, must fit within

the observable window [Nin, Nin + NCMB]. Then, the position N0 and the
sharpness β should satisfy

50

N2
CMB

< β , (2.5a)

5√
2β

< N0 −Nin < NCMB −
5√
2β

. (2.5b)

This is a very conservative choice (or, the lamppost reaches actually further):
(2.5a) and (2.5b) are more restrictive than the condition that the feature
be observable: for example, any feature happening in a particular window
has an effect on the modes that leave the horizon after the reduction in cs
has finished, as is shown by the fact that the transfer functions that relate
primordial scales when they leave the Hubble sphere to scales in the CMB
have a non-zero, finite width. In exchange for a more restrictive constraint,
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we avoid degeneracies with the spectral index ns and the optical depth τreio
that could be caused by reductions with a very long wavelength in the power
spectrum.

Finally, putting together the constraints described above, and prioritising the
most restrictive of them in each case, we get the final set of bounds

O(ε, η)� |B| � 1 , (2.6a)
50

N2
CMB

< β � 2e

B2
, (2.6b)

5√
2β

< N0 −Nin < NCMB −
5√
2β

. (2.6c)

For computational purposes, we use the parameter ln(−τ0) instead of N0 for
the data analysis. The range for this parameter is taken to be more strongly
restricted than by (2.6c):

4.4 ≤ ln(−τ0) ≤ 6 . (2.7)

The features in the power spectrum and bispectrum are linearly oscillating, as
well as those tested in one of the searches for bispectrum features by the Planck
collaboration [10, sec. 7.3.3]. The oscillatory frequency is determined by τ0, and
the range of frequencies covered in Planck’s bispectrum analysis is equivalent to
the interval ln(−τ0) ∈ [4.43, 5.34]. This motivates us to search in the interval
given above, which contains and slightly enlarges that of Planck’s search, while as
the same time avoids highly oscillating features (larger values of |τ0|) that make
computational control difficult.

As a final step, we choose priors for the three parameters of the feature. In
particular, we choose uniform priors in B, lnβ and ln(−τ0), within the limits
given respectively by eqs. (2.6a), (2.6b) and (2.7). The model-dependent bound
|B| � O(ε, η) is ignored a priori.

2.3 Methodology of the search
The power spectrum features caused by a transient reduction in the speed of sound
described by eq. (2.1), are combined with the primordial spectrum of the ΛCDM
Planck baseline model described in [11, sec. 2], parametrized by an amplitude As
and a spectral index ns. To do so, we solve the integral in eq. (1.54) using a Fast
Fourier Transform. The primordial perturbations evolve in a flat FLRW universe
parametrized by the densities of baryonic and cold dark matter, Ωb and Ωcdm, and
the current expansion rate H0. The damping due to reionisation is parametrized
by the optical depth τreio. Those 6 standard plus 3 feature parameters describe
our cosmological model.

The evolution of the perturbations and their projection onto the CMB power
spectrum is calculated with the Boltzmann code CLASS [52, 29]. In order to
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incorporate our features to the primordial power spectrum, we needed to develop
an extension to CLASS, which is described in chapter 4.

The resulting CMB is fitted to the ESA Planck mission temperature data of
March 2013, using the likelihood provided by the experiment [8], and the low-`
CMB polarization data of the WMAP experiment [28]. We use flat priors on
the 6 ΛCDM parameters and the 14 nuisance parameters of the likelihood [8].
For the parameters of the feature, we use the priors described in the last section.
The posterior probability is then maximized over the prior bounds using Markov-
Chain Monte-Carlo (MCMC) methods, making use of the MCMC sampler Monte
Python [22].

Multi-modal sampling with Markov Chain Monte Carlo

As is usual when fitting small features on top of a large data set, we found the
likelihood pdf (and hence the posterior) to be multi-modal. Although multi-
modal distributions are sampled more efficiently with methods such as multi-
modal nested sampling [41, 40], we managed to sample the posterior pdf by using
only MCMC methods. As we explained in section 1.5.7, the reason why MCMC
methods fall short when exploring multi-modal pdf’s is the need for a very long
sampling time in order for the jumping between different modes to occur enough
to, at the same time, (1) sampling each of the modes fairly with respect to each
other, and (2) finely sampling around each one of them. It is easy to show why
it is difficult to have both: finely sampling around each of the modes requires
a proposal distribution as close as possible to that of the mode itself, which
automatically sets the step size in the parameter space to be much smaller than
the distance between well-separated modes, making jumps between them unlikely;
on the other hand, an extended proposal distribution characterises better the
position of the different modes, but sets the step-size so large that the estimation
of the confidence intervals of each of the modes is quite inaccurate, since the
sampling around each of the maxima is scarce.

In this work, instead of finding a compromise solution, we took a two-steps
approach. First, we sampled the posterior pdf with an extended proposal distri-
bution, in order to find the rough position and shape of the different modes, but
renouncing to get accurate parameter constrains for now.2 After obtaining a big
number of samples, we inspected the resulting profile of the posterior pdf in a
grid – the profile pdf P(αi) in a grid cell i with respect to a subset of the full
set of parameters {α} ⊂ {θ} is the maximised pdf with respect to the remaining
parameters and the cell volume, P(αi) = max{θ}−{α},iP(θ). Why the profile and
not, as it is usual, the marginal pdf? Because the large extent of the proposal

2It is common in MCMC samplers, when there is no good estimate of the proposal distribu-
tion, to start the sampling process with an inaccurate estimate, and then use some of the first
samples to obtain a more accurate one and to automatically restart the sampling with this one.
Needless to say, in this setting this approach is not appropriate, since we do prefer a rough,
long-tailed, inaccurate proposal pdf to be constant during the whole sampling process.
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distribution produces a very scarce sampling that makes the different modes only
barely visible as over-densities of samples (as local maxima of the marginal like-
lihood); instead, they are easier to see by directly inspecting the values of the
likelihood on a coarse grid.

Second, once the rough shape of the pdf is known, provided that the different
modes are clearly separated, one can crop regions of the parameter space con-
taining each a single mode. Over each of those regions, using a rough estimate of
the single-mode proposal distribution, one can obtain confidence intervals for the
different parameters as one would normally do for uni-modal pdf’s. Finally, each
of the modes must be assigned a relative probability proportional to the total pdf
mass under said mode.

Going back to the particular case under study, as our features are small and
affect only a fraction of the data set, we expect to find only mild degeneracies of the
feature parameters with the cosmological parameters. Due to the mild character
of the degeneracies (that we confirmed a posteriori, cf. fig. 2.2), we expect the
likelihood to show its multi-modal character only within the parameter subspace
of the feature. Therefore, we started our search by mapping the multi-modal
likelihood on this 3-dimensional subspace.

We started our analysis by sampling the parameter sub-space of the feature,
(B, lnβ, ln(−τ0)), with very long tailed chains, of order 5% of the width of the
prior in each direction. After obtaining a big number of samples, we inspected the
profile posterior in the plane (lnβ, ln(−τ0)); it revealed the position and rough size
of the different modes, and we used that information to crop uni-modal regions.
We then reassessed the shape of the modes by sampling over the feature parame-
ters only, and when their position and extension were sufficiently well determined,
we resampled them allowing now the baseline ΛCDM and nuisance parameters to
vary. With this, we got the definitive posterior probability distribution functions
for the different modes.

In the following, χ2 refers to the so-called effective χ2 defined as χ2
eff = −2 lnL

(see [76, p. 10]); in turn, ∆χ2 stands for the difference with the corresponding
best fit value of Planck baseline model, using the likelihoods mentioned above
[11]: χ2

eff, best-fit = 9805.90.

2.4 Summary and analysis of the results

The result of our search, having discarded small signals with ∆χ2 > −2 over
ΛCDM, is a series of five well-isolated bands with almost constant ln(−τ0) (i.e.
frequency of oscillation of the feature in the primordial spectrum), in which the
likelihood is improved with variable significance. We will call them, in order of
decreasing ln(−τ0), modes A to E . The resulting profile likelihood can be seen
in figure 2.1. For each of the modes showed in the figure, the relevant parameter
data is given in table 2.1: the numbers in parentheses are the best fit values, and
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Figure 2.1: Profile of ∆χ2 = −2∆ lnL for the features in the CMB power
spectrum in the (lnβ, ln(−τ0)) plane. We name each of the bands, in descending
order of ln(−τ0), modes A to E . Regions with improvements of −∆χ2 < 2 have
been discarded and are not shown in the plot.

Mode −B × 102 lnβ ln(−τ0) ∆χ2 smax

A (4.5) 3.7 +1.6
−3.0 (5.7) 5.7 +0.9

−1.0 (5.895) 5.910 +0.027
−0.035 −4.3 0.33

B (4.2) 4.3 ± 2.0 (6.3) 6.3 +1.2
−0.4 (5.547) 5.550 +0.016

−0.015 −8.3 0.42

C (3.6) 3.1 +1.6
−1.9 (6.5) 5.6 +1.9

−0.7 (5.331) 5.327 +0.026
−0.034 −6.2 0.40

D (4.4) (6.5) (5.06) −3.3 0.48

E ∗ (1.5) (4.0) (4.61) −2.2 0.05

Table 2.1: CMB power spectrum best fits (in parentheses), 68% c.l. intervals,
effective ∆χ2 at the best fit value, and maximum value of the speed of sound
derivative smax, for each of the modes. The prediction for the bispectrum for E
is not reliable (see text).

the parameter ranges, when given, are 68% c.l. regions.
The amplitude B of the fits is rather small, O(10−2), and therefore comparable

with neglected slow-roll terms. This means the bispectrum is dominated by terms
of order s = ċs/(Hcs). The maximum values of s at the best fits for the modes
A to E in table 2.1 are respectively 0.33, 0.42, 0.40, 0.48, 0.05. Notice that
the value of s for E is also comparable to neglected terms, so the prediction for
the bispectrum based on eq. (1.55) cannot be trusted in this case. We therefore
disregard this mode in the comparison with the bispectrum.
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Figure 2.2: Correlation coefficients between the feature and the cosmological
parameters for the mode B. Notice the small correlations between the two sets of
parameters, and the rather large negative correlation between B and lnβ.

For the modes A, B and C the table 2.1 shows the 68% c.l. ranges. For bands B
and C we were unable to put an upper bound on lnβ due to a degeneracy between
that parameter and the amplitude |B|, as we will explain below. For those two
modes, the upper bound on lnβ is set by the prior s < 1 in eq. (2.6b), which is
saturated at lnβ ' 7.5.

The lower bands D (and E) are less significant and their likelihoods much less
gaussian, so we only show their best fits. Despite their low significance, they are
worthy of mention because they fall in the region overlapping with Planck’s search
for features in the bispectrum (see below).

The best fits and 68% c.l. ranges of the six ΛCDM parameters [11]3 are quite
accurately reproduced, see table 2.2. As expected, we find only small degenera-
cies4 (|ρ| ≤ 0.15) between the feature parameters and the ΛCDM parameters for
modes A, B and C. The correlation matrix for the mode B is shown in fig. 2.2. For
the less significant modes D and E , some of the correlations grow up to |ρ| ≤ 0.30.

3See also the parameter tables at http://www.sciops.esa.int/wikiSI/planckpla/index.
php?title=File:Grid_limit68.pdf&instance=Planck_Public_PLA.

4The correlation matrix is defined as ρij ≡ Cij/
√
Cii · Cjj , where Cij are the covariance

matrix elements corresponding to the parameters with indices i and j.
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Figure 2.3: Profile of ∆χ2 = −2∆ lnL for the mode B in the (lnβ, B) plane,
showing the ρ = −0.34 degeneracy between those two parameters. Some lines of
smax = const are shown. Notice how the mode extends beyond the s = 1 prior
limit.

This is expected, since for lower ln(−τ0) the frequency of the fits drops, getting
closer to the frequency of the acoustic oscillations.

A gain of |∆χ2| . 10 is common in similar searches (see section 2.4.4 for a
comparison with other searches for features in the CMB power spectrum), which
suggests that CMB power spectrum data alone cannot justify the introduction
of these features. Nevertheless, the aim of this chapter is to show that low-
significance fits can still predict correlated features in the bispectrum which are
possibly observable with the current data. Model selection should be done using
the full parameter ranges allowed by the theory and taking into account both
power spectrum and bispectrum, and, if possible, adding other data sets with
uncorrelated systematic effects, such as Large Scale Structure (see chapter 3).

2.4.1 The degeneracy of B and ln β – upper limit of ln β

In this section we comment on one characteristic of the modes B and C (and also
D): a positive correlation between lnβ and |B|: the CMB temperature data is
not able to restrict the maximum value of lnβ, as one can see in figure 2.1 and in
the 1D marginalized likelihood of lnβ in figure 2.6 (middle-right panel). In each
mode, after some value of lnβ, the likelihood reaches a plateau with constant
ln(−τ0); along this direction of increasing lnβ, the best-fit amplitude B grows
(see fig. 2.3), correlated with lnβ with correlation coefficient of order ρ ∼ −0.3
(cf. fig. 2.2). The simultaneous growth of |B| and lnβ in some of these plateaus
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causes that at some point the prior limit s < 1 in eq. (2.6b) gets saturated, in
particular at lnβ ' 7.5 (see figure 2.3), and hence the prior sets the upper bound
for lnβ.

From the CMB power spectrum point of view, the reason for this to happen
is the following: along the direction of simultaneous increase of lnβ and |B|,
the feature in the primordial power spectrum broadens towards smaller scales,
while the amplitude of the tail on the larger scales remains almost constant (see
2.4, top). Since at smaller scales much of the primordial signal is suppressed by
diffusion damping in the CMB, no significance is gained along the degeneracy
direction, causing a plateau in ∆χ2. This can be seen illustrated for mode B in
figure 2.4: we compare two of the best fits of this mode, one sitting well within
the prior bounds (white circle in figure 2.3), and a similar fit (grey circle in figure
2.3) that improves ∆χ2 marginally and saturates the s = 1 bound. In figure 2.4
we can see the effect of those fits in the primordial and CMB temperature power
spectrum. Notice how the big difference between both fits in the former gets
diluted in the latter.

Can we resolve this ambiguity? Probably: photon diffusion at the last scatter-
ing surface has the effect of polarizing the CMB signal through Thomson scatter-
ing, so at smaller scales the polarization spectrum will contain information about
the primordial spectrum, complementary to that of the temperature spectrum.
Therefore, the difference at small scales between two fits in the same plateau
(here, the dashed and dotted spectra in figure 2.4) is larger in the TE and EE
CMB polarization spectra (see fig. 2.5). This suggests that the high-` Planck
polarization data, expected to be released along 2014, may be able to set stringer
bounds on the maximum value of lnβ, as well as confirm that we are not fitting
noise.

2.4.2 Cross-check with a different Boltzmann code

In order to make our results from CLASS+Monte Python more reliable, we
cross-checked them with an independent Einstein-Boltzmann solver and a different
MCMC sampler, namely CAMB [54] and CosmoMC [53]. As an example, in fig.
2.6 and tab. 2.2 we explicitly show this comparison for the most significant mode
B by varying both the primary ΛCDM parameters and the additional sound speed
reduction parameters. We find excellent agreement between these two results.

2.4.3 Local improvement at different angular scales: ∆χ2(`)

Given a fit to the CMB power spectrum of some feature model, it is interesting to
know in which ranges of multipoles the feature describes the data better than the
baseline ΛCDM model. This kind of local improvement can only be calculated
approximately, since the temperature data points at different multipoles are in
general correlated. Nevertheless, even a qualitative analysis can shed some light
on where the feature fits better the data than the baseline model.
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Figure 2.4: Comparison of the two fits indicated in figure 2.3 with a white circle
(dotted line) and a grey circle (dashed line), in the primordial power spectrum
and the TT CMB power spectrum.
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Figure 2.5: Comparison of the two fits indicated in figure 2.3 with a white circle
(dotted line) and a grey circle (dashed line), in the TE and EE CMB power
spectra.
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Figure 2.6: CAMB+CosmoMC vs. CLASS+Monte Python consistency
check: 1D and 2D marginalized posterior distributions of the sound speed re-
duction parameters for the mode B.

We have studied the local improvements along the multipoles of the four rel-
evant fits, modes A to D (we show the result for mode B in figure 2.7). To do
that, we have binned the multipoles with ∆` = 20 and substituted pieces of the
best fit for each mode into the best fit of the ΛCDM baseline model. For the
sake of simplicity, we use for this analysis the preliminary fits found by keeping
the cosmological and nuisance parameters fixed to their best fit values (hence the
small difference in the total ∆χ2 between fig. 2.7 and tab. 2.1).

The results show that mode A gains its significance mostly in the first and
third peak and loses some of it in the second; mode B (see fig. 2.7) and C gain
most of their significance in the third peak, lose some of it in the fourth peak and
improve a little again in the fifth and sixth. The mode D does not fit well the
first and second peaks, gains most of its significance in the third peak, and some
more in the fifth and sixth peaks.
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2.4 Summary and analysis of the results

Planck+WP
Parameter CAMB CLASS Baseline [11]
100Ωbh

2 2.208± 0.027 2.214± 0.029 2.205± 0.028
Ωch2 0.1204± 0.0026 0.1203± 0.0027 0.1199± 0.0027
τreio 0.089± 0.013 0.090± 0.013 0.089+0.012

−0.014
H0 67.16± 1.14 67.29± 1.21 67.3± 1.2
ns 0.9600± 0.0070 0.9598± 0.0074 0.9603± 0.0073
ln(1010As) 3.090± 0.023 3.088± 0.024 3.089+0.024

−0.027

B −0.045+0.045
−0.034 (95%c.l.) −0.041+0.041

−0.031 (95%c.l.) —
lnβ 6.00+1.50

−3.00 (95%c.l.) 6.06+1.44
−2.18 (95%c.l.) —

ln(−τ0) 5.55± 0.06 (95%c.l.) 5.55± 0.05 (95%c.l.) —
χ2

bf 9797.25 9797.58 9805.90

Table 2.2: CAMB+CosmoMC vs. CLASS+Monte Python consistency
check: mean values and 68% (or 95% where indicated) confidence intervals for
the primary ΛCDM parameters and the additional sound speed reduction param-
eters for the mode B. We also show the parameter ranges found by the Planck
collaboration [11] for a featureless model.

0 500 1000 1500 2000 2500

Multipole, `

8

7

6

5

4

3

2

1

0

1

−
2

∆
ln
L

Local

Accumulated

Figure 2.7: Local gain in the likelihood of the best fit of mode B along the
multipoles. The grey area shows the local difference in each bin, and the black
line shows the accumulated difference for increasing multipoles.

2.4.4 Comparison with other searches for features in the
CMB power spectrum

Due to the Fourier transform in eq. (1.54), our features oscillate as exp (i2kτ0).
Thus it is natural to compare to other searches for linearly oscillating features in
the Planck CMB power spectrum.

Ref. [59] searches for non-localized features with frequencies that compare to
ours as ω2 = 2|τ0|. In the overlapping region, ω2 ∈ [160, 810], they find peaks
at roughly ln(−τ0) ∼ {5.0, 5.1, 5.3, 5.6, 5.7} (|∆χ2

bf| ' 8). We find three peaks in
this region with similar significance; it could be that the discrepancies come from
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signals at scales at which our (localized) features are negligible.
Also, the Planck collaboration [9, sec. 8] searches for features motivated by

step-inflation, using the parametrization proposed in [13] with a frequency ηf =
|τ0|. The profile likelihood in [9, fig. 19, middle] reveals peaks at ln ηf ∈ [4.5, 4.8]
(|∆χ2

bf| ' 2) and ln ηf ∈ [5.3, 5.7] (|∆χ2
bf| ' 8), which is consistent with our

results.
It is worth noting that in both searches above the overall best fit occurs at

ln(−τ0) ' 8.2 (|∆χ2
bf| ∼ 14), too high a frequency for the scope of this work. In

[9], and also later in [25, 62], this particular fit has been interpreted as a signal
from a step in the inflationary potential. However, in [14, 30] it is argued that
the best-fit values of the feature parameters lie outside the allowed theoretical
bounds, making its interpretation as a step in the potential inconsistent.

2.5 Comparison with the search for features in
Planck’s bispectrum

Now that we have put the reliability of our results to the test, we are in a good
place to make predictions on the kind of features we expect to see in the bispec-
trum of the next data release of Planck, if any. They are simply those given by eq.
(1.55) evaluated within the c.l. intervals in table 2.1, with relative probabilities to
be found given by the best fit likelihood values of each mode. As an example, the
bispectrum corresponding to the best fit of mode B can be seen in fig. 2.8). While
we wait for the next data release of the Planck survey, we can try to assess the
fulfilment of this predictions based on the preliminary results for the bispectrum
published in the Planck data release of March 2013 [10].

A search for linearly oscillatory features was performed in Planck’s bispectrum
(cf. [10, sec. 7.3.3]), using as a template [32]

B(k1, k2, k3) =
6A2f featNL
(k1k2k3)2

sin

(
2π

∑3
i=1 ki
3kc

+ φ

)
, (2.8)

where A = Ask
1−ns
∗ , As and ns being the amplitude and spectral index of the

primordial power spectrum, and k∗ = 0.05 Mpc−1 a pivot scale. They sampled
the amplitude f featNL over a coarse grid of wavelengths kc and phases φ.

Our features also present a linearly oscillatory pattern, which comes from
the Fourier transform in (1.54). These oscillations enter the bispectrum approx-
imately as exp(i

∑
i kiτ0), cf. eq. (1.55) and (1.54), which compares to Planck’s

search as τ0 ≈ 2π/(3kc). Thus, Planck’s search falls inside ln(−τ0) ∈ [4.43, 5.34],
while ours spans up to ln(−τ0) = 6

(
kc = 0.00519 Mpc−1

)
. The overlap includes

our modes C and D (and also the discarded E). For every combination of the fea-
ture parameter values in the regions of high likelihood, one can find a combination
of the parameters in [10] (including a gaussian envelope as described there) such
that the correlation between both shapes at the primordial level is al least 95%.
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(a) Full 3D primordial bispectrum (in colour in the the on-line
version of [1]
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Figure 2.8: Prediction for the primordial bispectrum for the best fit of mode B,
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The search in [10] is later supplemented with a gaussian envelope centred at
scales corresponding to the first acoustic peak, which dampens the signal in subse-
quent peaks for decreasing values of a falloff ∆k.5 The envelope generally improves
the significance, except for the 2σ signal at kc = 0.01375 , 0.01500 Mpc−1. This
suggests that this band’s significance comes mostly from the second and third
peaks (the signal from the fourth on would be most likely damped out).

In comparison, our best fits to the power spectrum predict bispectrum features
which are mild at the first peak and more intense from the second peak onwards.
The higher the value of lnβ, the smaller the scale at which the feature peaks. In
the range of ln(−τ0) probed here, we were not able to reproduce the improvement
Planck appears to see for features at the first peak. On the other hand, we find
good matching around the second and third peak scales between the best fit of D
with kc = 0.01327 Mpc−1 and the 2.3σ signal of Planck at kc = 0.01375 Mpc−1

with f featNL = 345 and φ = π/2 (see fig. 2.9). A similar but milder qualitative
matching also occurs on the same scales between the best fit of C with kc =
0.01014 Mpc−1 and Planck’s 2.6σ signal with kc = 0.01125 Mpc−1. Although
these matchings are not easy to quantify at the moment of writing this thesis,
they suggest enlarging the search in [10] to test envelopes centred at smaller scales,
and also to cover the frequencies corresponding to modes A and B.

Note that we have quoted the fits to the Bispectrum of Planck without ap-
plying the look-elsewhere effect. This effect will be properly taken into account
when a full study of the Bayesian evidence is performed in a future work, and it
is expected to reduce the significance in a much smaller amount [39] than that
quoted in [10], since the signals in both data sets, spectrum and bispectrum, are
sampled over a single parameter space.

2.6 Conclusions and discussion
We have carried out a statistical search for localized oscillatory features in the
CMB power spectrum produced by a transient reduction in the speed of sound.
We have found a number of fits and we have performed additional tests to the
results. Namely, we have tried to replicate them using independent codes and
found practically equal results; we have studied more explicitly the small degen-
eracies among the cosmological and feature parameters, and proposed the CMB
TE and EE polarization spectra as a way to break degeneracies among the latter;
and finally we have investigated at which multipoles each of our fits describe the
CMB temperature data better than the baseline ΛCDM model.

For each of the modes, we have calculated the associated primordial bispectra.
Because of the small amplitude at the best fits, the bispectrum prediction closely
resembles that of step inflation, tested by the Planck collaboration, since a tran-
sient slow-roll violation switches on the same operator in the cubic action. It is
then straightforward to compare our prediction with the templates used in that

5James Fergusson, private communication.
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(b) Comparison along the equilateral direction of Planck’s 2.3σ pri-
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the expected signal in the primordial bispectrum for the best fit
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the approximate scales corresponding to the first four acoustic
peaks in the CMB power spectrum. Although our signal extends
beyond those scales (see zoom-out at the lower-left corner), from
the third peak on, the primordial signal is highly suppressed by
diffusion damping when transferred to the CMB.

Figure 2.9: Features corresponding to the best fit of the mode D (see table 2.1),
for which the comparison with Planck analysis for the bispectrum is possible.
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search, and the agreement is surprisingly good. This is remarkable, considering
that these bispectrum features are predicted from a search in the CMB power
spectrum with a very simple ansatz for cs.

The functional form chosen for the reduction in the speed of sound is inspired
by soft turns in a multi-field inflationary trajectory with a large hierarchy of
masses, a situation that is consistent with an effectively single-field description
with uninterrupted slow-roll. Other functional forms and parameter ranges are
under investigation. We stress that our analysis is independent of the physical
mechanism behind the reduction.

We emphasize that the CMB power spectrum data alone can hardly justify
the introduction of features on top of the ΛCDM model; a gain of |∆χ2| . 10
is not uncommon. However, as we have shown, low-significance fits in the power
spectrum can still predict correlated features that may be observable in the CMB
bispectrum. Therefore, model selection should take into account both observables
simultaneously.

The ability to make predictions in a wider region of the parameter space of
features is of particular relevance, since new data sets may allow us to explore
it. Besides, since different experiments generally have different foregrounds and
systematics, a joint analysis could reduce the contamination of the primordial
signal on the overlapping scales. In particular, we later extended our search to
large scale structure surveys, see [49] or chapter 3.

Our results suggest that, by exploiting correlations between different observ-
ables, current data might already be sensitive enough to detect transient reduc-
tions in the speed of sound as mild as a few percent, opening a new window for
the presence of extra degrees of freedom during inflation.
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Chapter 3

Adding Large Scale Structure
data into the search

Foreword

This chapter is based on the e-print (submitted to Physical Review D)

Searching for primordial localized features with CMB
and LSS spectra

Bin Hu, Jesús Torrado

Submitted to Physical Review D

Preprint in arXiv:1410.4804 [astro-ph.CO]

The results presented in it and reproduced here are the product of the combined
effort of all its authors, who, as is customary in Theoretical Cosmology, appear in
alphabetical order. In this short chapter, I reproduce a major part of the original
publication, omitting the introductory content which has already been presented
in the previous chapters.

Abstract

Inspired by the study of mild transient reductions in the speed of sound of the
adiabatic mode during inflation, we search for a primordial localized feature im-
printed in cosmic microwave background and large-scale structure formation ob-
servables. We find some common oscillatory patterns both in the Planck CMB
temperature power spectrum and the WiggleZ galaxy spectrum. By performing
independent searches with these two data sets, we find a coincidence in the most
significant mode previously found by Achúcarro et al. 2013 by using only Planck
data. Furthermore, the joint data analysis shows that the oscillation frequency of
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3.1 Introduction

the feature gets better constrained, and the amplitude marginally deviates from
zero, unlike what was observed using only Planck data. Besides the parameter
estimation, we also discuss the Bayesian evidence. The addition of WiggleZ data
mildly enhances the significance of the best mode found in the Planck data.

3.1 Introduction

As discussed in the last chapter there exist several hints of oscillatory signals in
the CMB power spectrum [10, 7] and bispectrum [8]. This motivates a search for
such kind of features produced by inflationary scenarios beyond canonical single-
field.1 A short review of the literature on those attempts can be seen in the
Introduction of the last chapter. In none of those cases the statistical significance
of the extended models has been found to be high enough to claim a detection,
with the improvement of experimental accuracy we are now at the threshold of
verifying or falsifying these models.

In this thesis we focus on searching for oscillatory features in the scenario of
a transient reduction in the speed of sound, reviewed in section 1.3.4. Our test
case, introduced in the last chapter (and in [2]), consists of a gaussian reduction
in the speed of sound occurring within the window of e-folds corresponding to
the angular scales probed by CMB and large-scale structure (LSS) surveys. Its
functional form is consistent with a reduction in the speed of sound resulting from
a soft turn along the inflationary trajectory in a multi-field theory in which the
mass hierarchy is large enough to allow for an effective single-field description
[4, 3, 12, 5] (though one should keep in mind that a similar reduction in the speed
of sound may result from a different high-energy completion of the effective field
theory).

Since it is the same curvature perturbations that set the initial conditions for
CMB anisotropies and large-scale structure distributions, the primordial oscilla-
tory signals should be imprinted in all the observables of CMB anisotropy and LSS
tracers, like CMB spectra, bispectra, galaxy spectra, etc. Based on this consider-
ation, in this chapter and in the original publication [17] we search for primordial
oscillatory features from a transient reduction in the speed of sound of adiabatic
curvature perturbations via both CMB anisotropy temperature spectrum of the
Planck satellite as well as galaxy distribution spectrum of the WiggleZ telescope.
The rest of this chapter is organised as follows. In sec. 3.2, we will briefly review
the theoretical set-up. In sec. 3.3, we will introduce the methodology of parameter
estimation and model selection which is adopted in this work as well as the data
sets used. Then, we arrive at our results and discuss them in sec. 3.4. Finally, we
conclude in sec. 3.5.

1By canonical single-field we mean slow-roll regime, Bunch-Davies vacuum, canonical kinetic
terms and minimal coupling to gravity, with speed of sound cs = 1.

86



Adding Large Scale Structure data into the search

3.2 Review of the model

In this chapter and the original publication [17], we search for localised features
due to a transient reduction in the speed of sound of the adiabatic mode during
inflation (see sec. 1.3.4) parametrised as a gaussian in e-folds. The shape tested
here is the same previously tested against Planck CMB data only, and it is de-
scribed in detail in section 2.2 in the last chapter, together with the allowed ranges
of its parameters. Very briefly, the resulting feature in the primordial spectrum
is

∆P
P (k) = k

∫ 0

−∞
dτ u(τ) sin (2kτ) , (3.1)

where the reduction in the speed of sound is parametrised as

u = 1− c−2
s = B e−β(N−N0)2 = B e

−β
(

ln τ
τ0

)2

. (3.2)

The parameters of the feature: the amplitude B < 0, the sharpness β > 0, and
the instant of maximal reduction N0 (or τ0 < 0) fall within the region

O(ε, η)� |B| � 1 , (3.3a)
50

N2
CMB

< β � 2e

B2
, (3.3b)

4.3 ≤ ln (−τ0) ≤ 6.0 . (3.3c)

For the precise meaning of the quantities that appear here, see sec. 2.2.

3.3 Methodology and data sets

In this work we solve the Einstein-Boltzmann hierarchy by using CAMB [20]
and sample the parameter space using different approaches in order to fulfil two
different purposes. On one hand, for parameter estimation, we use the thermody-
namic Markov chain Monte Carlo (MCMC) sampler, CosmoMC [19]. In detail,
we use a Metropolis-Hastings algorithm to generate chains of samples for a set
of cosmological parameters. On the other hand, for Bayesian evidence computa-
tion and model selection, we adopt the multi-modal nested sampler, MultiNest
[15, 16, 14] which implements an extended form of the nested sampling algorithm
[28, 27, 22, 21, 26]. This is because the dependence of the evidence on the prior
requires that the prior space is adequately sampled, even in the regions of low
likelihood. This makes evidence evaluation at least an order of magnitude more
costly than parameter estimation.

In what follows we make a brief review of the concepts of evidence and Bayesian
ratio. The Bayesian ratio is defined as the ratio of the probabilities of each of the
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two models being the true one underlying a given a set of data D:

R =
P (M1|D)

P (M0|D)
=
Z1

Z0

P (M1)

P (M0)
=
Z1

Z0
. (3.4)

Here, P (M1)/P (M0) is the probability ratio for the two models a priori, which
is conventionally set to unity; the evidence Z of a model M is the marginalised
likelihood of the data, i.e. the probability of having obtained the data D integrated
over all possible values of the model parameters θ:

Z =

∫
L(D|M(θ))π(θ) dDθ , (3.5)

where L(D|M(θ)), π(θ) and D are, respectively, the likelihood of the data, the
prior of the parameters in the model and the dimensionality of the parameter
space. In this work, we will use M1 and M0 to denote the feature and featureless
ΛCDM models; the cosmological parameter ranges we studied are listed in table
3.1. And the multidimensional integration in eq. (3.5) was sampled via the multi-
modal implementation of the nested sampling algorithm MultiNest [15, 16, 14].

Parameter Range (min, max)
Ωbh

2 (0.005, 0.100)
Ωch

2 (0.01, 0.99)
100ϑ∗ (0.5, 10.0)
τreio (0.01, 0.80)
ns (0.9, 1.1)

ln(1010A2
s) (2.7, 4.0)

B (−0.2, 0)
lnβ (0, 7.5)

ln(−τ0) (4.3, 6.0)

Table 3.1: List of the parameters used in the multi-modal nested sampling. Be-
sides these parameters, we also sample and marginalise over the fourteen nuisance
parameters of the Planck likelihood and one bias parameter of the WiggleZ likeli-
hood. We have sampled B up to −0.5, but nothing interesting was found beyond
the upper value cited in this table.

The Bayesian evidence measures the predictivity of a model: the integral in
eq. (3.5) is bigger the more amount of likelihood mass falls inside the regions
with substantial prior probability, and also the smaller is the volume V of the
parameter space allowed by the theory, since the prior distribution goes roughly
like π ∼ V−1. In turn, the Bayesian ratio quantifies the relative predictivity of
two models given a data set: if its value is much smaller than one, the model M0

is a more likely explanation of the data than the modelM1, and vice versa. In the
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frequentist approach, this is comparable to the increase of p-values2 due to the
look-elsewhere effect. For example, in particle physics, if one allows the predicted
mass of a particle to vary within a broad range, the p-value of an apparent peak in
particle production with a corresponding mass within this range will increase, just
because a wider range of energies makes a random, non-physical peak-like feature
more likely. Correspondingly, this indicates that the evidence of this model with
a new parameter, like the new particle’s mass, gets reduced.

On the other hand, the Bayesian ratio can also be used as an indicator of the
correlation between two data sets with respect to an extended model M1 based
on a simpler model M0: if the predictivity of the extended model with respect
to the basis model increases when adding the new data set, this is an indication
of the regions of high probability in the likelihood of the extended model being
similar in the two data sets. Otherwise, the product of the likelihoods of both
data sets would amount to a smaller evidence ratio than that of the single data
sets.

As for the data sets, we use the measurements of CMB temperature anisotropy3
[9] from the first data release of the Planck survey. Its temperature power-
spectrum likelihood is divided into low-` (` < 50) and high-` (` ≥ 50) parts
(see sec. 1.5.4). In order to break the well-known parameter degeneracy between
the reionisation optical depth τreio and the scalar index ns, the low-` WMAP
polarisation likelihood (WP) is used [9]. Finally, the unresolved foregrounds are
marginalised over, assuming wide priors on the relevant nuisance parameters as
described in [6].

Since several interesting feature modes are hinted at by using only Planck
temperature spectrum (see chapter 2 or [2]), a natural step is to cross check these
results with other observables seeded by the same initial conditions, coming from
different experiments whose systematic uncertainties are different from Planck’s.
We use the measurements of the galaxy power spectrum made by the WiggleZ
Dark Energy Survey.4 As described in [24], we use the power spectrum measured
from spectroscopic redshifts of 170 352 blue emission line galaxies over a volume
of ∼ 1 Gpc3 [13]. The covariance matrices as given in [24] are computed using
the method described by [11]. The best model proposed for non-linear corrections
to the matter power spectrum was calibrated against simulations. It has already
been demonstrated that linear theory predictions are as good a fit to the data as
the calibrated model up to k ∼ 0.2h/Mpc [24, 25]. For these reasons we restrict
ourselves to scales smaller than kmax = 0.2h/Mpc and use the linear theory
prediction only. We also marginalise over a linear galaxy bias for each of the four

2From Wikipedia.org, a p-value is the probability of obtaining a test statistic result at least
as extreme as the one that was actually observed, assuming that the null hypothesis is true. A
researcher will often “reject the null hypothesis" when the p-value turns out to be less than a
predetermined significance level, often 0.05 or 0.01. Such a result indicates that the observed
result would be highly unlikely under the null hypothesis.

3http://pla.esac.esa.int/pla/aio/planckProducts.html
4http://smp.uq.edu.au/wigglez-data
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3.4 Results and discussion

redshift bins.

3.4 Results and discussion

In order to justify or falsify this model, we should go beyond CMB observables
from the Planck satellite. A feature in the primordial spectrum of density pertur-
bations will seed both CMB anisotropies and the tracers of matter perturbation,
such as the galaxy distribution. Thus, if those features are big enough we should
observe them via all those windows.

Based on the findings of the previous study with Planck temperature power
spectrum (see chapter 2 and [2, 1]), we sample the same region of the parameter
space using only the galaxy power spectrum from the WiggleZ Dark Energy Sur-
vey. The result is shown in fig. 3.1(a). In particular we show the profile likelihood
of the sample in the plane (lnβ,− ln(−τ0)). The upper limit of ln(−τ0) has been
slightly extended, and the lower one slightly shrunk, in order to limit the interval
to the region in which the improvement in the likelihood is significant (but we
will later restore the limits of chapter 2 in the evidence computation).

As we can see, in the WiggleZ posterior there exist three diffused modes. In
particular, comparing figs. 3.1(a) and 3.1(b) with the naked eye there seems to
exist a coincidence between WiggleZ and Planck results around ln(−τ0) ∼ 6.0,
ln(−τ0) ∼ 5.55 and ln(−τ0) ∼ 5.3, which were three of the most significant modes
detected in the previous work [2], named respectively modes A, B and C (see
table 2.1). In order to test such coincidence, we repeated the search combining
both data sets. The results are reported in fig. 3.1(c). The well-isolated modes
previously found in the Planck data are accurately reproduced (compare figs.
3.1(b) and 3.1(c), and also see fig. 3.2(a)). In addition we observe an unfolding
of mode A and a new mode at ln(−τ0) ∼ 6.3 which survives the addition of
the WiggleZ data; both of them will be the subject of future work. We have
checked that there exists an enhancement of more than 20% in the value of the
likelihood improvement (∆ lnL) in modes B and C, while that of mode A shows
no enhancement.

Later, we isolated and re-sampled using MCMC methods each of the four
individual modes found in [2] (see fig. 3.2) with the joint data sets. The cor-
responding results are shown in the fig. 3.2(a). We can see that the individual
modes are separated quite well in the ln(−τ0) direction.

If we force ourselves to focus on one particular mode, such as mode B, we can
obtain quite stringent constraints on the feature parameters, like those demon-
strated in chapter 2, e.g. in table 2.1 or fig. 2.6. However, finding stringent
constraints does not mean that this result has a very strong statistical signifi-
cance, because the parameter space volume of the feature model is much larger
than that of the vanilla ΛCDM model. So, even if there exists a local patch in
the parameter space with highly peaked likelihood, the evidence of this signature
could still be suppressed greatly by the big volume of the extra parameter space,
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(c) Planck+WiggleZ

Figure 3.1: Profile parameter distribution of the MCMC sampling in the
(lnβ,− ln(−τ0)) plane, for the different combinations of data sets. It shows the
coincidence between the fits found in Planck and WiggleZ at ln(−τ0) ∼ 5.3 and
ln(−τ0) ∼ 5.55, and their enhancement of 20% in likelihood improvement. The
difference in the likelihood (∆) is calculated against the best fit value of ΛCDM
in the different data sets. The regions where there is no significant improvement
over the best fit of the ΛCDM model are not shown.
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as discussed in the previous section.
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(b) Multi-modal nested sampling

Figure 3.2: Profile likelihood in the (ln(−τ0), B) plane for Planck+WiggleZ,
for the different sampling methods. It demonstrates how the multi-modal nested
sampling algorithm samples more thoroughly the regions of low likelihood. The
regions not samples are shown in white (in the B&W version, not to be confused
with the light grey areas of high likelihood). The difference in the likelihood (∆)
is calculated against the best fit value of ΛCDM in the different data sets.

Inspired by the fact that there exists a relatively significant reduction in the
likelihood value of the feature model in the best fits compared with that of the
featureless ΛCDM model, (e.g. for mode B the joint data analysis gives−2∆ lnL ∼
10), we are motivated to compute the Bayesian ratio of the feature model. The
statistical results are summarised in table 3.2, fig. 3.2(b) and fig. 3.3.

A comparison between the results of the MCMC and multi-modal nested sam-
plings, showing the consistency between them, can be seen in fig. 3.2. The main
difference between both sub-plots is due to the more thorough sampling of the
tails of the distribution (points in parameter space with low likelihood value)
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Model Data set −2 lnL lnZ R
M1 Planck 9801.918 (9796.27) −4955.61± 0.31

exp(0.46) ' 1.6
M0 Planck 9807.154 (9805.90) −4956.07± 0.31
M1 Planck+WiggleZ 10253.570 (10249.20) −5183.05± 0.32

exp(0.62) ' 1.9
M0 Planck+WiggleZ 10262.042 (10258.80) −5183.67± 0.31

Table 3.2: Multi-modal nested sampling results of feature (M1) and non-feature
(M0) models with the different data sets. The likelihood values in the third
column are given at the best fit, first the nested sampling value, and second, in
parenthesis, the MCMC sampling value.

achieved by multi-modal nested sampling: these points are crucial to get a reli-
able evidence estimation, which is the goal of the nested-sampling algorithms, but
almost irrelevant to parameter estimation, at which MCMC excel. In table 3.2,
we can see that the resulting best-fit likelihood values from multi-modal nested
sampling are also consistent with those coming from MCMC sampling, though, as
expected, the former a little bit lower than the latter, since the sampling around
the maxima is more thorough in MCMC’s.

In the first place, the Bayesian ratios listed in table 3.2 tell us that, taking
into account only the part of the parameter space described in sec. 2.2, there
would apparently exist a slightly positive preference for the feature model: R ∼
1.9 (Planck + WiggleZ) vs. 1.6 (Planck) (though, according to the conventional
criterion [18] it is barely worth mentioning). We must emphasise that in this
paper we did not cover all the parameter regime allowed by theory, which sets no
lower bound for τ0, but instead the regime in which the features are most likely to
be detectable by Planck. Despite the expected corrections, the slightly favourable
value of the Bayesian evidence in the observable regime makes us optimistic about
the enlargement of the parameter space and the addition of new data sets, namely
Planck’s polarisation power spectrum and bispectrum. This optimism is also
backed up by how, as discussed in the sec. 3.3, the increase in the Bayesian
ratio when adding the WiggleZ data indicates a positive correlation between the
features found in both data sets; nevertheless, when put into the context of the
error bars for the evidences cited in table 3.2, the claim gets milder.

Also, on the positive side, as can be seen in fig. 3.3, the addition of the WiggleZ
data set clearly pushes the marginalised distribution towards bigger amplitudes
of the feature with respect to using Planck data only, which on the one hand is
an indication of a positive correlation between the sets, and on the other hand
reinforces the overall likelihood of the presence of a feature against the null hy-
pothesis.

3.5 Conclusions and outlook
In this chapter we searched for primordial oscillatory signals inspired by a tran-
sient reduction in the sound speed of the adiabatic curvature perturbation via
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(c) Marginalised posterior for
Planck+WiggleZ

Figure 3.3: Multi-modal nested sampling results: 1D marginalised posterior
distribution for the feature parameters and 2D marginalised posterior distribution
in the plane (lnβ,B), with and without the WiggleZ data set. Notice how the
addition of the WiggleZ data set increases the overall likelihood of a feature with
a non-zero amplitude.

CMB (Planck) and LSS (WiggleZ) windows. First of all, by analysing both data
sets separately, we found some common oscillatory patterns both in the Planck
CMB temperature power spectrum and the WiggleZ galaxy spectrum. Interest-
ingly, we found a coincidence in the most significant mode previously found by
Achúcarro et al. 2013 [2] by using only Planck data. Second, the joint data anal-
ysis showed that the oscillation frequency of the feature gets better constrained,
and the amplitude marginally deviates from zero, unlike what was observed by
using only Planck data. Besides parameter estimation, we also calculated the
Bayesian evidence for the purpose of model selection by using multi-modal nested
sampling. For a full model selection study, the prior must be extended and sam-
pled in the full parameter range allowed by the theory. Our results show that,
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if we were to ignore the parts of the parameter space not sampled here, there
would exist a slightly positive preference for the feature model, Bayesian factor
R ∼ 1.9 (Planck + WiggleZ), vs. 1.6 (Planck). Therefore, we are optimistic about
enlarging the sampled parameter range and using additional data sets, specially
Planck’s polarisation power spectra and temperature bispectrum.

The Bayesian evidence analysis shows that although there exists a relatively
large improvement in the likelihood value (−2∆ lnL ∼ 10) in several particular
parameter regimes, due to the relatively large number of extra parameters (3) and
their broad ranges of variation (look-elsewhere effect), the present Planck tem-
perature and WiggleZ matter power spectra data still lack significance to claim
a detection. However, due to the correlations between temperature and polarisa-
tion modes of the power spectrum and the correlations with the bispectra given
by the model of transient reductions in the speed of sound, the present results
have specific predictions for the TE cross-correlation spectrum (CTE

` ) [1] and the
temperature bispectrum (BTTT

`1`2`3
) [2, 1] which can be detected with the upcoming

Planck data release 2014. Particularly, the new fast bispectrum estimator of os-
cillatory features from [23] should be able to cover the frequency where the most
significant mode that we found is located.

In the light of the additional WiggleZ data, we update the predictions stated in
chapter 2 and [2, 1], based on the high correlation between the bispectrum features
studied there and the phenomenological oscillatory shape tested by the Planck
collaboration and given in [8, eq. (16)].5 In the parameters used by the Planck
collaboration, we expect to find a feature with zero phase, and wavelength in the
95% c.l. interval kc ∈ (0.0078, 0.0083) from mode B, or kc ∈ (0.0099, 0.0110) from
mode C. As happened when using only Planck data [1], a degeneracy between
B and lnβ prevents us from setting accurate predictions for the amplitude and
envelope of the feature. Nevertheless, for all values of the parameters along the
degeneracy, the signal is most significant on the scales beyond the second acoustic
peak, and reaches its maximum around the third or fourth peak.
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Chapter 4

Peer-reviewed and published
cosmological code

4.1 Introduction

In this chapter we describe some pieces of code which were developed in order to
be able to tackle some of the problems presented in the previous chapters, and to
prepare the tools for future research.

Calculating is a fundamental part of Theoretical Physics research. The very
act of carrying out the algebraic or numeric integral of a 2-loop process is arguably
not Physics per se – as some of my professors would say, it is just cranking
the mathematical coffee mill. Physics is to be found in the motivation of the
problem, in the choice of the integration method, in the approximations made
and those deliberately not made, in the method used to test the result, and in
the interpretation of it in the context of the theory.

Together with algebraic calculations, computer-assisted calculations are essen-
tial in Theoretical Physics, specially when heavy numerical computations, ran-
domisation or simulations are involved. The challenge in this cases is often carry-
ing out the calculations in a manageable amount of time, controlling all possible
errors.

Creating the tools for computer-assisted calculations, programming or coding,
is Physics research in the same way as algebraic calculations are: Physics is in
the choice of the algorithms, the approximations, the means to control the errors,
the interpretation of the result. . . all that based on the nature of the problem and
its physical context.

In order to carry out the research presented in this thesis, and also in order
to facilitate similar research by our peers, we created a small number of tools
that have been published under an open source license as an integral part of
two Cosmological codes, CLASS and Monte Python, having previously been
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reviewed by the authors of the respective codes. In the next sections we describe
them briefly.

4.2 Arbitrary Primordial Power Spectrum for
CLASS

In chapter 2, we have attempted to fit a modified shape of the slow-roll, single
field primordial power spectrum to the Planck CMB data. In order to accomplish
that, we needed to integrate into a cosmological code the ability to start from
an arbitrary primordial power spectrum. It would be desirable for the primordial
power spectrum to be at the same time (1) calculated on-the-fly from a series
of parameters, (2) easily modified without the need to maintain many different
compiled versions of the cosmological code, and (3) the relevant parameters should
be easily handled by a Monte Carlo sampler.

We found those requirements to be satisfied more easily when integrating them
into the Boltzmann code CLASS [2], due, among other things, to the cleanness
and modularity of its code and the effective support from its authors in imple-
menting the modifications presented here.

With the requirements stated above at hand, we opted for modifying CLASS
minimally to allow it to launch an external program and retrieve from it the
primordial power spectrum as a table in plain text, from which CLASS creates
an internal interpolating function. The external power spectrum generator gets
the values of the necessary parameters through CLASS itself, either as defined
in a CLASS input file or fed by a Monte Carlo sampler. This way, CLASS does
not need to be recompiled when modifying the shape of the primordial power
spectrum, and the external generator can be coded in any language that appeals
the researcher, following minimum requirements. Even the case of a precomputed
table of values of the primordial power spectrum is trivially included, through the
use of the cat command of Unix-like systems.

The main disadvantage of this external-program approach, as opposed to hard
coding the power spectrum, is the delay inherent to interfacing through plain text.
Fortunately, this delay is small compared to the most time-consuming part of the
cosmological code: the calculation of the transfer functions.

This modification of CLASS, together with the necessary documentation writ-
ten by the author of this thesis, was reviewed by one of the authors of CLASS,
Julien Lesgourgues, and integrated into the main code and released to the com-
munity in CLASS version 2.1, on March 2014.

As a simple example we show here how easy it is to implement an oscillatory
feature on top of the primordial scalar power spectrum:

P(k) =

(
As

(
k

k0

)ns−1
)(

1 +B sin

(
2π

k

kl
+ φ

))
. (4.1)
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P_k_ini type = external_Pk
command = python external_Pk/generate_Pk_sin.py
custom1 = 0.05 # Pivot scale
custom2 = 2.215e-9 # Amplitude of the power spectrum
custom3 = 0.9624 # Spectral index of the power spectrum
custom4 = 0.0 # Amplitude of the feature
custom5 = 0.002 # Wavelength of the feature
custom6 = 0 # Phase of the feature

# Retr iev ing the necessary parameters
import sys
k_0 = f loat ( sys . argv [ 1 ] ) # Pivot sca l e
A = f loat ( sys . argv [ 2 ] ) # Amplitude of the power spectrum
n_s = f loat ( sys . argv [ 3 ] ) # Spectra l index of the power spectrum
B = f loat ( sys . argv [ 4 ] ) # Amplitude of the fea ture
k_l = f loat ( sys . argv [ 5 ] ) # Wavelength of the fea ture
phi = f loat ( sys . argv [ 6 ] ) # Phase of the fea ture

# P(k ) ca l cu l a t i on
from math import exp , s in , p i
def P(k ) :

return (A ∗ ( k/k_0)∗∗(n_s−1.) ∗
(1 + B ∗ s i n (2∗ pi ∗k/k_l + phi ) ) )

# Limits for k and prec i s ion
k_min , k_max = 1 . e−6, 0 .75
k_per_decade_primordial = 1000 .

# Producing the va lues of P( k )
k = k_min
while k <= k_max :

print "%.18g␣%.18g" % (k , P(k ) )
k = k ∗ 10 .∗∗ ( 1 . / f loat ( k_per_decade_primordial ) )

Figure 4.1: Top: lines of the CLASS input file defining the use of the oscillatory
spectrum. Bottom: Python script that generates the spectrum of eq. (4.1).

As we see, the whole spectrum is parametrised by the global amplitude As and
spectral index ns, together with the oscillation amplitude B, its wavelength kl
and its phase φ. In order for CLASS to use that as a primordial spectrum, it is
enough to add to the CLASS input file the lines on the upper box of figure 4.1,
where the contents of the file generate_Pk_sin.py can be seen in the bottom of
the same figure. Such a simple code fulfils all the necessary requirements. The
resulting primordial and CMB spectra can be seen in figure 4.2.

4.3 Interfacing of MultiNest into Monte Python

Bayesian statistics judges the adequacy of some physical models over others in
terms of their predictivity: more predictive models are preferred over less pre-
dictive ones. Predictivity of a model is the joint effect of how well it describes
the data together with how restricted is its range of predictions. The joint mea-
surement of both aspects is the Bayesian evidence, equal to the integral of the
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Figure 4.2: Top: Primordial scalar power spectrum of eq. (4.1), assuming
Planck’s best fit values for As and ns, and some random values for the param-
eters of the oscillation. Bottom: Resulting (lensed) CMB temperature power
spectrum.
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likelihood and the prior :

BM =

∫
Ω

L(D|M(ω))π(ω|M) dω , (4.2)

D being a set of data, andM a physical model parametrised by the quantities ω,
which take values on a set Ω with probability π(ω|M).

Computing the Bayesian evidence is a hard task to accomplish, which in gen-
eral requires methods different from those used for parameter inference (i.e. esti-
mating the parameter values that best fit the data and their distribution around
those values). While Markov chain Monte Carlo methods (MCMC) are one effi-
cient method for parameter inference, they fall short when used for computation
of the Bayesian evidence, mostly due to their lack of sampling in the areas of
the parameter space away from the best fit, which in practice do not affect the
confidence intervals of the parameters, but can add up to a significant fraction of
the total value of the evidence. An alternative sampling method is needed.

Nested sampling [8] is one of those methods aimed at calculating accurately
the Bayesian evidence. Its adequacy arises, on the one hand, from how it samples
the parameter space, climbing from the lowest to the highest values of the likeli-
hood allowed by the prior ranges; and, on the other hand, on its slow scaling with
the number of dimensions of the parameter space. One particular enhancement
over nested sampling is the MultiNest algorithm [5, 6, 4]. MultiNest improves
on nested sampling by adding an ellipsoidal-decomposition algorithm that allows
both for sampling of weirdly-shaped distributions and for simultaneous sampling
of multiple modes, or regions of high probability, in complicated probability distri-
butions that may contain several of them (this is precisely our case, see chapters
2 and 3). In addition to an accurate calculation of the Bayesian evidence of com-
plicated distributions, MultiNest is also able to produce a fair sample of the
parameter space under the likelihood, that can be used for parameter inference
in a similar way as the chains of samples coming from MCMC’s.1

All that makes MultiNest a very interesting tool for data analysis, which
would be desirable to use along the common MCMC methods. In order to do so,
we wish to combine MultiNest with the necessary computational cosmological
tools, mainly Boltzmann codes and experimental likelihoods. This is naturally
achieved by interfacing MultiNest through an already established cosmological
MCMC sampler, such as CosmoMC [7] or Monte Python [1]. Since the Boltz-
mann code used in this thesis was initially mostly CLASS [2], it made sense to
create this interface for the companion sampler Monte Python.

The interface written by the author of this thesis and the main author of
Monte Python, Benjamin Audren, starts from PyMultiNest, the Python
wrapper of MultiNest written by Johannes Buchner [3], which takes care of the

1Since the samples of MultiNest are scarcer, but the sampling is faster, the sample from
MultiNest can also be used to roughly estimate the covariance matrix of the likelihood, and
then use it to make more efficient an MCMC, which will characterise the distribution around
the minimum more thoroughly – a great idea of Benjamin Audren.
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FORTRAN–Python communication in a neat way. MultiNest’s input, both
physical and sampling parameters, is passed through the standard input methods
of Monte Python (parameter file and command line, respectively), and the
output of MultiNest is simultaneously

• kept unmodified in its raw format in a separate folder for later additional
analyses;

• used to create MCMC-like samples in Monte Python format from the fair
samples of MultiNest, in order to use the same Monte Python analysis
tools. The different modes are separated in different, independent chain
folders.

In addition, our interface adds the capability, not present in the current version
of MultiNest, of using as clustering parameters any combination of them, not
necessarily those in the first positions.

This interface, together with the necessary documentation written by the au-
thor of this thesis, was integrated into the main code and released to the commu-
nity with Monte Python version 2.0, on March 2014.

Together with the interface, we created a simple example likelihood with 3
distinct modes:

L (D |v) =

3∏
i=1

exp

{
−1

2
(v − µi)Σ−1

i (v − µi)
}
, (4.3)

where v := (H0, ωb, ωCDM) are the parameters of the model and the data D
enters through the central values µi and the covariance matrices Σi:

µ1 = (67.0, 0.02225, 0.0120) , Σ1 =

 0.1 2·10−5 2·10−4

2·10−5 2·10−7 2.4·10−7

2·10−4 2.4·10−7 5·10−6

 , (4.4a)

µ2 = (69.5, 0.02300, 0.0170) , Σ2 =

 0.3 2·10−5 3.5·10−4

2·10−5 1.2·10−7 1.4·10−7

3.5·10−4 1.4·10−7 2·10−6

 , (4.4b)

µ3 = (71.5, 0.02180, 0.0100) , Σ3 =

 0.2 5.5·10−5 3·10−4

5.5·10−5 4·10−7 5·10−7

3·10−4 5·10−7 5·10−6

 . (4.4c)

The result of the sampling of this likelihood using MultiNest through the
interface described in this section is show in fig. 4.3. The dashed lines show the
cubic prior regions corresponding to each of the modes, cut automatically by
MultiNest and stored as three different Monte Python chains.
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Figure 4.3: Profile of the sampling of the likelihood given by eq. (4.3), using
MultiNest interfaced through Monte Python.
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Chapter 5

Classification of symmetric
toroidal orbifolds

Foreword
This chapter is based on the published paper

Classification of symmetric toroidal orbifolds

Maximilian Fischer, Michael Ratz, Jesús Torrado, and
Patrick K.S. Vaudrevange

Published in the Journal of High Energy Physics 1301 (2013) 084

Preprint in arXiv:1209.3906 [hep-th]

The results presented in it are the product of the combined effort of all its authors,
with a special mention to Maximilian Fischer (though, as is customary in High
Energy Theoretical Physics, the order of the authors is alphabetical).

As part of this Ph.D. thesis, I reproduce literally a major part of the original
publication. In the parts in which my contribution was not significant, only
the main results are shown, and discussions are referred to the published paper.
This includes, in particular, the calculation of the residual SUSY and the Hodge
numbers, and the classification of the non-Abelian cases. In addition, I made
a major contribution to the ancillary products of the paper, both to the results
and the algorithms used to compute them. These are not reproduced here for
reasons of space, but they can be found in http://einrichtungen.ph.tum.de/
T30e/codes/ClassificationOrbifolds.
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5.1 Introduction

Abstract

We provide a complete classification of six-dimensional symmetric toroidal orb-
ifolds which yield N ≥ 1 supersymmetry in 4D for the heterotic string. Our
strategy is based on a classification of crystallographic space groups in six di-
mensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with
Abelian point groups such as Z3, Z4, Z6-I etc. and 358 with non-Abelian point
groups such as S3, D4, A4 etc. We also briefly explore the properties of some
orbifolds with Abelian point groups and N = 1; in particular we comment on the
possible mechanisms (local or non-local) of gauge symmetry breaking.

5.1 Introduction

Heterotic string model building has received an increasing attention in the past
few years. The perhaps simplest heterotic compactifications are based on Abelian
toroidal orbifolds [18, 19]. Unlike in the supergravity compactifications on Calabi-
Yau manifolds one has a clear string theory description. In addition, the scheme
is rich enough to produce a large number of candidate models that may yield a
stringy completion of the (supersymmetric) standard model [35, 12] (for a review
see e.g. [45]). At the same time, symmetric orbifolds have a rather straightforward
geometric interpretation (cf. e.g. [40, 27, 13]). In fact, the geometric properties
often have immediate consequences for the phenomenological features of the re-
spective models. One obtains an intuitive understanding of discrete R symmetries
in terms of remnants of the Lorentz group of compact space, of the appearance of
matter as complete multiplets of the Grand Unified Theory (GUT), due to local-
ization properties and gauge group topographies, as well as of flavor structures.

Despite their simplicity, symmetric toroidal orbifolds provide us with a large
number of different settings, which have, rather surprisingly, not been fully ex-
plored up to now. In the past, different attempts of classifying parts of these com-
pactifications have been made [3, 21, 26, 17]. As we shall see (in Section 5.5.1)
some of these classifications are mutually not consistent, and incomplete. The
perhaps most complete classification is due to Donagi and Wendland (DW) [21],
who focus on Z2×Z2 orbifolds. In this chapter (and in the original publication) we
provide a complete classification of symmetric Abelian and non-Abelian heterotic
orbifolds that lead to N ≥ 1 supersymmetry (SUSY) in four dimensions.

The structure of this chapter is as follows: in Section 5.2 we discuss the tools
used to construct toroidal orbifolds. Later, in Section 5.3, we present a way
from crystallography to classify all possible space groups and apply it to string
compactifications. Then, in Section 5.4 we impose the condition of N = 1 SUSY
in 4D (though in this chapter only a general explanation of the procedure is given,
see the original publication [25] for details). Section 5.5 is devoted to a survey
of the resulting orbifolds, and to a comparison with previous results from the
literature [3, 21, 26, 17]. Finally, in Section 5.6 we briefly discuss our results.
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In various appendices we collect more detailed information on our classification
program. Appendix 5.A contains some details on lattices, in Appendix 5.B we
survey the already known 2D orbifolds. The original publication [25] contains an
additional appendix containing detailed tables of our results.

5.2 Construction of toroidal orbifolds
We start our discussion with the construction of toroidal orbifolds [18, 19]. There
are two equivalent ways of constructing such objects: (i) one can start from the
Euclidean space Rn and divide out a discrete group S, the so-called space group.
(ii) Alternatively, one can start with an n-dimensional lattice Λ, to be defined in
detail in Section 5.2.2, which determines a torus Tn and divide out some discrete
symmetry group G. Note that G, the so-called orbifolding group as defined in
Section 5.2.5, is in general not equal to the point group introduced in Section 5.2.3.
That is, a toroidal orbifold is defined as

O = Rn/S = Tn/G . (5.1)

Even though we are mostly interested in the case n = 6 we will keep n arbitrary. In
the following, we will properly define the concepts behind Equation (5.1), closely
following [10].

5.2.1 The space group S
Let S be a discrete subgroup of the group of motions in Rn, i.e. every element of
S leaves the metric of the space invariant. If S contains n linearly independent
translations, then it is called a space group (of degree n). Such groups appear
already in crystallography: they are the symmetry groups of crystal structures,
which in turn are objects whose symmetries comprise discrete translations.

Every element g of a space group S can be written as a composition of a
mapping ϑ that leaves (at least) one point invariant and a translation by some
vector λ, i.e. g = λ ◦ ϑ for g ∈ S (one can think of ϑ as a discrete rotation or
inversion). This suggests to write a space group element as1

g = (ϑ,λ) , (5.2)

and it acts on a vector v ∈ Rn as

v
g7−→ ϑv + λ . (5.3)

Let h = (ω, τ ) ∈ S be another space group element. Then the composition h ◦ g
is given by (ω ϑ, ω λ+ τ ).

1In the mathematical literature the reverse notation g = (λ, ϑ) is also common, since the
normal subgroup element is usually written to the left, and the lattice Λ is a normal subgroup
of the space group.
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5.2.2 The lattice Λ

Let S be a space group. The subgroup Λ of S consisting of all translations in S
is the lattice of the space group. Note that for a general element g = (ϑ,λ) ∈ S
the vector λ does not need to be a lattice vector. Elements g = (ϑ,λ) ∈ S with
λ /∈ Λ are called roto-translations.

Since a space group is required to contain n linear independent translations,
every lattice contains a basis e = {ei}i∈{1,...,n} and the full lattice is spanned
by the ei (with integer coefficients), i.e. an element λ ∈ Λ can be written as
λ = ni ei, summing over i = 1, . . . , n and ni ∈ Z. Clearly, the choice of basis is
not unique. For example, for a given lattice Λ take two bases e = {e1, . . . , en} and
f = {f1, . . . ,fn} and define Be and Bf as matrices whose columns are the basis
vectors in e and f, respectively. Then the change of basis is given by a unimodular
matrix M (i.e. M ∈ GL(n,Z)) as

BeM = Bf . (5.4)

On the other hand, one can decide whether two bases e and f span the same
lattice by computing the matrix M = B−1

e Bf and checking whether or not it is
an element of GL(n,Z).

5.2.3 The point group P

For a space group S with elements of the form (ϑ,λ), the set P of all ϑ forms a
finite group ([10, p. 15]), the so-called point group of S. The elements of a point
group are sometimes called twists or rotations. However, in general a point group
can also contain inversions and reflections, i.e. ϑ ∈ O(n).

The point group P of S maps the lattice of S to itself. Hence, similarly to the
change of lattice bases, point group elements can be represented by GL(n,Z) (i.e.
unimodular) matrices. When written in the GL(n,Z) basis, we append the twists
by an index indicating the lattice basis, while the O(n) (or SO(n)) representation
of the twist is denoted without an index. For example, the twist ϑ ∈ O(n) is
denoted as ϑe in the lattice basis e = {e1, . . . , en} such that ϑ ei = (ϑe)ji ej and
ϑe = B−1

e ϑBe. Furthermore, under a change of basis as in Equation (5.4) the
twist transforms according to

ϑf = M−1 ϑeM . (5.5)

Given these definitions, and because the lattice is always a normal subgroup of
the space group (i.e. rotation ◦ translation ◦ (rotation)−1 = translation), the space
group S has a semi-direct product structure iff the point group P is a subgroup
of it, i.e. P ⊂ S. In that case

S = P n Λ , (5.6)
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and one can write the orbifold as

O = Rn/(P n Λ) = Tn/P . (5.7)

In general, however, the point group is not a subgroup of the space group
and thus the space group is not necessarily a semi-direct product of its point
group with its lattice. More precisely, in general the point group P is not equal
to the orbifolding group G of Equation (5.1) because of the possible presence of
roto-translations, as we will see in an example in Section 5.2.4.

5.2.4 Examples: space groups with Z2 point group
In this section, we give two examples of space groups in two dimensions with Z2

point group (see app. 5.B) in order to illustrate the discussion of the previous
sections.

(a) (b)

Figure 5.1: Two-dimensional examples: (a) “pillow” and (b) Klein bottle. In case
(a) the arrows indicate a wrap-around and the symbols indicate fixed points.

A simple example: the “pillow”

The first of our examples is the well known two-dimensional “pillow”, see Fig-
ure 5.1(a). The space group S is generated as

S = 〈(1, e1), (1, e2), (ϑ,0)〉 , (5.8)

and can be realized as the semi-direct product of the oblique lattice Λ (see Ap-
pendix 5.A.3) and the point group P = {1, ϑ}. In detail, the lattice is given as
Λ = {n1 e1 + n2 e2, ni ∈ Z} using the basis e = {e1, e2}. ϑ is a rotation by π, i.e.
it acts on the lattice basis vectors as

ϑ ei = − ei for i = 1, 2 . (5.9)

Therefore, it can be represented by a GL(2,Z) matrix

ϑe =

(
−1 0
0 −1

)
. (5.10)

Since ϑ2 = 1, the point group is Z2.
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Another example: the Klein bottle

Let us take a look at a more advanced example: the space group of a Klein
bottle, see Figure 5.1(b). Here, the space group is generated by two orthogonal
lattice vectors (which thus span a primitive rectangular lattice Λ) {e1, e2}, and
an additional element g,

S = 〈(1, e1), (1, e2), g〉 with g =
(
ϑ, 1

2e1

)
and ϑe =

(
1 0
0 −1

)
.

(5.11)

g acts on a vector v = v1e1 + v2e2 as

v
g7−→ ϑv +

1

2
e1 = v1 e1 − v2 e2 +

1

2
e1 . (5.12)

Notice that even though the point group is Z2 (i.e. ϑ2 = 1), g generates a finite
group isomorphic to Z2 only on the torus T2 = R2/Λ, but not on the Euclidean
space R2, because g2 = (1, e1) 6= (1,0). In other words, since the generator
g also contains a translation 1

2e1 /∈ Λ, it is not a point group element but a
roto-translation.

Obviously, this space group cannot be written as a semi-direct product of a
lattice and a point group, as is always the case when we have roto-translations.

5.2.5 The orbifolding group G
Due to the possible presence of roto-translations, it is clear that in general space
groups cannot be described by lattices and point groups only. Therefore, we will
need to define an additional object, the orbifolding group (see [21]). Loosely
speaking, the orbifolding group G is generated by those elements of S that have
a non-trivial twist part, identifying elements which differ by a lattice translation.
Hence, if there are no roto-translations the orbifolding group G is equal to the
point group P . In other words, the orbifolding group may contain space group ele-
ments with non-trivial, non-lattice translational parts. Combining the orbifolding
group G and the torus lattice Λ generates the space group S = 〈{G,Λ}〉.

Hence, we can define the orbifold as

O = Rn/S = Rn/〈{G,Λ}〉 = (Rn/Λ)/G = Tn/G . (5.13)

Orbifolds can be manifolds (see e.g. Figure 5.1(b)), but in general, they come with
singularities which can not be endowed with smooth maps (see e.g. Figure 5.1(a)).

5.3 Equivalences of space groups
In the context of string orbifold compactifications, some physical properties of a
given model directly depend on the choice of its space group. These features are

114



Classification of symmetric toroidal orbifolds

affine classes⊂Z-classes⊂Q-classes

Figure 5.2: Sketch of the classification of space groups.

common to whole sets of space groups and can be related to some mathematical
properties. Using the latter, one can define equivalence classes of space groups. In
detail, there are three kinds of equivalence classes suitable to sort space groups S
with certain physical and corresponding mathematical properties. These classes
are:

1. the Q-class (see Section 5.3.3) determines the point group P contained in
S and hence the number of supersymmetries in 4D and the number of geo-
metrical moduli;

2. the Z-class (see Section 5.3.2) determines the lattice Λ of S and hence the
nature of the geometrical moduli;

3. the affine class (see Section 5.3.1) determines the flavor group and the na-
ture of gauge symmetry breaking (i.e. local vs. non-local gauge symmetry
breaking).

Each Q-class can contain several Z-classes and each Z-class can contain several
affine classes, see Figure 5.2. In other words, for every point group there can be
several inequivalent lattices and for every lattice there can be several inequivalent
choices for the orbifolding group (i.e. with or without roto-translations).

In the following, we will discuss in detail why the concept of affine classes is
advantageous to classify physically inequivalent space groups. This is standard
knowledge among crystallographers and can for instance be found in more detail
in [10].

5.3.1 Affine classes of space groups
Two space groups S1 and S2 of degree n belong to the same affine class (i.e.
S1 ∼ S2) if there is an affine mapping f : Rn → Rn such that

f−1 S1 f = S2 . (5.14)

An affine mapping f = (A, t) on Rn consists of a translation t and a linear mapping
A, that is, it allows for rescalings and rotations. Therefore, this definition enables
us to distinguish between space groups that actually describe different symmetries
and space groups which are just the ones we already know, looked upon from
a different angle or distance. Then, for a given representative space group of
an affine class a non-trivial affine transformation A that leaves the point group
invariant (i.e. A−1 P A = P ) corresponds to a change of the geometrical data. In
the context of superstring compactifications this corresponds to a change of values
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of the geometrical moduli. That is, affine transformations amount to moving in the
moduli space of the respective compactification. Hence, we will only be interested
in one representative for every affine class.

It turns out that, for a given dimension n, there exists only a finite number
of affine classes of space groups [10, p. 10]. Hence, classifying all affine classes of
space groups enables a complete classification of orbifolds for a fixed number of
dimensions. In this chapter, we focus on the six-dimensional case.

Example in two dimensions

Let us illustrate this at the T2/Z2 example, or “pillow”, with ϑ = −1 given in
Section 5.2.4. As discussed there, the lattice is oblique, i.e. one can choose any
linear independent vectors e1 and e2 as basis vectors. Define a space group S by
choosing

e1 =

(
r1

0

)
and e2 =

(
r2 cos(α)
r2 sin(α)

)
. (5.15)

This space group is in the same affine class as S̃ with basis vectors

ẽ1 =

(
1
0

)
and ẽ2 =

(
0
1

)
. (5.16)

This can be seen explicitly using the affine transformation f = (A,0) with

A =

(
r1 r2 cos(α)
0 r2 sin(α)

)
and A−1 =

(
1
r1
− 1
r1 tan(α)

0 1
r2 sin(α)

)
. (5.17)

Take an arbitrary element g = (ϑ, niei) with ni ∈ Z for i = 1, 2. Then(
f−1 g f

)
(x) =

(
f−1 g

)
(Ax) = f−1(ϑAx+ niei) (5.18a)

= ϑx+A−1(niei) = ϑx+ ni ẽi = g̃ x (5.18b)

for x ∈ R2 and g̃ = (ϑ, niẽi) ∈ S̃. Therefore, S ∼ S̃ and there is only one affine
class of T2/Z2 space groups with ϑ = −1.

This should be compared with the T2/Z3 orbifold (see app. 5.B), where the
angle between the basis vectors ei and their length ratio are fixed, such that
the corresponding moduli space is different. Hence, it is clear that T2/Z2 and
T2/Z3 are two different orbifolds. This demonstrates the advantages of using
affine classes for the classification of space groups.

5.3.2 Z-classes of space groups
As discussed above, we can sort space groups into affine classes. This can be
refined further by grouping affine classes according to common properties of their
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point groups. Following the argument in Section 5.2.3, the elements of the point
group can be written in the lattice basis as elements of GL(n,Z). Therefore, a
point group is a finite subgroup of the unimodular group on Z.

Take two space groups S1 and S2. For i = 1, 2, the space group Si contains
a lattice Λi and its point group in the lattice basis is denoted by Pi, i.e. Pi ⊂
GL(n,Z). Then, the two space groups belong to the same Z-class (or in other
words to the same arithmetic crystal class) if there exists an unimodular matrix U
(i.e. U ∈ GL(n,Z)) such that (cf. the parallel discussion around Equation (5.14))

U−1 P1 U = P2 , (5.19)

see Equation (5.5). That is, if the point groups are related by a change of lattice
basis (using U), the space groups belong to the same Z-class. Hence, Z-classes
classify the inequivalent lattices.

If two space groups belong to the same Z-class, they have the same form space
(see app. 5.A.1) and, physically, they possess the same amount and nature of
geometrical moduli. However, as we have stressed before, space groups from the
same Z-class are not necessarily equivalent because of the possible presence of
roto-translations. In other words, space groups from the same Z-class can belong
to different affine classes and can hence be inequivalent.

5.3.3 Q-classes of space groups

As before in Section 5.3.2, take two space groups S1 and S2. For i = 1, 2, the
point group in the lattice basis associated to the space group Si is denoted by
Pi, i.e. Pi ⊂ GL(n,Z). Then, the two space groups belong to the same Q-class
(or in other words to the same geometric crystal class) if there exists a matrix
V ∈ GL(n,Q) such that

V −1 P1 V = P2 . (5.20)

Obviously, if two space groups belong to the same Z-class they also belong to
the same Q-class, hence the inclusion sketch in Figure 5.2. In contrast to Z-
classes, Q-classes do not distinguish between inequivalent lattices. However, if
two space groups belong to the same Q-class, the commutation relations and
the orders of the corresponding point groups are the same. Therefore, they are
isomorphic as crystallographic point groups. They also possess form spaces of the
same dimension, i.e. they have the same number of moduli. What is important
for physics is that all space groups in the same Q-class share a common holonomy
group (cf. Section 5.4). This allows us to identify settings that yield N = 1 SUSY
in 4D. In particular, in order to determine the number of SUSY generators, it is
sufficient to consider only one representative from every Q-class.
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f2

e1 ≡ f1 ≡ e′1 ≡ f ′1

f ′2

e2

e′2

Figure 5.3: Two different bases for the p-rectangular lattice: e = {e1, e2} and
f = {f1,f2}, and the action of the point group generator (primed vectors).

5.3.4 Some examples

Before going to six dimensions, let us illustrate the above definitions with some
easy examples of two-dimensional Z2 orbifolds, taken from Appendix 5.B.

Space groups in the same Z-class

Consider the affine class Z2-II–1–1, as defined in Appendix 5.B. As there are
no roto-translations, the orbifolding group is equal to the point group and is
generated by ϑ, a reflection at the horizontal axis. Now, let this reflection act on
a lattice, first spanned by the basis vectors e = {e1, e2} and second spanned by
f = {f1,f2}, see Figure 5.3. The two corresponding space groups read

Se = 〈(ϑ,0), (1, e1), (1, e2)〉 with ϑe =

(
1 0
0 −1

)
, (5.21)

Sf = 〈(ϑ,0), (1,f1), (1,f2)〉 with ϑf =

(
1 2
0 −1

)
, (5.22)

where ϑe 6= ϑf because they are given in their corresponding lattice bases. How-
ever, it is easy to see that they are related by the GL(2,Z) transformation

U =

(
1 1
0 1

)
with U−1 ϑe U = ϑf , (5.23)

cf. Equation (5.19). Therefore, they belong to the same Z-class. Hence, as we
actually knew from the start, they act on the same lattice and the matrix U just
defines the associated change of basis precisely as in Equation (5.4).
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Space groups in the same Q-class, but different Z-classes

Next, consider the space groups,

S1–1 = 〈(ϑ1–1, 0), (1, e1), (1, e2)〉 with ϑ1–1,e =

(
1 0
0 −1

)
, (5.24)

S2–1 = 〈(ϑ2–1, 0), (1,f1), (1,f2)〉 with ϑ2–1,f =

(
0 1
1 0

)
, (5.25)

with lattices spanned by e1 = (1, 0), e2 = (0, 1) and f1 = (1/2, 1/2), f2 =
(1/2,−1/2), respectively. The first space group belongs to the affine class Z2-
II–1–1 and the second one to Z2-II–2–1, see Appendix 5.B. If we try to find the
transformation V from Equation (5.20) that fulfills V −1 ϑ1–1,e V = ϑ2–1,f we see
that

V =

(
x x
y −y

)
with x, y ∈ Q . (5.26)

But for all values of x and y for which V −1 exists, either V or V −1 has non-integer
entries. Therefore, the space groups Z2-II–1–1 and Z2-II–2–1 belong to the same
Q-class, but to different Z-classes. In other words, these space groups are defined
with inequivalent lattices. Indeed, the first space group possesses a primitive
rectangular lattice, while the second one has a centered rectangular lattice, as we
will see in detail in the following.

The effect of including additional translations

There is an alternative way of seeing the relationship between the two space groups
of the last example: one can amend one of the space groups by an additional
translation. In general, this gives rise to a new lattice, and consequently to a
different Z-class.

In our case, let us take the Z2-II–1–1 affine class and add the non-lattice
translation

τ =
1

2
(e1 + e2) (5.27)

to its space group. If we incorporate this translation into the lattice, we notice
that this element changes the original primitive rectangular lattice to a centered
rectangular lattice, with a fundamental cell of half area. The new lattice (see
Figure 5.4) can be spanned by the basis vectors τ and e1 − τ .

We can interpret the inclusion of this additional translation as a “change of
basis”, see Equation (5.4), but now generated by a matrix M ∈ GL(2,Q) instead
of one from GL(2,Z). The transformation looks like

BeM = Bτ with M =

(
1/2 1/2
1/2 −1/2

)
, (5.28)
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e2

e1

τ

e1 − τ

Figure 5.4: Change of a lattice by an additional translation: the basis of the orig-
inal lattice is solid, the basis of the new one dashed. The additional lattice points
are light gray. The action of ϑ is a reflection at the horizontal axis. Therefore, it
maps e1 to itself, e2 to its negative and interchanges τ and e1 − τ .

where Be and Bτ are matrices whose columns are (e1, e2) and (τ , e1 − τ ), re-
spectively. M is precisely the matrix in Equation (5.26) with values x = y = 1/2.
Performing this basis change, the twist has to be transformed accordingly. Hence,
the two Z-classes are related by a GL(2,Q) transformation M and the new space
group with lattice Bτ is Z2-II–2–1. The geometrical action of the twist, however,
is the same in both cases: it is a reflection at the horizontal axis (see Figure 5.4).
That is the reason for the name geometrical crystal classes for Q-classes. A general
method for including additional translations can be found in Appendix 5.A.2.

The method of using additional translations has been used in [21] and [17]
in order to classify six-dimensional space groups with point groups ZN × ZN for
N = 2, 3, 4, 6 (the classification of [17] is not fully exhaustive, see Section 5.5.1).
In these works, the authors start with factorized lattices, i.e. lattices which are
the orthogonal sum of three two-dimensional sublattices, on which the twists act
diagonally. Then, in a second step additional translations are introduced. As we
have shown here, adding such translations is equivalent to switching between Z-
classes in the same Q-class. Hence, if one considers all possible lattices (Z-classes)
additional translations do not give rise to new orbifolds.

Space groups in different Q-classes

Finally, consider the affine classes Z2-I–1–1 and Z2-II–1–1 defined in Appendix 5.B.
If we try to find a transformation between both space groups generators, see Equa-
tion (5.20),

V −1

(
−1 0
0 −1

)
V =

(
1 0
0 −1

)
⇔
(
−1 0
0 −1

)
V = V

(
1 0
0 −1

)
,

(5.29)
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we obtain

V =

(
0 x
0 y

)
/∈ GL(2,Q) ∀x, y . (5.30)

Therefore, the space groups Z2-I–1–1 and Z2-II–1–1 belong to different Q-classes
(and also to different Z-classes). That is, the point groups are inequivalent: the
twist of the first point group is a reflection at the origin and the twist of the
second point group is a reflection at the horizontal axis.

5.4 Classification of space groups
In this section we describe our strategy to classify all inequivalent space groups
for the compactification of the heterotic string to four dimensions with N = 1
SUSY.

5.4.1 Classification strategy
The amount of residual supersymmetry exhibited by the 4D effective theory is
related to the holonomy group of the compact space [14]. In detail, for the het-
erotic string the number N of residual SUSY in 4D is given by the number of
covariantly constant spinors and, therefore, depends on the holonomy group. For
example, a trivial holonomy group yields four covariantly constant spinors and
hence N = 4 in 4D. On the other hand, one gets N = 1 SUSY in 4D for SU(3)
holonomy.

In the context of orbifolds, one can relate the holonomy group to the point
group [19]. Orbifold compactifications preserve four-dimensional supersymmetry
if the point group is a discrete subgroup of SU(3). The holonomy group and hence
the amount of unbroken SUSY is the same for all members of a given Q-class.
Therefore, we start our classification with the identification of all Q-classes (i.e.
point groups) that are subgroups of SU(3). Then, for each Q-class we identify all
Z-classes (i.e. lattices) and finally construct for each Z-class all affine classes (i.e.
roto-translations).

In more detail, our strategy reads:

1. Choose a Q-class and find a representative P of it.2

2. Check that P is a subgroup of SO(6) rather than O(6).

3. Verify that P is a subgroup of SU(3).

4. Find every possible Z-class inside that Q-class.

5. Find every possible affine class inside each one of those Z-classes.
2A discussion about the possible orders of the elements of the point group, and therefore the

possible point groups, can be found in Appendix 5.B.

121



5.5 Results: classification of toroidal orbifolds

There exists a catalog of every possible affine class in up to six dimensions
classified into Z- and Q-classes [47]. Furthermore, one can access this catalog
easily using the software carat [48]. In detail, the command Q_catalog lists all
Q-classes, the command QtoZ lists all Z-classes of a given Q-class and, finally,
the command Extensions lists all affine classes of a given Z-class. Hence, the
main open question is to decide whether a given representative of a Q-class is a
subgroup of SU(3).

5.4.2 Residual SUSY
We start by verifying that P ⊂ SO(6). carat offers representatives for all Q-
classes, i.e. it gives the generators of the point group P in some (unspecified)
lattice basis e as GL(6,Z) matrices ϑe. One can check whether or not the deter-
minant equals +1 for all generators of P in the GL(6,Z) form given by carat.
This allows us to determine whether or not P ⊂ SO(6).

Next, we recall that the matrices ϑe ∈ P originate from the six-dimensional
representation 6 of SO(6). One way to check that P is a subgroup of SU(3) is to
consider the breaking of the 6 into representations of SU(3),

6 → 3⊕ 3̄ . (5.31)

On the other hand, the six-dimensional representation is, in general, a reducible
representation of the point group P . Hence, it can be decomposed

6 → a⊕ b⊕ . . . (5.32)

into irreducible representations a, b, . . . of P .
If P is a subgroup of SU(3) this decomposition has to be of the kind

6 → a⊕ ā , (5.33)

where a denotes some (in general reducible) representation of P originating from
the 3 of SU(3) and ā its complex conjugate (from 3̄ of SU(3)). In addition, one
needs to know the explicit matrix representation of a in order to check that the
determinant is +1. Then P ⊂ SU(3) and at least N = 1 SUSY survives the
compactification of the heterotic string on the corresponding orbifold.

The full detailed procedure can be found in section 4.2 of the original publi-
cation [25].

5.5 Results: classification of toroidal orbifolds
We perform a systematic classification of space groups that keep (at least) N = 1
SUSY in four dimensions unbroken. As discussed in Section 5.3, the amount of
unbroken supersymmetry depends only on the Q-class (i.e. point group). Using
carat we know that there are 7103 Q-classes in six dimensions. Out of those,
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we find 60 Q-classes with N ≥ 1 SUSY where 52 lead to precisely N = 1, see
Table 5.1 for a summary of the results. The 60 cases split into 22 Abelian and
38 non-Abelian Q-classes, where the Abelian cases were already known in the
literature. By contrast, most of the 38 non-Abelian Q-classes have not been
used in orbifold compactifications before. Starting from these 60 Q-classes we
construct all possible Z- and affine classes (i.e. lattices and roto-translations). In
the following we discuss them in detail: Sections 5.5.1 and 5.5.2 are devoted to
the Abelian and non-Abelian case, respectively.

# of generators # of SUSY Abelian non-Abelian
1 N = 4 1 0

N = 2 4 0
N = 1 9 0

14 0
2 N = 4 0 0

N = 2 0 3
N = 1 8 32

8 35
3 N = 4 0 0

N = 2 0 0
N = 1 0 3

0 3
total: N = 4 1 0

N = 2 4 3
N = 1 17 35

22 38

Table 5.1: Summary of the classification of all point groups with at least N = 1
SUSY. Out of 7103 cases obtained from carat there are 60 point groups with
N ≥ 1 SUSY where 52 have exactly N = 1.

5.5.1 Abelian toroidal orbifolds
Our results

Restricting ourselves to Abelian point groups, we find 17 point groups with N = 1
SUSY, four cases withN = 2 and one case (i.e. the trivial point group) withN = 4
supersymmetry. Next, we classify all Z- and affine classes. For the 17 point groups
with N = 1 it turns out that there are in total 138 inequivalent space groups with
Abelian point group and N = 1. Many of them were unknown before. The
results are summarized in Table 5.2. More details including the generators of the
orbifolding group G, the nature of gauge symmetry breaking (i.e. local or non-
local) and the Hodge numbers (h(1,1), h(2,1)) can be found in Appendix C.1 in the

123



5.5 Results: classification of toroidal orbifolds

original publication [25], which also includes, on the corresponding section to the
present one, a comment on the distribution of the Hodge numbers and the effect
of them in the amount of Standard Model generations.

label of twist # of # of affine
Q-class vector(s) Z-classes classes

Z3
1
3 (1, 1,−2) 1 1

Z4
1
4 (1, 1,−2) 3 3

Z6-I 1
6 (1, 1,−2) 2 2

Z6-II 1
6 (1, 2,−3) 4 4

Z7
1
7 (1, 2,−3) 1 1

Z8-I 1
8 (1, 2,−3) 3 3

Z8-II 1
8 (1, 3,−4) 2 2

Z12-I 1
12 (1, 4,−5) 2 2

Z12-II 1
12 (1, 5,−6) 1 1

Z2 × Z2
1
2 (0, 1,−1) , 1

2 (1, 0,−1) 12 35
Z2 × Z4

1
2 (0, 1,−1) , 1

4 (1, 0,−1) 10 41
Z2 × Z6-I 1

2 (0, 1,−1) , 1
6 (1, 0,−1) 2 4

Z2 × Z6-II 1
2 (0, 1,−1) , 1

6 (1, 1,−2) 4 4
Z3 × Z3

1
3 (0, 1,−1) , 1

3 (1, 0,−1) 5 15
Z3 × Z6

1
3 (0, 1,−1) , 1

6 (1, 0,−1) 2 4
Z4 × Z4

1
4 (0, 1,−1) , 1

4 (1, 0,−1) 5 15
Z6 × Z6

1
6 (0, 1,−1) , 1

6 (1, 0,−1) 1 1

# of Abelian N = 1 60 138

Table 5.2: Summary of all space groups with Abelian point group and N = 1
SUSY. The corresponding table in the original publication [25] also contains the
identification information of each of these Q-classes in carat and the “GAPID”
of their point groups in the algebra software GAP.

The results are also available as input for the orbifolder [46], a tool to study
the low energy phenomenology of heterotic orbifolds. We have created input files
for the orbifolder, which we have made available at

http://einrichtungen.physik.tu-muenchen.de/T30e/codes/
ClassificationOrbifolds/ .

There is a geometry file for each of the 138 affine classes, and one model file per
Q-class, that contains a model with standard embedding for each of the corre-
sponding affine classes in that Q-class.

In addition, we find 23 inequivalent space groups (i.e. affine classes) with
Abelian point group and N = 2. These space groups are based on the well-known
four Abelian point groups Z2, Z3, Z4 and Z6. However, the inequivalent lattices
and roto-translations were unknown before. They are summarized in Table 5.3.
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label of # of # of affine
Q-class Z-classes classes

Z2 3 5
Z3 3 5
Z4 3 9
Z6 1 4

# of Abelian N = 2 10 23

Table 5.3: Summary of all space groups with N > 1 SUSY for Abelian point
groups P . In addition, there is the trivial Q-class with N = 4 SUSY, with one
Z- and one affine class. The corresponding table in the original publication [25]
also contains the identification information of each of these Q-classes in carat
and the “GAPID” of their point groups in the algebra software GAP.

Previous classifications

There have been several attempts in the literature to classify six-dimensional
N = 1 SUSY preserving Abelian toroidal orbifolds. For example, Bailin and
Love [3] give a classification for ZN orbifolds using root lattices of semi-simple
Lie algebras of rank six as lattices Λ and the (generalized) Coxeter element as the
generator of the point group P . However, as also discussed in Appendix 5.A.3,
they overcount the geometries and, in addition, miss a few cases. A detailed
comparison to our results can be found in Table 5.4.

For Z2 × Z2 orbifolds there have been two approaches for the classification of
geometries. In the first one, the classification is based on Lie lattices [26], see also
[39]. Again, this classification is somewhat incomplete: it misses four lattices and,
in addition, neglects the possibility of roto-translations. In a second approach by
DW [21] (based on [20]), a classification for Z2×Z2 is given, which, as we find, is
complete, see Table 5.5 for a comparison. In addition, we were able to resolve an
ambiguity between the models 3–1 and 3–2 of DW.

Furthermore, based on the strategy of DW [21], there is an (incomplete) clas-
sification of ZN × ZN for N = 3, 4 and 6 [17]. For both Z3 × Z3 and Z4 × Z4

he identifies 8 out of 15 affine classes (compare Section 2.3 of [17] to the table in
Appendix C.1 in the original publication [25]). The Hodge numbers agree with
our findings except for case IV.7 (i.e. Z4×Z4 with (38, 0)). Finally, in the case of
Z6 × Z6 [17] correctly identifies that there is only one possible geometry but the
Hodge numbers disagree with ours, i.e. [17] finds (80, 0) and we have (84, 0).

Fundamental groups

The fundamental group of a toroidal orbifold with space group S is given as
[19, 11]

π1 = S/〈F 〉 , (5.34)
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Q-class Z-class corresponding root lattice(s)

Z3 1 SU(3)3

Z4 1 SO(5)2 × SU(2)2

2 SO(5)× SU(4)× SU(2)

3 SU(4)2

Z6-I 1 (G2)
2 × SU(3) and

(
SU(3)[2]

)2 × SU(3)
2 —

Z6-II 1 G2 × SU(3)× SU(2)2 and
SU(3)[2] × SU(3)× SU(2)2

2 —
3 SO(8)× SU(3) and SO(7)× SU(3)× SU(2) and

SU(4)[2] × SU(3)× SU(2)
4 SU(6)× SU(2)

Z7 1 SU(7)

Z8-I 1 SO(9)× SO(5) and SO(8)[2] × SO(5)
2 —
3 —

Z8-II 1 SO(8)[2] × SU(2)2 and SO(9)× SU(2)2

2 SO(10)× SU(2)

Z12-I 1 F4 × SU(3) and SO(8)[3] × SU(3)
2 E6

Z12-II 1 SO(4)× F4 and SO(8)[3] × SU(2)2

Table 5.4: Matching between our classification of ZN space groups and the tra-
ditional notation of lattices as root lattices of semi-simple Lie algebras of rank
six, see e.g. Table 3 of [3] and Table D.1 of [51]. Cases previously not known are
indicated with a dash.

where 〈F 〉 is the group generated by those space group elements that leave some
points fixed.

The fundamental groups of most of the Abelian orbifolds discussed here are
trivial, for in those cases 〈F 〉 ≡ S. The only non-trivial cases are the following
(see the table in Appendix C.1 in the original publication [25]):

• 21 space groups from the Z2 × Z2 Q-class as already calculated in [21]. See
Table 5.5, where

– 0 means a trivial fundamental group

– S means the fundamental group equals the space group (no fixed points,
hence 〈F 〉 = {1})

– A means a Z2 n Z2 fundamental group
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Here Donagi Förste et al. π1

et al. [21] [26]
1–1 0–1 SU(2)6 0
1–2 0–2 — 0
1–3 0–3 — A
1–4 0–4 — S
2–1 1–6 SU(3)× SU(2)4 0
2–2 1–8 — 0
2–3 1–10 — A
2–4 1–7 — C
2–5 1–9 — A
2–6 1–11 — S
3–1 2–9 — 0
3–2 2–10 — 0
3–3 2–11 — A
3–4 2–12 — S
4–1 2–13 SU(3)2 × SU(2)2-I 0
4–2 2–14 — D
5–1 1–1 SU(4)× SU(2)3 C
5–2 1–3 — C
5–3 1–2 — 0
5–4 1–4 — A
5–5 1–5 — S
6–1 2–6 SU(3)2 × SU(2)2-II 0
6–2 2–7 — C
6–3 2–8 — A
7–1 3–3 — 0
7–2 3–4 — C
8–1 4–1 — 0
9–1 2–3 SU(4)× SU(3)× SU(2) C
9–2 2–5 — D
9–3 2–4 — 0
10–1 3–5 — C
10–2 3-6 — 0
11–1 3–1≡3–2 SU(3)3 0
12–1 2–1 SU(4)2 D
12–2 2–2 — C

Table 5.5: Comparison of the affine classes of Z2 × Z2 between our classification
and the ones in [21] and [26]. In our case, the two numbers enumerate the Z- and
affine classes, respectively.
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– C means a Z2 fundamental group
– D means a (Z2)2 fundamental group

• 6 space groups from the Z2 × Z4 Q-class. In detail, the affine classes 1–6,
2–4, 3–6, 4–4, 6-5 and 8–3 posses a Z2 fundamental group.

• 4 space groups from the Z3 × Z3 Q-class. In detail, the affine classes 1–4,
2–4, 3–3 and 4–3 posses a Z3 fundamental group.

Elements of the space group that leave no fixed points are called freely acting.
A non-trivial fundamental group signals the presence of non-decomposable freely
acting elements in the space group, i.e. freely acting elements that cannot be
written as a combination of non-freely acting elements. In the cases Z2 × Z4 and
Z3 × Z3, the non-decomposable freely acting elements belong to the orbifolding
group. On the other hand, for Z2×Z2 those elements are pure lattice translations
in the cases C and D, while in the cases A they are both pure lattice translations
and elements of the orbifolding group.

In the context of heterotic compactifications, the phenomenologically appeal-
ing feature of non-local GUT symmetry breaking is due to the presence of non-
decomposable freely acting space group elements with a non-trivial gauge em-
bedding. In total we find 31 affine classes based on Abelian point groups with
non-trivial fundamental groups. their phenomenology will be studied elsewhere.

5.5.2 Non-Abelian toroidal orbifolds
Six-dimensional orbifolds with non-Abelian point groups have not been studied
systematically up to now and the literature is limited to examples only [37, 44,
28, 23, 41].

Our classification results in 35 point groups with N = 1 SUSY and three cases
with N = 2 SUSY. Next, we have classified all Z- and affine classes. It turns out
that there are in total 331 inequivalent space groups with non-Abelian point group
and N = 1 SUSY and 27 inequivalent space groups with non-Abelian point group
and N = 2. Most of them were unknown before. The results are summarized in
tables 5.6 and 5.7 of the original publication [25], together with the discussion of
a particular example, T6/D6; and the full details can be found in Appendix C.2
there.

The results presented in this chapter were used in a follow-up study of non-
Abelian orbifolds by two of the authors of the original publication in [24].

5.6 Summary and discussion
We have classified all symmetric orbifolds that give N ≥ 1 supersymmetry in four
dimensions. Our main results are as follows:

1. In total we find 60 Q-classes (point groups) that lead to N ≥ 1 SUSY.
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2. These Q-classes decompose in

• 22 with an Abelian point group with one or two generators, i.e. ZN or
ZN × ZM , out of which 17 lead to exactly N = 1 SUSY, and

• 38 with a non-Abelian point group with two or three generators, such
as S3 or ∆(216), out of which 35 lead to exactly N = 1 SUSY.

That is, there are 52 Q-classes that can lead to models yielding the supersymmet-
ric standard model.

As we have explained in detail, Q-classes (or point groups) can come with in-
equivalent lattices, classified by the so-called Z-classes. In the traditional orbifold
literature, Z-classes are given by Lie lattices and a given choice fixes an orbifold
geometry. However, as we have pointed out, not all lattices can be described by
Lie lattices.

Our results on Q-classes potentially relevant for supersymmetric model build-
ing are as follows.

3. We find that there are 186 Z-classes, or, in other words, orbifold geometries
that lead to N ≥ 1 SUSY.

4. These Z-classes decompose in

• 71 with an Abelian point group, out of which 60 lead to exactly N = 1
SUSY, and

• 115 with a non-Abelian point group, out of which 108 lead to exactly
N = 1 SUSY.

Furthermore, space groups can be extended by so-called roto-translations, a com-
bination of a twist and a (non-lattice) translation. We provide a full classification
of all roto-translations in terms of affine classes, which are, as we discuss, the
most suitable objects to classify inequivalent space groups.

5. We find 520 affine classes that lead to N ≥ 1 SUSY.

6. These affine classes decompose in

• 162 with an Abelian point group, out of which 138 lead to exactly
N = 1 SUSY, and

• 358 with a non-Abelian point group, out of which 331 lead to exactly
N = 1 SUSY.

An important aspect of our classification is that we provide the data for all 138
space groups with Abelian point group and N = 1 SUSY required to construct
the corresponding models with the C++ orbifolder [46]. Among other things, this
allows one to obtain a statistical survey of the properties of the models, which
has so far only been performed for the Z6-II orbifold [42].
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Our classification also has conceivable importance for phenomenology. For
instance, one of the questions is how the ten-dimensional gauge group (i.e. E8×E8

or SO(32)) of the heterotic string gets broken by orbifolding. In most of the models
discussed so far, the larger symmetry gets broken locally at some fixed point. Yet
it has been argued that ‘non-local’ GUT symmetry breaking, as utilized in the
context of smooth compactifications of the heterotic string [6, 9, 8, 2], has certain
phenomenological advantages [33, 1]. Explicit MSSM candidate models, based on
the DW classification, featuring non-local GUT breaking have been constructed
recently [4, 38]. As we have seen, there are 31 affine classes of space groups,
based on the Q-classes Z2 × Z2, Z2 × Z4 and Z3 × Z3, that lead to an orbifold
with a non-trivial fundamental group, thus allowing us to introduce a Wilson line
that breaks the GUT symmetry. In other words, we have identified a large set of
geometries that can give rise to non-local GUT breaking. This might also allow
for a dynamical stabilization of some of the moduli in the early universe, similar
as in toroidal compactifications [7].

In this study, we have focused on symmetric toroidal orbifolds, which have a
rather clear geometric interpretation, such that crystallographic methods can be
applied in a straightforward way. We have focused on the geometrical aspects.
On the other hand, it is known that background fields, i.e. the so-called discrete
Wilson lines [36] and discrete torsion [53, 54, 52, 29, 50], play a crucial role
in model building. It will be interesting to work out the conditions on such
background fields in the geometries of our classification. Further, it is, of course,
clear that there are other orbifolds, such as T-folds [34, 16], asymmetric and/or
non-toroidal orbifolds, whose classification is beyond the scope of this study. Let
us also mention, we implicitly assumed that the radii are away from the self-
dual point. As we are using crystallographic methods our classification strategy
is independent of this assumption. Still, it might be interesting to study what
happens if one sends one or more T -moduli to the self-dual values. In this case
one may make contact with the free fermionic formulation, where also interesting
models have been constructed [15]. In addition, our results may also be applied
to compactifications of type II string theory on orientifolds (see e.g. [30, 22, 31]
for some interesting models and [5] for a review).

Appendices

5.A Details on lattices

5.A.1 Bravais types and form spaces

One can classify lattices by the symmetry groups they obey. This is the concept
of Bravais equivalent lattices. In more detail, denote the symmetry group of some
lattice Λ as G ⊂ GL(n,Z). Obviously, the point group P ⊂ G, is a subgroup of
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it. Now, if two lattices give rise to the same finite unimodular group G, we call
them Bravais equivalent. This equivalence generates a finite number of Bravais
types of lattices for every dimension n. They have been classified for dimensions
up to six [49].

The interesting task would now be to decide which Bravais type a given lattice
belongs to. This can be done using the notion of form spaces [47]. The form
space F(G) of some finite group G ⊂ GL(n,Z) is defined as the vector space of
all symmetric matrices left invariant by G, i.e.

F(G) = {F ∈ Rn×nsym | gT F g = F for all g ∈ G} . (5.35)

On the other hand, we define the Gram matrix of the lattice basis e = {e1, . . . , en}
as

Gr(e)ij = (ei, ej) = (B T
e Be)ij , (5.36)

where the parentheses (ei, ej) denote the standard scalar product. By definition,
the Gram matrix is a symmetric, positive definite matrix. Under a change of
lattice basis, represented by a unimodular matrix M , the Gram matrix changes
as MTGr(e)M , c.f. Section 5.2.2. By contrast, elements of the point group leave
the Gram matrix invariant, i.e. for ϑ ∈ P

Gr(e)
ϑ7−→ ϑTGr(e)ϑ = Gr(e) . (5.37)

Hence, a form space is in direct correspondence to a Bravais type of lattice, i.e.
every lattice Λ has a basis e = {e1, . . . , en} such that its Gram matrix Gr(e) is an
element of the form space of a finite subgroup P of GL(n,Z), i.e. Gr(e) ∈ F(P )
[10]. But in order to see that one lattice belongs to a given form space, it needs
to be in this special basis, which is canonically chosen to be the so-called shortest
possible basis for that lattice [10]. Fortunately, algorithms for precisely that task
do exist, cf. e.g. [43] (though one should be careful: the shortest basis of a lattice
is in general not unique).

Note that physically the Gram matrix is the metric of the torus defined by
the lattice Λ and the dimension of the form space F(P ) is exactly the number of
(untwisted) moduli the orbifold offers.

Let us consider an example in two dimensions. Take the point group defined
by

P = {1 = ϑ2, ϑ} ∼= Z2 with ϑ =

(
1 0
0 −1

)
. (5.38)

It leaves invariant the form space

F(P ) =

(
a 0
0 b

)
. (5.39)

That form space corresponds to the Bravais type called p-rectangular lattice (cf.
Appendix 5.A.3), consisting of two arbitrarily long, orthogonal vectors.
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5.A.2 Introducing an additional shift
DW [21] starts with an orthonormal lattice in six dimensions. Then, in a second
step, additional shifts, which are linear combinations of the (orthonormal) lattice
vectors with rational coefficients, are included in the space group. As we have seen
in the second example in Section 5.3.4, those additional shifts can be incorporated
to the lattice itself. Here we show in detail how to transform the space group
accordingly.

The perhaps most elegant procedure is to perform a change of basis, but using
transformations from GL(n,Q). Hence, we are selecting a different Z-class from
the same Q-class, cf. Section 5.3. Let us list the necessary steps and illustrate
them with an example:

1. The additional shift is a linear combination with rational coefficients of some
of the lattice vectors. Exchange one of the old lattice vectors (that appears
in the linear combination) by the new additional shift.

2. Write the transformation matrixM : start with the identity matrix and sub-
stitute the column corresponding to the exchanged vector by the coefficients
of the linear combination.

3. Transform your space group using M accordingly: see Equation (5.4) and
Equation (5.5).

4. (Optional) In order to see the geometry more clearly, one can perform a basis
reduction (e.g. using the LLL algorithm, cf. [43]), which is a transformation
from GL(n,Z).

As an example, take the Z2×Z2 model named (1–1) in DW [21], which consists
of an orthogonal lattice (p-cubic) with orthonormal basis e and an additional shift

τ =
1

2
(e2 + e4 + e6) . (5.40)

We will restrict the discussion to the three-dimensional (sub-)lattice Λ spanned
by the basis e = {e2, e4, e6}.

The basis matrix, Gram matrix and point group generators read

Be =

 1 0 0
0 1 0
0 0 1

 , Gr(e) =

 1 0 0
0 1 0
0 0 1

 , (5.41a)

ϑe =

 1 0 0
0 −1 0
0 0 −1

 , ωe =

 −1 0 0
0 1 0
0 0 −1

 . (5.41b)

Let us follow the steps described above:
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1. We choose to exchange the 3rd (originally 6th) vector for the additional shift:
the new basis f is spanned by f = {e2, e4, τ}. Notice that f is not a basis of
the lattice Λ, but one of a new, different lattice Σ.

2. In accordance with our choice, the transformation matrix is

M =

 1 0 1/2
0 1 1/2
0 0 1/2

 . (5.42)

3. We perform the transformation using M . For the new lattice Σ in the new
basis f, the quantities we are interested in look like

Bf =

 1 0 1/2
0 1 1/2
0 0 1/2

 , Gr(f) =

 1 0 1/2
0 1 1/2

1/2 1/2 3/4

 , (5.43a)

ϑf =

 1 0 1
0 −1 0
0 0 −1

 , ωf =

 −1 0 0
0 1 1
0 0 −1

 . (5.43b)

4. Next, we perform a LLL reduction, which is a change of basis to a reduced
one r, and transform the point group elements accordingly,

Br =

 1/2 1/2 −1/2
1/2 −1/2 1/2
1/2 −1/2 −1/2

 , Gr(r) =
1

4

 3 −1 −1
−1 3 −1
−1 −1 3

 ,

(5.44a)

ϑr =

 0 1 −1
1 0 −1
0 0 −1

 , ωr =

 0 −1 1
0 −1 0
1 −1 0

 . (5.44b)

Last, we compare the Gram matrix Gr(r) with Table 5.6. We see that intro-
ducing the additional shift τ into the p-cubic lattice is equivalent to work with
the appropriately transformed point group in an i-cubic lattice.

A remark is in order. The form space left invariant by the Z2×Z2 point group
in the (reduced) basis of Equation (5.44) is

F(P ) =

 a b c
b a −a− b− c
c −a− b− c a

 . (5.45)

This form space is the one of a three-parametric, i-orthogonal lattice, which
contains as possible realizations the i-cubic and the f-cubic lattices (both one-
parametric, see table 5.6). Therefore, model (1–1) in [21] corresponds to model
A4 of Förste et al. [26], i.e. to the Lie lattice SU(4) × SU(2)3 where the SU(4)
part is an f-cubic lattice, see Table 5.5.
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5.A.3 Bravais types and Lie lattices
It is common in the string-orbifold literature to describe lattices as root lattices
of (semi-simple) Lie algebras. On the one hand, this makes it easy to identify
the point group, i.e. a discrete subgroup of SU(3), using Weyl reflections and the
Coxeter element. However, we find this practice to be problematic for at least
three different reasons:

Redundancies

A root lattice is the lattice spanned by the simple roots of a certain (semi-simple)
Lie algebra. Even if the simple roots of two non-equivalent (semi-simple) Lie
algebras are different, the lattices they span might not. For example, the lattices
spanned by the root systems of SU(3) and G2 are the same (see Figure 5.5). Some
more examples are provided in Table 5.6.

Figure 5.5: The hexagonal lattice: the lines on the left form the SU(3) root
system, and the lines on the right form the G2 root system. Simple roots are also
indicated with solid arrows, as well as the fundamental cells (shaded).

Missing lattices

When considering the redundancy of root lattices, one might think that there are
more root lattices than types of lattices and that the situation could be resolved by
introducing some clever convention to avoid this overcounting. But the problem
exists in the other direction too: the set of all possible root lattices does not
exhaust the whole family of Bravais types, i.e. there are Bravais types of lattices
which are not generated by any root system. The lowest dimension in which this
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occurs is three and the most basic example is the body centered cubic lattice, also
known as bcc or i-cubic to crystallographers (see Table 5.6). The bcc lattice is a
cubic lattice with an additional lattice point in the center of the fundamental cell.
Its only free parameter is the size of the system (e.g. the edge length of the cube).
One possible way to convince oneself that there is no root lattice that can generate
this Bravais lattice is taking every rank three root lattice and calculating which
Bravais lattice it generates. We find that the i-cubic lattice has no description as
root lattice (see Table 5.6).

Continuous parameters

Every Bravais type allows for a set of continuous deformations which conserve its
symmetries. Those deformations are encoded and made explicit in the form space
that defines that particular Bravais type (cf. Appendix 5.A.1). The form space
tells us how many deformation parameters one Bravais type allows for, and what
is the effect of them (to change lengths of or angles between basis vectors). The
realization of that freedom in the context of root lattices is very limited: lattices
of Lie algebras allow for just one parameter, the size of the system; and if one
includes semi-simple Lie algebras (direct products of simple ones), one can choose
different sizes for different sublattices, but never the angles between vectors, which
are fixed to a limited set of values. So, for example, a two-dimensional oblique
lattice, in which the angle between the basis vectors is arbitrary, could never be
unambiguously expressed in terms of Lie root lattices.

In conclusion, the language of root lattices is incomplete and ambiguous, and
is lacking geometrical insight with respect to the language of Bravais types and
form spaces, which is, therefore, the one used in this chapter.

Nevertheless, in order to justify some of the matchings between our classifi-
cation of space groups and the ones already existing in the literature, we present
in Table 5.6 a classification of all of the Bravais types of lattices in 1, 2 and 3
dimensions, together with their equivalent root lattices, if there are any. There,
in order to overcome the discussed ambiguities in the root lattice language, some
conventions have been used:

• ⊕ means orthogonal product. Unspecified products should be understood
orthogonal.

• � means free-angle product. The scalar product of the roots is indicated
as a subindex. Notice that in the cases in which we have used this product
there is actually no equivalent Lie lattice description: a non-orthogonal
product of semi-simple Lie algebras is not a semi-simple Lie algebra. These
possibilities are written in italics.

• ←↩ means a product with the leftmost factor.

• Equal subindices mean equal length of the roots or equal scalar products.
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• A subindex in an algebra whose simple roots are of different length stands
for the squared length of the shortest simple root, e.g. G2,a means that the
shortest simple root of G2 has length squared a.

Gram matrix lattice name Lie algebra notation

1 dimension(
a
)

Ruler r SU(2)
2 dimensions(

a 0
a

)
Square tp SO(5), SU(2)a⊕ SU(2)a(

a ±a/2
a

)
Hexagonal hp SU(3)a, G2,a(

a 0
b

)
p-Rectangular op SU(2)a⊕SU(2)b(

a b
a

)
c-Rectangular oc SU(2)a�b SU(2)a(

a c
b

)
Oblique mp SU(2)a�c SU(2)b

3 dimensionsa 0 0
a 0

a

 p-Cubic cP SO(7), SU(2)a⊕ SU(2)a⊕ SU(2)aa a/2 a/2
a a/2

a

 f-Cubic cF SU(4), Sp(6)a −a/3 −a/3
a −a/3

a

 i-Cubic cI (none)a ±a/2 0
a 0

b

 p-Hexagonal hP [SU(3)a or G2,a]⊕ SU(2)ba b b
a b

a

 r-Hexagonal hR SU(2)a�b SU(2)a�b SU(2)a�b←↩a 0 0
a 0

b

 p-Tetragonal tP [SU(2)a⊕ SU(2)a or SO(5)]⊕ SU(2)ba+ 2b −a −b
a+ 2b −b

a+ 2b

 i-Tetragonal tI (no simple expr.)a 0 0
b 0

c

 p-Orthorhombic oP SU(2)a⊕ SU(2)b⊕ SU(2)ca c 0
a 0

b

 c-Orthorhombic oC SU(2)a�c SU(2)a⊕SU(2)ba+ b a b
a+ c c

b+ c

 f-Orthorhombic oF (no simple expr.)a+ b+ c −a −b
a+ b+ c −c

a+ b+ c

 i-Orthorhombic oI (no simple expr.)a c 0
b 0

d

 p-Monoclinic mP SU(2)a�c SU(2)b⊕SU(2)d

continued . . .
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Gram matrix lattice name Lie algebra notationa c d
a d

b

 c-Monoclinic mC SU(2)a�c SU(2)a�d SU(2)b�d←↩a d f
b e

c

 Triclinic aP SU(2)a�d SU(2)b�e SU(2)c�f ←↩

Table 5.6: List of Bravais types in 1, 2 and 3 dimensions, together with possible
root lattice expressions. The following prefixes and suffixes are used for the
lattice names: p primitive, c centered (in 2D) or base-centered (in 3D), f face-
centered, i body-centered, and r rhombohedral.

In general, Bravais types with two or more parameters in the form space
contain as specific cases other types with a lower number of parameters. For
example, if we set the off diagonal parameter to zero in the two-dimensional
oblique lattice (mp) (i.e. we take the basis vectors to be orthogonal), we get a
p-rectangular (op) lattice. If we set now the diagonal elements of the form space
to be equal (i.e. we take the basis vectors to have equal length), we get a square
lattice (tp). These three lattices form the embedding chain tp↪→op↪→mp.

A graph containing all of the existing embeddings of that kind in two and
three dimensions can be seen in Figure 5.6. For further information about this
topic, the standard reference is [32].

5.B Two-dimensional orbifolds
In order to illustrate some of the concepts addressed in this chapter, we reproduce
here the list of all possible two-dimensional space groups, also known as wallpaper
groups. They are well-known, and their classification can be found for instance in
[10].

The possible orders m of (irreducible) point group elements in n dimensions
are given by the equation

φ(m) ≤ n , (5.46)

where φ is the Euler φ-function. For dimension two, this leaves only elements with
order in {1, 2, 3, 4, 6} as possible point group elements. In six dimensions, this
gets extended to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}. Nevertheless, in dimensions
n ≥ 2, one can find point group elements with order m such that φ(m) > n.
This can be realized by building a point group element as the direct sum of two
point group elements of dimensions that add up to n. In that case, the order
of the point group element would obviously be the least common multiple of the
orders of the factors. For example, in six dimensions there exist point groups
with elements of order 30, which are a direct sum of a four-dimensional order 10
element and a two-dimensional order 3 element.

As discussed in Section 5.3, one can classify the 17 two-dimensional space
groups by their Q-classes. Those can be found in Table 5.7. There, Dn is the
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5.B Two-dimensional orbifolds

Figure 5.6: Graph of Bravais types embeddings in 2D and 3D.

dihedral group of order 2n and Sn is the symmetric group of order n!. In Table 5.8
the specific information of every affine class is shown: the Q-, Z- and affine class to
which they belong, its Bravais type of lattice (cf. Table 5.6), its orbifolding group
generators in augmented matrix notation and a name, description and image of
its topology. The augmented matrix of some element ge = (ϑe, λiei) ∈ S is given
by

ge =

(
ϑe λi
0 1

)
, (5.47)

using the lattice basis e. This matrix acts on an augmented vector (x, 1) by simple
matrix-vector multiplication.

138



Classification of symmetric toroidal orbifolds

label of # of # of affine
Q-class Z-classes classes

id 1 1
Z2-I 1 1
Z2-II 2 3
Z2 × Z2

∼= D2 2 4
Z4 1 1
Z2 n Z4

∼= D4 2 2
Z3 1 1
Z2 n Z3

∼= S3
∼= D3 2 2

Z6 1 1
Z2 n Z6

∼= D6 1 1

Table 5.7: Q-classes in two dimensions.

Q–Z–aff. class
Lattice

Generators Name &
description

Image

id–1–1

Oblique

Torus

Manifold

Z2-I–1–1

Oblique

−1 0 0
0 −1 0
0 0 1

 Pillow

Orbifold, 4 singulari-
ties with cone-angle π

Z2-II–1–1

p-Rectangular

 1 0 0
0 −1 0
0 0 1

 Pipe

Manifold, 2 bound-
aries

Z2-II–1–2

p-Rectangular

 1 0 1/2
0 −1 0
0 0 1

 Klein bottle

Manifold, non-
orientable

Z2-II–2–1

c-Rectangular

 0 1 0
1 0 0
0 0 1


Möbius strip

Manifold, non-
orientable, 1 bound-
ary

Z2 × Z2–1–1

p-Rectangular

−1 0 0
0 −1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 1

 Rectangle

Manifold, 1 boundary

continued . . .
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Q–Z–aff. class
Lattice

Generators Name &
description

Image

Z2 × Z2–1–2

p-Rectangular
−1 0 0

0 −1 0
0 0 1

 ,

 1 0 0
0 −1 1/2
0 0 1


Cut pillow

Orbifold, 2 singular-
ities with cone-angle
π, 1 boundary

Z2 × Z2–1–3

p-Rectangular

−1 0 0
0 −1 0
0 0 1

 ,

 1 0 1/2
0 −1 1/2
0 0 1

Cross-cap pillow

Orbifold, 2 singulari-
ties with cone-angle π

Z2 × Z2–2–1

c-Rectangular
−1 0 0

0 −1 0
0 0 1

 ,

 0 1 0
1 0 0
0 0 1


Jester’s hat

Orbifold, 1 singular-
ity with cone-angle π,
1 boundary

Z4–1–1

Square
 0 −1 0

1 0 0
0 0 1


Triangle pillow

Orbifold, 2 sin-
gularities with
cone-angle π/2, 1
singularity with
cone-angle π

Z2 n Z4–1–1

Square

 1 0 0
0 −1 0
0 0 1

 ,

 0 −1 0
1 0 0
0 0 1


Triangle

Manifold, one bound-
ary, 1 angle of π/2 and
2 of π/4

Z2 n Z4–1–2

Square
 1 0 1/2

0 −1 1/2
0 0 1

 ,

 0 −1 0
1 0 0
0 0 1


Jester’s hat

Orbifold, 1 singu-
larity with cone-
angle π/2, 1 boundary

Z3–1–1

Hexagonal

 0 −1 0
1 −1 0
0 0 1

 Triangle pillow

Orbifold, 3 sin-
gularities with
cone-angle 2π/3

Z2 n Z3–1–1

Hexagonal

 0 −1 0
−1 0 0
0 0 1

 ,

 0 −1 0
1 −1 0
0 0 1

 Triangle

Manifold, 3 bound-
ary, all angles π/3

Z2 n Z3–2–1

Hexagonal
 0 1 0

1 0 0
0 0 1

 ,

 0 −1 0
1 −1 0
0 0 1


Jester’s hat

Orbifold, 1 singu-
larity with cone-
angle 2π/3, 1 bound-
ary

continued . . .
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Q–Z–aff. class
Lattice

Generators Name &
description

Image

Z6–1–1

Hexagonal
 1 −1 0

1 0 0
0 0 1


Triangle pillow

Orbifold, 3 singulari-
ties with cone-angles
2π/3, π/3 and π

Z2 n Z6–1–1

Hexagonal
 0 1 0

1 0 0
0 0 1

 ,

 1 −1 0
1 0 0
0 0 1


Triangle

Manifold, 1 bound-
ary, with angles π/2,
π/3 and π/6

Table 5.8: List of all possible two-dimensional orbifolds. Q-classes are sepa-
rated by double lines.

Sometimes it is of interest to know the fundamental groups of the resulting
orbifolds. Among the two-dimensional space groups, most of the fundamental
groups are trivial with the following exceptions: the torus has a fundamental
group of (Z)2, the pipe and the Möbius strip Z, the cross-cap pillow (a projective
plane) Z2 and the Klein bottle’s one is its own space group, with group structure

S =
{
anbm | m,n ∈ Z , b a = a−1 b

}
. (5.48)
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Summary

Part I

When the electro-magnetic radiation coming from the sky is observed at mi-
crowave wavelengths, one finds a mild background of radiation which is practically
constant in all directions (once one removes the biggest foreground contributions,
such as the radiation coming from our own galaxy). What is the origin of that
radiation? When was it originated? When attempting to describe the current
cosmological data with General Relativity, scientists of the early decades of the
XX century found that the Universe must have been (and is) expanding for all
of its life. As a gas that gets hotter when compressed, the Universe must have
been much hotter in the past. So much that at some point electrons had so much
energy that they preferred being detached from the atomic nuclei, streaming and
scattering freely together with photons, forming what we call a plasma. Once the
the Universe’s growth diluted some of this energy, the electrons fell to the nuclei
to form atoms, and the photons were free to travel through space and reach us.
They form the background radiation we can see today, and that we call Cosmic
Microwave Background, or simply CMB.

When one carefully observes the CMB, the first feature that shows up is how
strikingly constant it is across all the sky. This is certainly not what we would
expect. On the one hand, two regions of the universe emitting a practically equal
signal is an indication that they are in equilibrium – the hotter and colder regions
have been exchanging energy until they were at the same temperature. On the
other hand, according to the speed our Universe expands in our cosmological
model, regions that are separated by more than a few degrees in the sky are so
very far apart that they never had time, since the beginning of the Universe to
the emission of the CMB, to exchange any energy at all. So how can they be in
equilibrium?

This contradiction was resolved in the 80’s with a crucial modification of the
cosmological model: we assume that in the early instant of the Universe it under-
went an explosively accelerated (near-exponential) expansion. Such an expansion
would stretch a small patch with almost constant temperature to a region bigger
than the amount of the Universe that we can see today. Therefore, what is far
apart in the Universe today, was so close in the past that there was almost no
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difference in temperature between these points. This explosive expansion stage
was called inflation.

As the most stringent supporting evidence for inflation, the CMB also contains
most of the information about inflation that we possess today. This information
is found in some very small fluctuations in the CMB, ten thousand times smaller
than the almost constant temperature of the CMB background. Those fluctu-
ations originated when the explosive expansion turned small quantum random
fluctuations on very small scales into differences of density of matter across big
distances in the cosmos. If the fluctuations that we observe today were generated
at very small scales, they must be well related to each other, or correlated. We
characterise their correlation by averaging the difference in temperature over pairs
of points in the sky separated by a certain angle. We call this average as a function
of scale the 2-point correlation function or power spectrum. If instead of having
been generated very close to each other, the fluctuations were completely random
and unrelated, those averages would be very close to zero. Instead, they are quite
sizeable, and their precise properties can tell us much about the quantum origin
of the fluctuations.

At the time of writing this thesis the Planck mission of the European Space
Agency has made available its first batch of data, and we are waiting for the next
and final release. Those data provide us with a very accurate measurement of the
2-point correlations of the CMB fluctuations, which is in agreement with that of
previous experiments. In addition to that, the next data release is expected to
contain a measurement of the 3-point correlation function or bispectrum, which is
an average of the correlation between the fluctuations over three different points
in the sky, instead of two. The 3-point correlation function, never measured be-
fore with sufficient precision, is of crucial importance for the study of inflation,
since there is a specific prediction for it: if inflation occurred in the simplest way
possible, we expect the 3-point correlations to be very close to zero, which cor-
responds to the initial fluctuations being Gaussian. Different, more complicated
settings of inflation predict diverse and characteristic 3-point correlations. The
moment is ripe, therefore, to test extensions of the simplest framework.

In the simplest model of inflation, the explosive expansion is caused by the
presence of a single kind of matter in the universe, the inflaton, which possesses a
negative pressure. In this thesis, we work under the assumption that the inflation,
though dominant, was not alone – there were more species present, which appear
to the inflation as a stiff background. When the inflation interacts with its back-
ground, the correlation functions of the CMB fluctuations at 2 and 3 points would
possess small but distinctive features. By searching for those features in the CMB
data, we can find out if the inflation evolved in such a non-trivial background,
and even resolve the particular shape of it.

Since, as we stated, the 3-point correlation function of the Planck mission has
not been released at the time of writing this thesis, we searched in the Planck
data for features in the 2-point correlation function. After we found the best can-
didates, we computed the associated 3-point correlations that we expect to see
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in the new data release of Planck, and left them as test for our simple extension
of the simplest model of inflation. In addition, we enlarged our search to include
Large Scale Structure (LSS) data, which also contains some information on infla-
tion, since galaxies and clusters are the final outcome of primordial fluctuations.
The LSS data confirmed the best candidates that we found in Planck’s CMB sky.

Part II

With the recent discovery of the Higgs particle in the ATLAS and CMS exper-
iments of the Large Hadron Collider (LHC), all of the main predictions of the
Standard Model of Particle Physics have been fulfilled, and it can be considered
complete. Nevertheless, there is a number of experimental and theoretical reasons
that encourage us to attempt to extend it.

On the experimental side, one phenomenon has already been clearly observed
that finds no explanation within the Standard Model: neutrino oscillations, i.e.
how streaming neutrinos spontaneously change their flavour between the three
possible ones. This phenomenon has been measured beyond doubt in different
sources, from the stream of neutrinos coming from the Sun, to those generated
at particle accelerators. This kind of behaviour is only possible for particles
possessing a non-zero mass, while Standard Model neutrinos are necessarily mass-
less particles. Any explanation for neutrino masses implies physics beyond the
Standard Model.

The nature of Dark Matter also lacks an explanation within the Standard
Model. The presence of Dark Matter is necessary to explain the cosmological
and galactic dynamics of the Universe as we observe it (same for Dark Energy,
which is not discussed here). Despite that fact, Dark Matter has never been
directly observed in accelerators or astrophysical particle physics experiments.
Therefore, little is known about the Dark Matter particle and its possible fitting
in an extension of the Standard Model.

On the theoretical side, there exist several arguments. For starters, the mass
of the Higgs particle, though not predicted by the Standard Model, is surprisingly
low. The surprise comes from the fact that particles are made heavier through
loop interactions with the particles they are coupled to. Since the Higgs field is
coupled to all the fermions of the Standard Model, we would expect that they
have driven its mass much higher. This suggests the existence of a symmetry
that cancels such contributions. One possibility is introducing counterparts of
the Standard Model particles with different spin but approximately equal mass.
The difference in spin would automatically cancel the contributions to the Higgs
mass, and, due to the mass of the new particles been approximately equal to those
known, the new particles could possibly be observed at the LHC within the next
years. We call that symmetry Super-Symmetry (SUSY), and we abbreviate it as
MSSM, the minimal possible SUSY extension to the Standard Model.

SUSY has an additional consequence: it hints towards the unification of all
fundamental forces operating at subatomic scale, i.e. electro-magnetic, strong and
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weak forces. We call this speculative phenomenon Grand Unification, and any the-
ory that describes it in detail is called Grand Unification Theory (GUT). GUT’s
would explain why the hyper-charge, one of the quantum numbers of the Stan-
dard Model particles, is in fact quantised. SUSY, combined with GUT, would
also provide us with several candidate particles to constitute the Dark Matter
that we observe (indirectly) in the Universe.

The MSSM possesses all the desired features mentioned above, but at the
cost of introducing many new free parameters in the model. This makes it less
predictive, which is never desirable for a physical model. In addition, it does not
address the quantum nature of the remaining fundamental interaction: gravity.
Those issues can be addressed assuming that the MSSM is embedded in String
Theory. String Theory provides us with a well-defined description of quantum
gravity, and, once the geometry and some properties of the theory have been
chosen, all the phenomenology at all energy scales, including those that we can
observe today, can be computed.

This is the case in particular of the setting considered in this thesis, Heterotic
Strings compactified in Symmetric Toroidal Orbifolds, compactification meaning
the assumption that the extra dimensions are finite and very small compared to
the scales of Standard Model physics. In this theory, one only needs to specify
the geometry of 6 extra dimensions, together with the effect of that geometry in
the messengers of the fundamental interactions (in that case, a rank-16 GUT):
given that, the content and possible interactions of all fundamental particles are
determined.

In this thesis, we perform a classification of all possible symmetric toroidal
orbifolds in which heterotic strings can be compactified. In order to achieve that,
we make use of their correspondence to crystallographic space groups, which are
already known up to dimension 6, and whose number is fortunately finite. We
establish which of those crystallographic groups possess the desired properties to
describe the MSSM at low energies, and compute some of the relevant properties
that allow for the description of the particle content and their interactions. We
also relate our classification to previous, incomplete ones in the literature.
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Samenvatting

Part I

Wanneer de elektromagnetische straling van het hemelgewelf wordt waargenomen
aan de hand van microgolven, dan is een milde achtergrondstraling zichtbaar die
praktisch constant is in alle richtingen (zodra de grootste bijdragen van de voor-
grond verwijderd zijn, zoals de straling die uit ons eigen melkwegstelsel komt).
Waar komt deze straling vandaan? Waar vindt het zijn oorsprong? Toen weten-
schappers de huidige kosmologische data probeerden te beschrijven met algemene
relativiteitstheorie bleek in de vroeg-twintigste eeuw dat het universum zich tij-
dens haar gehele levensduur heeft uitgebreid (en dat nog steeds doet). Net zoals
een gas heet wordt wanneer het samengeperst wordt, moet het universum in het
verleden ook veel heter zijn geweest. Zo heet, dat op een gegeven moment de elek-
tronen zoveel energie hadden dat zij liever gescheiden waren van de atoomkernen,
vrijuit stromend en verstrooiend met fotonen, om een zogenaamd plasma te vor-
men. Toen deze energie door de groei van het universum verdund was geraakt,
combineerden de elektronen met de kernen om atomen te vormen en waren de
fotonen vrij om te reizen door de ruimte en ons te bereiken. Het zijn deze fotonen
die de achtergrondstraling vormen die wij vandaag de dag waar kunnen nemen,
datgene dat wij de Kosmische Achtergrondstraling noemen (Cosmic Microwave
Background, CMB).

Wanneer men de CMB zorgvuldig waarneemt, is het eerste kenmerk dat zich
toont hoe opvallend constant de straling is, bekeken over het gehele hemelgewelf.
Dit is zeker niet wat we zouden verwachten. Aan de ene kant, het feit dat twee
regio’s van het universum praktisch hetzelfde signaal uitstralen is een indicatie
dat zij in evenwicht zijn – de hete en koude regio’s hebben energie met elkaar
uitgewisseld totdat zij dezelfde temperatuur hadden bereikt. Aan de andere kant,
volgens de snelheid waarmee ons universum uitdijt in ons kosmologische model
zouden de regio’s die meer dan een paar graden op het hemelgewelf van elkaar
verwijderd zijn zo ver uit elkaar staan dat zij nooit tijd hebben gehad om energie
uit te wisselen, ook niet aan het begin van het ontstaan van het universum. Dus
hoe kunnen zij dan in evenwicht zijn?

Deze tegenspraak was in de jaren 80 opgelost met een cruciale aanpassing van
het kosmologische model: we nemen aan dat in de eerste ogenblikken van het
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bestaan van het universum, deze een explosief versnellende (bijna exponentiele)
expansie heeft doorgemaakt. Een dergelijke expansie zou een klein stukje met
een bijna constante temperatuur opblazen tot een regio die groter is dan dat deel
van het universum dat wij vandaag de dag kunnen zien. Daarom is het zo dat
datgene dat nu in het universum ver van elkaar verwijderd is, zo dichtbij elkaar
stond in het verleden dat er bijna geen verschil in temperatuur was tussen deze
twee punten. Deze periode van explosieve expansie heet inflatie.

Naast het feit dat de CMB het grootste bewijs is voor het bestaan van in-
flatie, bevat deze ook de meeste informatie over inflatie die we op dit moment
hebben. Deze informatie kan gevonden worden in de extreem kleine fluctuaties
van de CMB, tien duizend keer kleiner dan de bijna constante temperatuur van
de achtergrondstraling zelf. Zulke fluctuaties zijn ontstaan toen de explosieve ex-
pansie de kleine, willekeurige kwantumfluctuaties op de kleine schaallengte heeft
omgevormd tot dichtheidsverschillen in de materie die verdeeld zijn over grote
afstanden in de kosmos. Als de fluctuaties, die we vandaag waarnemen, hun oor-
sprong vinden in kleine afstanden, dan moeten ze wel aan elkaar gerelateerd of
gecorreleerd zijn. Het gemiddelde van temperatuurverschillen over de hele hemel,
tussen paren van punten die op een bepaalde hoek van elkaar staan aan de hemel,
is karakteristiek voor de correlatie tussen deze fluctuaties. Dit gemiddelde als
functie van de hoek tussen de punten, heet de twee-puntscorrelatie of het ver-
mogensspectrum. Als de fluctuaties volledig willekeurig en ongecorreleerd waren
geweest omdat ze hun oorsprong wijd uiteen vonden, in plaats van op kleine af-
standen, dan zou dit gemiddelde op nul uitkomen. In plaats van nul, zijn deze
fluctuaties relatief groot, en hun precieze eigenschappen kunnen ons veel vertellen
over de quantumoorsprong van de fluctuaties.

Op het moment van schrijven van dit proefschrift, heeft de Planckmissie van
de European Space Agency (ESA) zijn eerste gegevens beschikbaar gesteld, en we
wachten op de volgende en definitieve vrijgave van alle gegevens. Deze gegevens
bevatten een zeer nauwkeurige meting van de twee-puntscorrelatie van de fluc-
tuaties in de achtergrondstraling en deze meting is in overeenstemming met de
uitkomsten van voorgaande experimenten. Bovendien verwacht men dat de vol-
gende vrijgave van gegevens ook een meting van de drie-puntscorrelatie ofwel het
bispectrum zal bevatten. Het bispectrum is een gemiddelde van de correlaties
tussen drie punten op vaste afstanden van elkaar over de hele hemel, in plaats
van twee. De drie-puntscorrelatie is nog niet eerder met voldoende precisie geme-
ten en is van cruciaal belang voor het bestuderen van inflatie, omdat inflatie een
specifieke voorspelling geeft voor drie-puntscorrelatie: als inflatie door het een-
voudigste model beschreven wordt, dan is de drie-puntscorrelatie naar verwachting
nagenoeg nul. Die houdt in dat de fluctuaties Gaussisch verdeeld zijn. Andere
gecompliceerdere modellen van inflatie voorspelen uiteenlopende maar specifieke
drie-puntscorrelaties. Nu is zogezegd het uur U om uitbreidingen van het simpel-
ste raamwerk van inflatie te testen.

In het simpelste model van inflatie wordt de explosieve uitdijing van het heelal
veroorzaakt door één enkel type materie in het universum: het inflaton. Het in-
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flaton heeft een negatieve druk. In dit proefschrift werken we onder de aanname
dat het inflaton niet alleen was, alhoewel het wel de voornaamste component blijft
– er waren meerdere soorten materie aanwezig, die ervoor zorgden dat het infla-
ton een stijve achtergrond ervoer. Als het inflaton interactie heeft met die stijve
achtergrond, dan zullen de twee- en drie-puntscorrelaties van de fluctuaties van
de kosmische achtergrondstraling kleine maar bijzondere eigenschappen hebben.
Door naar deze specifieke eigenschappen te zoeken in de gegevens van de achter-
grondstraling, kunnen we zien of het inflaton bewoog in zo’n stijve achtergrond
die niet triviaal is, en kunnen we zelfs de specifieke vorm van deze achtergrond
achterhalen.

Omdat zoals eerder gezegd de drie-puntscorrelatie nog niet is vrijgegeven door
de Planckmissie, op het moment van schrijven van dit proefschrift, hebben we in
de gegevens van de Planckmissie gezocht naar karakteristieke eigenschappen in de
twee-puntscorrelatie. Nadat we de beste kandidaten voor de twee-puntscorrelatie
hebben gevonden, hebben we de bijbehorende drie-puntscorrelatie uitgerekend,
die we verwachten te kunnen ontdekken in de nieuwe gegevens van Planck zodra
die worden vrijgegeven. Deze test voor onze simpele uitbreiding van het simpel-
ste inflatiemodel, staat ons nog te wachten. Bovendien hebben we ons onderzoek
uitgebreid naar structuren op grote schaal, die ook informatie over inflatie be-
vatten, omdat sterrenstelsels en clusters het eindproduct zijn van de primordiale
fluctuaties. De gegevens van de structuur op grote schalen bevestigen de beste
kandidaten die we vonden in de achtergrondstraling van Planck.

Part II

Met de ontdekking van het Higgs deeltje in de ATLAS en CMS experimenten van
de Large Hadron Collider (LHC) zijn alle belangrijke voorspellingen van het stan-
daardmodel van de deeltjesfysica uitgekomen, en kan het dus als compleet worden
beschouwd. Er zijn echter een aantal experimentele en theoretische redenen om
te proberen het uit te breiden.

Aan de experimentele kant is er al één fenomeen waargenomen dat niet ver-
klaard kan worden met het standaardmodel: neutrinooscillaties, dat wil zeggen
hoe neutrino’s, die voorkomen in drie soorten of generaties, spontaan van de ene
generatie in de andere veranderen. Dit is overduidelijk waargenomen, zowel in de
stroom van neutrino’s die van de zon komen, als in degenen die in deeltjesver-
snellers gegenereerd worden. Dit gedrag is alleen mogelijk voor deeltjes die massa
hebben, terwijl neutrino’s volgens het standaardmodel per definitie massaloos
zijn. Iedere verklaring voor de massa van neutrino’s impliceert dus fysica buiten
het standaardmodel.

Donkere materie wordt ook niet verklaard door het standaardmodel. De aan-
wezigheid van donkere materie is noodzakelijk om de kosmologische en galac-
tische dynamica die we in het heelal waarnemen te verklaren (hetzelfde geldt
voor donkere energie, wat hier niet besproken wordt). Desondanks is donkere
materie nog nooit direct waargenomen in deeltjesversnellers of sterrenkundige ex-
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perimenten. Er is daarom weinig bekend over de aard van donkere materie en
hoe het in een uitbreiding van het standaardmodel past.

Aan de theoretische kant bestaan verschillende argumenten. Om te beginnen
is de massa van het Higgs deeltje, hoewel niet voorspeld door het standaard-
model, verrassend laag. Deeltjes worden zwaarder door de wisselwerking met
de deeltjes waar ze aan gekoppeld zijn. Aangezien het Higgs-veld gekoppeld is
aan alle fermionen, was de verwachting dat al deze bijdragen tot een veel hogere
massa geleid zouden hebben. De verrassend lage massa suggereert het bestaan van
een symmetrie die dit tegengaat. Eén mogelijkheid is de introductie van tegen-
hangers van de deeltjes in het standaardmodel met andere spin maar ongeveer
gelijke massa. Het verschil in spin zou automatisch de bijdrage aan de massa
van het Higgs deeltje te niet doen. En omdat de massa van de nieuwe deeltjes
vrijwel gelijk zou zijn aan de bekende deeltjes, zouden ze mogelijk al binnen een
paar jaar waargenomen kunnen worden met de LHC. We noemen deze symme-
trie Super-Symmetrie (SUSY) en korten het af als MSSM, de minimaal mogelijke
SUSY-uitbreiding van het standaardmodel.

SUSY heeft een bijkomend gevolg: het hint op de vereniging van alle funda-
mentele krachten die werken op subatomaire schaal, d.w.z. de sterke en zwakke
kernkracht en de electromagnetische kracht. Dit speculatief fenomeen noemt men
de Grand Unification en elke theorie die dit in detail beschrijft wordt een Grand
Unification Theory (GUT) genoemd. GUT’s zouden verklaren waarom de hyper-
lading, een van de kwantumgetallen van de deeltjes in het standaard model, in
feite gekwantiseerd is. SUSY, gecombineerd met GUT, zou ons ook voorzien van
verscheidene kandidaatdeeltjes voor de donkere materie die we (indirect) waarne-
men in het universum.

Het MSSM bezit alle bovengenoemde, wenselijke eigenschappen maar tegen
de prijs van de introductie van vele nieuwe vrije parameters in het model. Dit
maakt het minder voorspelbaar, hetgeen nooit gewenst is voor een fysisch model.
Bovendien behandelt het niet de kwantum-aard van de resterende fundamentele
interactie: zwaartekracht. Zulke zaken kunnen worden behandeld onder aanname
dat het MSSM ingebed is in snaartheorie. De snaartheorie verstrekt ons een
goed gedefinieerde beschrijving van kwantumgravitatie. Wanneer de geometrie
en enkele eigenschappen van de theorie gekozen zijn kan de gehele fenomenologie
op iedere energy schaal, inclusief dat wat we tegenwoordig waarnemen, berekend
worden.

Dit is in het bijzonder het geval in de context van dit proefschrift, Heteroti-
sche snaren gecompactificeerd in symmetrische toroïdale orbifolds; compactificatie
betekent de aanname dat de extra dimensies eindig en zeer klein zijn in vergelijking
met de schaal van standaardmodelnatuurkunde. In deze theorie hoeft men slechts
de geometrie van 6 extra dimensies te specificeren, samen met het effect van deze
geometrie in de overdragers van de fundamentele interacties (in dat geval, een
rang 16 GUT): is dit gegeven, dan zijn de inhoud en mogelijke interacties van alle
fundamentele deeltjes bepaald.

In dit proefschrift voeren wij een classificatie uit van alle mogelijke sym-
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metrische toroïdale orbifolds, waarin heterotische snaren kunnen worden gecom-
pactificeerd. Om dit te bereiken maken we gebruik van hun gelijkenis met de
kristallografische ruimtegroepen, welke reeds bekend zijn tot op de zesde dimensie
en wiens aantal gelukkig eindig is. We stellen vast welke van die kristallografische
groepen de gewenste eigenschappen bezit om het MSSM te beschrijven bij lage
energieën en berekenen enkele van de relevante eigenschappen die de beschrijving
van de inhoud en interactie van deeltjes mogelijk maken. Ook relateren wij onze
classificatie aan vorige, incomplete classificaties uit de literatuur.
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