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Chapter 4

Flux-controlled quantum
computation with Majorana
modes

After the first signatures were reported [74–77] of Majorana bound states in su-
perconducting nanowires [26, 45, 46], the quest for non-Abelian braiding statistics
[11, 14, 21, 27] has intensified. Much interest towards Majorana modes arises from
their technological potential in fault-tolerant quantum computation [6, 78–81]. Their
non-Abelian exchange statistics would allow to perform quantum gates belonging to
the Clifford group with extremely good accuracy. Moreover, topological qubits en-
coded non-locally in well-separated Majorana bound states would be resilient against
many sources of decoherence. Even without the applications in quantum information
processing, observing a new type of quantum statistics would be a milestone in the
history of physics.

The two central issues for the application of Majorana modes are (i) how to
unambiguously demonstrate their non-Abelian exchange statistics and (ii) how to
exploit their full potential for quantum information processing. The first issue requires
an elementary circuit that can perform three tasks: initialization of a qubit, braiding
(exchange) of two Majoranas, and finally measurement (readout) of the qubit. In view
of the second issue, this circuit should be scalable and serve as a first step towards
universal fault-tolerant quantum computation.

Here we present such a circuit, using a superconducting charge qubit in a transmis-
sion line resonator (transmon [37, 60, 82, 83]) to initialize, control, and measure the
topological qubit. In such a hybrid system, named top-transmon [61], the long-range
Coulomb couplings of Majorana modes can be used to braid them and to read out their
fermion parity [61, 84]. While there exist several proposals to control or measure
Majorana modes in nanowires [21, 35, 61, 63–68, 84–87], combining braiding and
measurement without local adjustment of microscopic parameters remains a chal-
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Figure 4.1: Two circuits that can demonstrate non-Abelian statistics, by the initializa-
tion, braiding, and measurement of pairs of Majorana bound states (circles). Braiding
is performed twice to flip the fermion parity of γA and γB [79]. Majoranas that can
be coupled by Coulomb charging energy are connected by a thin line; the line is solid
if the Majoranas are strongly coupled, and dashed if they are uncoupled. A thick
line indicates tunnel coupling of Majoranas. The T-shaped circuit of Ref. [21] (left
column) requires control over tunnel couplings, while the π-shaped circuit considered
here (right column) does not, because both readout and braiding involve a Majorana
localized at a T-junction.

lenge. We show that full macroscopic control is possible if during the measurement
one of the Majorana modes is localized at a T-junction between three superconducting
islands (see Fig. 4.1). All three steps of the braiding protocol, initialization–braiding–
measurement, can then be performed by adjusting magnetic fluxes through split
Josephson junctions. Because local control of microscopic parameters is not neces-
sary, our scheme is less sensitive to problems arising from electrostatic disorder and
screening of gate voltages by the superconductor.

This design principle of flux-controlled braiding and measurements can be scaled
up from a minimal braiding experiment setup to a multi-qubit register that supports
a universal set of quantum gates and allows measurement of any product of Pauli ma-
trices belonging to a selection of topological qubits. Multi-qubit parity measurements
are a powerful resource in quantum information processing, allowing for the efficient
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creation of long-range entanglement and direct measurement of stabilizer operators
(thus removing the overhead of ancilla qubits in quantum error correction schemes).
Because the data stored in the register can be accessed in any random order, it truly
represents a Random Access Majorana Memory.

The structure of this chapter is as follows. In Sec. 4.1 we present the circuit
that can demonstrate the non-Abelian Majorana statistics. In Sec. 4.2 we take a
longer-term perspective and describe the Random Access Majorana Memory, whose
potential for quantum computation is discussed in Sec. 4.3. Finally, we conclude
in Sec. 4.4. For the benefit of the reader, we include more detailed derivations and
discussions in the Appendices.

4.1 Minimal circuit for the demonstration of non-Abelian
statistics

To demonstrate non-Abelian Majorana statistics one needs to read out the parity of
two Majoranas, γA and γB, and braid one of these Majoranas γB with another one, γC .
We seek a transmon circuit that can combine these operations in a fully flux-controlled
way, by acting on the Coulomb coupling of the Majoranas. Since γB must be coupled
first to one Majorana (for the braiding) and then to another (for the readout), it
must be able to contribute to two different charging energies. This is possible if γB is
localized at a T-junction between three superconducting islands.

We thus arrive at the minimal circuit shown in Fig. 4.2a. It consists of five
superconducting islands, each containing a nanowire supporting two Majorana bound
states, enclosed in a transmission line resonator. The two bigger superconductors
form a transmon qubit and the three smaller islands are embedded between the two
transmon plates. The Josephson couplings between the islands can be controlled by
magnetic fluxes Φk (k = 0, 1, 2, 3). The nanowires form a π-shaped circuit, with two
T-junctions where three Majorana bound states belonging to adjacent superconductors
are tunnel-coupled. At low energies the three overlapping Majorana bound states at a
T-junction form a single zero mode, so that effectively the system hosts six Majorana
bound states, γA,γB, ...,γF .

The three relevant energy scales for the device are (i) the charging energy
EC,k = e2/2Ck determined by the total capacitance Ck of the four upper supercon-
ductors in Fig. 4.2a, (ii) the Josephson energies EJ,k(Φk) = EJ,k(0) cos(eΦk/ħh), and
(iii) the Majorana tunnel couplings EM at both T-junctions. For strong Josephson
coupling, EJ,k � EC,k, EM, the phases of the order parameter on superconducting
islands (measured with respect to the lower superconductor) are pinned to the value
φk ≡ 0. We distinguish two different operating regimes of the device: one for the
braiding procedure and one for initialization and readout.
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Figure 4.2: Panel a): Minimal circuit for flux-controlled demonstration of non-Abelian
Majorana statistics. Two large superconducting plates form a Cooper pair box in a
transmission line resonator, i.e. a transmon qubit. Three smaller superconducting
islands are embedded between the two transmon plates. Each superconducting island
contains a nanowire supporting two Majorana bound states. At low energies, the
three overlapping Majorana bound states at a T-junction form a single zero mode so
that effectively the system hosts six Majorana bound states, labeled γA, γB, γC , γD,
γE , and γF . The Coulomb couplings between the Majorana modes can be controlled
with magnetic fluxes Φk. This hybrid device can measure the result of the braiding
operation as a shift in the microwave resonance frequency when the fermion parity
iγAγB switches between even and odd. Panel b): Sequence of variation of fluxes
during the initialization (steps 0–2), braiding (steps 3–8) and measurement (step 9).
Panel c): Illustration of the steps required for initialization, braiding and measurement.
Fusion channels of pairs of Majorana modes colored red, blue and white are chosen
to be the basis states in Eq. (4.4). To unambiguously demonstrate the non-Abelian
nature of Majoranas, one needs to collect statistics of measurement outcomes when
the adiabatic cycle describing the braiding operation (steps 3–8) is repeated n times
between initialization and measurement. The probabilities of observing changes
in the cavity’s resonance frequency, pflip, for different values of n should obey the
predictions summarized in the table. The sequence of probabilities shown in the table
repeats itself periodically for larger values of n.
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4.1.1 Flux-controlled braiding

During the braiding procedure we set Φ0 = 0 so that the charging energy of the large
island can be completely neglected. The charging energies of the small islands can be
considered perturbatively [37], resulting in long-range Coulomb couplings,

Uk = 16

�

EC,k E3
J,k

2π2

�

1
4

e−
p

8EJ,k/EC,k cos(qkπ/e), (4.1)

between the Majorana bound states in the corresponding island [61]. The offset
charge qk accounts for the effect of nearby gate electrodes. In order to keep our
analytic calculations more transparent, we assume that Uk � EM. This condition is
not required for braiding to stay accurate in view of the topological nature of the
latter (see also App. 4.F). In this case, the low-energy sector of the system is described
by the effective Hamiltonian (see Appendix 4.A)

Hbraiding = −i∆1γBγE − i∆2γEγF − i∆3γEγC , (4.2)

∆1 =
U1

p

1+ 2 cos2(eΦ1/2ħh)

×
cos α23

p

cos2α12 + cos2α23 + cos2α31

, (4.3a)

∆2 = U2
cos α31

p

cos2α12 + cos2α23 + cos2α31

, (4.3b)

∆3 = U3
cos α12

p

cos2α12 + cos2α23 + cos2α31

, (4.3c)

where α12 = (e/2ħh)(Φ1 + Φ2), α23 = (e/2ħh)(Φ2 + Φ3), and α31 = −α12 − α23 are
gauge-invariant phase differences between the smaller islands. The three couplings
∆i are all tunable with exponential sensitivity via the fluxes Φi , increasing from ∆min
(the off state) to ∆max (the on state) when |Φi | increases from 0 to Φmax < h/4e. On
the other hand, the tunnel couplings at the T-junction vary slowly with the fluxes, so
the three overlapping Majoranas remain strongly coupled throughout the operation.

Out of the six Majorana operators, we define three fermionic creation operators:

c†
1 =

1
2 (γA+ iγB) (4.4a)

c†
2 =

1
2 (γC + iγD) (4.4b)

c†
3 =

1
2 (γE + iγF ). (4.4c)

We will braid the Majoranas γB and γC by using γE and γF as ancillas, as specified
in Fig. 4.2. At the beginning and at the end, the Majoranas γE and γF are strongly
coupled (|Φ2|= Φmax). If all other couplings are off we are left with two degenerate
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states that define a topological qubit. In the odd-parity sector they are
�1

0

�

= |10〉|0〉
and

�0
1

�

= |01〉|0〉. During the exchange of Majoranas γB and γC the fluxes Φ1, Φ2, Φ3
are varied between 0 and ±Φmax according to the table shown in Fig. 4.2b. Computing
the non-Abelian Berry phase for this adiabatic cycle as in Ref. [84] shows that braiding
has the effect of multiplying the topological qubit state with the matrix

U =
1
p

2

�

1 −i
−i 1

�

, (4.5)

up to corrections of order ∆min/∆max, with ∆min/∆max� 1 because of the exponen-
tial sensitivity of these quantities on magnetic fluxes. Repeating the cycle n times
corresponds to applying the gate U n.

4.1.2 Initialization and readout

The ancillas need to be initialized in the state |0〉. This can be achieved by turning
the couplings ∆2 and ∆3 on and allowing the system to relax to the ground state
by adiabatically switching off ∆3 before ∆2 [step 0 in Fig. 4.2 (b)]. In addition to
the initialization of the ancillas, the braiding needs to be preceded and followed by
a readout of the topological qubit. For that purpose, before and after the braiding
flux cycle we increase Φ0 from 0 to Φmax, so that the spectrum of the transmon
depends on the fermion parity P = iγAγB [61]. During the measurement we set
Φ1 = Φ2 = Φ3 = 0, to decouple the four Majoranas γC ,γD,γE ,γF from γA,γB and to
minimize the effect of cross-capacitances [88].

In this configuration it is possible to execute a projective measurement on the
fermion parityP by irradiating the resonator with microwaves. The system composed
by the transmon qubit and microwave resonator can be described by the Hamiltonian

Hreadout =σz

�

1
2ħhΩ0 +P∆+ cos

�πq0

e

��

+P∆− cos
�πq0

e

�

+ħhω0a†a+ħhg(σ+a+σ−a†). (4.6)

Here, ω0 is the bare resonance frequency of the cavity, g is the strength of the
coupling between photons and the transmon qubit, and ħhΩ0 '

p

8EJ,0EC is the
transmon plasma frequency, with EC the charging energy of the transmon including
the contributions of the small islands. We have defined σ± = (σx ± iσy)/2 and

∆± =
δε1 ±δε0

2
1

p

1+ 2 cos2(eΦ0/2ħh)
, (4.7)

where δε1, δε0 ∝ exp(−
Æ

8EJ,0/EC) are determined by the energy levels εn =
ε̄n − (−1)nδεn cos(πq0/e) of the transmon [37]. We assume that the induced charge
is fixed at q0 = 0 for maximal sensitivity.

The transmission line resonator is typically operated far from resonance, in the
so-called dispersive regime [37, 82, 83], when (n+ 1)g2� δω2, with n the number
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of photons in the cavity and δω= Ω0 −ω0. The Hamiltonian (4.6) then produces a
parity-dependent resonance frequency (see Appendix 4.B)

ωeff(P ) =ω0 +σz g2(δω+ 2P∆+/ħh)−1. (4.8)

A flip of the topological qubit can thus be measured as a shift in the resonance
frequency by the amount

ωshift =
4ħhg2∆+

ħh2δω2 − 4∆2
+

. (4.9)

The probability of observing a change in the resonance frequency of the cavity after
n consecutive braidings, pflip(n), is dictated by the Majorana statistics: pflip(n) =
|〈1|U n |0〉|2 = |〈0|U n |1〉|2. The sequence of probabilities, pflip =

1
2 , 1, 1

2 , 0 for n =
1, 2, 3, 4, repeats itself periodically. Therefore, the non-Abelian nature of Majoranas
can be probed by collecting statistics for different values of n.

4.2 Random Access Majorana Memory

The π-circuit of Fig. 4.2 is the minimal circuit which can demonstrate non-Abelian
Majorana statistics, but it does not allow for the application of two independent
braidings. The full computational power of Majoranas can be achieved by increasing
the number of T-junctions. We adopt the triangular loop geometry introduced by
Sau, Clarke, and Tewari [67], which is the minimal circuit for a fully flux-controlled
topological qubit (see Fig. 4.3a). It consists of five Majorana islands placed between
the upper and lower superconducting plates of a transmon qubit, referred to as bus
and (phase) ground respectively, and a transmission line resonator for the readout.

In this geometry the braiding and readout can be performed in a similar way
as in the case of the π-circuit. In the braiding configuration, we set Φ0 = 0. Any
pair of the Majoranas γA,γB,γC can now be braided with the help of magnetic fluxes
Φk (k = 1,2, ..., 5). The qubit manipulations and corresponding quantum gates are
shown in Appendix 4.D. The fourth Majorana γD forming the topological qubit need
not be moved and is situated on the ground island, while γE and γF serve as ancillas.
Moreover, the parity of any pair of Majoranas γA,γB,γC can be measured by moving
them to the “measurement” island, the one coupled to the bus via the flux Φ1 in
Fig. 4.3a. During the measurement Φk = 0 (k = 1,2, ..., 5) and Φ0 = Φmax, so that
all the small islands are coupled via large Josephson energy either to the bus or to
the ground. Therefore, the measurement configuration is described by the readout
Hamiltonian (4.6), where P is the parity of the two Majoranas in the measurement
island.

Since the typical length of a transmon is hundreds of microns, it is in principle
possible to scale up the design by considering a register of several topological qubits,
shown in Fig. 4.3b. The measurement configuration is still described by the readout
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Figure 4.3: Panel a): Minimal transmon circuit for fully flux-controlled topological
qubit. The nanowires are placed in a triangular loop formed out of three T-junctions
[67]. In this geometry, all single-qubit Clifford gates can be implemented. Panel
b): Schematic overview of a Random Access Majorana Memory consisting of eight
topological qubits. Compensating fluxes (dotted circles) are included between the
topological qubits to ensure that the gauge-invariant phase differences in the different
topological qubits are independent of each other (see Appendix 4.C).

Hamiltonian (4.6) (see Appendix 4.C), where the parity operator is now

P = iN
N
∏

n=1

γnXγnY . (4.10)

Here γnX and γnY denote Majorana modes on the measurement island belonging to
topological qubit n: X , Y ∈ {A, B, C}. Thus, a readout of the resonance frequency
corresponds to a projective measurement of this multi-qubit operator. Although the
product in Eq. (4.10) runs over all N qubits, we can still choose not to measure a qubit
by moving the corresponding pair of coupled ancillas γnE ,γnF to the measurement
island. Because these ancillas are always in a state |0〉, they do not influence the
measurement outcome. Since the Majorana modes can be selectively addressed, we
call this architecture a Random Access Majorana Memory (RAMM).

The number of qubits in a RAMM register cannot be increased without limitations.
Firstly, the frequency shift ωshift decreases with the number of topological qubits.
The main decrease is caused by the reduction of the coupling ∆+ with the number
of topological qubits, which occurs because the Majorana modes at the T-junctions
are localized in three different islands (see Appendix 4.C). An additional decrease is
caused by the renormalization of the total capacitance of the transmon due to the
small islands. Furthermore, each topological qubit introduces an extra pathway for
quasiparticles to be exchanged between the bus and the ground. Such quasiparticle
poisoning rates at thermal equilibrium are negligibly small and the poisoning due
to non-equilibrium quasiparticles can, at least in principle, be controlled by creating
quasiparticle traps.

The limited number of qubits is not an obstacle for the scalability of quantum
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computation. Beyond this limit, the computation can be scaled up by using several
transmons in a single transmission line resonator, and the coupling between the topo-
logical qubits in different registers can be achieved by introducing tunable Josephson
junctions between the transmons. Furthermore, the computation can be parallelized,
because transmons can be coupled to several different transmission line resonators
[89–91].

4.3 Multi-qubit measurements as a source of computa-
tional power

Multi-qubit measurements in the RAMM offer two significant benefits. Firstly, these
measurements can be applied without any locality constraint, so that the quantum
fan-out [90], the number of other qubits with which a given qubit can interact, can
become large for the RAMM architecture. Secondly, the overhead in the computational
resources can be reduced because the products of Pauli matrices involving several
topological qubits can be measured directly. We demonstrate these advantages in the
realization of a universal set of gates, fast creation of maximally entangled states,
and implementation of error correction schemes.

4.3.1 Quantum gates

All single-qubit Clifford gates, the CNOT gate, and the π/8 phase gate required for
universal quantum computation [1], can be realized in the RAMM with errors that are
exponentially small in macroscopic control parameters (see Appendices 4.B and 4.D).
Single-qubit Clifford gates can be realized with braiding operations only, and the
quantum circuits for the two remaining gates are summarized in Fig. 4.4. The CNOT

gate, shown in Fig. 4.4a, is a modified version of the Bravyi-Kitaev algorithm [92, 93]
involving three topological qubits (target, control, and one ancilla). Efficient π/8
phase gate implementations are based on distillation protocols [62], requiring several
noisy qubits to prepare one qubit in a particular state |A〉 =

�

|0〉+ eiπ/4 |1〉
�

/
p

2. This
state can then be used to perform the π/8 gate using the circuit shown in Fig. 4.4
b. Distillation may take place in dedicated RAMM registers (see Appendix 4.D) in
parallel with other computation processes, and the distilled state can be teleported to
the computational register (see Fig. 4.4c).

4.3.2 Preparation of 2D cluster states

The RAMM can be used to efficiently create maximally entangled multi-qubit states,
such as 2D cluster states [94–96], which make it possible to realize any quantum
circuit by means of single-qubit operations and measurements [97].

To generate a 2D cluster state in the RAMM architecture one has first to assign a
label to each topological qubit in order to establish its position and neighbors on a
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Figure 4.4: Quantum circuits for universal quantum computation in the RAMM. In
this figure, p1, p2, p3 = ±1 represent results of projective single- or multi-qubit mea-
surements, whose outcomes, carried by classical channels (double lines), determine
post-selected unitary operations. Panel a): CNOT gate. Here R1 = exp

�

i π4σx(1− p1)
�

,
R2 = exp

�

i π4 p2p3σz

�

, R3 = exp
�

i π4 p2p3σx

�

, R4 = exp
�

−i π4 p3σx

�

are all gates ob-
tainable by braidings. Panel b): π/8 phase-gate T = diag

�

1, exp i π4
�

, relying on
distillation of the state |A〉=

�

|0〉+ exp i π4 |1〉
�

/
p

2. The required unitary operations
are in this case Rψ = exp

�

−i π8σz(1− p1)
�

and RA = R1. Panel c): teleportation
protocol. Here R = exp

�

i π4σz(1− p1p2)
�

exp
�

i π4σx(1− p3)
�

. Apart from teleporting
the unknown quantum state |ψ〉, the protocol leaves the remaining two qubits in an
entangled Bell state |Ψ〉.
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Figure 4.5: Preparation of a 9-qubit 2D cluster state with a RAMM. The nine qubits
(represented by circles) are arranged in a 3× 3 square logical lattice, and numbered
from left to right and top to bottom. Panel a): The nine stabilizer operators K1, . . . K9
necessary to prepare the 2D cluster state. They are products of Pauli matrices, in-
volving all qubits connected by lines, with black and grey dots representing σx and
σz operators, respectively. Panel b): The quantum circuit creating the 2D cluster
state in a 9-qubit RAMM register, consisting in a sequence of projective multi-qubit
measurement of the 9 stabilizers.
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logical lattice (see Fig. 4.5a). Due to the non-locality of measurements in the RAMM,
the logical lattice does not need to be related to the physical system. The cluster state
may be prepared in several ways [94, 96]. An efficient procedure requires measuring
the stabilizers

Kα = σx ,α

∏

〈β ,α〉

σz,β , (4.11)

where α goes through all sites of the logical lattice and β labels the nearest neighbors
of α. The total number of measurements required is equal to the number of qubits
in the cluster state. In Fig. 4.5b we draw a circuit to create the 9-qubit 2D cluster
state in a RAMM register. To verify their entanglement properties, one possibility is
provided by the teleportation protocol of Ref. [97].

4.3.3 Efficient quantum error correction

Although topological qubits have intrinsically low error rates, grouping them into
a RAMM register allows to additionally implement efficient error correction. Error
correction schemes [1, 3, 4] are based on measurements of stabilizer generators,
which are products of Pauli matrices belonging to different qubits. The measurement
outcomes give error syndromes, which uniquely characterize the errors and the qubits
where they occurred. The RAMM allows for efficient error correction schemes, due
to the possibility of measuring stabilizers of different length, as well as correcting
errors using single-qubit Clifford gates. There are two advantages in comparison with
architectures where only single- and two-qubit operations are available: higher error
thresholds and reduced overhead in computational resources.

In order to quantitatively compare these advantages, we consider the 7-qubit
Steane code [98] as a concrete example of quantum codes, and assume a realistic
error model. We find that the error threshold of the RAMM can be an order of
magnitude larger than the error threshold of a reference architecture that can only
perform single- and two-qubit operations (see Appendix 4.E). Additionally, the RAMM

implementation of the Steane code is much more compact. Already in the first level
of concatenation, the fault-tolerant implementation of syndrome measurements in
the reference architecture requires 24 ancillas for each logical qubit, while none are
needed in the RAMM.

Although we have calculated the improvements only for the 7-qubit Steane code,
the advantages are characteristic for all error correction schemes, including surface
codes [99, 100].

4.4 Discussion

To control and manipulate quantum information contained in the Majorana zero-
modes of superconducting nanowires it is necessary to braid them and measure their
parity. We have designed a transmon circuit where both operations can be performed
by controlling the magnetic fluxes through split Josephson junctions, without local
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Figure 4.6: The π-shaped transmon circuit discussed in Sec. 4.1, reproduced here
with labels of the ten Majorana bound states.

adjustment of microscopic parameters of the nanowires. The minimal circuit for
the demonstration of non-Abelian Majorana statistics is a π-shaped circuit involving
four independent flux variables. An extended circuit consisting of many topological
qubits in parallel allows for non-local multi-qubit measurements in a Random Access
Majorana Memory, providing the possibilities of efficient creation of highly entangled
states and simplified (ancilla-free) quantum error correction.

Since all the requirements for the realization of the π-circuit and RAMM are
satisfied with the typical energy scales of existing transmon circuits and transmission
line resonators (see Appendix 4.F), flux-controlled circuits are a favorable architecture
for the demonstration of non-Abelian Majorana statistics and the realization of fault-
tolerant quantum computation.

4.A Theoretical description of the π-shaped circuit

The π-shaped circuit discussed in the main text is reproduced here in Fig. 4.6. We
label the two superconducting plates forming the transmon “bus” and “ground”, both
hosting two Majorana bound states, labeled γb1,γb2 and γg1,γg2 respectively. The
smaller superconducting islands are labeled with an integer k = 1, 2, 3. Each of them
supports two Majorana bound states γk1,γk2. We will work in a gauge where all
phases are measured with respect to the phase of the ground island. We denote with
φ the phase of the bus and with φk that of the k-th island.

We start from the Lagrangian of the system,

L = T − VJ − VM . (4.12)
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The first term is the charging energy

T =
ħh2

8e2
C0φ̇

2 +
ħh2

8e2

3
∑

k=1

�

CG,k φ̇
2
k + CB,k

�

φ̇k − φ̇
�2�

+
ħh
2e

�

q0φ̇ +
3
∑

k=1

qkφ̇k

�

. (4.13)

Here C0 is the capacitance between bus and ground, while CG,k (CB,k) is the capaci-
tance between the k-th Majorana island and the ground (the bus). The last two terms
include the induced charge q0 on the bus and qk on Majorana islands. The effect
of cross-capacitances between Majorana islands is negligible assuming that they are
small in comparison with the capacitances to the bus and the ground.

The second term is the Josephson potential

VJ = EJ ,0(Φ) (1− cosφ) +
3
∑

k=1

EJ ,k(Φk)(1− cosφk) . (4.14)

The Josephson energies EJ ,0(Φ0) = 2EJ ,0(0) cos(eΦ0/ħh) and EJ ,k(Φk) = 2EJ ,k(0) cos(eΦk/ħh)
can be varied in magnitude by changing the fluxes between 0 and |Φmax| ® h/4e.
We are assuming for simplicity that the split junctions are symmetrical, but this
requirement can be removed without affecting our results.

The third term is the Majorana-Josephson potential

VM = EM

�

iγb2γg1 cos
�

1
2φ +αbg

�

(4.15)

+ iγg1γ11 cos
�

αg1 −
1
2φ1

�

+ iγ11γb2 cos
�

1
2φ1 −

1
2φ +α1b

��

+EM

�

iγ12γ21 cos
�

1
2φ1 −

1
2φ2 +α12

�

+ iγ21γ31 cos
�

1
2φ2 −

1
2φ3 +α23

�

+ iγ31γ12 cos
�

1
2φ3 −

1
2φ1 +α31

��

.

The two square brackets in this expression group the terms corresponding to the two
T-junctions. All tunnel couplings are for simplicity assumed to be of equal strength EM .
The arguments of the cosines include single-electron Aharonov-Bohm phase shifts
between different islands,

αbg = eΦ0/2ħh (4.16a)

αg1 = eΦ1/2ħh (4.16b)

α1b = − (eΦ0 + eΦ1)/2ħh (4.16c)

α12 = (eΦ1 + eΦ2)/2ħh (4.16d)

α23 = (eΦ2 + eΦ3)/2ħh (4.16e)

α31 = − (eΦ1 + 2eΦ2 + eΦ3)/2ħh (4.16f)
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There is a constraint between the charge contained in each superconducting island
and the parity of the Majorana modes belonging to that island [36]. The constraint
can be eliminated via a gauge transformation [69]

Ω= einφ/2
3
∏

k=1

einkφk/2 (4.17)

n= 1
2 −

1
2 iγb1γb2 , nk =

1
2 −

1
2 iγk1γk2 , (4.18)

where the products extends over all Majorana junctions. The transformation has two
effects on the Lagrangian:

• it changes the induced charges appearing in Eq. (4.13),

q0→ q0 + en , qk → qk + enk (4.19)

so that the Majorana operators enter explicitly in the charging energy, and

• it modifies the Majorana-Josephson potential Ω†VMΩ so that it becomes 2π-
periodic in all its arguments φ,φk.

In the following, we will work in this new gauge where Eq. (4.19) holds. The explicit
form of Ω†VMΩ is not necessary here, as we will only need the equality

Ω†VMΩ
�

�

φk=φ=0 = VM |φk=φ=0 (4.20)

which is trivial since Ω|φk=φ=0 = 1. Starting from the Lagrangian (4.12), we will now
derive the low-energy Hamiltonians used in the main text for the braiding and the
readout.

4.A.1 Braiding

When we want to braid or move the Majoranas, we maximize the energy EJ ,0(Φ0) by
setting Φ0 = 0 and we require the condition

EJ ,0(0), EJ ,k(Φk)� EM , EC , EC ,k (4.21)

where EC ,0 = e2/2C0 and EC ,k = e2/2(CB,k + CG,k). Since the Josephson term VJ

dominates over the kinetic and Majorana terms T and VM , the action S =
∫

L dt is
then minimized for φ = φk = 0 and φ̇ = φ̇k = 0. All the superconducting islands are
in phase. Under the additional condition

EJ ,0(0)

EC ,0
>

EJ ,k(Φk)

EC ,k
, (4.22)
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we can neglect quantum phase slips around the minimum φ = 0, but not around
the other minima φk = 0. The low-energy Hamiltonian HM then contains only the
Majorana operators:

Heff = −
3
∑

k=1

iUkγk1γk2 + Ω
†VMΩ

�

�

φk=φ=0 (4.23)

where

Uk = 16

�

EC,k E3
J,k

2π2

�

1
4

e−
p

8EJ,k/EC,k cos(qkπ/e), (4.24)

is the tunneling amplitude of a phase slip process from φk = 0 to φk = ±2π [37],
also reported in Eq. (1) of the main text.

There are still ten Majorana operators in the Hamiltonian (4.23), but we can
eliminate four of them by assuming that the tunnel couplings are stronger than the
Coulomb couplings: EM � Uk. To first order in perturbation theory in the ratio Uk/EM,
we then obtain the Hamiltonian used in the main text

H = −i∆1γBγE − i∆2γEγF − i∆3γEγC (4.25)

In this passage we have introduced the six Majorana operators γA,γB,γC ,γD,γE ,γF ,
given by

γA = γb1, (4.26a)

γB =
cosαg1γb2 + cosα1bγg1 + cosαbgγ11
Æ

cos2αg1 + cos2α1b + cos2αbg

, (4.26b)

γC = γ32, (4.26c)

γD = γg2, (4.26d)

γE =
cosα23γ12 + cosα31γ21 + cosα12γ31
p

cos2α23 + cos2α31 + cos2α12

, (4.26e)

γF = γ22. (4.26f)

The coupling strengths are

∆1 = U1

cosαbg
Æ

cos2αg1 + cos2α1b + cos2αbg

×
cos α23

p

cos2α12 + cos2α23 + cos2α31

, (4.27a)

∆2 = U2
cos α31

p

cos2α12 + cos2α23 + cos2α31

, (4.27b)

∆3 = U3
cos α12

p

cos2α12 + cos2α23 + cos2α31

. (4.27c)
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4.A.2 Readout

During the readout of the transmon qubit, we set Φ0 = Φmax, so that the Josephson
energy EJ ,0 is minimized, and all Φk = 0. We require then that

EJ ,k(0)

EC ,k
�

EJ ,0(Φmax)

EC ,0
. (4.28)

In physical terms, all Majorana islands are now in phase with the ground: φk = φ̇k = 0.
Neglecting quantum fluctuations and phase slips around these minima, we may re-
write the Lagrangian in a form that depends only on φ

L =
ħh2

8e2
Cφ̇2 +

ħh
2e
(q0 + en)φ̇ − EJ ,0 (1− cosφ)− Ω†VMΩ

�

�

φk=0 . (4.29)

Apart from the contribution of the term VM , the whole system can be treated as a
single hybrid top-transmon [61], with Josephson energy EJ ,0 and capacitance

C = C0 +
3
∑

k=1

CB,k. (4.30)

In the regime EJ ,0� EC = e2/2C , the energy levels of the transmon are given by [37]

εn = ε̄n − (−1)nδεniγb1γb2 cos(πq/e) , (4.31)

where

ε̄n ' −EJ ,0 +
�

n+ 1
2

�Æ

8EJ ,0EC −
EC

12
(6n2 + 6n+ 3) (4.32)

δεn = EC
24n+4

n!

√

√ 2
π

� EJ ,0

2EC

�

n
2+

3
4

e−
p

8EJ ,0/EC . (4.33)

Taking into account the two lowest levels of the transmon (n = 0, 1), we arrive at
a low-energy Hamiltonian

Htop-transmon = σz

�

1
2ħhΩ0 + iγb1γb2 δ+ cos(πq0/e)

�

+iγb1γb2 δ− cos(πq0/e) + Ω
†VMΩ

�

�

φk=φ=0 (4.34)

with definitions ħhΩ0 = ε̄1 − ε̄0, δ± = (δε1 ±δε0)/2. The Pauli matrix σz acts on the
qubit degree of freedom of the transmon. For δ±� EM , the low energy sector of this
Hamiltonian can be written in terms of γA, . . . ,γF as

H̃top-transmon = σz

�

1
2ħhΩ0 + iγAγB∆+ cos(πq0/e)

�

+ iγAγB∆− cos(πq0/e) (4.35)
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where

∆± =
δ± cosαg1

Æ

cos2αbg + cos2αg1 + cos2α1b

. (4.36)

When combined with the Jaynes-Cummings Hamiltonian describing the coupling with
the resonator, this Hamiltonian reproduces Eq. (5) of the main text. The interaction
with the microwaves will be described in detail in the next Appendix 4.B.

4.B Measurement through photon transmission

The Hamiltonian Hreadout of the main text describes the coupling between the top-
transmon and the cavity modes in the system through a Jaynes-Cummings interaction
of strength g. In particular the fermionic parity of the transmon P is a conserved
quantity in the Hamiltonian whose energy levels will directly depend on the value of
P .

We assume that the induced charge is fixed at q0 = 0 to maximize the sen-
sitivity of the read-out. The Jaynes-Cummings interaction couples the pairs of
states (|n,↑,P 〉, |n+ 1,↓,P 〉) where n and n + 1 label the number of photons in
the cavity and | ↑〉, | ↓〉 denote the two lowest energy eigenstates of the trans-
mon. Therefore, the eigenstates of Hreadout are in general superpositions of the
kind α|n,↑,P 〉+ β |n+ 1,↓,P 〉 with the exception of the uncoupled vacuum states
|0,↓,P 〉. Their eigenvalues are, respectively:

εn,±,P =
�

n+
1
2

�

ħhω0 +P∆− ±
1
2

q

(ħhδω+ 2P∆+)2 + 4ħh2 g2 (n+ 1) , (4.37)

ε0,P =P (∆− −∆+)−
1
2
ħhΩ0. (4.38)

In the dispersive regime, δω2� g2(n+ 1), the energies εn,±,P can be approximated
at the first order in g2/δω2 as:

εn,↑,P = nħhω0 +P (∆− +∆+) +
1
2
ħhΩ0 +

ħh2 g2 (n+ 1)
ħhδω+ 2P∆+

(4.39)

εn+1,↓,P = (n+ 1)ħhω0 +P (∆− −∆+)+

−
1
2
ħhΩ0 −

ħh2 g2 (n+ 1)
ħhδω+ 2P∆+

. (4.40)

The respective eigenstates are approximately |n,↑,P 〉 and |n+ 1,↓,P 〉 up to cor-
rections of the order g2/δω2. From the previous equations it is easy to obtain the
effective resonance frequency ωeff (P ) and its shift ωshift corresponding to the differ-
ent states of the topological qubit. Since we are considering the dispersive regime
with a positive detuning, Ω0 >ω0, we assume in the following that the state of the
transmon remains in the ground state | ↓〉.



4.C Low energy Hamiltonian for a Random Access Majorana Memory architecture57

We also point out that in the Hamiltonian Hreadout we are neglecting the excited
states of the transmon, which result in a renormalization of the parameters, including
ωshift, through virtual transitions. The precise expressions for the renormalized
parameters are known [37], but are not needed here.

To perform the measurement of the topological qubit we introduce in the cav-
ity photons with a frequency which is approximately ωeff(P = +1). The photon
transmission probability T+ for the state |P = 1〉 is then larger than the probability
T− corresponding to |P = −1〉. We count the number of photons nph that passes
through the cavity during a measurement time tM . The probability distributions for
nph in each state are Poissonian, and for sufficiently long measurement time can be
approximated with normal distributions

P(nph, |P = ±1〉) = Pois(nph,λ±)≈ N(nph,λ±,
Æ

λ±) (4.41)

where λ±∝ T± tMκ and κ' 1−10 MHz is the cavity decay rate. Since T+ > T−, also
λ+ > λ−.

We decide that the measurement outcome is P = +1 if nph > x =
p

λ+λ− and
the outcome is P = −1 if nph < x . Therefore the error of the measurement outcome
is given by the following:

εom =
1
2

∫ x

−∞

dn
p

2πλ+
exp

�

−(n−λ+)2

2λ+

�

+

+
1
2

∫ ∞

x

dn
p

2πλ−
exp

�

−(n−λ−)2

2λ−

�

. (4.42)

Since λ+, λ−� 1

εom '
e− x̄2

2 x̄
p
π

, (4.43)

where

x̄ =

p

λ+ −
p

λ−p
2

. (4.44)

We notice that the probability of a measurement error decreases exponentially with
κtM . On the other hand, the probability of storage error, namely the chance that
the topological qubit will decay during a time interval tM , increases as ∆min tM/ħh.
Because ∆min/κ can be made exponentially small in macroscopic control parameters,
exponentially small measurement errors can be achieved.

4.C Low energy Hamiltonian for a Random Access Majo-
rana Memory architecture

We will now describe an effective Hamiltonian for RAMM architecture hosting N
topological qubits, such as the one shown in Fig. 3 of the main text. Fig. 4.7a shows
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Figure 4.7: Panel (a): Part of the RAMM circuit showing two fully-controllable topo-
logical qubits. Compensating fluxes are included between the topological qubits in
order that the gauge-invariant phase differences in the different topological qubits
are independent of each other. Panel (b): Topological qubit formed by the six Majo-
rana modes. The five couplings ∆1, . . . ,∆5, see Eq. (4.49e), can all be individually
controlled by the fluxes Φ1, . . . ,Φ5. The parity of the two Majoranas coupled by ∆1
can be measured, as explained in Appendix 4.C.2.

an equivalent setup, including only two topological qubits. By including compensating
fluxes

Φcomp,n = −
5
∑

k=1

Φn,k (4.45)

after each topological qubit, the gauge invariant phases in each topological qubit are
independent of each other. The single-electron Aharonov-Bohm phase-shifts αn,kk′ at
the tunnel junction between islands k and k′ of the n-th qubit are then given by

αn,12 = e(Φ0 +Φn,1 +Φn,2)/2ħh
αn,25 = e(Φn,2 + 2Φn,3 + 2Φn,4 +Φn,5)/2ħh
αn,51 = −e(Φ0 +Φn,1 + 2Φn,2 + 2Φn,3

+ 2Φn,4 +Φn,5)/2ħh
αn,23 = e(Φn,2 +Φn,3)/2ħh
αn,34 = e(Φn,3 +Φn,4)/2ħh
αn,42 = −e(Φn,2 + 2Φn,3 +Φn,4)/2ħh
αn,4g = eΦn,4/2ħh

αn,g5 = eΦn,5/2ħh

αn,54 = −e(Φn,4 +Φn,5)/2ħh. (4.46)

Here, the subscript g denotes the tunnel junctions to the ground island. By starting
from a Lagrangian and following a similar approach to that of Appendix 4.A, we find
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that the low-energy Hamiltonian is described by six Majorana modes

γn,A = γn,32,

γn,B =
cosαn,34γn,22 + cosαn,42γn,31 + cosαn,23γn,41

Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

,

γn,C =
cosαn,g5γn,42 + cosαn,54γn,g1 + cosαn,4gγn,52

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

,

γn,D = γn,g2,

γn,E =
cosαn,25γn,12 + cosαn,51γn,21 + cosαn,12γn,51

Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

,

γn,F = γn,11 . (4.47)

that form the triangular loop network of Fig. 4.7b.

4.C.1 Low-energy Hamiltonian in braiding configuration

In the braiding configuration Φ0 = 0, and the low-energy Hamiltonian is, for each
qubit n,

H(n)qubit =− i∆n,1γFγE − i∆n,2γEγB − i∆n,3γBγA

− i∆n,4γBγC − i∆n,5γEγC , (4.48)

The Majorana γD is situated on the ground island and stays decoupled from the rest
of the system. The long-range Coulomb couplings ∆n,k are

∆n,1 = Un,1

cosαn,25
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

, (4.49a)

∆n,2 = Un,2

cosαn,34
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

×
cosαn,51

Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

, (4.49b)

∆n,3 = Un,3

cosαn,42
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

, (4.49c)
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∆n,4 = Un,4

cosαn,23
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

×
cosαn,g5

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

, (4.49d)

∆n,5 = Un,5

cosαn,12
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

×
cosαn,4g

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

. (4.49e)

For computational purposes, one should be careful that the ∆n,k do not change signs
during the variation of the magnetic fluxes that takes place during a computational
process. This may happen if some of the αn,kk′ in Eq. (4.46) cross the value π/2.
However, during any computation, maximally two of the fluxes are simultaneously
turned on. Therefore, it is always possible to adapt the signs of the magnetic fluxes
in such a way that the fluxes can be tuned in a range |Φn,k| = [0,Φmax], where
Φmax < h/4e. We also notice that the signs of the couplings ∆n,k in Eq. (4.48) depend
on the signs of the microscopic tunnel couplings EM . These signs will determine the
chirality of the braiding of the Majorana modes in each T-junction.

4.C.2 Low-energy Hamiltonian in the readout configuration

During the readout, we set Φ0 = Φmax and all other fluxes Φn,k = 0. Following the same
reasoning of Appendix 4.A.2, we set φn,1 = φ and φn,k 6=1 = 0 for each topological
qubit. The Lagrangian for the RAMM becomes

L =
ħh

8e2
Cφ̇2 +

ħh
2e

�

qtot +
N
∑

n=1

e
�

1
2 −

1
2 iγn,11γn,12

�

�

φ̇

− EJ ,0(1− cosφ)−
N
∑

n=1

Ω†
nV (n)M Ωn

�

�

�

φn,k=0
(4.50)

where V (n)M describes the Majorana-Josephson potential for the three T-junctions in
each topological qubit n,

Ωn =
5
∏

k=1

ei(1−iγn,k1γn,k2)φk/4, (4.51)

C = C0 +
N
∑

n=1

5
∑

k=2

CB,k +
N
∑

n=1

CG,1 (4.52)

and

qtot = q0 +
N
∑

n=1

qn,1. (4.53)
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The low-energy Hamiltonian of the system can now be derived analogously as in
Appendix 4.A.2. By using the equality

cos

�

πqtot/e+π
N
∑

n=1

�

1
2 −

1
2 iγn,11γn,12

�

�

=
N
∏

n=1

iγn,11γn,12 cos (πqtot/e) , (4.54)

we find

H̃RAMM = σz

�

1
2ħhΩ0 +P ∆+ cos(πqtot/e)

�

+P ∆− cos(πqtot/e) (4.55)

where P is now the joint parity operator of the Majorana modes at the measurement
islands

P =
N
∏

n=1

iγn,Fγn,E . (4.56)

The couplings ∆± decrease exponentially with the number of topological qubits
involved in a single RAMM register

∆± = δ±
N
∏

n=1

cosαn,25
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

. (4.57)

In the design of a RAMM register, shown in Fig. 3b in the main text, the frequency shift
ωshift is decreased by all topological qubits, including the ones which are not involved
in a given multi-qubit measurement. This limitation of RAMM can be relaxed in a more
optimal design, where additional tunable Josephson junctions are introduced from the
measurement island to the ground. In this case only the topological qubits involved in
the given measurement contribute to the decrease of frequency shift. The expense one
needs to pay for introducing new Josephson junctions is that the gauge invariant fluxes
have more complicated magnetic flux dependence and several Josephson couplings
need be simultaneously controlled when the Coulomb couplings are turned on. We
point out that although we have explicitly considered the control of the Coulomb
couplings with the help of magnetic fluxes, at least some of the macroscopic control
parameters EJ ,k/EC ,k of the superconducting islands can alternatively be controlled
with gates.

4.D Universal gates for quantum computation

The RAMM setup allows us to perform universal quantum computation in a fault-
tolerant way. To show this, it is necessary to implement a universal basis of quantum
gates using only braiding operators and multi-qubit measurements as building blocks,
thus ensuring the possibility of obtaining arbitrary multi-qubit gates with errors that
are exponentially small in the macroscopically tunable parameters. One possible set
of gates allowing for universal quantum computation are the single-qubit Clifford
gates, the CNOT gate and the π/8 phase gate. In the following we explain how to
realize these gates in a RAMM architecture.
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Figure 4.8: Flux-controlled sequences of operations that realize single-qubit Clifford
gates and projective measurement on the Pauli basis.

4.D.1 Notation

Each topological qubit n has four computational Majoranas γn,A,γn,B,γn,C ,γn,D and
two ancillary Majoranas γn,E ,γn,F , which are needed to move or braid the computa-
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tional ones. The Pauli matrices for each qubit can be chosen as

σn,z = iγn,Aγn,B (4.58a)

σn,x = iγn,Bγn,C (4.58b)

σn,y = iγn,Aγn,C . (4.58c)

4.D.2 Single-qubit operations

Projective measurements on the Pauli basis and a set of Clifford gates can be obtained
by manipulating the positions of the four computational Majorana modes in the
triangular loop geometry. The positions of the computational Majoranas γn,A,γn,B,γn,C
can be changed using the ancillary Majorana γn,E ,γn,F , which remain strongly coupled
throughout the process. The corresponding qubit transformation can be derived either
by a direct computation of the non-Abelian Berry phase acquired by the ground state
wave function of the Hamiltonian (4.48), or by following the evolution of the Majorana
operators in the Heisenberg picture, as explained in detail in Ref. [86, 101].

Exchanging the positions of γn,A,γn,B (as represented in Fig. 4.8a) or γn,B and γn,C
(Fig. 4.8b) respectively yields the braiding gates

Uz = e−i
π
4 σz , (4.59)

Ux = e−i
π
4 σx . (4.60)

The chirality of the braiding operations (i.e., the sign of the exponent in Uz ,Ux)
is determined by the signs of the couplings of the qubit Hamiltonian, Eq. (4.48).
Physically, the sign depends on the induced charges on the Majorana islands, the
values of the fluxes and the signs of the microscopic tunnel couplings ±EM at the
T-junctions. Here, we have made a specific choice of chirality. Another possibility of
chirality would not be harmful as long as they remain constant during the computation
processes.

A combination of these two operations yields the quantum gate corresponding to
the braiding of γA and γC ,

Uy =U †
x UzUx = e−i

π
4 σy . (4.61)

When combined with the π/8 phase gate described in Appendix 4.D.4, these quantum
gates are sufficient to realize any single-qubit rotation.

To realize projective measurements on σn,z (or σn,x), we first need to bring the
two Majorana modes γn,A,γn,B (or γn,B,γn,C) on the island connected to the bus, the
one occupied by γn,E ,γn,F in Fig. 4.7a. Then we measure the fermion parity operator
(4.56), where now the two Majoranas γn,E ,γn,F are replaced by the computational
ones. For instance, in the case of a measurement of σn,z , we would measure the
operator

P = iγn,Aγn,B

∏

k 6=n

iγk,Eγk,F ≡ σn,z , (4.62)
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since the parity of the ancillary Majorana of each topological qubit is preserved,
Pk,EF = iγk,Eγk,F = +1. In the end, we bring the two computational Majoranas back
to their original place. The whole operation, represented in Fig. 4.8c and Fig. 4.8d
for σn,z and σn,x respectively, corresponds to the application of the projectors

Πz,n(p) =
1
2

�

1+ pσn,z

�

, (4.63a)

Πx ,n(p) =
1
2

�

1+ pσn,x

�

(4.63b)

to the wave function of the N topological qubits. Here, p = ±1 is the outcome of the
measurement. Finally, a projective measurement on σn,y is obtained as

Πy,n(p) =
1
2

�

1+ pσn,y

�

=U †
x Πz,n(p)Ux . (4.64)

Multi-qubit measurements on the Pauli basis are a straightforward extension of these
projective measurements where Majorana modes on different topological qubits are
moved according to Fig. 4.8 to achieve the required basis.

4.D.3 CNOT gate

Bravyi and Kitaev have demonstrated how to realize the CNOT gate with an algorithm
that is based on the following expansion [92, 93]:

exp
�

i
π

4
γ0γ1γ2γ3

�

|ψ〉= 2eiθ exp
�π

4
(1− p1p2)γ0γ1

�

exp
�π

4
(1− p1p2)γ2γ3

�

×

× exp
�

−
π

4
p2γ2γ5

� 1
2
(1+ p2iγ2γ4)

1
2
(1− p1γ0γ1γ3γ4)|ψ〉, (4.65)

where θ is an unimportant overall phase, γi (i = 0, ..., 5) are Majorana operators and
pi = ±1 are measurements outcomes. The Majoranas γ4 and γ5 are used as ancillas
and the wave function is initialized in state (γ4+ iγ5)|ψ〉 = 0. Importantly, the Bravyi-
Kitaev CNOT algorithm is based only on measurements and braidings of Majorana
modes. However, as one can see from Eq. (4.65), its implementation requires a pair
of ancillary Majoranas that must be coupled to two computational Majoranas in the
target qubit, but must initially be completely independent on them. Due to the parity
constraint in each topological qubit, this is impossible in the RAMM setup unless we
extend the qubit layout shown in Fig. 3a in the main text. Rather than modifying the
RAMM setup to account for these new ancillas, we propose an alternative version of
the CNOT gate, which involves three topological qubits. This alternative version of
the CNOT gate can be implemented with the quantum circuit shown in Fig. 4a in the
main text.

In this circuit the role of the first measurement, with result p1, and of the gate R1
is to initialize the third ancillary qubit in the state |0〉a. After that, a CNOT gate with
q1 as a control and q2 as a target gate is obtained as:

1
2

ei π4 p2 p3(σ1,z+σ2,x ) e−i π4 p3σa,x
�

1+ p3σa,y

�

×

×
�

1+ p2σ1,zσ2,xσa,x

�

|q1, q2, 0〉= eiθ |q1, q1 ⊕ q2, 0〉. (4.66)
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In terms of Majorana operators, this way of representing the CNOT relies on the
following equality
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(1+ ip3γ3Aγ3C)
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(1− ip2γ1Aγ1Bγ2Bγ2Cγ3Bγ3C)|ψ〉12|0〉a, (4.67)

which can be considered an extension of Kitaev and Bravyi result. In this case the
applied projections are all on products of parity operators from different qubits, which
can be reduced to the form (4.56) as explained above (see Fig. 4.8); all the other
operators are braiding operators within single topological qubits.

4.D.4 π/8 Phase Gate

To complete the set of universal single-qubit gates we must implement the π/8 phase
gate

T =

�

1 0
0 ei π4

�

, (4.68)

with an accuracy comparable to the other gates.
For this purpose the best techniques are based on distillation protocols [62]. The

basic idea of the distillation procedure is the use of several noisy qubits to prepare one
qubit in a particular state, |A〉=

�

|0〉+ eiπ/4 |1〉
�

/
p

2. A single ancilla qubit prepared
in the state |A〉 is enough to implement the π/8 gate using the circuit shown in Fig. 4b
in the main text.

The distillation protocol of Ref. [62] for the state |A〉 assumes that it is possible
to prepare several noisy copies of |A〉 with an average initial error εi < 0.14. In
the RAMM setup this can be achieved by coupling the Majorana modes to break the
ground state degeneracy [61]. A single distillation step is performed starting from 15
noisy qubits. Neglecting the errors in all the Clifford gates and measurements of the
distillation process, the error of the final state after one iteration is approximately

εdist ≈ 35ε3
i (4.69)

in the limit of small εi .
Since 14 stabilizer multi-qubit measurements and 15 CNOT gates are involved in

the distillation-decoding procedure, the error in theπ/8 gate is approximately an order
of magnitude larger than the errors occurring in braiding or in a single multi-qubit
measurement. Moreover, assuming an achievable initial error εi = 0.01 [61] only a
single distillation step involving 15 noisy ancillas is needed to achieve a final error of
the same order of measurement and gate errors, estimated as ∆min/∆max ∼ 10−5. If
the initial errors are larger or the gate errors are smaller, more distillation steps and a
larger number of ancillas are preferable. Given the amount of qubits required, it is
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realistic to imagine that the distillation procedure will take place in one (or several)
dedicated RAMM registers, so that it can happen in parallel with all other computation
processes. In this way, whenever a π/8 phase gate is needed in the computation, it
will only be necessary to teleport the distilled state |A〉 from the distillation register to
the computational one.

We also note that alternatively to the π/8 gate, the universality can also be
obtained with the help of π/12 gate. This gate can be distilled with fewer noisy
copies of the relevant state and a single distillation step also requires less multi-qubit
measurements [62]. Moreover, the distillation can be improved by exploiting more
efficient error correction codes: for example in Ref. [102] a different procedure
is proposed that enables to obtain two distilled states |A〉 out of 10 noisy ancillas,
providing a better scaling and threshold for the initial errors. Finally we must mention
that the distillation techniques in Ref. [62] require not only multi-qubit measurements
and braiding gates, but also a non-unitary dephasing process. However, it was shown
in Ref. [103] that the dephasing process is not necessarily needed for the convergence
of the noisy states to a high-fidelity final state.

4.E Computation of the error thresholds

Multi-qubit measurements give significant advantages in quantum error correction, as
compared to the usual schemes where only single- and two-qubit operations are avail-
able. The advantages obtained are twofold. Firstly, multi-qubit measurements allow
to significantly increase error thresholds. Secondly, the overhead in computational
resources can be substantially decreased.

Quantum error correction schemes are generally based on measurements of multi-
qubit operators, usually referred to as stabilizer generators gi [1]. Their outcomes
give error syndromes, βi , which uniquely characterize the errors and the qubits where
they have occurred. Depending on the error correction scheme, a different number
of errors can be corrected.

For simplicity, we consider the Steane 7-qubit quantum code [98], which encodes
a logical qubit into seven physical qubits and can recover an arbitrary error occurring
in any of the physical qubits. Its stabilizer generators are g1 = X1X5X6X7, g2 =
X2X4X6X7, g3 = X3X4X5X6, g4 = Z1Z3Z4Z7, g5 = Z2Z3Z5Z7, and g6 = Z1Z2Z3Z6. An
error detected on the i-th qubit can be corrected by implementing a X i , Zi or X i Z j
gate, depending on the type of the error.

In order to quantitatively compare the advantages obtained with the help of
multi-qubit measurements to conventional schemes, we calculate the error threshold
for a quantum memory. The error correction circuit consists of periodic syndrome
measurements and recoveries, interrupted by a time-interval of N time steps. Time
steps are defined so that a single gate (or measurement) can be performed within one
time step. Our error model consists of storage errors, gate errors, data errors during
the measurement and errors in the measurement outcomes. The corresponding error
probabilities are εst, εg, εdm, and εom, respectively. All the errors are considered inde-
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Figure 4.9: Measurement of the six generators of the Steane code. This circuit can be
realized directly in a RAMM architecture.

pendent. In order to obtain the error threshold, we need to calculate the probability
of failure happening during a single period of the error correction circuit, assuming
that no failure has happened before that point. To keep the calculation tractable, we
assume that two errors in different qubits always result in failure (independently on
the type of errors), and that this happens also when one of the errors occurs during the
syndrome-recovery part of the circuit and the other error has happened earlier in the
circuit. Moreover, we assume that the errors occurring during the syndrome-recovery
part of the circuit never get corrected by the same syndrome-recovery part of the
circuit. This way we obtain that the probability of failure during a single period of
the circuit is:

P(failure, N)≈ Pom(2) + Pom(1)
∑

i

�

2Pi,sr + Pi,N

�

+

+
∑

i< j

�

�

2Pi,sr + Pi,N

��

2P j,sr + P j,N

�

− Pi,srP j,sr

�

. (4.70)

Here Pom(m) is the probability of having m errors in the measurement outcomes,
Pi,sr is the probability of obtaining single error in qubit i during syndrome measure-
ment and recovery, and Pi,N = Nεst is the probability of obtaining single error in qubit
i during the N time steps between the successive error detections and recoveries.

To estimate the error threshold we minimize the probability of failure per time
step,

pf =min
N>0
{P(failure, N)/(N + N0)}, (4.71)
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Figure 4.10: Quantum circuit to measure the generators of the Steane code in a
traditional architecture that allows only for single- and two-qubit gates, and single-
qubit measurements. Each of the six generator measurements is realized using four
CNOT gates with an ancilla, which is in turn encoded using four physical qubits to
avoid error propagation. This is the circuit we used to compare the error threshold
with and without multi-qubit measurements.
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where N0 is the number of time steps required to perform the syndrome measurements
and the recovery. The quantum error correction threshold is obtained by demanding
that pf = εst. Because pf ∝ ε2

st, this equation determines a threshold value εth
st . If

εst < ε
th
st , the errors can be corrected by successively applying the scheme described

above. For this kind of concatenated codes, the failure probability scales with the
number of levels of encoding k as

pf,k = ε
th
st (εst/ε

th
st )

2k
, (4.72)

whereas the number of physical qubits needed to construct the logical qubits scales as
7k. In addition to the physical qubits needed for construction of the logical qubits, a
large number of ancillas are typically needed to perform the syndrome measurements.
These ancillas constitute the overhead in the required computational resources.

4.E.1 Realization of the Steane code with the RAMM

In the case of the RAMM, the syndromes can be directly measured. For simplicity, we
assume that one single-qubit gate is always performed during the recovery part of the
circuit. Considering that each qubit is on average involved in 24/7 measurements,
the total number of time-steps required to perform the syndrome measurements is 6,
and the circuit contains 6 measurements, we obtain

Pom(1) = 6εom , (4.73a)

Pom(2) =
1
2 · 6 · 5ε

2
om = 15ε2

om , (4.73b)

Psr =
24
7 εdm +

24
7 εst +

1
7εg . (4.73c)

These values allow to compute explicitly P(failure, N) for the RAMM via Eq. (4.70).

4.E.2 Steane’s code without multi-qubit measurements

We want to compare the error threshold in RAMM with a reference system, where
multi-qubit measurements are not available. The syndrome measurements are then
performed with the help of ancillas. In particular, the fault-tolerant realization of the
six syndrome measurements requires a total of 24 ancillas, each quadruplet being
used for measuring one of the syndromes [4] (see Fig. 4.10).

Each syndrome is measured by first initializing the ancilla quadruplet in a Shor
state, which guarantees that measuring the four ancillas will not destroy the state
encoded in the logical qubit. The second step consists of encoding the syndrome
into the quadruplet, which requires performing a total of four CNOT gates between
different ancillas and physical qubits. Since these involve independent qubit pairs, we
assume that these four gates are performed simultaneously. Additionally, we assume
that the syndrome is measured immediately after the CNOT gates and the initialization
of the ancilla quadruplet takes place already before the syndrome measurements.
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Because errors occurring in the ancillas essentially have the same effect as the errors
in the measurement outcomes, we include all possible ancilla errors in Pom(m).

The initialization of the ancillas to a Shor state is explained in Ref. [4]. It involves
7 time steps with 5 CNOT and 5 Hadamard gates. Moreover, a measurement is
required to confirm that the Shor state was successfully encoded, otherwise the
initialization process is repeated. We only consider gate and storage errors occurring
in the initialization of the four ancillas. Each of the ancillas is acted on with 13/4
gates on average.

The syndrome measurements involve 9 time steps and each of the 7 physical
qubits is acted upon with 38/7 gates on average, while recovery part only involves
one single-qubit gate. Finally, we need to take into account the errors occurring in
any of the 24 ancillas during the syndrome block, which contribute to Pom. This way
we obtain

Pom(1) = 24 (Pinit + Psyndrome) , (4.74a)

Pom(2) =
24×23

2 (Pinit + Psyndrome)
2 , (4.74b)

Psr =
38
7 εg +

25
7 εst +

1
7εg +

6
7εst , (4.74c)

with

Pinit = εom + εdm , (4.75a)

Psyndrome =
13
4 εg +

15
4 εst + εg + εom +

72
24εst. (4.75b)

These values allow to compute P(failure, N) in the absence of multi-qubit measure-
ments.

4.E.3 Comparison of the error thresholds for the quantum memory

We minimize the probability of failure per time step with respect to N for both imple-
mentations of the error correction scheme. We characterize the relative probabilities
of errors by fixing the ratios εg/εst, εdm/εst and εom/εst, and calculate the error thresh-
old for εst. Results are shown in Fig. 4.11. We find that for εg = εdm = εom = εst the
error threshold of the RAMM is approximately an order of magnitude larger than the
error threshold of a reference architecture that can only perform single- and two-qubit
operations. The ratio of the error thresholds for the different architectures becomes
smaller with increasing measurement errors (larger ratios εdm/εst and εom/εst), be-
cause it becomes favorable to increase the waiting time between the consequent error
correction steps; but even for εg = εdm = εom = 10εst we still find that the RAMM has
an error threshold five times larger than the reference architecture.

4.E.4 Comparison of the error threshold in quantum computation

To estimate the error threshold in quantum computation, we consider an algorithm
where each qubit participates in a two-qubit gate with a randomly chosen other qubit
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Figure 4.11: Ratio of the Steane code error thresholds with and without multi-qubit
measurements as a function of the ratio between gate and storage errors, εg/εst.
The solid, dashed, dotted, and dash-dotted curves correspond to ratios εom/εst =
εdm/εst = 1,2, 5, and 10, respectively.

Figure 4.12: Ratio of the computational error thresholds with and without multi-qubit
measurements as a function of M . Here ε = εom = εdm = εg, with ε/εst = 1 (solid), 5
(dashed), and 10 (dotted). The range of M starts from 11, because of the condition
M − N0 − 1≥ 0.

after every M > N0 time steps. We assume that the syndrome and recovery steps
are performed once after each two-qubit gate. To estimate the error threshold we
calculate the probability of failure in any one of the logical qubits during the M -step
period. To keep the calculation tractable, we consider that all the errors appearing
in a logical qubit during the syndrome and recovery steps just before the two-qubit
gate propagate to the other qubit. Notice that due to the special construction of the
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Steane code, the error occurring in ith physical qubit in one of the logical qubits will
affect only the ith physical qubit in the other logical qubit. As before, we assume that
two errors in a single logical qubit always result in failure. This way, we find

P(failure, M)≈ Pom(2) + Pom(1)
∑

i

�

3Pi,sr + εg + Pi,M−N0−1

�

+
∑

i< j

�

3Pi,sr + εg + Pi,M−N0−1

��

3P j,sr + εg + P j,M−N0−1

�

− 2
∑

i< j

Pi,srP j,sr , (4.76)

which we compute for both architectures using Eqs. (4.73), (4.74). The probability
of failure per time step is then

pf = P(failure, M)/M , (4.77)

and the threshold for quantum error correction can be determined by comparing this
probability to the probability of failure without error correction. Results are shown
in Fig. 4.12. Similarly as in the case of quantum memory, we find that the error
threshold for performing the quantum computation can be an order of magnitude
larger for the RAMM.

4.F Characteristic energy scales of the problem

We need to satisfy the following inequalities

EJ ,k,ħhΩk,∆g > EJ ,0,ħhΩ0,ħhω0� EM ,∆max� kB T,∆min, (4.78)

where ħhΩk ≈
p

8EJ ,k EC ,k is the plasma frequency of the small islands and ∆g ∼
100 GHz is the induced gap in the nanowire. The condition EM ,∆max � kB T is
required to guarantee a relaxation to the ground state.

In the earlier sections we assumed that EM � Uk in order to turn our analytical
calculations more transparent, but in view of the topological nature of the braiding
our results must remain valid also when EM and ∆max are comparable to each other.
This is easy to understand, since independently on the ratio of Uk and EM as long
as the ground state manifold remains isolated from the excited states the adiabatic
time-evolution operator for the braiding cycle takes the form of Eq. (4.5), because of
the topological nature of the operation.

Additionally, during the measurement we need to satisfy the inequalities

EM �∆+, (4.79)

and
ωshift > κ, (4.80)
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where κ∼ 1− 10 MHz describes the characteristic cavity and qubit decay rates. The
typical coupling between the microwaves and transmon is given by g/2π∼ 100 MHz.

The first set of inequalities can be satisfied taking EJ ,0,ħhΩ0,ħhω0 ∼ 100 GHz,
EM ,∆max ∼ 10 GHz, and kB T ∼ 1 GHz. The condition ∆max ∼ 10 GHz can be
satisfied by having very large plasma frequency Ωk or alternatively by tuning the
EJ ,k(Φmax)/EC ,k ratio smaller than 10, so that the superconducting islands do not stay
in the transmon regime. Much larger Coulomb couplings can be achieved in this way,
although the asymptotic expression given by Eq. (4.1) is not valid anymore.

Importantly, the insensitivity of the couplings ∆k to noise is needed only when
the couplings are turned off. Since the topological protection of the braiding result
only allows errors of order ∆min/∆max, the exponential smallness of ∆min guarantees
that the result of the braiding cycle is not sensitive to low-frequency charge noise,
which only affects the couplings which are turned on. Furthermore, by assuming that
EJ ,0/EC ,0 = 10 during the measurement, we obtain ∆+ ∼ 10−2 EJ ,0 from Eq. (4.33),
consistent with the chain of inequalities. The inequality (4.80) can be satisfied by
tuning δω and does not contradict with the requirement that we are working in the
dispersive limit. Finally, as we have just remarked, the errors in the braiding are
on the order ∆min/∆max, which can be made exponentially small. The braiding and
measurement should be performed fast in comparison to ħh/∆min and the characteristic
quasiparticle tunneling time, which is on the order of milliseconds [104, 105]. In
order that ∆min is limited by the charging energy, we need ∆g exp(−L/ξ) < ∆min,
where L is the length of the wire and ξ is the Majorana decay length in the wire.
Assuming that∆g ∼ EJ ,k, this means that L ≈ 20ξ, so that L should be at least several
microns.
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