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Chapter 5

Effects of disorder on
Coulomb-assisted braiding of
Majorana modes

Majorana zero-modes appear at domain walls between the topologically distinct
phases that characterize one-dimensional superconductors [26]. The search for
these quasiparticles is motivated by their non-Abelian statistics [11, 14, 21, 27, 106]
and the perspective they offer in quantum computation [6, 107]. The topologically
nontrivial phase can be realized with the help of an effective p-wave pairing in a
spin-orbit coupled nanowire, proximity coupled to a superconductor [45, 46], and
first signatures of Majorana modes have been reported in these setups[74, 77]. Other
systems supporting Majorana modes include the edge of quantum spin Hall insulators
[42, 108] and chains of magnetic atoms [109–114], with recent experimental progress
in both directions [115–117]. After the first proposals for braiding protocols in
nanowire networks [21, 63, 67, 84, 86, 107], there is a need for a detailed analysis
of the limitations which might hinder the braiding operation [72, 118–120] or cause
decoherence of Majorana qubits [121–127].

According to Anderson’s theorem, electrostatic disorder has little influence in
s-wave superconductors [128], but in unconventional superconductors it can induce
sub-gap states at arbitrarily low energies [129]. Indeed, electrostatic disorder is
an unavoidable feature in experimental setups, and consequently much attention
has been devoted to its impact on Majoranas [129–146]. Importantly, Majorana end
modes are found to be surprisingly robust against strong disorder despite the presence
of localized low-energy bound states [144].

It is therefore important to investigate what happens to their non-Abelian statistics
in the presence of disorder. To understand the potential problem, let us consider a
disorder potential inducing two weakly coupled accidental Majorana modes, pinned to
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Figure 5.1: (Color online) Detrimental effect of accidental Majorana modes (red) on a
braiding manipulation: when a domain wall binding a computational Majorana mode
(blue) approaches an accidental mode, these two Majoranas are fused. Quantum
information is lost and the braiding protocol may proceed in a faulty manner, involving
another accidental Majorana.

a particular location within the wire1. When a domain wall binding a computational
Majorana moves towards an accidental one, the two modes couple strongly and
disappear into the continuum of states above the energy gap (see Fig. 5.1). This
fusion event leads to a loss of the information stored in the computational Majoranas.

Non-Abelian Majorana statistics can also be demonstrated using superconducting
circuits [61, 84, 107] implementing an interaction-based braiding protocol [147, 148].
In these hybrid Majorana-transmon qubit devices, the braiding and readout protocols
are realized by controlling Coulomb couplings between the Majoranas. In this Letter,
we show that these protocols are efficiently realized even in the presence of disorder.
We identify the dangerous physical processes and show that the braiding errors are
small if the couplings of the computational Majoranas to the accidental modes are
much weaker than the maximum Coulomb coupling, leaving a large parameter space
available for a braiding experiment.

The structure of this chapter is as follows. We start in Section 5.1 by shortly
reviewing the transmon circuit for the Coulomb-assisted braiding protocol, which was
introduced in Ref. [107], and by presenting an effective model for the setup which
captures the presence of disorder in the nanowries. In Sec. 5.2 we study numerically
the time-evolution of the system during the flux-controlled protocol, and evaluate the
effects of disorder on the braiding as well as on the initialization and measurement.
To better streamline the presentation of results, we include some of the material as
Appendices. We conclude with a few remarks in Sec. 5.3.

1If we consider for example a sufficiently strong long-range correlated disorder, there will be accidental
domain walls within the wire, giving rise to spatially well-separated Majorana modes with an exponentially
weak coupling. Alternatively, we may consider a strong impurity within the wire, which pins a pair of zero
energy Majoranas as shown in Ref. [140].
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Figure 5.2: Transmon circuit for demonstration of non-Abelian statistics [107]. Two
large superconducting islands (bus and ground) are used in the readout of the
topological qubit and three smaller superconducting islands are needed for braiding.
The nanowires form a π-shaped circuit hosting six computational Majoranas, ΓA, ΓB,...,
ΓF . A strong disorder can induce accidental Majorana modes γk,n, where k labels the
island and n the accidental Majorana mode within the island. These accidental modes
are coupled to each other with couplings δk,n, and the accidental Majoranas closest
to the end of the wires are coupled to the corresponding end states with εk1 and εk2.

5.1 Braiding protocol in the presence of disorder

To demonstrate non-Abelian statistics it is necessary to read out a topological qubit,
described by the parity of two Majoranas ΓA and ΓB, and to braid one of them, ΓB, with
another one, ΓC . This task can be performed in a minimal fashion using a π-shaped
nanowire network in a transmon circuit, following a flux-controlled braiding protocol
[107]. Although we consider Majoranas at the ends of nanowires, our results are
applicable also to quantum spin Hall systems, where circuits can be constructed by
using constrictions [108].

The circuit for braiding and readout is shown in Fig. 5.2, and involves nanowires
forming a π-shaped network hosting six computational Majoranas, ΓA, ΓB,..., ΓF . The
couplings between them can be controlled via the flux-dependence of the Joseph-
son energy, EJ ,k(Φk) = EJ ,k(0) cos(eΦk/ħh), of each superconducting island, k. The
charging energies EC ,k of the islands result in Coulomb couplings∆k(Φk) between the
Majoranas, which, for EJ ,k(Φk)� EC ,k, have an exponential dependence ∆k(Φk)∝
exp

�

−
Æ

8EJ ,k(Φk)/EC ,k

�

[61, 84], that allows to turn them on (∆k =∆max) and off
(∆k =∆min)with fluxes. A non-demolition readout of the topological qubit is possible,
because the plasma frequency of the transmon formed by the bus and ground islands
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(a) (b)

Figure 5.3: Two possible paths of variations of Coulomb couplings resulting in braiding
of Majorana zero-modes ΓB and ΓC . The braiding errors caused by the accidental
modes depend on the braiding path (see Fig. 5.4).

(see Fig. 5.2) can be tuned close to the resonance frequency of the transmission line
resonator. Once the magnetic flux Φ0 is turned on, the coupling between photons
and the transmon qubit renormalizes the resonance frequency of the cavity, so that
it is conditioned on the fermion parity of ΓA and ΓB [61, 107]. On the other hand,
the Majorana modes ΓB and ΓC can be braided with the help of ancillas ΓE and ΓF ,
by varying the Coulomb couplings ∆k along a specific type of closed path [84] (see
Fig. 5.3). The corresponding operation on the topological qubit isU = exp(isπσx/4)
[27], where s describes the braiding chirality.

As we already pointed out, strong disorder induces accidental low-energy bound
states in unconventional superconductors. These states can be described using Majo-
rana operators γk,n, where k labels the island and n the accidental Majorana modes
within it. We assume that neighboring Majoranas interact with random couplings. In
particular, the accidental Majoranas closest to the end of each wire are coupled to the
corresponding Γ end modes with couplings εk1 and εk2 (see Fig. 5.2). Unlike in the
clean case, the Coulomb interaction involves the total fermion parity of each island,
so braiding should be performed by controlling many-body interactions between Ma-
joranas, instead of the simple pairwise ones considered in Refs. [84, 107]. Similarly,
the measurement is now sensitive to the total fermion parity of the bus island.

During the braiding procedure we set Φ0 = 0 so that the charging energy of the
bus island can be neglected. The low-energy Hamiltonian is

Hbr = HC +Hδ +Hε (5.1a)

HC = i∆1ΓBΠ1ΓE + i∆2ΓEΠ2ΓF + i∆3ΓEΠ3ΓC , (5.1b)

Hδ = i
∑

k,n

δk,n γk,nγk,n+1, (5.1c)

Hε = iεb1ΓAγb,1 + iεg1ΓBγg,1 + iε11ΓBγ1,1 + iε21ΓEγ2,1

+ iε31ΓEγ3,1 + iεb2γb,Nb
ΓB + iεg2γg,Ng

ΓD

+ iε12γ1,N1
ΓE + iε22γ2,N2

ΓF + iε32γ3,N3
ΓC , (5.1d)
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where HC describes the Coulomb couplings between the Majoranas, and Hδ, Hε
describe the tunnel couplings of the accidental Majoranas to each other, and to the
computational ones, respectively. We have denoted the total parity of the accidental
Majoranas in island k with Πk = e−iπNk/4

∏Nk
n=1 γk,n.

If Hε = 0, then [Hbr,Πk] = 0, which means that the computational and accidental
Majoranas form two decoupled quantum systems. In a sector of the eigenstates of
Πk with eigenvalues pk, HC ({pk}) = ip1∆1ΓBΓE + ip2∆2ΓEΓF + ip3∆3ΓEΓC , which was
considered in Refs. [84, 107]. The Hilbert space is divided into ground and excited
state manifolds, separated by an energy 2E0, where E0 =

q

∆2
1 +∆

2
2 +∆

2
3 ≥ ∆max.

Because the braiding is performed adiabatically with respect to ∆max, the transitions
between these manifolds can be neglected and the time-evolution operator within
each parity sector is

U0({pk}, panc) = eis({pk},panc)πσx/4
∏

i

Uint,i({pk}, panc), (5.2)

where Uint,i({pk}, panc) describes the internal time-evolution of the accidental Majo-
ranas in island i, s({pk}, panc) denote the chirality of the braiding in different sectors
of the Hilbert space, and panc is the parity of the ancillas ΓE and ΓF .

We now assume that the measurement projects the system to an eigenstate of
total parity on the bus island P = −iΓAΠbΓB. (The requirements for a successful
measurement are analyzed below.) The protocol for demonstrating non-Abelian
Majorana statistics consists of a measurement P followed by n braiding cycles, after
which the parity is measured again. The probability of observing a parity flip after
n consecutive braidings, pflip(n), is dictated by the Majorana statistics. For clean
wires the sequence of probabilities is pflip = 1/2,1,1/2,0 for n = 1,2,3,4, and it
repeats itself periodically for larger values of n [107]. Given Eq. (5.2), the sequence
is independent on the accidental Majoranas and the initial state of the ancillas as
long as Hε = 0. Thus, the only limitations in this case are quasiparticle poisoning and
inelastic relaxation processes2.

5.2 Analysis of the braiding protocol errors.

5.2.1 Effects of disorder on the braiding cycle

The interaction Hε between computational and accidental Majoranas may lead to
fermion parity exchanges, giving rise to braiding errors. We assume that these
coupling constants satisfy εk1,εk2�∆max, which allows to choose the braiding speed
so that εk1,εk2 � ∆0 � ∆max, where the energy scale ∆0 = ħh/T0 is determined
by the duration T0 of one segment of the braiding cycle in Fig. 5.3. Thus, we can
calculate the unperturbed time-evolution operator U0(t) in each parity sector using

2We note that while the accidental Majoranas do not influence the sequence of probabilities pflip, they
affect the chirality of the braiding, which can be important in more advanced quantum manipulations.
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the adiabatic approximation and consider the effect of Hε perturbatively. The total
time-evolution operator for one braiding cycle can be written as

U =U0 +
∑

k

�εk1

∆0
δUk1 +

εk2

∆0
δUk2

�

, (5.3)

where U0 is the unperturbed time-evolution, which in different parity sectors is
described by Eq. (5.2), and δUk1,2 are corrections which can in principle be computed
for an arbitrary disordered wire. These corrections couple the different parity sectors
and can result in braiding errors.

Next, we analyze in detail the case where each nanowire contains a single pair of
accidental Majorana modes, which are coupled to each other by δ. This allows to
identify the fundamental mechanisms of errors, which are present also in nanowires
with many accidental Majorana modes.

We first note that the couplings εb1 and εg2 have no effect on the braiding protocol
within the lowest order perturbation theory. We characterize the errors caused by
other couplings by calculating the matrix norms ||δUki ||23, which depend on δ and
act as effective pre-factors of εki/∆0 in Eq. (5.3). Based on symmetry arguments,
we find that ||δUb2||2 = ||δUg1||2, ||δU11||2 = ||δU22||2 = ||δU32||2 and ||δU12||2 =
||δU31||2 (see Appendix 5.A). This leaves four different cases, which are plotted in
Fig. 5.4 (a)-(d) and (e)-(h) for the two paths of Fig. 5.3(a),(b), respectively. The errors
show peaks when accidental Majorana modes are either uncoupled (δ ≈ 0) or the
energy of their bound state is in resonance with the energy gap between the ground
and excited state manifolds (δ ≈ E0). The peak appearing close to δ = 0 is extremely
narrow for both paths, but the resonance at δ ≈∆max is strongly path dependent. For
the circular path, shown in Fig. 5.3(a), E0 is constant during the whole braiding cycle
resulting in narrow resonance peak at δ ≈ ∆max. On the other hand, for the path
shown in Fig. 5.3(b), E0 varies between [∆max,

p
2∆max] during the braiding cycle so

that the resonance peak spreads over a wide range of δ. In the case of circular path it
is possible to obtain closed form analytic solutions for δUki . Away from the peaks
where ||δUki ||2 ∼ 1, they vanish asymptotically as ∼Max

�

∆0/δ,∆0/
�

�∆max ±δ
�

�

�

or
faster (see Appendix 5.B). We have verified the validity of the perturbation theory
for εki/∆0 < 0.1 by numerically calculating the full time-evolution operator. We also
point out that the assumption that the couplings δk,n and εki are time-independent is
not essential. Our qualitative findings are valid also if these couplings are changing
adiabatically in time due to the variations of the Coulomb couplings.

With increasing disorder, more low-energy sub-gap states will appear in the energy
spectrum. For an increased number of accidental bound states, the braiding errors
as a function of ∆max will contain several peaks, appearing whenever an energy
of the accidental Majoranas is in resonance with E0. This means that it becomes
more and more difficult to avoid errors by properly choosing ∆max. At the same
time, the accidental modes will appear closer to the ends of the wires, increasing the
couplings εki , which control the heights of the peaks in the braiding errors. As this

3The matrix norm ||U ||2 is defined as the largest singular value of U .
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coupling becomes comparable to the maximum Coulomb coupling, εki ∼∆max, one
can no longer choose a ∆0 such that the braiding process is adiabatic with respect
to the Coulomb coupling and non-adiabatic with respect to εki . At this point, the
non-Abelian statistics is not observable anymore. An interesting theoretical question
is whether this breakdown of the non-Abelian statistics happens in conjunction with a
disorder-induced topological transition to a trivial phase of the nanowire, or whether
it precedes it. We note that, in our model, the braiding process can in principle
be optimized by choosing the coupling ∆max in such a way that it is comparable
to the topological gap, ∆max ∼ Egap. In this case, non-Abelian statistics becomes
unobservable when εki ∼ Egap, so that the critical disorder strength is comparable
to the critical disorder strength inducing the topological phase transition. However,
our model is strictly speaking a low-energy effective theory, which is only valid in the
nontrivial phase, and therefore it cannot be used for a detailed quantitative description
of the breakdown of the non-Abelian braiding statistics and the topological phase
transition happening at large disorder.

5.2.2 Effect of disorder on initialization and readout

Errors can arise not only during the braiding cycle, but also during the readout,
performed through a measurement of the fermion parity P = −iΓAΠbΓB of the bus
island. The Hamiltonian describing the interaction of the transmon qubit and the
cavity is [107]:

Hro = ħhω0a†a+ħhg
�

τ+a+τ−a†
�

+τz

�

1
2
ħhΩ0 +∆+P

�

+∆−P +Hb

�

εbn,δb,n,m

�

+ iε11ΓBγ11 + iδγ11γ12. (5.4)

The first line describes the photons with bare resonance frequency ω0 and the
interaction with the transmon qubit with a coupling constant g. Here Ω0 is the
transmon plasma frequency, Pauli matrices τx ,y,z act on the transmon qubit and
τ± = (τx ± iτy)/2. The term proportional to P arises due to the Coulomb coupling
[107], and the Hamiltonian Hb defines the tunnel couplings of the Majoranas inside
the bus island. The last two terms describe the coupling of the computational Majorana
ΓB to an accidental pair of modes outside the bus island. We assume that the trans-
mission line resonator is operated in the dispersive regime, where (n+ 1)g2� δω2,
with n the number of photons in the cavity and δω= Ω0 −ω0.

Without accidental Majoranas, the Hamiltonian (5.4) produces a parity-dependent
resonance frequency of the cavity ωeff(P ) = ω0 + τz g2(δω+ 2P∆+/ħh)−1, which
allows to measure the topological qubit [61, 107]. As before, we consider perturbative
corrections caused by the couplings between computational and accidental Majoranas.
The term Hb conserves the parity P and therefore it does not modify ωeff within the
lowest order perturbation theory. The presence of the external coupling ε11 implies
that the measurement eigenstates of the renormalized cavity frequency no longer have
a definite parity P , but can be written in a form ψ=

p
1− ε2|P , . . .〉+ ε| −P , . . .〉,



82 Chapter 5. Effects of disorder on braiding of Majorana modes

where away from resonances the measurement error vanishes as ε ∼ ε11/
�

∆+−∆−−
|δ|
�

. This scaling is in agreement with the expected parity flow to the accidental
Majorana modes. Close to the resonances∆+−∆− ≈ |δ| the parity flow will be limited
by the finite measurement time tM so that the errors are ∼ ε11 tM/ħh. Therefore, the
conditions for successful measurement coincide with the requirements for small
braiding errors.

5.3 Summary

We have shown that the Coulomb-assisted braiding protocol is realizable also in the
presence of disorder-induced accidental bound states, and that the braiding errors
are small if the coupling of the computational Majoranas to the accidental states is
much weaker than the maximum Coulomb coupling. A few remarks are in order
concerning the experimental relevance of our results. First, the requirement of weak
coupling between the computational and accidental Majorana modes coincides with
the definition of the topological phase in disordered systems, and therefore based on
the findings in Ref. [144], we expect that there is a large parameter space available
for braiding the Majorana modes. Secondly, the low-energy states in the wires can
in principle be characterized using spatially resolved scanning tunneling microscopy
[117] or by coupling to microwaves [149–152]. Because braiding errors depend
strongly on the energies of the accidental modes, they can be systematically decreased
by controlling these energies with the help of Zeeman fields or gate voltages. Finally,
we point out that our results are relevant also in the case of clean wires, because
they allow to simplify the experimental setup by replacing the π shaped network
of Ref. [107] with two spatially separated T-junctions. In this case, two additional
Majorana quasiparticles are intentionally created, which influence the braiding the
same way as the accidental Majoranas considered here. However, in clean wires the
additional Majoranas are automatically weakly coupled to the computational ones if
the wires are sufficiently long, leading to negligible braiding errors.

5.A Symmetry relations for the braiding errors

When the couplings between the accidental and the computational Majoranas is
much smaller than the maximum Coulomb coupling, their effects can be treated
independently. In the following we analyze each of the ten terms in Hε and show that
there are only four independent terms which contribute to errors during the braiding
cycle.

Since the Coulomb Hamiltonian HC commutes with both iεb1ΓAγb,1, as well as
iεg2γg,Ng

ΓD, it is clear that these terms cannot cause errors during the braiding cycle.
Their counterparts, iεb2γb,Nb

ΓB and iεg1ΓBγg,1 involve accidental Majoranas outside
the braiding T-junction and do cause errors, as shown in Fig. 5.4. Furthermore,
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these errors are identical, ||δUb2||2 = ||δUg1||2, because they are only related by a
relabeling of the accidental Majorana indices.

Out of the six remaining terms, only three contribute in an independent fashion.
To make this apparent, we will consider the case where there are only two accidental
Majoranas in the braiding T-junction, which we label γ1 and γ2 for ease of nota-
tion. They may be placed in any of the three islands, and connected to any of the
computational Majoranas. The six resulting Hamiltonians read:

H11 = ∆1ΓBγ1γ2ΓE + i∆2ΓEΓF + i∆3ΓEΓC + iδγ1γ2 + iεΓBγ1 (5.5)

H12 = ∆1ΓBγ1γ2ΓE + i∆2ΓEΓF + i∆3ΓEΓC + iδγ1γ2 + iεγ2ΓE (5.6)

H21 = i∆1ΓBΓE +∆2ΓEγ1γ2ΓF + i∆3ΓEΓC + iδγ1γ2 + iεΓEγ1 (5.7)

H22 = i∆1ΓBΓE +∆2ΓEγ1γ2ΓF + i∆3ΓEΓC + iδγ1γ2 + iεγ2ΓF (5.8)

H31 = i∆1ΓBΓE + i∆2ΓEΓF +∆3ΓEγ1γ2ΓC + iδγ1γ2 + iεΓEγ1 (5.9)

H32 = i∆1ΓBΓE + i∆2ΓEΓF +∆3ΓEγ1γ2ΓC + iδγ1γ2 + iεγ2ΓC . (5.10)

Following Bravyi and Kitaev [92], we write a representation of the six Majorana
operators as:

ΓB = σ0 ⊗σ0 ⊗σx (5.11)

ΓC = σ0 ⊗σ0 ⊗σy (5.12)

ΓE = σ0 ⊗σx ⊗σz (5.13)

ΓF = σ0 ⊗σy ⊗σz (5.14)

γ1 = σx ⊗σz ⊗σz (5.15)

γ2 = σy ⊗σz ⊗σz , (5.16)

where σi are the Pauli matrices and ⊗ denotes the Kronecker product.
The three Hamiltonians containing a coupling of an accidental Majorana to ΓB,

ΓF , or ΓC are identical up to unitary transformations, and therefore lead to identical
errors ||δU11||2 = ||δU22||2 = ||δU32||2. The unitary transformations are

H11 = U12H22U†
12, H11 = U13H32U†

13, (5.17)

with

U12 =
�

σz ⊗σz 0
0 σx ⊗σx

�

, (5.18)

U13 =
�

σz ⊗σz 0
0 σz ⊗σ0

�

. (5.19)

The Hamiltonians H12 and H31 can also be related by a unitary transformation,
provided that one interchanges ∆1 and ∆3,

H12 = eU13H31(∆1↔∆3)eU
†
13 , (5.20)
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where

eU13 =
1
p

2

�

iσ0 ⊗ (σx +σy) 0
0 σ0 ⊗ (σx +σy)

�

. (5.21)

Since replacing ∆1 with ∆3 and vice versa amounts to performing the braiding cycle
in a time-reversed order (see Fig. 5.3), these two Hamiltonians produce identical
errors ||δU12||2 = ||δU31||2.

Such a transformation also exists for H12 and H21, but involves replacing∆1↔∆2,
which changes the braiding path, and therefore leads to different errors, as shown in
Fig. 5.4.

5.B Analytical solutions for the braiding errors

In order to calculate the four independent corrections ||δUki ||2, we write the total
time-evolution operator as U(t) = U0(t)Ũ(t), where U0(t) is the time-evolution
operator for Hε = 0 and Ũ describes the lowest order correction caused by Hε. We
assume that ∆0 � ∆max, so that the unperturbed time-evolution operator U0(t)
for the computational Majoranas in each parity sector can be calculated using the
adiabatic approximation. The lowest order correction Ũ can be found using the
equation:

Ũ(t) = 1−
i
ħh

∫ t

0

d t1U†
0(t1)HεU0(t1). (5.22)

In this way we obtain that the total time-evolution operator for one braiding cycle is
given by Eq. (5.3), where U0 is the unperturbed time-evolution, which in different
parity sectors is described by Eq. (5.2), and δUk1 and δUk2 are corrections, which
can be solved by calculating the integral in Eq. (5.22).

For the circular braiding path [Fig. 5.3(a)] with one pair of accidental Majoranas
in each island, the integral in Eq. (5.22) can be computed exactly, resulting in closed
form analytic solutions for δUki . Although the full expressions are not very insightful,
they allow us to determine how the braiding error estimates, εki ||δUki ||2/∆0, vanish
asymptotically far away from the resonant peaks in Fig. 5.4. We obtain

‖δU12‖2 =Max
�

π| cos(2δ/∆0)|
4δ2/∆2

0

,

| cos
�

3(δ±∆max)/∆0

�

± sin
�

3(δ±∆max)/∆0

�

|
p

2|δ±∆max|/∆0

�

, (5.23a)

‖δU11‖2 =
| sin(3δ/∆0)|
|δ/∆0|

(5.23b)

‖δU21‖2 =Max
� | sin(3δ/∆0)|
|δ/∆0|

,
π| cos

�

3(δ±∆max)/∆0

�

|
4(δ±∆max)2/∆2

0

�

, (5.23c)
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and

||δUb2||2 =Max
�

p

1± sin(6δ/∆0)p
2|δ/∆0|

,
π| cos(2(δ±∆max)/∆0)|

4(δ±∆max)2/∆2
0

�

. (5.23d)
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Figure 5.4: Errors occurring during the braiding cycle can be estimated by
εki ||δUki ||2/∆0 [Eq. (5.3)], with four different types of corrections ||δUki ||2, which
are plotted as a function of δ. These corrections, related to the two adiabatic cycles
of Fig. 5.3(a),(b), are shown in figures (a)-(d) and (e)-(h), respectively. The insets
show magnifications of the peaks around δ = 0. Away from the peaks the errors are
efficiently suppressed. In all figures ∆max = 500∆0.


