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Chapter 9

Braiding of non-Abelian anyons
using pairwise interactions

The purpose of topological quantum computation (TQC) is to realize a reliable quan-
tum computer, exploiting the existence of non-Abelian anyons in certain condensed
matter systems [5, 6]. The presence of several such particles gives rise to degenerate
ground states which cannot be distinguished by local measurements. The ground
state manifold is then adopted as the computational space, and quantum gates can
be performed by braiding (exchanging the positions of the anyons), as shown in
Fig. 9.1a). The resulting unitary transformation of the wave function depends only on
the order of the exchanges and not on the details of their paths, thus these quantum
gates are said to be topologically protected. In the standard scheme of TQC [6], there
are two main ingredients needed to implement braiding. First, it must be possible to
change the positions of anyons in such a way that the wave function of the system
always belongs to the space of the degenerate ground states. Second, at all stages
of the braiding the interactions between the anyons used for the computation must
be negligible in order to preserve the degeneracy of the ground states and to avoid
the presence of non-adiabatic time-dependent phases. This requires the anyons to be
well separated in space.

The possibility to realize braiding operators without moving the anyons was
then introduced by Bonderson, Freedman and Nayak in Refs. [71, 226]. In their
scheme, the measurement-only TQC, the braid operators are obtained as a result
of a probabilistically determined sequence of non-demolition measurements of the
computational anyons as shown in Fig. 9.1b). This measurement would rely, for
example, on the non-Abelian edge state interferometry [79–81, 190, 191, 227], which
has been actively developed both experimentally and theoretically [101, 191–195,
199, 201, 202].

A different way to braid non-Abelian anyons without moving them around each
other has been theoretically developed in the case of Majorana modes appearing
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Figure 9.1: Different ways to braid quasiparticles in topological quantum computation.
Panel (a): the original scheme for braiding, where quantum gates are obtained by
moving the non-Abelian quasiparticles (red and blue dots) one around the other.
Panel (b): measurement-only TQC, in which ancillary anyons are added to the system
(white dot), and quantum gates are obtained as a sequence of non-demolition pairwise
measurements (represented by the dashed ellipses) which induce teleportation of the
computational anyons through the ancillary ones. Panel (c): the interaction-based
braiding, which makes use of the interaction between computational and ancillary
anyons in a T-junction geometry.

at the ends of one-dimensional topological superconductors [26, 45, 46]. Initially,
it was shown in Ref. [21] how braids can be realized in wire networks by moving
the Majorana modes through T-shaped junctions. In this case, the movement of
the quasiparticles is restricted to a quasi one-dimensional system, thus relaxing
the limitation of braiding to two dimensions. Subsequent proposals however have
eliminated the need to physically move the topological defects altogether, showing
how the same ground state transformations can be implemented using the mutual
interactions between Majoranas, controlling either tunnel couplings via gate voltages
[67] or capacitive couplings via magnetic fluxes [69]. Finally, in Ref. [86] a general
theory of adiabatic manipulations of Majorana modes in nanowires was formulated.
Unless we allow for physically bending and rotating the wires, the minimal setup
required for the braid operation is a T-shaped configuration of nanowires where a
central Majorana is coupled to at least three neighbors. The evolution over a path
in parameter space results in the same non-Abelian Berry phase expected after an
exchange of two quasiparticles in real space.

In this chapter, we aim to show that in a broad range of anyonic models braiding
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is not only a property of the particle motion, but it is also encoded in the many-body
Hamiltonian of coupled anyons. We will show how it is possible to engineer effective
braidings by manipulating mutual couplings between neighboring anyons, rather than
their coordinates in space. The motion of anyons is unnecessary also in measurement-
only TQC, however our proposal is different because the braid operation is performed
in a deterministic manner and does not rely on the procedure of anyon measurement.

The outline of this chapter is the following. In Section 9.1 we present the minimal
braiding setup, formed by four anyons in a T-shaped junction, and we give an expres-
sion of the interaction Hamiltonian in terms of the F -matrices of a generic anyon
model. In Sec. 9.2 we present in detail the adiabatic cycle in parameter space used to
braid the non-Abelian anyons, while in Sec. 9.3 we discuss how errors affecting the
adiabatic evolution can be reduced by embedding the braiding junction in a bigger
system of anyon chains and conclude.

9.1 The T-junction

We consider a system of four anyons with the same topological charge t in a T-junction
geometry, with a central anyon (labeled tC) coupled to other three (labeled tL, tR, tB

for left, right and bottom), as shown in Fig. 9.1c and Fig. 9.2. We assume that they
have fusion rules

t× t=
n
∑

i=1

fi (9.1)

with {fi} the set of the n possible fusion channels (see Refs. [6, 78, 228] for introduc-
tions on non-Abelian anyons and their fusion rules).

We also assume that the anyons do not move, and we focus on the pairwise
interactions between them. These interactions result in the fusion channels fi having
different energies, so that the Hamiltonian can be written as a sum of projectors onto
different fusion outcomes. In the case of the T-junction and given the fusion rule
(9.1), it takes the form

H = −
∑

K

n
∑

i=1

εi,KΠ
K
i (9.2)

where K runs over {L,B,R} and ΠK
i is the projector onto the states in which the

anyon tK fuses with tC into the i-th channel, with a relative coupling εi,K. In order
for braiding to work we require that the interaction of each anyon with the central
one favors an Abelian channel aK ∈ {fi}, with a fusion energy εa,K ≡ max{εi,K}.
This means that the anyons C and K fusing in the aK channel will be separated
by an excitation gap from all the other mutual fusion channels. In the following
we will assume that all the pairwise interactions favor the same fusion channel, i.e.
aL = aR = aB = a, even though this condition is not strictly necessary1.

1In the general case, the interactions between C and the other anyons may favor different Abelian
fusion channels aK if all the fusions t× aK assume the same topological charge. The main example is the
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Figure 9.2: Graphical representation of the T-junction system as a fusion tree of
the four anyons, corresponding to the basis choice made in the text, see Eq. (9.4).
Different sequences of the fusion outcomes x1,x2,xtot define the basis states of the
Hilbert space. Three Hamiltonians HL, HR, HB describe the interaction between
different pairs of anyons. In particular, HL couples the anyons L and C which, in this
basis, are not nearest neighbors.

To the purpose of implementing a braiding operator between anyons tL and
tR we require that all the pairwise interactions HK =

∑n
i=1 εi,KΠ

K
i in (9.2) can be

adiabatically switched off. In reality a single interaction HK can not be totally switched
off (even though it can be likely made exponentially small), and we will relax this
assumption in Sec. 9.3.1.

9.1.1 Ground state degeneracy

To prove that the Hamiltonian (9.2) is of any use for TQC, we must identify a degen-
erate manifold of its ground states, at least in some regions of the parameter space
spanned by the energies εi,K.

It has been shown that tunneling couplings between anyons lift completely the
topological degeneracy of the ground state [229], and the Hamiltonian (9.2) makes
no exception if all εa,K are non-zero. On the other hand, if all the couplings are zero,
the ground state manifold coincides with the whole Hilbert space of the anyon system.
We focus here on the intermediate domain between these two extreme cases, namely
when only a subspace of the full Hilbert space has its degeneracy left intact.

The Hamiltonian (9.2) has an n-fold degenerate ground state when at least one
of the HK is zero and one is non-zero. Let us consider HL = HR = 0, εa,B > 0. The
two anyons L and R are completely decoupled and share an arbitrary topological

case of Ising anyons σ, which obey the fusion rules σ×σ = I+Ψ, σ× I= σ×Ψ = σ, with both I and Ψ
Abelian; in this case changing the favored fusion channel of the pairwise interaction between L (or R) and
C determines a change in the chirality of the braiding [67, 86]. This is due to an additional symmetry of
the Ising anyon model:

R−1
LRΠ

L
ΨRLR =RLRΠ

L
IR
−1
LR (9.3)

where ΠΨ = 1−ΠI is the projector over the fermionic fusion channel Ψ. This relation implies that changing
the favored fusion channel for one of the two anyons R or L, the role of RLR and R−1

LR
are exchanged

throughout the adiabatic cycle and effectively reverses the braiding direction.
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Figure 9.3: Top: graphical representation of Eq. (9.6). The fusion outcomes are
explicitly written along the fusion tree. To write down the projectors ΠR

i in the basis
of Fig. 9.4, we need two F -moves. A similar transformation, not shown, is needed
to write down ΠB

i , see Eq. (9.5). Bottom: in the case of ΠL
i , two braiding matrices

RLR make their appearance in addition to the F -moves. This introduces the braiding
matrix RLR in the Hamiltonian of the T -junction.

charge x1 which may assume one of the n different values {fi}, while the anyons B
and C fuse into the Abelian channel a. The total topological charge equals xtot =
(tR × tL)× (tB × tC) = x1 × a. Since a is Abelian, the fusion x1 × a can only have one
possible outcome, and additionally there cannot be another charge x′1 such that x′1×a
has the same outcome. Therefore there exists a one-to-one mapping between the
charges x1 and xtot, implying that the ground state wave function |Ψ〉 will generically
be a superposition of n orthogonal ground states Ψi with total topological charge
fi × a, |Ψ〉=

∑

i ai |fi × a〉.
When a second coupling, say HL, is also nonzero, the anyon L fuses with tC×tB = a

and the three have a total charge t× a. The overall degeneracy cannot change, since
tR × (tL × tB × tC) = t× (t× a) = (

∑

i fi)× a, which again gives n orthogonal states.
We conclude that if all the couplings HK are neither on nor off at the same time,

the ground state of the Hamiltonian (9.2) has an n-fold degeneracy.

9.1.2 Projectors

In order to describe the wave function evolution in the n-fold degenerate ground state
subspace of (9.2), we need to write down the Hamiltonian (9.2) explicitly in a certain
basis. To describe the evolution and the eigenstates of this system we closely follow
the methods used for the study of anyon chains and lattices (see e.g. [230–234]).

The different quantum states of a system of anyons can be specified by the sequence
of fusion outcomes along a certain fusion path. The choice of a fusion path is equivalent
to the choice of a basis in the Hilbert space. Once a fusion path is chosen, the projector
of two anyons on a given channel fi is represented by a simple diagonal matrix if
the two anyons fuse directly together along the path with outcome fi . Otherwise a
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projector must be written via appropriate transformations called F -matrices (see e.g.
[6, 228, 230]). We choose the following fusion path shown also in Fig. 9.2:

(((tL × tR→ x1)× tC→ x2)× tB→ xtot) , (9.4)

with x1,x2,xtot belonging to the sets of possible fusion channels at each step of the
fusion path. All states in the Hilbert space can be written as |x1,x2,xtot〉. The basis
(9.4) describes a path where tL and tR are first fused with outcome x1, then with tC

resulting in a second outcome x2, and finally with the fourth anyon tB to give xtot.
The latter is the total topological charge of the system: subspaces of the Hilbert space
corresponding to different xtot are decoupled. Adopting this basis we can now write
down explicitly all the terms appearing in the Hamiltonian (9.2). To this purpose we
consider different bases in which each operator has a diagonal form, and then we
move to the basis in Eq. (9.4) using appropriate basis transformations.

We start with ΠB
i . The anyons tC and tB are nearest neighbor, but they do not

fuse directly together in our fusion path: to write ΠB
i we must use the appropriate

F -matrices,

�

ΠB
i (x1,xtot)

�

x′2,x2
=
∑

y

�

F x1tCtB
xtot

�−1

x′2,fi
δfi ,y

�

F x1tCtB
xtot

�

y,x2
=

=
�

F x1tCtB
xtot

�−1

x′2,fi

�

F x1tCtB
xtot

�

fi ,x2

(9.5)

with y ∈ {fi} and x2,x′2 belonging to the set of fusion channels of three t anyons.
As indicated on the left hand side of Eq. (9.5), the matrix elements of the projector
depend on indices x1,xtot. In a similar way we obtain for ΠR

i the following form:

�

ΠR
i (x2)

�

x′1,x1
=
�

F tLtRtC
x2

�−1

x′1,fi

�

F tLtRtC
x2

�

fi ,x1
(9.6)

with x1,x′1 ∈ {fi}. The graphical representation of this equation is shown in the top
panel of Fig. 9.3.

Unlike the two other cases, in the fusion tree of Fig. 9.2 the anyons L and C are
not nearest neighbors in the chosen basis. Since they would be nearest neighbors if
L and R were interchanged, the transformation to a basis when they fuse directly
together includes a braiding matrix RLR, as shown in the bottom panel of Fig. 9.3.
The particular braiding matrix (RLR orR−1

LR) that appears in this basis transformation
depends on the real space positions of the anyons and on the microscopic details of
the Hamiltonian. The two possible choices correspond to two mirror-symmetric anyon
models [228]. It is this term that is responsible for the appearance of braiding during
the adiabatic Hamiltonian evolution. In particular mirroring the T-junction layout
inverts the chirality of R . As shown in the bottom panel of Fig. 9.3, the projector ΠL

i
can be obtained from ΠR

i via RLR

R−1
LRΠ

R
i RLR = Π

L
i (9.7)
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Figure 9.4: Illustration of the adiabatic cycle which reproduces the braiding operator
RLR of two topological charges t (red and blue circles) in a four anyon system.
The cycle is divided in three steps of duration T . At the end of each step only one
interaction HK is on. The arrows follow the transfer of an unpaired topological charge
t at intermediate stages, represented as the spreading of the colored circles over
different anyons.

In the fusion basis (9.4), RLR is a diagonal matrix and, explicitly, we have
�

ΠL
i (x2)

�

x′1,x1
=
�

R−1
LR

�

x′1

�

ΠR
i

�

x′1,x1
(RLR)x1

=

=
�

R−1
LR

�

x′1

�

F tLtRtC
x2

�−1

x′1,fi

�

F tLtRtC
x2

�

fi ,x1
(RLR)x1

.
(9.8)

Knowing the F -matrices of a given anyon model, Eqs. (9.5,9.6,9.8) allow to write
explicitly the four-anyon Hamiltonian (9.2). In particular, we note that the braiding
operator RLR now appears explicitly in

HL =
∑

i

εi,LΠ
L
i =

∑

i

εi,LR−1
LRΠ

R
i RLR. (9.9)

Before concluding this section, we point out that because the interactions are
local, the fusion product tB × tC cannot be affected by the braiding of R and L. The
projectors ΠB

i and the braiding operator RLR must therefore commute:

ΠB
i RLR =RLRΠ

B
i . (9.10)

9.2 The adiabatic cycle

In this section we show that the braiding of the anyons R and L appears as a result
of any closed path in parameter space starting from a point where only HB 6= 0,
and continuously passing through the points where first only HL 6= 0, and finally
only HR 6= 0 in such a way that the degeneracy is always preserved. For the ease
of presentation we divide the path into three separate steps of duration T such that
during each step one of HK is turned on and one off. The time evolution of the
Hamiltonian along such a path is shown in Fig. 9.4.

Let us consider the evolution of the ground state wave function |Ψ(t)〉 of H
along this adiabatic cycle. The wave function can at any moment be written as a
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Figure 9.5: The derivation of Eq. (9.13). We transform the ground states |Ψxtot
(t)〉

from the basis ((tL × tC→ fi)× tB→ t× a) to the basis (9.4). The phase factor
�

F tat
xtot

�

t×a,t×a
from Eq. (9.13) is not explicitly shown here.

superposition over states with different total topological charge xtot,

|Ψ(t)〉=
∑

xtot

axtot
|Ψxtot

(t)〉. (9.11)

The states |Ψxtot
(t)〉 define the n-fold ground state manifold. The absolute values of

the superposition coefficients axtot
are conserved because the total topological charge

is a conserved quantity. This implies that the time evolution of the ground state
manifold is a diagonal operator in the basis given by |Ψxtot

(t)〉. Therefore, each term
in the superposition (9.11) can only acquire a phase, possibly dependent on xtot, or
in other words the Berry matrix is diagonal in this basis. This allows us to follow the
evolution of each |Ψxtot

(t)〉 independently from all other states.
We should note that the superposition (9.11) is only possible if other anyons

are present in the system other than L,R,C,B. We imagine that these anyons do
not interact with the T-junction while the adiabatic cycle is performed, so that their
presence can be ignored.

During the first step 0≤ t ≤ T , the anyon R is left unpaired from the other three.
The topological charge of the three anyons L,C,B is then conserved and equal to its
initial value tL× (tC× tB) = t× a. The general form of a wave function satisfying this
constraint is given by:

|Ψxtot
(t)〉=

∑

x1,x2,fi

Uxtot,x1,x2,fi
αfi
(t) |x1,x2,xtot〉, (9.12)

where αfi
(t) can always be chosen to not depend on xtot, and the unitary matrix U is

the transformation from the basis ((tL × tC→ fi)× tB→ t× a), where the anyons L,
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C and B fuse directly into t× a before adding the anyon R, to the basis (9.4):

Uxtot,x1,x2,fi
=
�

F tat
xtot

�

t×a,t×a

�

R−1
LR

�

x1

�

F tRtLtC
x2

�−1

fi ,x1

�

F tRfitB
xtot

�−1

t×a,x2

. (9.13)

The F - and R-moves required for this transformation are shown in Fig. 9.5.
In particular, at t = 0, only HB 6= 0 and each |Ψxtot

(0)〉 is an eigenstate of ΠB
a

defined in Eq. (9.5):

|Ψxtot
(0)〉=

�

F tat
xtot

�

t×a,t×a

∑

x1,x2

�

R−1
LR

�

x1

×
�

F x1tCtB
xtot

�−1

a,x2

�

F tRtLa
xtot

�−1

t×a,x1
|x1,x2,xtot〉 , (9.14)

These wave functions (9.14) can be obtained from the Eqs. (9.12) and (9.13) by
substituting αfi

(0) =
�

F tLtCtB
t×a

�−1

a,fi
and applying the pentagon equation [228]. The

presence of the last F symbol in Eq. (9.14) implies x1 = xtot × a, which simplifies the
sum over x1 due to a being Abelian. The phase factor (R−1

LR)x1
is needed in order to

guarantee the independence of αfi
(t) on xtot.

As t evolves from 0 to T , these states acquire a Berry phase,

θT =

∫ T

0

〈Ψxtot
(t)|∂t |Ψxtot

(t)〉dt =

∫ T

0

∑

fi

α∗fi
∂tαfi

dt. (9.15)

The time-independent unitary matrix U naturally drops out of the expression for the
Berry phase. We conclude that the Berry phase acquired in our basis during the first
step is the same for every state, or in other words it is Abelian.

At t = T , only HL 6= 0, and the ground state wave function must be in an eigenstate
of ΠL

a ,

|Ψxtot
(T )〉=

∑

x1

�

F tRtLtC
x2

�−1

a,x1

�

R−1
LR

�

x1
|x1,x2,xtot〉, (9.16)

now with x2 = t× a since L and C fuse into a, and the phases once again fixed by the
requirement that αfi

do not depend on xtot. Note that the wave functions (9.16) are
of form given by Eq. (9.12). The net result of the evolution from t = 0 to t = T is the
transfer from L to B of an unpaired topological charge t.

During the second step T ≤ t ≤ 2T the wave function coefficients can be chosen
to be independent on xtot in the basis of Eq. (9.4). The wave function evolves from
the eigenstate (9.16) of ΠL

a into an eigenstate of ΠR
a . Due to the relation (9.7) and

Eq. (9.16) we can write the ground state wave functions at t = 2T as

|Ψxtot
(2T )〉=

∑

x1

�

F tLtRtC
x2

�−1

a,x1
|x1,x2,xtot〉. (9.17)

The integral of the Berry connection 〈Ψxtot
(t)|∂t |Ψxtot

(t)〉 from T to 2T is common
to all states and provides an Abelian Berry phase due to the independence of all the
coefficients on xtot.
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In the last step, 2T ≤ t ≤ 3T , we repeat the procedure of the first one. We write
the wave function in a basis ((tR × tC→ fi)× tB→ t× a), where tR, tC, tB fuse into
t× a before the anyon L is added. The corresponding transformation to the basis
(9.4) is given by the Eq. (9.13), but without the matrix (RLR)

−1. This ensures that
the wave function |Ψxtot

(t)〉 stays continuous at t = 2T . In this last step, the wave
function acquires another Abelian Berry phase and ends up again in an eigenstate of
ΠB

a . We end up with:

|Ψxtot
(3T )〉=

�

F tat
xtot

�

t×a,t×a

∑

x1,x2

�

F x1tCtB
xtot

�−1

a,x2

�

F tRtLa
xtot

�−1

t×a,x1
|x1,x2,xtot〉. (9.18)

Having performed an adiabatic evolution over a closed path, the final wave
function must be connected to the initial one via a unitary matrix U , |Ψ(3T)〉 =
U |Ψ(0)〉. Using Eq. (9.14) and (9.18) we find

〈Ψxtot
(0)|Ψxtot

(3T )〉= (RLR)x1
(9.19)

where we recall that xtot = x1 × a. For the whole wave function we can write

|Ψ(3T )〉=RLR |Ψ(0)〉 (9.20)

up to an Abelian Berry phase. This means that the braiding of anyons L and R was
performed in the adiabatic cycle. By performing the whole protocol in reverse, we
obtain instead the inverse braiding.

9.3 Discussion and conclusions

9.3.1 Restoring scalability and topological protection

The braiding procedure of Sec. 9.2 relies on the ability to turn off the pairwise
interactions HK completely. This is only possible if the separation between the anyons
becomes infinite, and hence one may argue that this procedure is only approximating
topological quantum computation. In a finite system the non-Abelian Berry phase
will in general have a correction, and additionally non-adiabatic errors will appear
due to the presence of finite ground state splitting [72].

This imperfection can be removed and the topological nature of the braiding can
be restored by bringing the anyons L,R,B further away from the central one C. If
anyonic chains with controllable couplings are then introduced along the three arms
of the T-junction (see Fig. 9.6), this still allows to perform the braiding in a similar
fashion, but with a higher fidelity. Since we are interested in the low energy spectrum
of the Hamiltonian we approximate the interactions between nearest-neighbor anyons
K,K′ with the projector ΠK,K′

a over their lowest energy topological charge and we
consider all the other fusion channels to have the same energy, so that the Hamiltonian
of each junction becomes:

HK,K′ = −εΠK,K′

a , (9.21)
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Figure 9.6: Panel (a): three staggered anyon chains forming a T-junction. Weak (εmin,
dashed lines) and strong (εmax, double solid lines) couplings alternate. The bottom
arm of the T-junction, connecting the original anyons C and B, is in a dimerized
phase with no unpaired anyons and approximately contains no net topological charge.
On the other hand, in the right and left arm the dimerization leaves two almost
unpaired anyons L and R at the end (blue and red dot). Due to the residual coupling,
the topological charge of L and R is spread over the neighboring anyon pairs, as
represented by the color gradings. The left and right arm are in therefore in the
non-trivial phase. The two arms interact weakly via the centre of the T-junction,
leading to renormalized couplings ε′L and ε′R between L, R and C, as in panel (b).
The residual interaction splits the ground state degeneracy of an energy exponentially
small in the length of the chains.

where a should again be Abelian. We require that ε can be varied in a range
(εmin,εmax), so that the chains can be driven into a staggered phase with alternating
weak and strong couplings, as in the Kitaev Majorana chain [26] and its parafermionic
generalization [235].

The termination of the chain ending with a weak link differs from the termination
by a strong link by the presence of an extra t anyon, and the chain ending with a strong
link can be continuously connected to a chain of fully fused a-type anyons. This means
that if the chain is gapped, whenever it ends in a weak link, its end has a topological
charge of t, spread over several anyons, as shown in Fig. 9.6. While we are not aware
of a proof that a general anyonic chain with staggered antiferromagnetic couplings
is gapped, it is true for many relevant cases [232, 236, 237]. When εmin � εmax,
the effective minimal coupling between an unpaired anyon at the edge of the T-
junction and the central anyon C can be calculated perturbatively, and it is equal
to ε′ ' εmin(κεmin/εmax)N , with N the number of anyon pairs in the chain, and κ
a geometric factor which depends on the specific anyon model. For Ising anyons
κ = 1, and for Fibonacci anyons κ = 2/φ2, with φ =

�

1+
p

5
�

/2 the golden ratio
[236, 237]. The maximal coupling is achieved in the staggered configuration which
ends with a strong bond, and the maximal coupling εmax is only weakly modified.

To implement the braiding, each part of the adiabatic evolution can be decomposed
into steps which require to change the pairwise couplings of three anyons, just as it
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happens for the steps illustrated in Fig. 9.4. In this way, during the adiabatic cycle, we
create and move domain walls which drive the transition between the two different
staggered configurations of the chains (see Fig. 9.7). The two unpaired topological
charges encoding the computational degree of freedom are localized in these domain
walls which are moved along the three arms. Since the distance between the unpaired
charges is always larger than the length N of a single arm of the T-junction, their
residual interaction is exponentially suppressed, allowing to likewise exponentially
suppress the error in the final result.

9.3.2 Summary

In summary, we have investigated an approach to topological quantum computation.
In order to implement the necessary braiding operations of non-Abelian anyons,
we couple the anyons instead of moving them or measuring their state. We have
considered a simple system composed of four interacting non-Abelian anyons in a
T-junction geometry and we have shown how adiabatic control over the interactions
results in the Berry matrix expected when two anyons are moved around each other.
If the coupling between the anyons cannot be completely turned off, errors are
introduced in the braiding operations due to the residual splitting of the ground
state degeneracy. We have discussed how these errors can be limited by means of
enlarging the number of anyons involved in the adiabatic evolution. The protection
is exponential in the number of anyons which are added to the system, so the whole
procedure is similar to increasing the separation between anyons in the original
approach.

Our approach, inspired by recent theoretical proposals for the braiding of Majorana
modes in superconductors, is applicable to most anyon models. These include all
the SU(2)k models (such as the Ising and Fibonacci anyons expected to appear in
fractional quantum Hall systems), as well as the fractionalized Majorana modes very
recently proposed in Refs. [235, 238–242].

A possible implementation of our scheme in the fractional quantum Hall systems,
would require to engineer systems of dots hosting single anyonic quasiparticles and to
tune their interactions via the voltages induced by gates or scanning tips, in a similar
spirit to the blockade measurement of topological charge [243].

Alternative, but even more exotic, implementations of this scheme include for
example the braiding procedure presented in Refs. [239, 244] for fractional Majorana
modes in superconductor/quantum-Hall heterostructures. Additionally, the recent
progress in the design of several systems thought to host non-Abelian excitations,
ranging from physical realizations of the Kitaev honeycomb lattice model [78] (see, for
example [245–247]) to ultra-cold atomic gases subjected to artificial gauge potentials
[248, 249], could also fall into the category of systems where interactions between
anyons are easier to control than their positions.
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Figure 9.7: The first step of the adiabatic braiding sequence realized in a system
of staggered anyonic chains. The topological charge t is moved from the left arm
of the junction to the bottom arm. As in Fig. 9.6, blue and red colors represent a
topological charge t spread over several anyons. The charges are localized at domain
walls between the two possible phases of the staggered chain. Domain walls can be
moved: each movement involves three different anyons of the chain. The domain
wall that is moved is marked by a black arrow.
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