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Chapter 6

Minimal circuit for a
flux-controlled Majorana qubit in
a quantum spin-Hall insulator

Among the many exotic properties of topological insulators [43, 44], the prediction
[153] that they can host Majorana zero-modes stands out both for its fundamental
interest and for possible applications in topological quantum computing [6]. To
braid Majoranas is the prize-winning experiment, since it would identify them as a
fundamentally new type of quasiparticles with non-Abelian statistics [14]. The road
towards this goal has several milestones, starting from the detection of the zero-mode
itself [74].

One intermediate milestone is the construction of a qubit out of Majorana zero-
modes and the measurement of its coherence times. This would be essential informa-
tion for a subsequent braiding experiment to demonstrate its non-Abelian nature. Here
we describe a minimal circuit that can initialize, rotate, and read-out the Majorana
qubit by coupling it to a transmon (a superconducting charge qubit in a microwave
transmission line resonator [37]). This is the hybrid topological-transmon qubit
(top-transmon) introduced in Ref. [61].

The circuit we propose here for the characterization of the Majorana qubit is a
reduced version of the full braiding circuit of Ref. [107]. By sacrificing the possibility to
perform topologically protected operations, we now need only 4 and not 6 Majoranas.
For an early generation of experiments this might well be a significant simplification.
The reduced circuit shares with the full circuit the feature that all operations are
performed by control over Coulomb interactions rather than tunneling [84]. This
control is achieved by external variation of magnetic fluxes through macroscopic
Josephson junctions, without requiring microscopic control over tunnel couplings.

We focus on Majorana zero-modes induced by the superconducting proximity effect
at the edge of a quantum spin-Hall insulator [42], motivated by recent experimental
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Figure 6.1: Schematic of a Cooper pair box in a transmission line resonator (transmon)
containing a pair of Majorana zero-modes at the edge of a quantum spin-Hall insulator.
This hybrid device (top-transmon) can couple charge qubit and topological qubit by
variation of the flux Φ through a Josephson junction.

progress in this direction [115, 116, 154]. Relative to the nanowire realization [45,
46], this system has several favorable properties (single-mode conduction, insensitivity
to disorder). It also brings along some challenges (how to confine the Majoranas,
how to make a T-junction), that we propose to overcome along the lines suggested in
Ref. [108].

6.1 Top-transmon

Before proceeding to a description in the next section of the minimal circuit that can
operate on a Majorana qubit, we summarize the basic ingredients. The device is a
hybrid structure [61], dubbed a top-transmon, combining a topological qubit formed
out of Majorana zero-modes with a non-topological transmon qubit.

The basic building block of the transmon, shown in Fig. 6.1, is a Cooper pair
box [70] (a superconducting island with charging energy EC � Josephson energy
EJ) coupled to a microwave transmission line (coupling energy ħhg). The plasma
frequency ħhΩ0 '

p

8EJ EC is modulated by an amount∆+ cos(πqind/e) upon variation
of the charge qind induced on the island by a gate voltage V . Additionally, there is a
qind-dependent contribution ∆− cos(πqind/e) to the ground state energy. The charge
sensitivity ∆±∝ exp(−

p

8EJ/EC) can be adjusted by varying the flux Φ enclosed by
the Josephson junction, which modulates the Josephson energy EJ ∝ cos(2πeΦ/h).
In a typical device [83], a variation of Φ between Φmin ≈ 0 and Φmax ® h/4e changes
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∆± by several orders of magnitude, so the charge sensitivity can effectively be switched
on and off by increasing the flux by half a flux quantum.

Including also the coupling to the microwave photons (creation operator a† at
resonant frequency ω0), the Hamiltonian of the transmon has the form [37, 83]

Htransmon =
1
2ħhΩ0σz + (∆+σz +∆−) cos(πqind/e)

+ħhω0a†a+ħhg(σ+a+σ−a†). (6.1)

The charge qubit is represented by Pauli matrices σx ,σy ,σz , with σ± = (σx ± iσy)/2.
Majorana zero-modes are represented by identical creation and annihilation

operators γn = γ†
n, with anti-commutation relation

γnγm + γmγn = 2δnm. (6.2)

The number of Majoranas on a superconducting island is necessarily even, say 2N .
They encode a topological quantum number, which is the±1 eigenvalue of the fermion
parity operator [26]

P = iN
2N
∏

n=1

γn. (6.3)

The top-transmon Hamiltonian

Htop-transmon =
1
2ħhΩ0σz + (∆+σz +∆−)P cos(πqind/e)

+ħhω0a†a+ħhg(σ+a+σ−a†) (6.4)

contains a term σzP that couples the charge qubit to the topological qubit, see
Ref. [84] for a derivation.

Since Majorana modes are charge-neutral particles (being their own antiparticle),
one may ask how there can be any coupling at all. The answer is that the state of the
2N zero-modes in a superconducting island depends on the parity of the number of
electrons on that island, and it is this dependence on the electrical charge modulo 2e
that provides for a flux-controlled Coulomb coupling between the Majoranas.

A measurement of the resonance frequency ωeff of the transmission line now
becomes a joint projective measurement of the charge qubit and topological qubit
[61, 107],

ωeff =ω0 +
σz g2

Ω0 −ω0 + 2P∆+/ħh
. (6.5)

This measurement is performed far off resonance (g � |Ω0 − ω0|, the so-called
dispersive regime), so the charge qubit is not excited. If it is in the ground state we
may just replace σz 7→ −1 and ωeff directly measures P . In particular, a shift in the
resonance frequency signals a bit-flip of the topological qubit.
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Figure 6.2: Topological qubit formed out of four Majorana zero-modes, on either
two or three superconducting islands. Dashed lines indicate flux-controlled Coulomb
couplings, as in the Cooper pair box of Fig. 6.1. In the linear layout (panel a)
the coupling between Majoranas on different islands is via a tunnel barrier (thick
horizontal line), requiring gate voltage control. By using a T-junction (panel b) all
three couplings can be flux-controlled Coulomb couplings.

6.2 Minimal circuit

The conservation of fermion parity on a single superconducting island implies a
minimum of two islands for a Majorana qubit, each containing a pair of Majorana
zero-modes. The minimal circuit that can operate on a Majorana qubit would then
have the linear layout of Fig. 6.2a. While the couplings between Majoranas on the
same island are flux-controlled Coulomb couplings, the inter-island coupling is via a
tunnel barrier, which would require microscopic control by a gate voltage.

An alternative layout that has only Coulomb couplings needs three rather than two
islands, forming a T-junction as in Fig. 6.2b. A T-junction pins a Majorana zero-mode
[21], which can be Coulomb-coupled to each of the other three Majoranas [107]. The
T-junction also binds higher-lying fermionic modes, separated from the zero mode
by an excitation energy EM. This is the minimal design for a fully flux-controlled
Majorana qubit. In Fig. 6.3 we have worked it out in some more detail for the quantum
spin-Hall insulator.

Three superconducting islands allow for two independent charge differences, so
they produce two charge qubits σ(1)z and σ(2)z . These are coupled to four Majorana
zero-modes γA, γB, γC , γD. The Hamiltonian is two copies of the top-transmon
Hamiltonian (6.4),

H = ħhω0a†a+
2
∑

n=1

�

1
2ħhΩ

(n)
0 σ

(n)
z +ħhg(n)(σ(n)+ a+σ(n)− a†)

�

+ iγAγB[σ
(1)
z ∆

(1)
+ (Φ0) +∆

(1)
− (Φ0)]

+ iγBγC[σ
(2)
z ∆

(2)
+ (Φ1) +∆

(2)
− (Φ1)], (6.6)

where for simplicity we have set qind = 0 on each island. We have ignored the
higher-lying fermionic modes at the T-junction, see the Appendix for a calculation
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Figure 6.3: Top-transmon circuit to rotate the qubit formed out of four Majorana
zero-modes at the edge of a quantum spin-Hall insulator. One of the Majoranas
(γB) is shared by three superconductors at a constriction. The topological qubit is
rotated by coupling it to a Cooper pair box in a transmission line resonator (transmon).
The coupling strength is controlled by the magnetic flux Φ through a pair of split
Josephson junctions. The diagrams at the top indicate how the Coulomb couplings of
pairs of Majoranas are switched on and off: they are off (solid line) when Φ= 0 and
on (dashed line) when Φ = Φmax ® h/4e. This single-qubit rotation does not have
topological protection, it serves to characterize the coherence times of the Majorana
qubit.
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that includes these.
Without loss of generality, we will fix the overall parity to be even. The Majorana

qubit then has the two states, |00〉 and |11〉, in terms of the occupation number of
the fermionic modes c†

1 =
1
2 (γA+ iγB) and c†

2 =
1
2 (γC + iγD). Pauli matrices that act

on the states
�1

0

�

= |00〉 and
�0

1

�

= |11〉 are defined by

τx = iγBγC , τy = iγAγC , τz = iγAγB. (6.7)

With the resonator mode and the charge qubit in their ground state, the Majorana
qubit has Hamiltonian

HM =∆z(Φ0)τz +∆x(Φ1)τx , (6.8)

with ∆z = ∆
(1)
− − ∆

(1)
+ and ∆x = ∆

(2)
− − ∆

(2)
+ . Each of the two couplings ∆x(Φ)

and ∆z(Φ) can be varied between ∆min and ∆max, by variation of the flux between
Φmin ≈ 0 and Φmax ® h/4e. This circuit does not allow to implement braiding (not
enough adjustable couplings). However, it does allow for a complete characterization
of the Majorana qubit.

For starters, one can demonstrate that the four Majoranas constitute a quantum
mechanical two-level system, by following these two steps. The first step is the
initialization of the qubit in an eigenstate of τz , by setting ∆z = ∆max, ∆x = ∆min
and waiting for the system to relax to its ground state; or alternatively, one can
perform a projective measurement onto a τz eigenstate via microwave irradiation
of the transmon qubit [61]. Once the qubit is initialized, the second step is to set
∆x =∆max. The qubit will then start to rotate around the x-axis of the Bloch sphere
at a frequency∆max/ħh. This Rabi oscillation can be detected via a shift in the resonant
frequency of the microwave transmission line.

Since the Hamiltonian (6.8) is that of a fully controllable qubit, and since we
are allowed to measure τz , all usual qubit tests can be performed. In particular, the
coherence times T1 and T2 can be measured. The switching time T1 will likely be
dominated by quasiparticle poisoning when all Coulomb couplings are off (∆x =
∆z =∆min). The intrinsic coherence time T2 is usually measured via a Ramsey fringe
experiment, applying two π/2 rotations around the x-axis separated by a time delay
δt, while keeping ∆z on so that the two qubit states are separated in energy. In the
time interval between the π/2 pulses, the qubit rotates freely around the z-axis. A
measurement of τz after the second pulse should result in decaying oscillations as a
function of δt, allowing to determine T2. In principle, such measurements can also
be used to determine ∆min and ∆max through the period of the Ramsey fringes.

6.3 Characteristic energy scales

The characteristic energy scales of the two charge qubits are the magnetic flux de-
pendent Josephson energy EJ(Φ) and the charging energy EC, which give a plasma
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frequency ħhΩ0 ' (8EJ EC)1/2. The Josephson and charging energies may or may not
be the same on the two islands, that does not matter for the operation of the circuit.

For the sake of generality we allow for an asymmetry d in the arms of the split
Josephson junction, leading to a flux-dependence [37]

EJ(Φ) = E(0)J cos(eΦ/ħh)
Æ

1+ d2 tan2(eΦ/ħh). (6.9)

Typical values of d are in the 10% range. Hence, for Φmax ' h/4e one obtains
EJ(Φmax)' 0.1 E(0)J . In the transmon regime one has

EC� EJ(Φmax)� E(0)J . (6.10)

For a flux-controlled coupling of the Majorana zero-modes we require that the
inter-island tunnel coupling EM (across the constriction in Fig. 6.3) and the intra-island
Coulomb coupling satisfy [84]

∆max,∆+(Φmax)� EM � EJ(Φmax)� E(0)J . (6.11)

The inequalities involving EM should not be interpreted too strictly, in particular since
we do not require EM to be under accurate experimental control. In the Appendix
we show that EM can vary in a large energy window without compromising the
functionality of the device.

The inequalities can be satisfied for E(0)J ' 300GHz, EC ' 5GHz, EM ' 5GHz
and a split junction asymmetry of d ' 0.1, such that EJ(Φmax)' 30 GHz. Numerical
calculation of the energy spectrum for this set of parameters, see Fig. 6.6, yields
∆max ' 120 MHz, ∆+(Φmax) ' 0.85 GHz, and Ω0(Φmax) ' 27.5 GHz, for induced
charges close to zero.

Let us now turn to the parameters of the microwave cavity. The dispersive regime
requires g � (Ω0 ± 2∆+ −ω0). Furthermore, g should be strong enough that the
dispersive frequency shift from Eq. (6.5) is large compared to the resonance width κ,

κ�ωshift =
4g2∆+(Φmax)

|Ω0(Φmax)−ω0|2 − 4∆2
+

. (6.12)

Both conditions can be satisfied for ω0 ' 25 GHz, g ' 100 MHz, κ' 1 MHz, yielding
in particular ωshift ' 10 MHz. (We have set ħh≡ 1.)

The operating temperature should be low enough that excitation of the circuit
can be avoided,

kBT � EM, ħhΩ0, ∆gap, (6.13)

where ∆gap is the excitation gap induced at the quantum spin Hall edge by the
superconducting proximity effect. At T = 10 mK the thermal energy kBT = 1.3 GHz,
so one would need ∆gap ¦ 10GHz.

In the braiding circuit of Ref. [107] the initialization of the ancillas also requires
that kBT �∆max, so the Coulomb coupling∆max cannot be much smaller than 10 GHz.
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Figure 6.4: Implementation of the braiding circuit of Ref. [107] in a quantum spin-
Hall insulator. The two T-junctions are formed by a pair of constrictions. The flux-
controlled braiding protocol requires four independently adjustable magnetic fluxes.
The Majorana qubit formed out of zero-modes γA,γB,γC ,γD is flipped at the end of
the operation, as can be measured via a shift of the resonant microwave frequency.
This braiding operation has topological protection.

There is no such requirement for the simpler circuit of Fig. 6.3, because no ancillas
are needed for the non-topological rotation of a Majorana qubit. This is one reason,
in addition to the smaller number of Majoranas, that we propose this circuit for the
first generation of experiments on Majorana qubits.

6.4 Discussion

The key ingredients of the top-transmon [61] are: 1) a charge qubit to couple Majorana
zero-modes; 2) a flux-controlled Josephson junction to switch the Coulomb coupling
on and off ; 3) a microwave resonator to read out the Majorana qubit. There exist
many alternative proposals to operate on Majorana qubits [21, 64, 67, 68, 85, 86,
149, 151, 155–160], including an alternative hybrid design that uses a flux qubit
instead of a charge qubit [35, 63, 65, 66, 150, 161, 162].

In addition, there is a great variety of candidate systems that could host the Majo-
ranas. Three stand out as being closest to experimental realization: 1) semiconductor
nanowires [45, 46, 74]; 2) chains of magnetic nanoparticles [109, 111]; 3) the quan-
tum spin-Hall edge [42, 115, 116, 154]. All three systems can be integrated with a
transmon device, see for example Fig. 6.4 for a circuit that can braid the Majoranas
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Figure 6.5: Schematic representation of the top-transmon circuit of Fig. 6.3. Colors
distinguish different superconducting islands. The three Majoranas coupled by the
constriction at the center together produce one zero-mode γB.

via a pair of constrictions in a quantum spin-Hall insulator.
The braiding operation is called “topologically protected” because ideally the

error is of order ∆min/∆max and can be made exponentially small [84]. Larger errors
are to be expected in the first generation of experiments, caused by quasiparticle
poisoning [124], non-adiabatic effects [72, 119], non-equilibrium noise [121], and
coupling of the Majoranas to localized low-energy states induced by disorder [163].
The quasiparticle poisoning time may well remain as the ultimate limiting factor —
times ¦ 100 ms have been reported in Al-Cu devices [164], but the quantum spin-Hall
insulator is likely to be less favorable.

In Figs. 6.3 and 6.4 we showed an implementation of the top-transmon circuits
at the quantum spin-Hall edge, because of recent experimental developments that
suggest this might be a favorable host of Majorana zero-modes [115, 116, 154].
The role of T-junctions [21, 107], which in nanowire networks can be fabricated by
allowing nanowires to meet and merge during the growth process [38], is played by
constrictions [108], but since a constriction has four legs rather than three, one of
the edges has to be closed off by a barrier. This will require breaking of the time-
reversal symmetry that prevents backscattering of the helical edge states [43, 44].
The weak-field barriers suggested in Ref. [108] will presumably not be sufficiently
resistive to realize the braiding operation. The alternative is to open up a gap at the
edge by a ferromagnetic insulator or by an in-plane magnetic field. Ref. [116] found
no gap opening in their InAs/GaSb quantum wells for in-plane fields up to 10 T, but
this might be strongly dependent on the detailed structure of the quantum wells.

6.A Energy spectrum of the top-transmon

In the main text we have described the top-transmon circuit of Fig. 6.3 via the Hamil-
tonian (6.6), which captures the essential features of the coupling of the topological
Majorana qubit to the non-topological charge qubit. Two simplifying assumptions are
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made in this Hamiltonian [84, 107]. Firstly, it is assumed that the superconducting
phase on each island is pinned to zero by the large Josephson energy EJ � EC, so
it does not enter as a dynamical variable. Secondly, the fermionic excited states in
the tunnel junction connecting the islands are neglected. In this Appendix we relax
both assumptions and calculate the full energy spectrum numerically, following the
general procedure of Ref. [107]. For simplicity we do not include the coupling to the
microwave cavity.

6.A.1 Full Hamiltonian of the circuit

A schematic representation of the circuit of Fig. 6.3 is given in Fig. 6.5. The circuit is
formed by three superconductors, numbered 1 to 3 in Fig. 6.5. Two split Josephson
junctions connect the superconductors 1 and 2 to the third one. A further connection
between all three superconductors is provided by the quantum spin Hall constriction.
We will work in a gauge where all superconducting phases are measured with respect
to that of the third superconductor.

The circuit is described by the Hamiltonian

H = H1 +H2 +HM, (6.14)

where H1 and H2 are two copies of a Cooper-pair box Hamiltonian describing super-
conductors 1 and 2,

Hn = EC(Nn + q(n)ind/e)
2 − EJ(Φn) cos(φn − φ̃n). (6.15)

The phase and charge operators φn, Nn of the two superconductors are canonically
conjugate variables, with commutator [φn, Nn] = 2i. The charge induced capacitively
is q(n)ind. The energy EC = e2/2C is the charging energy due to the capacitance C to the
third superconductor. We have taken the same charging energy for superconductors
1 and 2 and assumed that their mutual capacitance is negligible. The Josephson
energies EJ of the two Josephson junctions depend on the flux via Eq. (6.9). The
asymmetry dn in the arms of each split junction introduces a phase offset φ̃n for each
island, determined by tan φ̃n = dn tan(eΦn/ħh).

The term HM in Eq. (6.14) describes the constriction in the quantum spin Hall
(QSH) insulator, where three superconducting islands meet. Each superconductor
contributes one of the three Majorana modes γB1, γB2, and γB3. Their tunnel coupling
is given by the Hamiltonian

HM = iEM

�

γB2γB1 cos ( 1
2φ1 −

1
2φ2 +α12)

+ γB1γB3 cos ( 1
2φ1 −α13) + γB3γB2 cos ( 1

2φ2 +α23)
�

. (6.16)

We take the same strength EM for all three couplings, but the flux-induced phase
shifts differ: α12 = −e(Φ0 + Φ1)/2ħh, α23 = eΦ1/2ħh, and α13 = eΦ0/2ħh. The three
eigenvalues of HM are symmetrically arranged around zero energy, so there is one
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flux-independent zero-mode. This is the Majorana mode γB of Fig. 6.3. Additionally,
there is a fermionic mode at excitation energy ' EM.

The other Majorana modes of Fig. 6.3 have no tunnel coupling, so they do not
appear explicitly in the Hamiltonian (6.14). They influence the spectrum via a
constraint on the number operators [36],

iγAγB1 = (−1)N1 , iγB2γC = (−1)N2 . (6.17)

These constraints express the fact that for each island separately the fermion parity
(represented on the left-hand-side) equals the number of electrons modulo 2 (repre-
sented on the right-hand-side). The product γDγB3 enters only via the global fermion
parity of the three superconducting islands, but since this is conserved it does not
provide for an independent constraint.

6.A.2 Hamiltonian in the measurement configuration

We wish to extract the parameters Ω0 and ∆± appearing in Eq. (6.6) from the full
Hamiltonian (6.14). In order to do so, it is sufficient to consider the measurement
configuration of the circuit, i.e. set Φ1 = 0 and Φ0 = Φmax ' h/4e. The second
superconductor then remains in its ground state, and the Hamiltonian reduces to

H = EC(N1 + q(1)ind/e)
2 − EJ(Φmax) cos(φ1 − φ̃1)

+ iEM

�

γB1(γB3−γB2) cos ( 1
2φ1−

1
4π) + γB3γB2

�

. (6.18)

For concreteness, we take even global fermion parity,

(iγAγB1) (iγB2iγB3) (iγC γD) = +1. (6.19)

The product iγCγD = ±1 ≡ P is conserved in the measurement configuration, so
it can be treated as a c-number. The other products of Majorana operators can be
represented by Pauli matrices ρi ,

iγAγB1 = P iγB3γB2 = Pρz , (6.20a)

iγB1γB3 = PiγAγB2 = Pρx , (6.20b)

iγAγB3 = −PiγB1γB2 = ρy . (6.20c)

Following Ref. [69], we remove the parity constraint (6.17) by a unitary transfor-
mation,

H̃ = U†HU , U = exp
�

iφ
4
(1− Pρz)

�

. (6.21)

The transformed Hamiltonian is

H̃ = EC

�

N1 +
1
2 (1− Pρz) + q(1)ind/e

�2

− EJ(Φmax) cos(φ1 − φ̃1) + EMρz

+ 1
2 EM P (ρx +ρy)

�

cos(φ1 −
1
4π) + cos( 1

4π)
�

+ 1
2 EM (ρx −ρy)

�

sin(φ1 −
1
4π) + sin( 1

4π)
�

. (6.22)
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Notice that, while H from Eq. (6.18) is 4π-periodic in φ1, the transformed H̃ has
become 2π-periodic. This is why now we can forget about the parity constraint (6.17)
and straightforwardly diagonalize the Hamiltonian.

6.A.3 Energy spectrum in the measurement configuration

We numerically diagonalize the Hamiltonian H̃ in the basis of eigenstates of N1 and
ρz , truncating the Hilbert space until convergence is reached. To obtain the full
spectrum for even global fermion parity, we diagonalize H̃ for both values of P = ±1
and merge the results. The low-lying part of the spectrum is shown in Fig. 6.6 for the
choice of parameters of Sec. 6.3.

From the effective Hamiltonian (6.6), we can identify two good quantum numbers
for the low-lying part of the spectrum of H̃ in the measurement configuration: the
σz eigenvalues σ = ±1 of the charge qubit and the τz eigenvalues τ = ±1 of the
topological qubit. Additionally, there is the occupation number f = 0,1 of the
fermionic state in the constriction. These three quantum numbers can be used to label
the eight lowest energy states |σ,τ〉| f 〉 and their energies ε f

σ,τ. The top-transmon
parameters Ω0, ∆±, and ∆max follow from

Ω0 =
1
2 [(ε

0
+1,+1 + ε

0
+1,−1)− (ε

0
−1,−1 + ε

0
−1,+1)] (6.23a)

∆± =
1
4 [(ε

0
+1,+1 − ε

0
+1,−1)± (ε

0
−1,−1 − ε

0
−1,+1)] (6.23b)

∆max =∆+ −∆− =
1
2 (ε

0
−1,−1 − ε

0
−1,+1) . (6.23c)
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Figure 6.6: Energy spectrum of the top-transmon circuit of Fig. 6.3, obtained from
numerical diagonalization of the Hamiltonian (6.22) for EJ = 300 GHz, EC = 5 GHz,
Φmax = h/4e. The junction asymmetry was d = 0.1, so that EJ(Φmax) ' 30 GHz. In
panel (a), the lowest eight energy levels for EM = 5 GHz are shown as a function of the
induced charge q(1)ind. They correspond to the eight eigenstates |σ,τ〉| f 〉, whereσ = ±1
labels the excited/ground state of the charge qubit, τ = ±1 labels the even/odd parity
state of the topological qubit, and f = 0,1 the occupation number of the fermionic
state in the constriction. As indicated by the colored arrows, the ground and excited
state of the charge qubit are separated by an energy Ω0 ± 2∆+ ' (27.5)± (1.7) GHz,
depending on the state of the topological qubit. The inset shows the weak charge
dispersion of the ground state doublet (∆max ' 120 MHz). In panel (b), the same
energy levels are shown as a function of the tunnel coupling EM for a fixed value of
q(1)ind = 0. For a proper operation of the circuit it is required that the states f = 1 with
an excited fermionic mode are well separated from both ground and excited states of
the charge qubit. We have highlighted between grey panels a large energy window
3 GHz® EM ® 8 GHz where this requirement is met.
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