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Chapter 3

Coulomb-assisted braiding of
Majorana modes in a Josephson
junction array

Non-Abelian anyons have a topological charge that provides a nonlocal encoding of
quantum information [6]. In superconducting implementations [45, 46] the topo-
logical charge equals the electrical charge modulo 2e, shared non-locally by a pair
of mid-gap states called Majorana modes [26]. This mundane identification of topo-
logical and electrical charge by no means diminishes the relevance for quantum
computation. To the contrary, it provides a powerful way to manipulate the topologi-
cal charge through the well-established sub-e charge sensitivity of superconducting
electronics [28, 59].

Following this line of thought, a hybrid device called a top-transmon was recently
proposed, which combines the adjustable charge sensitivity of a superconducting
charge qubit (the transmon [37, 60]) to read out and rotate a topological (top) qubit
[61]. A universal quantum computer with highly favorable error threshold can be
constructed [62] if these operations are supplemented by the braiding of Majorana
modes, which is a non-Abelian operation on the degenerate ground state [14, 27].

Here we show how Majorana modes can be braided by means of charge-sensitive
superconducting electronics. (Braiding was not implemented in Ref. [61] nor in
other studies of hybrid topological/non-topological superconducting qubits [35, 63–
66].) We exploit the fact that the charge-sensitivity can be switched on and off
with exponential accuracy by varying the magnetic flux through a split Josephson
junction [60]. This provides a macroscopic handle on the Coulomb interaction of
pairs of Majorana modes, which makes it possible to transport and exchange them in
a Josephson junction array.

We compare and contrast our approach with that of Sau, Clarke, and Tewari, who
showed (building on the work of Alicea et al. [21]) how non-Abelian braiding statistics



26 Chapter 3. Braiding Majorana modes in a Josephson junction array

could be generated by switching on and off the tunnel coupling of adjacent pairs of
Majorana modes [67]. The tunnel coupling is controlled by a gate voltage, while we
rely on Coulomb interaction controlled by a magnetic flux. This becomes an essential
difference when electric fields are screened too strongly by the superconductor to be
effective. (For an alternative non-electrical approach to braiding, see Ref. [68].)

The basic procedure can be explained quite simply, see Sec. 3.2, after the mecha-
nism of the Coulomb coupling is presented in Sec. 3.1. We make use of two more
involved pieces of theoretical analysis, one is the derivation of the low-energy Hamil-
tonian of the Coulomb coupled Majorana modes (using results from Refs. [36, 69]),
and the other is the calculation of the non-Abelian Berry phase [20] of the exchange
operation. To streamline the chapter the details of these two calculations are given in
Appendices.

3.1 Majorana-Coulomb Hamiltonian

3.1.1 Single island

The basic building block of the Josephson junction array is the Cooper pair box [70],
see Fig. 3.1, consisting of a superconducting island (capacitance C) connected to a
bulk (grounded) superconductor by a split Josephson junction enclosing a magnetic
flux Φ. The Josephson energy EJ is a periodic function of Φ with period Φ0 = h/2e. If
the two arms of the split junction are balanced, each with the same coupling energy
E0, the Josephson energy

EJ = 2E0 cos(πΦ/Φ0) (3.1)

varies between 0 and 2E0 > 0 as a function of |Φ|< Φ0/2.
When the island contains no Majorana modes, its Hamiltonian has the usual form

[40]

H =
1

2C
(Q+ qind)

2 − EJ cosφ, (3.2)

in terms of the canonically conjugate phase φ and charge Q = −2ei d/dφ of the
island. The offset qind accounts for charges on nearby gate electrodes. We have chosen
a gauge such that the phase of the pair potential is zero on the bulk superconductor.

A segment of a semiconductor nanowire (typically InAs) on the superconducting
island can have Majorana mid-gap states bound to the end points [45, 46]. For N
segments there can be 2N Majorana modes on the island. They have identical creation
and annihilation operators γn = γ†

n satisfying

γnγm + γmγn = 2δnm. (3.3)

The topological charge of the island equals the fermion parity

P = iN
2N
∏

n=1

γn. (3.4)
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Figure 3.1: Cooper pair box, consisting of a superconducting island (brown) con-
nected to a bulk superconductor by a split Josephson junction (black, with the gauge-
variant phase differences indicated). The island contains Majorana modes (yellow)
at the end points of a nanowire (grey). These are coupled by the Coulomb charging
energy, tunable via the flux Φ through the Josephson junction.

The eigenvalues of P are ±1, depending on whether there is an even or an odd
number of electrons on the island.

The Majorana operators do not enter explicitly in H, but affect the spectrum
through a constraint on the eigenstates [36],

Ψ(φ + 2π) = (−1)(1−P )/2Ψ(φ). (3.5)

This ensures that the eigenvalues of Q are even multiples of e for P = 1 and odd
multiples for P = −1. Since P contains the product of all the Majorana operators on
the island, the constraint (3.5) effectively couples distant Majorana modes — without
requiring any overlap of wave functions.

We operate the Cooper pair box in the regime that the Josephson energy EJ is
large compared to the single-electron charging energy EC = e2/2C . The phase φ
(modulo 2π) then has small zero-point fluctuations around the value φmin = 0 which
minimizes the energy of the Josephson junction, with occasional 2π quantum phase
slips.

In Appendix 3.A we derive the effective low-energy Hamiltonian for EJ � EC ,

Heff = −EJ +
p

2EC EJ − UP , (3.6)

U = 16(EC E3
J /2π

2)1/4e−
p

8EJ/EC cos(πqind/e). (3.7)
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Figure 3.2: Two Cooper pair boxes, each containing a pair of Majorana modes.
Single electrons can tunnel between the superconducting islands via the overlapping
Majorana’s γ12 and γ21. This tunnel coupling has a slow (cosine) dependence on the
enclosed fluxes, while the Coulomb coupling between the Majorana’s on the same
island varies rapidly (exponentially).

The energy minimum −2E0 at φmin is increased by
p

2EC EJ due to zero-point fluctu-
ations of the phase. This offset does not contain the Majorana operators, so it can
be ignored. The term −UP due to quantum phase slips depends on the Majorana
operators through the fermion parity. This term acquires a dynamics for multiple
coupled islands, because then the fermion parity of each individual island is no longer
conserved.

3.1.2 Multiple islands

We generalize the description to multiple superconducting islands, labeled k = 1, 2, . . .,
each connected to a bulk superconductor by a split Josephson junction enclosing a
flux Φk. (See Fig. 3.2.) The Josephson junctions contribute an energy

HJ = −
∑

k

EJ ,k cosφk, EJ ,k = 2E0 cos(πΦk/Φ0). (3.8)

We assume that the charging energy is dominated by the self-capacitance C of each
island, so that it has the additive form

HC =
∑

k

1
2C
(Qk + qind,k)

2. (3.9)

While both E0 and C may be different for different islands, we omit a possible k-
dependence for ease of notation. There may be additional fluxes enclosed by the
regions between the islands, but we do not include them to simplify the expressions.
None of these simplifications is essential for the operation of the device.
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The set of Majorana’s on the k-th island is indicated by γkn with n= 1, 2, . . . 2Nk.
The fermion parities Pk = iNk

∏

n γkn of neighboring islands k and k′ are coupled
with strength EM by the overlapping Majorana’s γkn and γk′m. We denote the gauge-
invariant phase difference [40] by θkk′ = φk −φk′ + (2π/Φ0)

∫

k→k′ A · d l. The corre-
sponding tunnel Hamiltonian [26]

Hkk′ = Γkk′ cos(θkk′/2), Γkk′ = iEMγknγk′m, (3.10)

is 4π-periodic in the gauge-invariant phase difference, as an expression of the fact
that single electrons (rather than Cooper pairs) tunnel through the mid-gap state. For
example, in the two-island geometry of Fig. 3.2 one has

H12 = iEMγ12γ21 cos(θ12/2), (3.11a)

θ12 = φ1 −φ2 −π(Φ1 +Φ2)/Φ0. (3.11b)

In Appendix 3.A we derive the effective low-energy Hamiltonian in the regime
EJ � EC , EM ,

Heff = const−
∑

k

UkPk +
∑

k,k′
Γkk′ cosαkk′ , (3.12)

αkk′ = lim
φk ,φk′→0

1
2θkk′ . (3.13)

The single sum couples Majorana’s within an island, through an effective Coulomb
energy Uk. The double sum couples Majorana’s in neighboring islands by tunnel-
ing. Both the Coulomb and tunnel couplings depend on the fluxes through the
Josephson junctions, but in an entirely different way: the tunnel coupling varies
slowly ∝ cos(πΦ/Φ0) with the flux, while the Coulomb coupling varies rapidly
∝ exp[−4

p

(E0/EC) cos(πΦ/Φ0)].

3.1.3 T-junction

Since Pk and Γkk′ in the Majorana-Coulomb Hamiltonian (3.12) do not commute,
the evolution of the eigenstates upon variation of the fluxes is nontrivial. As we will
demonstrate, it can provide the non-Abelian braiding statistic that we are seeking.

Similarly to earlier braiding proposals [21, 67], the minimal setup consists of
three superconductors in a T-junction. (See Fig. 3.3.) Each superconductor contains
a pair of Majorana modes γk,γ′k, with a tunnel coupling between γ′1,γ′2, and γ′3. The
Majorana-Coulomb Hamiltonian (3.12) takes the form

Heff = iEM

�

γ′1γ
′
2 cosα12 + γ

′
2γ
′
3 cosα23 + γ

′
3γ
′
1 cosα31

�

−
3
∑

k=1

Uk iγkγ
′
k, (3.14)

with gauge-invariant phase differences

α12 = −(π/2Φ0)(Φ1 +Φ2 + 2Φ3), (3.15a)

α23 = (π/2Φ0)(Φ2 +Φ3), (3.15b)

α31 = (π/2Φ0)(Φ1 +Φ3). (3.15c)
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Figure 3.3: Three Cooper pair boxes connected at a T-junction via three overlapping
Majorana modes (which effectively produce a single zero-mode γ0 at the center).
This is the minimal setup required for the braiding of a pair of Majorana’s, controlled
by the fluxes through the three Josephson junctions to a bulk superconductor.

As we vary |Φk| between 0 and Φmax < Φ0/2, the Coulomb coupling Uk varies
between two (possibly k-dependent) values Umin and Umax. We require Umax� Umin,
which is readily achievable because of the exponential flux sensitivity of the Coulomb
coupling expressed by Eqs. (3.1) and (3.7). We call the Coulomb couplings Umax and
Umin on and off, respectively. We also take Umax � EM , meaning that the Coulomb
coupling is weaker than the tunnel coupling. This is not an essential assumption, but
it allows us to reduce the 6–Majorana problem to a 4–Majorana problem, as we will
now show.

Consider first the case that Uk = 0 for all k. Then the Hamiltonian (3.14) has four
eigenvalues equal to zero: three of these represent the Majorana’s γk far away from
the junction, while the fourth Majorana,

γ0 =
1p
3
(γ′1 + γ

′
2 + γ

′
3) (3.16)

is situated at the T-junction. The T-junction contributes also two nonzero eigenvalues
± 1

2 Egap, separated by the gap

Egap = EM

Æ

cos2α12 + cos2α23 + cos2α31. (3.17)

For Φmax well below Φ0 and Umax� EM these two gapped modes can be ignored, and
only the four Majorana’s γ0,γ1,γ2,γ3 need to be retained.



3.2 Majorana braiding 31

Figure 3.4: Schematic of the three steps of the braiding operation. The four Ma-
jorana’s of the T-junction in Fig. 3.3 (the three outer Majorana’s γ1,γ2,γ3 and the
effective central Majorana γ0) are represented by circles and the Coulomb coupling
is represented by lines (solid in the on state, dashed in the off state). White circles
indicate Majorana’s with a large Coulomb splitting, colored circles those with a van-
ishingly small Coulomb splitting. The small diagram above each arrow shows an
intermediate stage, with one Majorana delocalized over three coupled sites. The three
steps together exchange the Majorana’s 1 and 2, which is a non-Abelian braiding
operation.

The Hamiltonian Hint that describes the Coulomb interaction of these four Majo-
rana’s for nonzero Uk is given, to first order in Uk/EM , by

Hint =
3
∑

k=1

∆k iγ0γk, ∆k = −(2EM/Egap)βkUk, (3.18)

β1 = cosα23, β2 = cosα31, β3 = cosα12. (3.19)

3.2 Majorana braiding

The Hamiltonian (3.18) describes four flux-tunable Coulomb-coupled Majorana
modes. Although the coupling studied by Sau, Clarke, and Tewari [67] has an
entirely different origin (gate-tunable tunnel coupling), their Hamiltonian has the
same form. We can therefore directly adapt their braiding protocol to our control
parameters.

We have three fluxes Φ1,Φ2,Φ3 to control the couplings. The braiding operation
consists of three steps, see Table 3.1 and Fig. 3.4. (Ref. [67] had more steps, involving
6 rather than 4 Majorana’s.) At the beginning and at the end of each step two of the
couplings are off (Φk = 0) and one coupling is on (|Φk|= Φmax). We denote by Okk′

the step of the operation that switches the coupling that is on from k to k′. This is
done by first increasing |Φk′ | from 0 to Φmax and then decreasing |Φk| from Φmax to 0,
keeping the third flux fixed at 0.

During this entire process the degeneracy of the ground state remains unchanged
(twofold degenerate), which is a necessary condition for an adiabatic operation. If,
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time Φ1 Φ2 Φ3

0 0 0 −Φmax

Φmax 0 −Φmax

T Φmax 0 0
Φmax Φmax 0

2T 0 Φmax 0
0 Φmax −Φmax

3T 0 0 −Φmax

Table 3.1: Variation of the flux through the three Josephson junctions during the
braiding operation, at time steps corresponding to the diagrams in Fig. 3.4. The flux
Φ3 is varied in the opposite direction as Φ1,Φ2, to ensure that the coupling parameters
∆k ∝ βk do not change sign during the operation.

instead, we would first have first decreased |Φk| and then increased |Φk′ |, the ground
state degeneracy would have switched from two to four at some point during the
process, precluding adiabaticity.

We start from coupling 3 on and couplings 1,2 off. The braiding operation then
consists, in sequence, of the three steps O31, O12, and O23. Note that each coupling
∆k appears twice in the on state during the entire operation, both times with the
same sign sk.

The step Okk′ transfers the uncoupled Majorana at site k′ to site k in a time T . The
transfer is described in the Heisenberg representation by γk(T) = U †(T)γkU (T).
We calculate the unitary evolution operator U (T ) in the adiabatic T →∞ limit in
Appendix 3.B, by integrating over the Berry connection. In the limit Umin → 0 we
recover the result of Ref. [67],

γk(T ) = −sksk′γk′(0). (3.20)

The result after the three steps is that the Majorana’s at sites 1 and 2 are switched,
with a difference in sign,

γ1(3T ) = −s1s2γ2(0), γ2(3T ) = s1s2γ1(0). (3.21)

The corresponding unitary time evolution operator,

U (3T ) =
1
p

2

�

1+ s1s2γ1γ2) = exp
�π

4
s1s2γ1γ2

�

, (3.22)

has the usual form of an adiabatic braiding operation [27]. For a nonzero Umin the
coefficient π/4 in the exponent acquires corrections of order Umin/Umax, see Appendix
3.B.

If one repeats the entire braiding operation, the Majorana’s 1 and 2 have returned
to their original positions but the final state differs from the initial state by a unitary
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operator U (3T )2 = s1s2γ1γ2 and not just by a phase factor. That is the hallmark of
non-Abelian statistics [14].

3.3 Discussion

In summary, we have proposed a way to perform non-Abelian braiding operations
on Majorana modes, by controlling their Coulomb coupling via the magnetic flux
through a Josephson junction. Majorana modes are themselves charge-neutral parti-
cles (because they are their own antiparticle), so one may ask how there can be any
Coulomb coupling at all. The answer is that the state of a pair of Majorana modes in
a superconducting island depends on the parity of the number of electrons on that
island, and it is this dependence on the electrical charge modulo 2e which provides
an electromagnetic handle on the Majorana’s.

The Coulomb coupling can be made exponentially small by passing Cooper pairs
through a Josephson junction between the island and a bulk (grounded) superconduc-
tor. The control parameter is the flux Φ through the junction, so it is purely magnetic.
This is a key difference with braiding by electrostatically controlled tunnel couplings
of Majorana modes [67]. Gate voltages tend to be screened quite efficiently by the
superconductor, so magnetic control is advantageous. Another advantage is that the
dependence of the Coulomb coupling on the flux is governed by macroscopic electrical
properties (capacitance of the island, resistance of the Josephson junction). Tunnel
couplings, in contrast, require microscopic input (separation of the Majorana modes
on the scale of the Fermi wave length), so they tend to be more difficult to control.

Both Ref. [67] and the present proposal share the feature that the gap of the topo-
logical superconductor is not closed during the braiding operation. (The measurement-
based approach to braiding also falls in this category [71].) Two other proposals
[21, 68] braid the Majorana’s by inducing a topological phase transition (either by
electrical or by magnetic means) in parts of the system. Since the excitation gap
closes at the phase transition, this may be problematic for the required adiabaticity of
the operation.

The braiding operation is called topologically protected, because it depends on
the off/on sequence of the Coulomb couplings, and not on details of the timing of
the sequence. As in any physical realization of a mathematical concept, there are
sources of error. Non-adiabaticity of the operation is one source of error, studied
in Ref. [72]. Low-lying sub-gap excitations in the superconducting island break the
adiabatic evolution by transitions which change the fermion parity of the Majorana’s.

Another source of error, studied in Appendix 3.B, is governed by the off/on
ratio Umin/Umax of the Coulomb coupling. This ratio depends exponentially on the
ratio of the charging energy EC and the Josephson energy EJ of the junction to the
bulk superconductor. A value EJ/EC ' 50 is not unrealistic [60], corresponding to
Umin/Umax ' 10−5.

The sign of the Coulomb coupling in the on state can be arbitrary, as long as
it does not change during the braiding operation. Since Umax ∝ cos(πqind/e), any
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change in the induced charge by ±e will spoil the operation. The time scale for this
quasiparticle poisoning can be milliseconds [57], so this does not seem to present a
serious obstacle.

A universal quantum computation using Majorana modes requires, in addition to
braiding, the capabilities for single-qubit rotation and read-out of up to four Majorana’s
[6]. The combination of Ref. [61] with the present proposal provides a scheme for all
three operations, based on the interface of a topological qubit and a superconducting
charge qubit. This is not a topological quantum computer, since single-qubit rotations
of Majorana modes lack topological protection. But by including the topologically
protected braiding operations one can improve the tolerance for errors of the entire
computation by orders of magnitude (error rates as large as 10% are permitted [62]).

3.A Derivation of the Majorana-Coulomb Hamiltonian

3.A.1 Single island

Considering first a single island, we start from the Cooper pair box Hamiltonian
(3.2) with the parity constraint (3.5) on the eigenstates. Following Ref. [69], it is
convenient to remove the constraint by the unitary transformation

H̃ = Ω†HΩ, Ω= exp[i(1−P )φ/4]. (3.23)

The transformed wave function Ψ̃(φ) = Ω†Ψ(φ) is then 2π-periodic, without any
constraint. The parity operator P appears in the transformed Hamiltonian,

H̃ =
1

2C

�

Q+ 1
2 e(1−P ) + qind

�2 − EJ cosφ. (3.24)

For a single junction the parity is conserved, so eigenstates of H are also eigenstates
of P and we may treat the operator P as a number. Eq. (3.24) is therefore the
Hamiltonian of a Cooper pair box with effective induced charge qeff = qind+e(1−P )/2.
The expression for the ground state energy in the Josephson regime EJ � EC is in the
literature [37, 73],

Eground = −EJ +
p

2EC EJ − 16(EC E3
J /2π

2)1/4 e−
p

8EJ/EC cos(πqeff/e). (3.25)

The first term −EJ is the minimal Josephson energy at φmin = 0. Zero-point
motion, with Josephson plasma frequency ωp =

p

8EC EJ/ħh, adds the second term
p

2EC CJ =
1
2ħhωp. The third term is due to quantum phase slips with transition

amplitudes τ± ' exp(±iπqeff/e)
Æ

ħhωp EJ exp(−ħhωp/EJ ) by which φ increments by
±2π.

Using P 2 = 1, the ground state energy (3.25) may be written in the form

Eground = −EJ +
p

2EC EJ − UP , (3.26)

with U defined in Eq. (3.7). Higher levels are separated by an energy ħhωp, which is
large compared to U for EJ � EC . We may therefore identify Eground = Heff with the
effective low-energy Hamiltonian of a single island in the large-EJ limit.
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3.A.2 Multiple islands

We now turn to the case of multiple islands with tunnel coupling. To be definite
we take the geometry of two islands shown in Fig. 3.2. The full Hamiltonian is
H = H1 +H2 +H12, where H1 and H2 are two copies of the Cooper box Hamiltonian
(3.2) and H12 is the tunnel coupling from Eq. (3.11).

To obtain 2π-periodicity in both phases φ1 and φ2, we make the unitary transfor-
mation H̃ = Ω†HΩ with

Ω= ei(1−P1)φ1/4ei(1−P2)φ2/4. (3.27)

The Cooper pair box Hamiltonians are transformed into

H̃k =
1

2C

�

Qk + eqk + qind,k

�2 − EJ ,k cosφk, (3.28)

with qk =
1
2 (1−Pk). The tunnel coupling transforms into

H̃12 =
1
2 e−iq1φ1Γ12eiq2φ2 eiπ(Φ1+Φ2)/2Φ0 +H.c., (3.29)

where Γ12 = iEMγ12γ21 and H.c. stands for Hermitian conjugate. Since eiqφ = cosφ +
iq sinφ, the transformed tunnel coupling H̃12 is 2π-periodic in φ1 and φ2.

For EJ � EC the phases remain close to the value which minimizes the sum of the
Josephson energies to the bulk superconductor and between the islands. To leading
order in EM/EJ � 1 this minimal energy is given by

Emin = − EJ ,1 − EJ ,2 + Γ12 cos[π(Φ1 +Φ2)/2Φ0]

+O (E2
M/EJ ). (3.30)

The Josephson coupling of the islands changes the plasma frequency ωp,k for phase
φk by a factor 1+O (EM/EJ ), so the zero-point motion energy is

1
2ħhωp,k =

Æ

2EC EJ ,k + EM ×O (EC/EJ )
1/2. (3.31)

The transition amplitudes τ± for quantum phase slips of phase φk are similarly
affected,

τ±,k = −UkPk + EM e−ħhωp,k/EJ ,k ×O (EC/EJ )
1/4. (3.32)

These are the contributions to the effective Hamiltonian Heff = Emin+
∑

k(
1
2ħhωp,k+

τ+,k +τ−,k) for EJ � EC , EM ,

Heff =
�

−U1P1 − U2P2 + Γ12 cos[π(Φ1 +Φ2)/2Φ0]
�

× [1+O (EM/EJ )] + const. (3.33)

Eq. (3.12) in the main text generalizes this expression for two islands to an arbitrary
number of coupled islands.
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3.B Calculation of the Berry phase of the braiding opera-
tion

We evaluate the unitary evolution operatorU of the braiding operation in the adiabatic
limit. This amounts to a calculation of the non-Abelian Berry phase (integral of Berry
connection) of the cyclic variation of the interaction Hamiltonian Hint(∆1,∆2,∆3).

In the Fock basis |00〉, |01〉, |10〉, |11〉 the interaction Hamiltonian (3.18) of 4
Majorana modes is given by the occupation number of the two fermionic operators
c1 = (γ1 − iγ2)/2 and c2 = (γ0 − iγ3)/2. It takes the form

Hint =







−∆3 0 0 −i∆1 −∆2
0 ∆3 −i∆1 −∆2 0
0 i∆1 −∆2 −∆3 0

i∆1 −∆2 0 0 ∆3






. (3.34)

The eigenvalues are doubly degenerate at energy ±ε = ±
q

∆2
1 +∆

2
2 +∆

2
3 (up to a

flux-dependent offset, which only contributes an overall phase factor to the evolution
operator). The two degenerate ground states at −ε are distinguished by an even (e)
or odd (o) quasiparticle number,

|e〉=

√

√ε −∆3

2ε











i
ε +∆3

∆1 + i∆2
0
0
1











, (3.35a)

|o〉=

√

√ε +∆3

2ε











0

i
ε −∆3

∆1 + i∆2
1
0











. (3.35b)

This parameterization is smooth and continuous except along the line ∆1 =∆2 = 0.

If we avoid this line the Berry connection can be readily evaluated. It consists of
three anti-Hermitian 2× 2 matricesAk,

Ak =

�

〈e| d
d∆k
|e〉 0

0 〈o| d
d∆k
|o〉

�

. (3.36)

Off-diagonal terms inAk are zero because of global parity conservation. Explicitly,
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Figure 3.5: The braiding path in three-dimensional parameter space along which the
Berry phase is evaluated. This path corresponds to the flux values in Table 3.1, with
couplings∆k =∆min for Φk = 0 and∆k =∆max for |Φk| = Φmax. The ratio∆min/∆max
in the figure is exaggerated for clarity.

we have

A1 =
∆2

∆2
1 +∆

2
2





i
ε +∆3

2ε
0

0 i
ε −∆3

2ε



 , (3.37)

A2 =
−∆1

∆2
1 +∆

2
2





i
ε +∆3

2ε
0

0 i
ε −∆3

2ε



 , (3.38)

A3 = 0. (3.39)

A closed path C in parameter space has Berry phase [20]

U = exp

�

−
∮

C

∑

k

Ak d∆k

�

. (3.40)

The path C corresponding to the braiding operation in Fig. 3.4 and Table 3.1 is shown
in Fig. 3.5. We take all couplings ∆k positive, varying between a minimal value ∆min
and maximal value ∆max. The parametrization (3.35) is well-defined along the entire
contour.
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The contour integral evaluates to

U = exp
h

−i
�π

4
− ε
�

σz

i

, σz =
�

1 0
0 −1

�

, (3.41)

ε=
3
p

2

∆min

∆max
+O

�

∆min

∆max

�2

. (3.42)

The limit ∆min/∆max → 0 corresponds to the braiding operator (3.22) in the main
text (with s1, s2 > 0 and σz = 1− 2c†

1c1 = iγ1γ2).


