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Chapter 10

Topological phases in 2D arrays
of parafermionic modes

Systems that exhibit topological quantum order [250] have been a focus of attention
in recent years. Part of the interest is due to the fact that they have been proposed as
fault-tolerant quantum memories and platforms for quantum computation [6], the
paradigmatic example being Kitaev’s toric code [5]. The goal is to design architectures
effectively governed by topologically-ordered Hamiltonians, where qubits may be
stored and manipulated in a physically protected way. zero-modes Majorana zero-
modes, realized as superconducting mid-gap excitations in either one [26] or two
[14, 25] spatial dimensions, are promising building blocks for such architectures. Two
unpaired Majorana modes at the ends of a one-dimensional (1D) superconducting
wire encode non-locally a qubit [26] and, when allowed to move in a non-strictly 1D
geometry, exhibit non-Abelian statistics [11, 21, 27], allowing to implement a non-
universal set of quantum gates through ordered exchanges of their positions. Interest
in Majorana modes has increased considerably in recent times, since there are now
several experimentally accessible systems that may host these quasiparticles (see Refs.
[22] and [23] for a review). A notable example is the edge of a two-dimensional (2D)
topological insulator [43, 44], which hosts gapless helical (i.e., counter-propagating)
modes, in proximity to an s-wave superconductor (SC) and a ferromagnet (FM). The
competition between the proximity-induced SC and FM pairing along the edge results
in the presence of a Majorana mode at each domain wall [42].

Recently, an interesting extension of this model was proposed in Refs. [238–241].
While the edge excitations of a 2D topological insulator are normal electrons, it is
possible to consider instead edge quasiparticles with a fractional charge e/m, where
m is an odd integer. Such gapless quasiparticles appear, for example, at the edge of
the Laughlin fractional quantum Hall states, where they are described by a chiral
Luttinger liquid theory [251, 252]. Due to the absence of time-reversal symmetry,
these are chiral excitations. Helical e/m quasiparticles would arise at the interface
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between two ν = 1/m quantum Hall liquids with Landé g-factors of opposite sign or,
similarly, as a Kramers doublet at the edge of a fractional topological insulator [253]
(FTI).

The simplest way to model FTIs is to consider them as fractional quantum spin
Hall systems constituted by a two-dimensional gas of electrons subject to both a spin-
dependent magnetic field (or a position-dependent spin-orbit coupling) and Coulomb
interactions [254]. The first element creates two time-reversal symmetric Landau level
structures, whereas the second gives rise to topologically ordered fractional states.
These systems are gapped in the bulk (where Abelian anyonic excitations appear), but
present fractional gapless edge modes. While such time-reversal invariant topological
phases have been thoroughly studied theoretically [253, 255–258], no host material
has emerged so far as an experimental candidate. We should also mention a recent
proposal to realize a fractional helical liquid in quantum wires [259].

Along the FTI edges, the proximity effect with superconductors and ferromagnets
results in the presence of zero-modes [238, 239]. Since the second-quantization oper-
ators associated with these zero-modes inherit a fractional exchange phase (2π)/(2m)
from the unperturbed edge fields, we shall refer to them as Z2m parafermionic (PF)
zero-modes. They are projective non-Abelian anyons [244, 260], with fusion rules
that generalize those of Majorana modes, affording extended computational power
[238, 239, 242, 244, 261].

These superconducting zero-modes realize a 1D model with Z2m symmetry studied
by Fendley [235], which is an extension of Kitaev’s Majorana chain model [26] and
hosts PF zero-modes localized at the edges of the system. While the Kitaev chain is
dual to the quantum Ising chain via a Jordan-Wigner transformation, the Z2m chain
model is dual to the 1D chiral Potts (p-clock) model, with p = 2m.

Indeed, PFs as collective degrees of freedom are indeed well-known in statistical
mechanics (see for instance Ref. [262] and references therein). They appear natu-
rally in the study of the 2D p-state clock models [263–265] and their quantum 1D
counterparts [266]. In lattice systems, they arise as products of order and disorder
operators defined for self-dual systems. Moreover, PFs admit a description in terms
of a Zp invariant conformal field theory [267] (CFT) featuring the PFs as primary
fields. PF zero-modes in superconducting systems are however related only to CFTs
with unit central charge (see, for example, Ref. [268]), arising from a bosonization
description of the FTIs edge modes.

In light of this body of research, it is interesting to extend the recent works on
Z2m PFs to 2D networks of superconductors. For Majorana zero-modes, this question
has already been addressed in literature [52, 269, 270]. Majorana lattice models can
be mapped into Ising models, allowing for a description of their phase diagram. They
can exhibit topologically ordered phases and realize the toric code in a perturbative
regime [269]. The extension of these analyses to Z2m PFs may reveal new Hamiltonian
realizations of fault-tolerant stabilizer codes [99, 271] for quantum bits with 2m states,
and hence novel platforms for quantum memories generalizing the toric code [272].
However, for Z2m PFs the extension to 2D lattices is less immediate than in the
Majorana case, partially because of the connection to clock models, which are less



143

Figure 10.1: The two different 2D architectures considered in this chapter. They are
composed of superconductors (SC, blue) and ferromagnets (FM, red) deposited on
top of a 2D array of fractional topological insulators (FTI, grey). Z2m PF zero-modes,
marked as black stars, arise at each SC/FM interface along the edge. We consider
two possible geometries: in panel (a), the FTIs extend for the whole length of the
system, while in panel (b) the FTIs have fixed size. If we enlarged on the horizontal
direction the system in panel (a), the number of FTIs would stay constant and the
edge length would increase, while the vice versa would happen in panel (b). In the
main text, we refer to the two architectures as the stripe and tile models respectively.
As shown schematically in panel (c), the two models can also be distinguished by
different tunneling regimes between the two edge segments gapped out by the same
superconducting island. If the SC covers a single FTI (left), tunneling of fractional
charge e/m may take place between the two edges, while if the SC covers two different
FTIs (right), only electron tunneling is allowed, since transport of a fractional charge
cannot take place via a topologically trivial bulk. The tile model (b) only has SC
islands of this second kind, while the stripe architecture (a) has both.
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well understood than Ising models.
In order to fill this gap, in this chapter we consider two distinct 2D architectures

of Z2m PFs, shown in Fig. 10.1. The architectures are obtained from a pattern of
superconductors and ferromagnets layered on top of an array of 2D FTIs. The only
difference between the two models is the geometry of the underlying FTI array. In
Fig. 10.1(a) the array is formed by long stripes of FTIs extending for the whole length
of the system, while in Fig. 10.1(b) the stripes are cut in smaller pieces (or tiles) of
fixed dimension. For ease of discussion, we shall refer to these two architectures as
the stripe and tile model respectively.

Similarly to Refs. citexu2010, terhal2012, nussinov2012, the effective Hamilto-
nian of the two models is dictated by two mesoscopic phenomena:

1. the fractional Josephson effect, mediated by the tunneling of e/m quasiparticle
between two different superconductors, and

2. the charging energy of the superconductors.

The fractional Josephson effect arising with Z2m PF zero-modes has already been
investigated in Refs. [238, 240], while to our knowledge the interplay between PF
zero-modes and Coulomb energy was not considered in previous works.

While both the stripe and the tile architectures give rise to a square lattice of Z2m
PF zero-modes, and despite the fact that the effective Hamiltonian contains the same
set of local interactions in both models, we will show that the different geometry
of the FTI edges is crucial to determine their properties, which turn out to be quite
distinct. Indeed, since different edge geometries yield a different set of commutation
rules for the Z2m PF operators and different physical constraints on the Hilbert space,
they can determine different topological properties.

This chapter is organized as follows: in Sec. 10.1 we derive the effective Hamilto-
nian for the stripe and tile architectures, considering both Josephson and Coulomb
energies, and explain the physical constraints and conservation laws specific to each
array. In Sec. 10.2 we map the effective Hamiltonian into two different clock models,
using two non-isomorphic sets of PF Jordan-Wigner transformations. We analyze the
phase diagram of the two models in Sec. 10.3, where we show that the tile model
realizes a qudit toric code Hamiltonian in perturbation theory while the stripe model
is dual to a gauge theory. We conclude with an outlook in Sec. 10.4.

10.1 Effective Hamiltonian for 2D parafermionic architec-
tures

In the two architectures in Fig. 10.1, each FM/SC interface along the edge of a FTI
hosts a PF zero mode. Hence the stripe and tile architectures generate arrays of
interacting Z2m PFs, which are protected by the superconducting and ferromagnetic
gaps and thus determine the low-energy physics of the system. In this section we
derive an effective Hamiltonian in terms of Z2m PF operators for a square lattice
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Figure 10.2: A square lattice of Z2m PF zero-modes of dimensions Lx = 8 and L y = 4.
To label the PFs, we follow the convention established in the main text: first we
order the FTI edges with an index a, and then we order the PFs along each edge with
an index j, starting from an arbitrary origin. Each PF zero mode is then denoted
as α{a, j}, and all commutation rules between operators at different sites are fixed
unambiguously.

of dimensions Lx × L y with open boundaries1. Generalizations to other boundary
conditions can be easily implemented.

Each PF zero mode is described by a second-quantization operator α satisfying
the relations:

α2m = 1, (10.1)

α† = α2m−1. (10.2)

We can associate to α and α† respectively the annihilation and creation of a charge
e/m on the adjacent superconductor, in such a way that a Cooper pair is split in
2m quasiparticles [239]. Eqs. (10.1-10.2) can be derived from the Luttinger liquid
description of the FTI fractional edges, as done in detail in Refs. [238, 239] and as
outlined in Appendix 10.A.

Furthermore, these PF operators obey unconventional commutation rules. Denot-
ing two different PF operators with generic, ordered labels µ and ν, we have

αµαν = e−iεµνπ/m αναµ, (10.3)

α†
µαν = e+iεµνπ/m ανα

†
µ, (10.4)

where εµν = −ενµ = ±1 is a sign that must be fixed by convention. As we outline in
Appendix 10.A, Eqs. (10.1-10.4) can be derived from the underlying helical Luttinger
liquid theory for the FTI edges. Note that for m = 1 the εµν’s do not play any role
and the equations (10.1-10.4) reproduce all the properties of Majorana modes.

In the 1D case, µ and ν are integers denoting the positions of the PFs on a line.
All signs are fixed by assigning an orientation to the line, so that εµν = sgn(µ−ν). In
two dimensions the ordering procedure is slightly more complicated and proceeds in
the following way.

1Note that the geometry of the array constrains L y to be even and Lx to be a multiple of four.
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1. We label each FTI edge of the system with an integer a, thus introducing an
ordering of the edges. We also assign a counterclockwise orientation to each
edge a.

2. Starting from an arbitrary origin and following the counterclockwise orientation,
we label all ferromagnets along the edge with an integer k = 1, . . . , M (similarly
to what was done in Ref. [239]). The number M is the total number of FMs
along each FTI edge: note that M = 4 for the tile model, while M = Lx for the
stripe model (see Fig. 10.2).

3. We identify the SC/FM interfaces at the left and the right of each FM with an
integer j = 2k− 1 or j = 2k respectively.

The PFs αµ,αν are thus labelled by a composite index µ= {a, j}, ν= {a′, j′} and we
fix all the conventional signs as

εµν = sgn(a− a′) +δaa′ sgn( j − j′). (10.5)

In Fig. 10.2 we explicitly illustrate the procedure for labeling all the PFs of our
square array, in both the tile and stripe architecture. Due to the different number
and disposition of the FTIs, the PFs in the stripe model are actually distinct from
(non-isomorphic to) the PFs in the tile model. The value of εµν may differ for pairs of
PFs in the same site of the square lattice, and consequently the set of commutation
relations Eqs. (10.3,10.4) is not the same for the two geometries. From the point of
view of the physical components, this difference can be traced back to the following
fact [see also Fig. 10.1(c)]. In the tile model, the array is fully constituted by SC
islands connecting two different FTIs. Quasiparticle tunneling from one FTI edge
to the other is forbidden since the two edges are separated by a topologically trivial
region. The stripe model, instead, is composed also by a second type of SC island,
connecting two edges of the same FTI. In this case, tunneling of a charge e/m from
one edge segment to the other is possible, albeit suppressed by the bulk gap, akin to
what happens in a fractional quantum Hall constriction [273].

In order to describe physical interactions between PFs, it is useful to introduce
the operator

Pµν = eiεµνπ/2mα†
ναµ, (10.6)

defined for every given pair αµ,αν. For m = 1, Pµν represents the Z2 fermionic parity
associated with two Majorana modes. Here we are extending this notion to the Z2m
symmetry of the PFs, and we shall refer to Pµν as Z2m charge. From its Hermitian
conjugate,

P†
µν = e−iεµνπ/2mα†

µαν, (10.7)

we see that it is a unitary operator,

PµνP†
µν = P†

µνPµν = 1. (10.8)
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Moreover P2m
µν = 1. Thus its eigenvalues must be the (2m)-th roots of unity,

λn = einπ/m, n= 0,1, · · · , 2m− 1. (10.9)

A pair αµ, αν can be irreducibly represented on a 2m-dimensional Hilbert space, with
a basis given by the states |n〉 such that Pµν|n〉= λn|n〉. The Hilbert space dimension
of a square lattice of PF zero-modes of size Lx × L y is therefore (2m)Lx ·L y/2.

Now that we have set the basic algebraic rules, we can write down the physical
ingredients of the model - Josephson and charging energy. These will form the basic
local bonds used to write an effective 2D Hamiltonian for the PFs.

10.1.1 Josephson energy

Thanks to the presence of zero-modes, phase-coherent tunneling of e/m quasiparticles
may take place across the ferromagnetic region between adjacent superconductors
along a common edge. The resulting Josephson effect is characterized by an anoma-
lous periodicity of 4πm (in units of the superconducting flux quantum Φ0 = h/2e),
essentially because the tunneling quasiparticle’s charge is reduced by a factor 2m with
respect to the charge of a Cooper pair [42, 238–240]. In other words, the anomalous
period reflects the fact that the junction can be in 2m different states associated to the
Z2m charge of two PFs located at its ends. Physically, these states are distinguished
by the fractional spin of the ferromagnet inside the junction [239], or equivalently by
the number of the fractional quasiparticles trapped in it (modulo 2m).

Using the notation introduced in Fig. 10.2, the Z2m charge of a junction situated
on edge a can be written as

P{a,2k−1},{a,2k} = e−iπ/2m α†
{a,2k}α{a,2k−1}. (10.10)

It acts as a transfer operator, destroying one e/m charge inside the superconductor on
one side of the junction and creating it on the other side. Such tunneling processes
can be modeled by an effective Hamiltonian of the form

HJ = −
J
2

�

ei(δ−π)/2m α†
{a,2k}α{a,2k−1} +H.c.

�

. (10.11)

Here J is the tunneling strength and δ is the phase difference between the two
superconductors. The tunneling Hamiltonian splits the states of the junction in 2m
energy branches given by

EJ,n = −J cos
�

δ

2m
+

nπ
m

�

(10.12)

with n= 0, . . . , 2m− 1.
As in the case of Majorana zero-modes [42, 52], the fractional Josephson effect

mediated by PF modes prevails over the ordinary Josephson effect mediated by Cooper
pairs, which is a higher-order effect. Moreover, the addition of the ordinary Josephson
term, with 2π periodicity in the phase difference, would not modify qualitatively our
results, thus it is neglected here and in the following.
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10.1.2 Charging energy

Let us now consider a single superconducting island of our array, and let us denote with
φ and N = −2i d

dφ the phase and number operators of this island. The presence of the
PF zero-modes becomes manifest through non-trivial (twisted) boundary conditions
in the condensate ground state wave-function Ψ(φ) [36],

Ψ(φ + 2π) = eiπq Ψ(φ) . (10.13)

Here q represents the charge in units of e inside the superconductor (modulo 2e).
The spectrum of the number operator depends on these twisted boundary conditions,
since its twisted eigenfunctions χs(φ) = ei(s+q/2)φ/

p
2π satisfy

Nχs = (2s+ q)χs, s ∈ Z. (10.14)

In a conventional superconductor, q = 0, we have periodic boundary conditions, and
N counts Cooper pairs. In the presence of Majoranas q may assume either value
{0, 1} giving periodic or anti-periodic boundary conditions depending on the fermion
parity of the superconductor [36]. In the presence of Z2m PF zero-modes, the possible
values of q are extended to fractional values:

q = { n
m}= {0, 1

m , 2
m , . . . , 1, m+1

m , . . . , 2m−1
m }. (10.15)

The resulting boundary conditions are twisted with possible phases einπ/m, and the
spectrum of N is given by rational numbers with denominator m.

Ground states with different values of q are not anymore degenerate if the charging
energy of the superconducting island,

Hch = EC (N − nind)
2 , (10.16)

is taken into account. Here EC = e2/2C , C is the self-capacitance of the supercon-
ductor, and nind the charge (in units of e) induced on the island by nearby voltage
gates.

For our purposes, it is useful to separate the contribution of the fractional charges
to the charging energy from that of the Cooper pairs. We will therefore work in a
regime which highlights the role of the former, as done in Ref. [84] for Majorana
modes. If all superconducting islands are connected to a grounded superconductor via
a conventional Josephson junction of energy EJ � EC , the superconducting phases are
pinned to their classical minima, freezing the bosonic degree of freedom associated
with Cooper pairs. The charging energy splits the ground state degeneracy by inducing
quantum phase slips. In this semiclassical regime, Hch can be replaced by an effective
Hamiltonian of the form [37]

H∆ = −∆ cos(πq+πnind) . (10.17)

The cosine dependence on the charge in this effective Hamiltonian is reminiscent of
the Aharonov-Casher effect [274]. When a (Josephson) vortex encircles a supercon-
ducting island, it acquires a phase proportional to the charge contained in it. The
energy ∆ is exponentially small in the ratio EJ/EC .
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Let us now write explicitly the interaction (10.17) in terms of the PF operators.
We denote as qa,k the fractional charge trapped inside the segment of an FTI edge a
between the k-th and (k+ 1)-th ferromagnet. As such, it can be expressed as

eiπqa,k ≡ P{a,2k}{a,2k+1} = e−i π2m α†
{a,2k+1}α{a,2k}. (10.18)

In the special case k = M , Eq. (10.18) has to be supplemented with the boundary
condition

α{a,2M+1} = e−iπqa α{a,1}, (10.19)

where qa is the total fractional charge along the edge a. Eq. (10.19) appears naturally
in the bosonization description of the PFs as the boundary condition of a closed edge
with total charge qa surrounding no net magnetic flux [239], see also App. 10.A. This
boundary condition constitutes a constraint that the physical states of the system
must fulfill, as we will discuss more extensively in the final part of this section.

In our 2D architecture, each SC gaps out either one or two segments of an FTI
edge, depending on whether it lies at the boundary of the system or in the bulk. In the
second case, the total fractional charge q contained in it is the sum of two charges qa,k,
qa′,k′ and can be expressed as eiπq = eiπ(qa,k+qa′ ,k′ ) = P{a,k}{a,k+1}P{a′,k′}{a′,k′+1}, since
two Z2m charges operators always commute if they do not share a PF operator. The
charging energy takes the form

H∆ =















−
∆

2

�

eiπnind e−iπ/2m α†
{a,2k+1}α{a,2k} + h.c.

�

on the boundary

−
∆

2

�

eiπnind e−iπ/m α†
{a,2k+1}α{a,2k}α

†
{a′,2k′+1}α{a′,2k′} + h.c.

�

in the bulk

(10.20)
The total charges qa of the FTI edges may appear in the Hamiltonian (10.20) as
additional phases, due to Eq. (10.19).

10.1.3 Effective Hamiltonian

Adding together the contributions from all islands and junctions, we arrive to an
effective Hamiltonian

H =
∑

islands

H∆ +
∑

junctions

HJ . (10.21)

Each PF of the array belongs to one superconducting island and one junction and
therefore it appears twice in the effective Hamiltonian, once in H∆ and once in HJ.

Note that the effective Hamiltonian is the same for the stripe and the tile archi-
tectures, which share the same lattice, the same number of parafermions and the
same set of local interactions. Nevertheless, the presence of two different sets of
commutation rules for the PF operators is enough to give the two systems markedly
different properties.
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10.1.4 Conserved quantities and charge constraints

The two different commutation rules between PFs in the stripe and tile architectures
are due to the fact that the Hilbert spaces of the two system are constrained in
physically different ways. To see this, notice that the total charge qa at the edge of
each FTI a must be conserved since no term in the Hamiltonian (10.21) introduces
tunneling between different fractional topological insulators. That is,

[eiπqa , H] = 0 (10.22)

for every a. Moreover, the total charge of each FTI (edge plus bulk) is not only
conserved but also constrained to be an integer multiple of the electron charge e.
Thus, if we make the simplifying assumption that there are no fractional excitations
trapped in the bulk of the FTIs, we come to the conclusion that all qa’s must be
integer-valued. This requirement restricts the possible eigenvalues of eiπqa to ±1,
corresponding to the even or odd fermion parity sectors. Without loss of generality,
we will assume that each FTI has an even number of electrons, qa = 0,±2,±4, . . . ,
leading to the set of conditions

eiπqa =
M
∏

k=1

P{a,2k},{a,2k+1} = 1. (10.23)

This choice amounts to restricting the twisted boundary conditions (10.19) to the
periodic case.

The constraint (10.23) is violated if a quasiparticle or a quasi-hole is introduced
in the bulk of the FTI. Due to the incompressibility of the FTI liquid, this process is
related to the presence of an additional flux quantum Φ0 = h/2e piercing the bulk
FTI [253, 255]. Thus, we can translate the conservation of electric charge on the
edge of the FTI into a conservation of the magnetic flux threaded through the bulk.
The latter is measured by the Aharonov-Bohm phase of a quasiparticle performing a
counter-clockwise loop along the edge of the FTI. Mathematically, the Aharonov-Bohm
phase factor is given by the string product Σa of the tunneling operators along such
loop,

Σa =
M
∏

k=1

P{a,2k−1},{a,2k} (10.24)

which obeys [Σa, eiπqa] = 0, [Σa, H] = 0 and (Σa)2m = 1 and has eigenvalues
σa = eiπn/m, n = 0, . . . , 2m − 1. One can derive from Eqs. (10.3) and (10.4) the
commutation rule

Σaα
†
{a, j} = e−iπ/mα†

{a, j}Σa , (10.25)

which confirms that the operator α†
{a, j}, creating a charge e/m on the edge of the FTI,

at the same time adds −π/m to the Aharonov-Bohm phase.
Consistently with the constraint (10.23), we consider as physical only the sector

of the full Hilbert space in which

Σa = 1 , (10.26)
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so that the magnetic flux in each FTI must be a multiple of 4mΦ0. Changing the fluxes
that pierce each FTI, we choose a different set of eigenvalues σa and select a different
physical sector.

The differences between the tile and stripe model originate from the fact that, for
fixed system size, the number of FTIs is greater in the tile than in stripe model. This
in turn determines the number of independent constraints on the Hilbert space, as
reflected in the extent M of the product defining the string operator in Eq. (10.24) -
we recall that M = 4 in the tile model and M = Lx in the stripe model. The result is a
different dimensionality of the physical sector of the Hilbert space of the two models.

10.2 Mapping to 2D quantum clock models

To highlight the differences between the two models, it helps to use a mapping onto
quantum 2D 2m-clock models. These models are defined on a 2D lattice where each
site r is a 2m-level quantum system and their Hamiltonians possess discrete Z2m local
symmetries. Clock Hamiltonians are defined in terms of degrees of freedom σr and
τr that satisfy

σ2m
r = τ

2m
r = 1 (10.27)

τ†
r = τ

−1
r , σ†

r = σ
−1
r . (10.28)

Operators on any given site have commutation rules similar to those of PFs,

σrτr = eiπ/m τrσr (10.29)

but operators on different sites commute. If m = 1 these relations are satisfied by
Pauli matrices σz

r ,σx
r . In the mathematical literature, the algebra describing PFs is

known as a generalized Clifford algebra. Its representation theory has been worked
out in detail in Refs. [275, 276], and from it, it is possible to infer a mapping relating
the PF operators α and the clock operators σ,τ. This mapping can be achieved via a
parafermionic Jordan-Wigner transformation [235, 275, 277].

To each couple of adjacent PFs α{a,2k},α{a,2k+1} on the same superconductor, we
associate a couple of operators σa,k,τa,k. These operators therefore live on (a subset
of) the links of the square lattice defined by the PFs. The mapping between PFs and
clock operators is given by

α{a,2k} = κaσa,k+1

∏

1≤l≤k

τa,l (10.30)

α{a,2k+1} = κa ei π2m τa,k+1σa,k+1

∏

1≤l≤k

τa,l (10.31)

Here κa are fractional Klein factors taking care of the commutation rules between
parafermions on different edges [278, 279],

κ−1
a = κ

†
a (10.32)

κaκa′ = ei sgn(a′−a)π/m κa′κa. (10.33)
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Figure 10.3: The transformation defined in Eqs. (10.30), (10.31) maps the PF
operators living on the sites of a square lattice into a set of clock operators σ,τ
defined on the links of the lattice occupied by a superconductor (marked in figure as
black dots). Here, as an example, we show the positions of the clock operators in the
case of a FTI in the tile model. The mapping between α1 . . . ,α8 and σ1,τ1, . . . ,σ4,τ4
shown in this figure is explicitly written down in Eq. (10.37).

These commutation rules must be compared with Eqs. (10.3,10.4,10.5). Apart from
fixing the commutators, the Klein factors do not play a role and drop out from any
quadratic operator considered in this chapter. The boundary conditions (10.19) and
the constraints (10.23),(10.26) are taken into account by setting

σa,M+1 = σa,1 (10.34)

τa,M+1 = τa,1 (10.35)
M
∏

k=1

τa,k = 1 (10.36)

Let us write down an explicit example of the transformation for the case M = 4,
relevant for the tile architecture. In this case the relations (10.30) and (10.31),
dropping the index a and the Klein factors for clarity, read (see also Fig. 10.3)

α8 = σ1 , α1 = ei π2mτ1σ1 ,
α2 = σ2τ1 , α3 = ei π2mτ2σ2τ1 ,
α4 = σ3τ2τ1 , α5 = ei π2mτ3σ3τ2τ1 ,
α6 = σ4τ3τ2τ1 , α7 = ei π2mτ4σ4τ3τ2τ1 .

(10.37)

We now rewrite the Hamiltonian in terms of the clock operators. For the Josephson
energy, Eq. (10.11), we obtain

HJ = −
J
2

�

eiδ/2m σ†
a,k+1σa,k + h.c.

�

, (10.38)

while the charging energy, Eq. (10.20), becomes

H∆ =















−
∆

2

�

eiπnind τa,k + h.c.
�

on the boundary

−
∆

2

�

eiπnind τa,kτa′,k′ + h.c.
�

in the bulk

(10.39)
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Figure 10.4: Layout of the stripe and tile architecture in terms of clock operators σ,τ
(black dots), living on the links of the square lattice occupied by a superconductor.
Since clock operators at different sites commute, it is not necessary to order the FTI
nor to assign an orientation to the FTI edges. However, notice that the clock operators
for the two models live on two inequivalent lattices.

Note that the locality of the interactions is preserved. At this point, it is useful to split
the array Hamiltonian of Eq. (10.21) into bulk and boundary contributions,

H = Hbulk +Hboundary, (10.40)

with

Hbulk = −
� J

2

∑

junctions

σ†
a,k+1σa,k +

∆

2

∑

islands
∈bulk

τa,kτa′,k′

�

+ h.c. (10.41)

and
Hboundary = −

∆

2

∑

islands
∈bdr

�

τa,k +τ
†
a,k

�

, (10.42)

see also Fig. 10.4. In writing Eqs. (10.41),(10.42) we have, for simplicity, set nind = 0
for all islands and, in agreement with our choice of the physical sector, δ = 0 for all
junctions. Then the couplings J ,∆ become purely real and all equal.

Splitting the Hamiltonian into bulk and boundary contributions is useful for
studying various boundary conditions. For simplicity, in the remainder of this chapter
we will set Hboundary = 0 and focus on bulk properties of the array, assuming the system
size is large enough to justify neglecting Hboundary. Also Hboundary = 0 corresponds
(for any system size) to the exact boundary conditions in case every superconducting
island at the boundary of the array is grounded (since in that case ∆ = 0 at the
boundary).

The Hamiltonian Hbulk of Eq. (10.41) commutes with an extensive set of local
operators

ξs = σa,kσ
†
a′,k′ , [ξs, H] = 0, (10.43)

associated to every bulk superconducting island s for both the tile and stripe models.
Notice however that only those operators ξs that commute with the constraints
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Figure 10.5: Sketch of the phase diagram of the two models, as outlined in the
introduction to Sec. 10.3. We distinguish between two regimes, depending on whether
Coulomb or Josephson energy dominates. The Coulomb regime shows, for both
models, a non-local behavior, with degenerate ground states distinguished by the
expectation values of string-operators. Only the tile model, however, presents a truly
topological order characterized by anyonic excitations (see Sec. 10.3.1). The stripe
model is instead dual to a Z2m lattice gauge theory (see Sec. 10.3.2) which undergoes
a deconfinement/confinement phase transition with increasing J/∆ [280].

described in the previous section are actual physical symmetries: if a 6= a′, the operator
(10.43) moves one fractional charge from one edge to the other, thus violating the
charge constraint.

The difference between the tile and the stripe architectures can now be better
appreciated, as shown in Fig. 10.4. The effective Hamiltonian (10.21) associated to
either architecture is defined on the square lattice in terms of PFs. In contrast, Heff is
defined on inequivalent lattices when represented in terms of clock operators as in
Eq. (10.41). The tile model Hamiltonian Htile is obtained by specializing Hbulk to a a
decorated square lattice, while the stripe model Hamiltonian Hstripe is obtained by
specializing Hbulk to a brick-wall lattice.

10.3 Topological phases and orders

The quantum phase diagram of the tile and stripe models at zero temperature is
controlled by the single parameter J/∆. In the following we will call Coulomb-
dominated the regime ∆� J and Josephson-dominated the opposite regime J �∆.
In this section we study the two regimes for both models, with a focus on the presence
(or absence) of topological order. We dedicate Sec. 10.3.1 to the tile model and
Sec. 10.3.2 to the stripe model. Let us summarize, here and in Fig. 10.5, the main
findings.

The Josephson-dominated regime shows no topological features for either model.
On one hand, the ground state of the tile model is singly degenerate in this limit due
to the charge constraints. Moreover, exactly at ∆ = 0, the ground wave function
reduces to a product state of wave functions for local four-body clusters, emphasizing
the absence of long-range entanglement. On the other hand, at ∆ = 0 the stripe
model reduces to a system of decoupled, one-dimensional vector Potts chains in zero
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transverse field. Hence, in the thermodynamic limit, the stripe model has ferromag-
netic order in the Josephson-dominated regime J �∆. The charge constraints do
not suffice to select a unique ground state like for the tile model, but rather correlates
the magnetization for pairs of chains.

In the opposite Coulomb-dominated regime, and specifically at J = 0, both the tile
and stripe models show dramatically increased (relative to ∆= 0) ground-manifold
degeneracy. This suggests that at least one phase transition separates the two regimes
in the thermodynamic limit for both models.

We will show that the tile model is topologically ordered in the Coulomb-dominated
regime, since

1. the degeneracy of its ground manifold depends on the topology of the lattice,
and

2. the model has anyonic excitations completely equivalent to those in the qudit
toric code with Z2m discrete symmetry [272, 281].

The second point is especially noteworthy, since the tile model is akin but neither
strictly equivalent to the Z2m toric code by Kitaev [5] nor to its generalizations
[272, 281].

Unlike the tile model, which can be defined naturally on a surface of arbitrary
genus due to the limited extension of its FTIs, the stripe model fits naturally only
open, cylindrical, or periodic (toroidal) boundary conditions. We will see that in
the Coulomb-dominated regime its ground state degeneracy is not protected against
local operators. Hence we do not consider the stripe model topologically ordered.
We will argue nevertheless that the ∆� J regime is characterized by a non-local
order parameter, which we will define using a duality mapping the stripe model to
the Z2m lattice gauge theory [280]. Thus, even in the absence of a topological order,
the Coulomb-dominated phase of the stripe model can be addressed more generically
as a topological phase.

The connection between topological order and lattice gauge theories in Josephson
junction arrays has already been the subject of detailed studies, for both Z2 symmetric
models [282–284] and more general Abelian and non-Abelian gauge symmetries
[285]. These models are based on superconducting architectures of Josephson junc-
tions, where the required degeneracies are obtained with fine tuned magnetic fluxes.
Such architectures can present topological phases in the Josephson-dominated regime,
as experimentally verified in Ref. [286]. The two models studied differ in two im-
portant aspects: the absence of fine-tuning to create and control the elementary
components of the arrays, which is due to the topological origin of the PF modes, and
the fact that the topological phases are obtained in the Coulomb-dominated regime,
essentially exchanging the role of electric and magnetic excitations with respect to
Ref. [282].
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Figure 10.6: Panel (a): The notation adopted for the decorated square lattice on
which the tile model can be conveniently rearranged. The grey diamonds, sitting
on the sites r of a square lattice, are FTI. To each site r there correspond four clock
operators σr ,i ,τr ,i , arranged counterclockwise. Blue links are SC, red links are FM.
Panel (b): The operator Br in Eq. (10.48) is the counterclockwise product of four
σσ† operators around the same plaquette.

10.3.1 A physical realization of Z2m toric code anyons: the tile model

To analyze the effective Hamiltonian for the tile architecture, it is useful to adopt a
decorated square lattice were each FTI sits on a site r = ie1 + je2, with (i, j) a pair of
integers, see Fig. 10.6. In this lattice, the array Hamiltonian Hbulk of Eq. (10.41) is
given by

Htile =−
� J

2

∑

r

4
∑

i=1

σ†
r ,iσr ,i+1 +

∆

2

∑

〈r ,r ′〉

Q〈r ,r ′〉

�

+ h.c. (10.44)

where Q〈r ,r ′〉 labels the charging energy terms of the superconducting islands, now
sitting on the links of the square lattice between two neighboring diamonds,

Q〈r ,r+e1〉 = τr ,3τr+e1,1 , Q〈r ,r+e2〉 = τr ,4τr+e2,2. (10.45)

Let us now consider the limit J = 0 deep in the Coulomb-dominated regime. The
system is then in a limit state where tunneling between islands is forbidden. Each
superconductor minimizes the charging energy in the space of physical states specified
by the charge constraints:

Q〈r ,r+e1〉 =Q〈r ,r+e2〉 = 1. (10.46)

These conditions allow for (2m)-fold degeneracy for each superconducting link,
corresponding to the presence of the local symmetries (10.43). However in the sector
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of physical states we must impose the constraints

4
∏

i=1

τr ,i = 1 (10.47)

derived from Eq. (10.23). Nearly half of the previous states are then projected
out, leaving a ground state manifold of dimension (2m)#SC/2. This number is exact
asymptotically in the system size, but depends slightly on the boundary conditions.
For example, for periodic boundary conditions the exact degeneracy of the ground
manifold is (2m)1+(#SC/2).

The degeneracy of the Coulomb-dominated limit at J = 0 is partially lifted when
weak tunneling terms are reintroduced, that is, we allow J 6= 0. The Coulomb-
dominated regime J �∆ can be treated perturbatively by introducing an effective
low-energy Hamiltonian affecting only the ground state manifold at J = 0. We need
to keep only those operators in the perturbative expansion that do not couple the
ground state manifold to the excited states. This is a standard technique [287], and
the computation is analogous to the perturbative derivation of the Z2 toric code
Hamiltonian from Kitaev’s honeycomb model [78], so we will only streamline the
essential points.

At first order, the perturbation σ†
r ,iσr ,i+1 creates two charged ±e/m excitations

on adjacent superconductors, increasing the energy of the system by an amount
G = 2∆(1− cosπ/m). Similarly, at all odd orders we obtain terms that we neglect
as they do not leave the J = 0 ground state manifold invariant. At second order, we
obtain only terms describing the tunneling back and forth of a fractional charge e/m
across a single Josephson link. These terms renormalize the ground energy level, that
is, they provide an energy offset to the full Hamiltonian. At fourth order we obtain
the first relevant contribution. It is a plaquette operator of the form (see Fig. 10.6)

Br =
�

σr ,4σ
†
r ,3

�

×
�

σr+e1,1σ
†
r+e1,4

�

× (10.48)

×
�

σr+e1+e2,2σ
†
r+e1+e2,1

�

×
�

σr+e2,3σ
†
r+e2,2

�

,

describing the tunneling of an e/m excitation along a loop of four FTI edges and four
superconducting islands. The resulting perturbative Hamiltonian reads

Htile
pert = −

�∆

2

∑

〈r ,r ′〉

Q〈r ,r ′〉 +
5J4

4G3

∑

r

Br

�

+ h.c. (10.49)

where we note that, in the case m = 1, the coefficient of Br matches the one obtained
in a similar perturbative expansion in Ref. [269], where equivalent plaquette operators
are obtained.

Since the operators Br commute with the charge constraints, the space of physical
states for the perturbative Hamiltonian Htile

pert is left untouched. The bond operators
Q〈r ,r ′〉 and Br , together with their Hermitian conjugates, constitute a completely
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Figure 10.7: The four non trivial loop operators that define the ground state manifold
of the tile model on a torus. The operators Hτ, Vτ are defined as the product of all τ
along the path described by the two blue lines, in the order established by the arrows.
Similarly, the operators Hσ, Vσ are defined as the product of all σσ† operators along
the path given by the red lines. Loop operators corresponding to different paths only
differ by a product of stabilizer operators Q〈r ,r ′〉 or Br .

commuting set of stabilizers for a qudit surface code [272]. This surface code protects
against every local error that excites a ground state of Hpert into a state of higher energy
[272]. In particular, the Q〈r ,r ′〉 operators enforce the absence of charge excitations
in the superconducting islands, while the Br operators enforce the absence of flux
excitations.

Let us note that the Hamiltonian Htile
pert is not exactly equivalent to the Z2m toric

code originally discussed by Kitaev in Ref. [5], since the stabilizers Q〈r ,r ′〉 and Br are
not projectors. The construction of these operators is instead more closely related to
the qudit surface codes introduced in Ref. [272] - although, strictly speaking, Htile

pert is
not equivalent to those models as well, since it is not possible to canonically associate
our stabilizers Q〈r ,r ′〉 and Br to vertices and faces of a two-dimensional simplicial
complex. Despite these minor differences, however, the topological properties of
these models are the same.
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The conditions

Q〈r ,r ′〉 = 1, Br = 1,
∏

i

τr ,i = 1, (10.50)

specify the ground manifold of the system. Its degeneracy can be determined from
symmetry considerations. On the torus (periodic boundary conditions) there are
four types of loop symmetries Hτ, Hσ, Vτ, Vσ, defined in Fig. 10.7, associated to non-
contractible loops and compatible (commuting) with the charge constraints. It is
interesting to notice (for comparison with other Z2m surface codes in the literature)
that the loop symmetries Hτ, Vτ, (Hσ, Vσ) are disjoint, that is, they do not have any
clock degrees of freedom in common. As usual, any two loop symmetries of a given
type, τ or σ, associated to equivalent but different non-contractible loops differ only
by a product of the stabilizer operators in (10.50) (or their hermitian conjugate).
Hence, in the ground manifold, all these loop symmetries collapse into just four
inequivalent ones. These form two non-commuting pairs,

Hτ Vσ = e−iπ/m Vσ Hτ, (10.51)

Hσ Vτ = e−iπ/m Vτ Hσ, (10.52)

while [Hτ, Hσ] = [Vτ, Vσ] = [Vτ, Vσ] = [Hτ, Hσ] = 0. Since V 2m
σ = 1 = H2m

σ , it
follows that each pair identifies 2m different ground states, yielding a ground state
degeneracy of (2m)2. This is the dimension of the code space defined by Htile

pert.
Our stabilizer code can be adapted to a planar geometry with open boundary

conditions along the lines set in Ref. [99]. In this case there will be only two non-trivial
string operators and thus 2m ground states. In planar geometries with g holes, the
ground-state manifold degeneracy increases to (2m)g .

The Hamiltonian Htile
pert has two different types of excitations illustrated in Fig. 10.8:

1. Two localized charge excitations ±e/m can be created on two different links by
an open string of tunneling operator of the form S =

∏

(σσ†). The operator
S† switches the sign of the charges at the end of the open string.

2. Two ±h/2e vortices are created on neighboring plaquettes by one of the two
operators τ on the link separating the plaquettes. (The other τ operator
belonging to the same link creates the same vortices, but with opposite sign.)
The vortices can be moved apart without further energy costs applying a string
T =

∏

τ of consecutive τ operators sharing one common plaquette.

Both charge and flux excitations are bosons when considered separately (since differ-
ent S operators commute with themselves, as well as different T operators). However,
when a charge excitation is moved in a loop around a flux excitation, the wave
function will acquire a (Aharonov-Bohm) phase eiπ/m, implying that charges and flux
excitation are mutually Abelian anyons with a fractional exchange phase eiπ/2m. This
can be verified by computing the commutator of a pair of S and T strings intersecting
each other. Additionally, the underlying Z2m symmetry allows the presence of multiple
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Figure 10.8: Vortex and charge excitations in the tile model, appearing at the ends of
open string of τ and σσ† operators respectively. The vortices live on the plaquettes of
the lattice, while the charges on the superconducting links. They are mutual Abelian
anyons, with an exchange phase eiπ/2m.

excitations of charge ne/m and flux nh/2e, with n = 0, . . . , 2m− 1, created by the
n-th power of S and T operators, as in the usual qudit surface codes [272].

Let us discuss possible terms that may destroy the topological order. Higher orders
in perturbation theory yield larger loop operators, which can be decomposed in terms
of products of Br operators and their powers. These higher-order terms commute with
Htile

pert and strengthen the absence of fluxes in the plaquettes, leaving the ground-state
manifold intact. The description breaks down only when the perturbation order L is
equal to the system size. At this point, the loop operators Hσ, Vσ are generated in the
perturbative expansion, lifting the ground-state degeneracy by an energy O(J L/∆L−1).

However, we may worry about external perturbations of the form

h
∑

r ,i

(τr ,i +τ
†
r ,i), (10.53)

which would break the ground state degeneracy. This perturbation corresponds to
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an external magnetic field in the vector Potts description and may drive a transition
from the topologically ordered phase to a topologically trivial one constituted by
a condensate of the vortex excitations. For the Z3 toric code, this transition was
observed numerically in Ref. [281]. A general analysis [288, 289] of the phase
diagram of Zp (p = 2, 3, . . .) Wen-Levin models [290] suggests that the transition, in
the 2+1D transverse-field Potts universality class, is of the first order for any p > 3
(m > 1), thus easily detectable due to the discontinuity in the energy density. Our
model however is of the vector Potts (rather than simple Potts) type and further
investigations are required to assert the equivalence of the two cases for generic m.

Finally, let us briefly discuss the Josephson-dominated regime. The topological
order in the Coulomb-dominated regime of the tile model disappears when the
tunneling terms become comparable to the charging energy. In the opposite extreme
limit, ∆ = 0, the FTIs decouple and the Hamiltonian is just the sum of the Josephson
interactions along each diamond of the lattice in Fig 10.6. In particular, to minimize
the energy, the four clock operatorsσ for each FTI must be aligned and, considering the
charge constraint (10.36), one obtains that the ground state of each FTI is constituted
by an equal superposition of all the polarizations:

|GS〉r =
1
p

2m

2m−1
∑

k=0

|σr ,1 = σr ,2 = σr ,3 = σr ,4 = ei kπ
m 〉. (10.54)

Thus the total ground state is simply the product of the states |GS〉r of all the FTIs.
Due to the charge constraints, it is unique independently of the topology of the system.

For fixed system size, the ground state will remain non-degenerate also when we
consider a small charging energy contribution, ∆� J , in the Josephson-dominated
regime. In particular the effect of applying all the charging operators Q〈r ,r ′〉 in a closed
area S is to rotate all the clock operators σ inside S . The result is the formation
of a domain wall constituted by all the links along the edge of S , where the clock
operators are not aligned anymore. The energy cost of the domain wall is proportional
to J∂S , where ∂S is the number of broken Josephson links along the perimeter of
S . Therefore, the Hamiltonian in the Josephson dominated regime can be seen as
the confined phase of a loop model [291], where the loops are the edges of domains
with different spin alignment: J provides a tension to the loops whereas∆ constitutes
their kinetic energy. Between the topologically ordered Coulomb-dominated regime
and the topologically trivial Josephson-dominated regime other phases may appear
and the full phase diagram of the tile model deserves further investigations.

10.3.2 The stripe model and the Z2m gauge theory.

As anticipated at the end of the previous section, the stripe model is naturally sup-
ported on a brick-wall lattice. It is convenient to place the clock degrees of freedom
σ(i, j) and τ(i, j) on the sites

{(i, j) | i = 0, . . . , Lx − 1, j = 0, . . . , L y − 1}
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of an Lx × L y square lattice and distinguish between the two sub-lattices defined by
the conditions (i+ j) = even and (i+ j) = odd. In the bulk of this geometry the stripe
model becomes the generalization of the XXZ honeycomb compass model [270] with
Z2m symmetry:

Hstripe = −
�∆

2

∑

i+ j=even

Q(i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

σ(i, j)σ
†
(i+1, j)

�

+ h.c. (10.55)

with
Q(i, j) ≡ τ(i, j)τ(i, j+1). (10.56)

Depending on the chosen boundary condition, Hstripe must be supplemented with an
additional boundary term that we will disregard for the sake of simplicity. The stripe
unitary operators

S jS j+1 =
Lx−1
∏

i=0

Q(i, j), j = 0, 2, . . . , L y − 2 (10.57)

represent the physical constraint on the electric charge of the FTIs, Eq. (10.36);
therefore the physical states |Ψ〉 must satisfy:

S jS j+1|Ψ〉= |Ψ〉, j = 0, 2, · · · , L y − 2. (10.58)

The next task is to specify the physical symmetries of the stripe model. The set of
non-trivial unitary operators that commute with Hstripe is generated by

S j =
Lx−1
∏

i=0

τ(i, j), j = 0, 1, . . . , L y − 1, (10.59)

ξ(i, j) = σ(i, j)σ
†
(i, j+1), i + j = even. (10.60)

We need to specify those operators in this set that also commute with the charge
constraints of Eq. (10.58). The symmetries S j trivially satisfy this condition, but they
are not all independent in the sector of physical states. We can keep

S j , j = 0, 2, · · · , L y − 2, (10.61)

as an independent set of one-dimensional symmetries for the stripe model. As ex-
plained in the introduction to this section, these symmetries are spontaneously broken
in the Josephson-dominated regime (at zero temperature). The effective dimensional
reduction displayed by the stripe model in this regime is intimately connected to the
one-dimensional symmetries of Eq. (10.61) [270].

The local physical symmetries of the stripe model are given by the minimal
combination of the operators ξ(i, j) that commute with the charge constraints and they
assume the form

B(i, j) = ξ(i, j)ξ
†
(i+2, j), i + j = even. (10.62)
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Figure 10.9: Notation adopted to study the stripe model. The black and white sites
identify clock operators σ,τ, distinguished by a sub-lattice degree of freedom. Grey
stripes are FTI, blue links are superconductors and red links ferromagnets. Notice
that half of the vertical links are missing, thus the stripe model is effectively defined
on a brick-wall lattice. The flux threaded through a single plaquette of the lattice is
measured by the operator B in the figure (see Eq. (10.62)). As in the tile model, flux
excitations (the oriented blue circles) can be created by an open string of τ operators:
however, the geometry constrains their movement in the horizontal direction.

These local symmetries have an immediate interpretation: they describe the Aharonov-
Bohm phase associated to the magnetic fluxes threading the plaquettes of the brick-
wall lattice (see Fig. 10.9).

The stripe model has no global symmetries independent on the lower-dimensional
symmetries already discussed. The global symmetry S1S3 . . . SL y−1 is trivially sponta-
neously broken in the Josephson-dominated regime by the spontaneous breakdown of
its one-dimensional constituents. Other global symmetries appear as products of the
local symmetries discussed in the previous paragraph, and so cannot be spontaneously
broken by Elitzur’s theorem [292]. This suggests that any ordered phase of the stripe
model (outside the Josephson-dominated limit) must be characterized in terms of a
generalized, non-local order parameter [293]. However this is not enough to assert
that the system shows topological order according to our previous definition based
on the topological ground state degeneracy and the presence of anyonic excitation.
Rather, in the absence of a Landau local order parameter, we speak more generically
of topological phases.

To the purpose of comparing the tile and stripe models in the Coulomb-dominated
regime it is useful to perform a perturbative analysis also of the stripe model in the
limit ∆� J . Just as for the tile model, the first non-trivial term appears at the fourth
order in perturbation theory, where the perturbative Hamiltonian of the stripe model
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becomes:

Hpert
stripe = −

∑

i+ j=even

�∆

2
Q(i, j) +

5J4

4G3
B(i, j)

�

+ h.c. (10.63)

As in the case of the tile model, also for this Hamiltonian it is possible to define localized
fractional charge excitations and vortex excitations as end of open strings of τ and
σσ† operators. However, for this architecture the vortex excitations can propagate
only in the horizontal direction, as can be realized noting that superconductors of
different rows share no common plaquette.

Indeed, in the Hamiltonian Hpert
stripe each row of superconducting islands is de-

coupled from the others, and is characterized by a ground state degeneracy of 2m.
However, the rows between different FTIs present a non-physical symmetry ξ which
does not commute with the constraint (10.58). Thus, accounting for the charge con-
straints, the overall degeneracy of the ground states in the physical sector is (2m)#FTIs.
Crucially, this degeneracy is not protected against the local symmetries ξ(i, j). Since
these local operators may cause transitions between different ground states, the stripe
model does not posses a proper topological order. Despite this fact, the model is
characterized by a non-local order parameter, as we will discuss in the following.

To this purpose, and more in general to investigate the phase diagram, it is useful
to exploit the bond-algebraic theory of dualities [266, 294] which allows us to study
the bulk properties of the constrained stripe Hamiltonian for large system size. Our
strategy will be to find a duality (consistent with the constraints), mapping Hstripe to
a known model. As shown in Refs. [266, 294], quantum dualities can be obtained
as isomorphisms of bond algebras of interactions preserving locality. In principle,
we could study the minimal bond algebra of interactions generated by the bonds
Q(i, j) (i + j = even) and σ(i, j)σ

†
(i+1, j) in Hstripe. However, a duality derived from this

bond algebra, that is, an alternative local representation of these interactions, may
not preserve the charge constraints of Eq. (10.58), because these constraints are not
contained in this minimal bond algebra. Hence we consider a larger set of generators

Q(i, j) , i = 0, · · · , Lx − 1 ; j = 0, · · · , L y − 2;

σ(i, j)σ
†
(i+1, j) , i = 0, · · · , Lx − 2 ; j = 0, · · · , L y − 1

(and Hermitian conjugates) for the stripe model’s bond algebraAstripe. That is, we are
including also the bonds Q(i, j) (i + j = odd), which are absent from the Hamiltonian.
Such extended bond algebra does contain the charge constraints in Eq. (10.58);
hence a duality forAstripe maps these constraints in a well defined fashion either to
the identity operator (in which case the duality solves the constraints [266]) or to
constraints of the dual model.

The characterization ofAstripe in terms of relations among its bond generators
reveals the following dual representation of the bond algebra of interactions:

Q(i, j)
Φd−→ Bd (i, j), (10.64)

σ(i, j)σ
†
(i+1, j)

Φd−→ τ(i, j), (10.65)
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Figure 10.10: The dual lattice on which the Z2m lattice gauge theory of Eq. (10.67) is
defined. Clock operators now live on those links of the original square lattice which
are marked by a blue dot. On this new lattice we find that in perturbation theory the
physical interactions are given by the plaquette and star operators Bd and Ad defined
in Eqs. (10.66), (10.69).

with

Bd (i, j) ≡

¨

σ†
(i, j)σ

†
(i, j+1) if i = 0,

σ†
(i, j)σ

†
(i, j+1)σ(i−1, j)σ(i−1, j+1) otherwise.

(10.66)

Then the dual Hamiltonian, HG = Φd(Hstripe), reads

HG = −
�∆

2

∑

i+ j=even

Bd (i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

τ(i, j)

�

+ h.c. (10.67)

and it is unitarily equivalent [266] to the stripe model. In Appendix 10.B we write
down explicitly the dual clock operators and show that it is possible to interpret the
gauge theory Hamiltonian (10.67) as the Hamiltonian governing the collective modes
of the stripe model.

Up to boundary terms, i.e. the incomplete plaquettes B(0, j) ( j = 0, 2, . . . , L y − 2),
and a redefinition of the lattice that places the clock degrees of freedom on links
rather than sites, we recognize HG as the Hamiltonian of the Z2m lattice gauge theory
studied in connection to the problem of confinement in QCD [280] (see Fig. 10.10).
The local symmetries B(i, j) of the stripe model, Eq. (10.62), map under duality to

B(i, j)
Φd−→ Ad (i, j), i + j = even, (10.68)

with
Ad (i, j) ≡ τ(i, j)τ(i+1, j)τ

†
(i, j+1)τ

†
(i+1, j+1). (10.69)
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As is guaranteed by the formalism, the unitary operators Ad (i, j), (i + j = even),
commute with the dual Hamiltonian HG. They correspond to the gauge symmetries of
the Z2m gauge theory and they have the interpretation of measuring the local density
of external Z2m charge. Hence our duality maps the magnetic fluxes in the stripe
model, as described by the Aharonov-Bohm operators B(i, j) in Eq. (10.62), to external
Z2m electric charges in the gauge theory.

At this point we can exploit Eq. (10.68) to compute the dual representation
Hpert D

stripe = Φd(H
pert
stripe) of the perturbative Hamiltonian of Eq. (10.63),

Hpert
G = −

∑

i+ j=even

�∆

2
Bd (i, j) +

5J4

4G3
Ad (i, j)

�

+ h.c. . (10.70)

Remarkably, this is the Hamiltonian for the qudit toric code model [272, 281]. To clar-
ify the notation, notice that due to our definition of the plaquette operator Eq. (10.66),
the two operators Ad (i, j), Bd (i, j) share one vertical link of the lattice, with Ad (i, j) to the
right and Bd (i, j) to the left of that link (see Fig. 10.10). This duality, however, is a
non-local transformation with respect to the clock operators σ and τ. Thus, even if
the spectrum of Hpert

stripe is equivalent to the Z2m toric code, the stripe model in the
Coulomb-dominated regime does not present topological order.

To assert that the phase diagram of the gauge theory and the stripe model are
connected by the duality Φd , we need to investigate the effect of the duality mapping
on the charge constraints of Eq. (10.58). Remarkably, the charge constraints are
holographic [293], since they map to boundary constraints for HG,

S jS j+1
Φd−→ σ†

(Lx−1, j)σ
†
(Lx−1, j+1), (10.71)

for j = 0,2, · · · , L y − 2. Then the physical states |Ψ〉d = Φd|Ψ〉 for HG, seen as a
dual representation of the stripe model, are characterized by the condition

σ†
(Lx−1, j)σ

†
(Lx−1, j+1)|Ψ〉d = |Ψ〉d (10.72)

for j = 0, 2, · · · , L y −2, and not by the standard condition of gauge invariance [that
is, invariance under the A(i, j), (i + j = even)]. [280] Despite this difference we will
argue in the following that the stripe model and the Z2m lattice gauge theory share
the same phase diagram.

The dual gauge theory HG presents unusual open boundary conditions. Since
the charge constraints are holographic, this is in perspective required to guarantee
that the dual charge constraints supported on the boundary commute with the dual
Hamiltonian HG (just as the charge constraints commute with Hstripe).

However, the standard view that boundary conditions do not affect the phase
diagram in the thermodynamic limit suggests in this case that the dual charge con-
straints do not affect the phase diagram of HG, which must then coincide with the
standard phase diagram of the Z2m gauge theory. This view is strengthened by the
fact that the dual charge constraints commute with the gauge symmetries of HG, and
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Figure 10.11: The generalized order parameter (string tension) in both the original
and dual lattices.

so the ground state of HG will belong to the gauge-invariant sector even after the
condition Eq. (10.72) is imposed. Finally this implies that the stripe model presents
the same phase diagram independently on the choice of the charge of each FTI edge
in the constraint (10.23), thus in all the different physical sectors.

In view of these considerations, we can argue that the stripe model shares the phase
diagram of the Z2m gauge theory as described in Ref. [280] (and references therein). It
follows that there is indeed one second-order phase transition separating the Coulomb-
dominated from the Josephson-dominated regime. In the gauge-theory language this
transition is understood as a confinement-deconfinement transition. In particular, the
Coulomb-dominated regime of the stripe model is dual to to the deconfined phase of
the gauge theory, while the Josephson-dominated regime corresponds to the confined
phase.

The phases of a gauge theory cannot be distinguished by a Landau order parameter
[292]. However, for the Z2m gauge theory dual to the stripe model, there exists a
generalized order parameter, the so-called string tension [293], which is non-zero in
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the confining phase and vanishes continuously, but non-analytically at the transition
point. The string tension is the expectation value of a string of τ’s in the Z2m gauge
theory, which corresponds to an open string of tunneling operators σσ† in the stripe
model (see Fig. 10.11, analogously to the string operators creating charge excitations
in the tile model. The ground-state expectation value of such string falls continuously,
but non-analytically to zero at the second-order phase transition separating the
Josephson-dominated regime (where it is different from zero) from the Coulomb-
dominated regime. On the gauge theory side of the duality, the two phases can be
distinguished also by a different scaling of the expectation value of the Wilson loops,
which map to sets of τ operators in compact regions in the stripe model.

10.4 Conclusions and Outlook

In summary, we have studied two-dimensional arrays of interacting parafermionic
zero-modes. Such exotic states form along the edge of fractional topological insulators,
at the domain walls between proximity-induced superconducting and ferromagnetic
pairing. The dynamic of these zero-modes is dictated by two competing effects:
the charging energy of each superconducting island and the fractional Josephson
tunneling of quasiparticles between different islands.

The underlying fractional edge modes, which are originally described by a helical
Luttinger liquid theory, determine crucially the possible lattice geometries and the
physical constraints of these parafermionic systems. We have analyzed two possible
architectures, the tile and the stripe model. They differ mainly for the fact that in the
former the length of the edges is constant, while in the latter it scales with the total
size of the architecture. We have discussed how this feature gives rise to different
physics, despite the fact that the models are characterized by the same lattice of
parafermions and the same local interactions.

The difference is appreciated by exploiting a Jordan-Wigner transformation map-
ping the parafermionic operators into clock operators. Through this transformation
the tile model is described by a Hamiltonian on a decorated square lattice whereas the
stripe model becomes a compass model, with Z2m symmetry, on a brick-wall lattice.

The tile model presents, at least in perturbation theory, the same topological order
of the surface codes characterized by a Z2m symmetry: it shows the same topological
degeneracy of the ground state and the same anyonic excitations. Thus the system
we described is a possible physical candidate to the realization of qudit surface code
Hamiltonians. It is known that the ground state degeneracy of these systems suffers
from thermal fragility [295, 296]. However, we note that the intrinsic noise due to
the presence of induced charges on the superconducting islands could help localize
the anyonic excitations of the system, and thus to protect the information which may
be encoded in the ground states. [297, 298]

The stripe model provides instead a physical realization of the Z2m lattice gauge
theory, a toy model often exploited to study confinement-related problems in lattice
field theory. The duality mapping between the stripe model and the lattice gauge
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theory is non-local in terms of the single clock degrees of freedom, but it is local
in terms of the interactions. Unlike in the tile model, a toric code Hamiltonian can
only be retrieved in the dual theory, where the operators are non-local. Interestingly
enough the physical charge constraints of the FTI edges maps to an holographic
constraint in the gauge theory which affects only boundary terms.

To conclude, our work addressed the problem of finding topologically ordered
phases in the phase diagram of these two-dimensional collections of topological
defects. Comparing the results obtained for the two architectures, we can see that
that it is not only the nature of the interactions between the defects (in this case, the
Z2m PF zero-modes) that determines the presence of topological order, but also the
intrinsic geometry of the topological phases originally generating the defects (in this
case, the edges of the fractional topological insulators). Understanding the interplay
between this two aspects is crucial to design topologically-ordered architectures.

10.A Description of the system through bosonization

In this Appendix we summarize the main features of the bosonization description
of our system and we provide an expression in terms of massless bosonic fields of
the parafermion operators α and thus of the related interaction terms. We follow the
approach in Refs. [239] and [238], where more details can be found.

In absence of the interactions provided by the superconducting islands and the
ferromagnetic insulators, the edge of the FTIs defining our systems, or, equivalently,
the double edges of juxtaposed fractional quantum Hall layers with opposite polariza-
tion, can be described in terms of the Luttinger liquid Hamiltonian proposed by Wen
[251, 252]. In particular the massless edge modes are described by the following
Hamiltonian:

H0 =
mv
2π

∫

dx
�

(∂xϕ)
2 + (∂xθ )

2� , (10.73)

where v is the speed of the two counter-propagating modes and ϕ,θ are dual massless
bosonic fields obeying the commutation relation:

�

ϕ (x1,a, t) ,θ
�

x2,a′, t
��

= i
π

m
δa,a′Θ (x2 − x1) , (10.74)

where Θ is the Heaviside step function. In particular for each FTI edge a it is possible
to define two chiral bosonic fields

ϕL/R (x ± t,a)≡ ϕ (x , t,a)∓ θ (x , t,a) , (10.75)

in such a way that the left and right fermionic modes, with opposite spin polarization,
are defined by the operators ψL/R(x , t,a) = ηa eimϕL/R(x±vt,a) where ηa are fermionic
Klein factors. The charge density associated with each edge is ρ = ∂xθ/π, thus, in a
closed edge with length L , the total charge of the edge is related to the boundary
conditions of the θ field:

πqtot(a) = θ (x +L ,a)− θ (x ,a) (10.76)
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and analogous conditions relate the field ϕ with the spin density [239].
For each edge the interaction terms corresponding to the proximity induced super-

conducting coupling and the backscattering give rise to the interaction Hamiltonian:

HI ∝
∫

dx [−gS(x) cos (2mϕ)− gF (x) cos (2mθ )] (10.77)

where gS and gF describe respectively the position dependence of the induced super-
conducting and ferromagnetic couplings.

By selecting a position in the bulk of either a superconducting or a ferromag-
netic segment of the edge, if the couplings g are strong enough, one can consider
respectively the fields ϕ and θ as pinned to the semiclassical minima ϕk,θk =
0,π/m, 2π/m, . . . , (2m− 1)π/m. Adopting this approximation and considering the
limit of sharp transitions between superconducting and ferromagnetic regions, the
parafermion operators can be written as:

α2k−1,a = κa ei(ϕk,a−θk,a) (10.78)

α2k,a = κa ei(ϕk+1,a−θk,a) (10.79)

where k = 1, . . . , M labels the ferromagnets and the superconductors along the edge
a and the tile and stripe models are characterized respectively by M = 4 and M = Lx .
The fractional Klein factors κa enforce the correct commutation rules (10.3) and
(10.4). This definition of the parafermionic modes is not unique (see Refs. [239]
and [238] for more detail) but it suffices to our purposes. Finally, for a complete
description of the system, it is necessary to take into account the correct boundary
conditions.

Through this definition of the parafermionic operators it is easy to derive Eqs.
(10.1,10.2,10.3,10.4) and verify that the tunneling operators assume the form

e−i(ϕk+1,a−ϕk,a) = P{a,2k−1},{a,2k} . (10.80)

Thus we recover the usual form for the fractional Josephson interaction (10.11):

HJ = −J cos
�

ϕk+1,a −ϕk,a −
δ

2m

�

(10.81)

Moreover the tunneling string operator Σa defined in (10.24) for the two models
becomes Σa = exp

�

−i
�

ϕM+1,a −ϕ1,a

��

, emphasizing the relation between the bound-
ary conditions of the field ϕ and the magnetic flux enclosed by the FTI edges. The
boundary condition (10.19) assumes a natural form in the bosonized description due
to the boundary relation (10.76) since:

α{a,2M+1} = κa ei(ϕM+1,a−θM+1,a) = e−iπqa α{a,1}Σ
†
a. (10.82)

Once we apply the parafermionic Jordan-Wigner transformation (10.30,10.31) to
map the system in a quantum clock model, the previous boundary conditions are
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translated in the following relations:

eiπqa = ei(θM+1,a−θ1,a) =
M
∏

k=1

τ†
k+1 (10.83)

Σa = e−i(ϕM+1,a−ϕ1,a) = σ†
M+1σ1 (10.84)

which generalize the boundary conditions (10.34,10.35,10.36).

10.B Collective modes of the stripe model and the Z2m

gauge theory

It is interesting to reinterpret the duality for the stripe model in terms of collective
modes. Let us define a new set of clock degrees of freedom as

σ̂(i, j) ≡ Φ−1
d (σ(i, j)), τ̂(i, j) ≡ Φ−1

d (σ(i, j)). (10.85)

Here Φ−1
d is the duality mapping the Z2m gauge theory to the stripe model, obtained

from Eqs. (10.64) and (10.65) by reading all arrows in reverse. As we will show
shortly, the dual variables σ̂(i, j), τ̂(i, j) are non-local operators when written in terms
of the clock degrees of freedom σ(i, j),τ(i, j). The duality mapping Φ−1

d shows that
these collective modes of the stripe model are governed by the Z2m gauge theory
Hamiltonian, since

Hstripe = Φ
−1
d (HG)−

�∆

2

∑

i+ j=even

bBd (i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

τ̂(i, j)

�

+ h.c. , (10.86)

with bBd (i, j) defined just as in Eq. (10.66) up to the substitution σ(i, j) → σ̂(i, j). It
follows that the stripe model realizes the Z2m gauge theory in terms of its collective
modes σ̂(i, j), τ̂(i, j).

To compute the dual variables explicitly it is necessary to extend the bond algebra
of the Z2m gauge theory by adding the boundary operators τ(Lx−1, j) ( j = 0, . . . , L y−1),
σ†
(0,0), and σ†

(i,0)σ(i−1,0) (i = 1, . . . , Lx − 1) to its list of bond generators. We also need
to determine an algebraic extension of the duality mapping to these extra bonds,

σ†
(0,0)

Φ−1
d−→ τ(0,0), (10.87)

σ†
(i,0)σ(i−1,0)

Φ−1
d−→ τ(i,0), (10.88)

τ(Lx−1, j)

Φ−1
d−→ σ(Lx−1, j). (10.89)
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This completes the preliminaries. It follows that

σ̂(i, j) = τ
†
(0, j)τ

†
(1, j) . . .τ†

(i, j), (10.90)

and

τ̂(i, j) =

�

σ(Lx−1, j) if i = Lx − 1,
σ(i, j)σ

†
(i+1, j) otherwise. (10.91)

It is possible to check directly that the dual variables satisfy the correct algebra for
clock degrees of freedom.


