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Chapter 2

Coulomb stability of the
4π-periodic Josephson effect of
Majorana modes

The energy HJ of a tunnel junction between two superconductors (a Josephson junc-
tion) depends on the differenceφ of the phase of the order parameter on the two sides
of the junction. The derivative IJ = (2e/ħh)dHJ/dφ gives the supercurrent flowing
through the junction in the absence of an applied voltage. In a ring geometry, the
supercurrent depends periodically on the flux Φ enclosed by the ring, with periodicity
h/2e. This familiar DC Josephson effect [39, 40] acquires a new twist if the junction
contains Majorana modes [26, 41, 42].

Majorana modes are charge-neutral quasiparticles bound to mid-gap states, at zero
excitation energy, which appear in a so-called topologically non-trivial superconductor
[43, 44]. While in the conventional Josephson effect only Cooper pairs can tunnel
(with probability τ� 1), Majorana modes enable the tunneling of single electrons
(with a larger probability

p
τ). The switch from 2e to e as the unit of transferred charge

amounts to a doubling of the fundamental periodicity of the Josephson energy, from
HJ ∝ cosφ to HJ ∝ cos(φ/2). In a ring geometry, the period of the flux dependence
of the supercurrent IJ doubles from 2π to 4π as a function of the Aharonov-Bohm
phase1 ϕ0 = 2eΦ/ħh. This 4π-periodic Josephson effect has been extensively studied
theoretically [42, 45–50], as a way to detect the (so far, elusive) Majorana modes
[51].

Since the Majorana modes in a typical experiment will be confined to supercon-
ducting islands of small capacitance C , the Coulomb energy HC =Q2/2C associated
with a charge difference 2Q across the junction competes with the Josephson energy.

1As a function of the enclosed flux, IJ has the same h/e periodicity as the persistent current IN through
a normal metal ring (radius R). One can distinguish the two currents by their size dependence: While IN
decays as 1/R or faster, IJ has the R-independence of a supercurrent.
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Figure 2.1: Geometry of a DC SQUID, consisting of a superconducting ring (grey)
interrupted by two tunnel junctions (black) and threaded by a magnetic flux Φ. A
semiconductor nanowire (yellow) contains Majorana modes at the end points (red
dots). The two panels distinguish the cases that Majorana modes are present at both
junctions (top), or only at a single junction (bottom). The 4π-periodic Josephson
effect is stable against quantum phase slips in the first case, but not in the second
case.

The commutator [φ,Q] = 2ei implies an uncertainty relation between charge and
phase differences, so that a nonzero HC introduces quantum fluctuations of φ in the
ground state [40]. What is the fate of the 4π-periodic Josephson effect?

As we will show in this chapter, the supercurrent through the ring remains a
4π-periodic function of ϕ0, regardless of the relative magnitude of HC and HJ . This
Coulomb stability requires that all weak links in the ring contain Majorana modes.
If the ring has a topologically trivial segment, then quantum phase slips restore the
conventional 2π-periodicity of the Josephson effect on sufficiently long time scales.
We calculate the limiting time scale for the destruction of the 4π-periodic Josephson
effect by quantum phase slips and find that it can be much shorter than the competing
time scale for the destruction of the 4π-periodicity by quasiparticle poisoning [42].

2.1 Hamiltonian of a DC SQUID with Majorana modes

We apply the general theory of Majorana-Josephson junction arrays of Xu and Fu
[52] to the DC SQUID geometry of Fig. 2.1, consisting of two superconducting islands
separated by tunnel junctions. The islands have a charge difference 2Q = Q1 −Q2,
with Qn = −2ei∂ /∂ φn canonically conjugate to the superconducting phase φn. The
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gauge invariant phase differences across the two junctions are given by φ = φ1 −φ2
and ϕ0−φ. Here we assume that the ring is sufficiently small that the flux generated
by the supercurrent can be neglected, so the enclosed flux equals the externally
applied flux2.

Each island contains a segment of a semiconductor nanowire, driven into a topolog-
ically nontrivial superconducting state by the proximity effect [45, 46] (alternatively,
the nanowire could be replaced by the conducting edge of a two-dimensional topo-
logical insulator [42]). The Majorana modes appearing at the end points of each
segment are represented by anti-commuting Hermitian operators γ1,γ2,γ3,γ4 that
square to unity,

γn = γ
†
n, γnγm + γmγn = 2δnm. (2.1)

The Majorana modes are coupled by the tunnel junction. We distinguish two cases.
In the first case (top panel in Fig. 2.1) each of the two tunnel junctions couples a pair
of Majorana modes. In the second case (bottom panel) one pair of Majorana modes
is coupled by a Josephson junction, while the other pair remains isolated.

The Hamiltonian H = HC + HJ ,1 + HJ ,2 is the sum of charging and Josephson
energies,

HC =
1

2C
(Q+ qind)

2, (2.2)

HJ ,1 = EM ,1Γ1 cos
φ

2
− EJ ,1 cosφ, (2.3)

HJ ,2 = EM ,2Γ2 cos
ϕ0 −φ

2
− EJ ,2 cos(ϕ0 −φ), (2.4)

Γ1 = iγ2γ3, Γ2 = iγ4γ1. (2.5)

The induced charge qind = Cg Vg accounts for charges on nearby electrodes, controlled
by a gate capacitance Cg and gate voltage Vg . The energy scales EM ,n and EJ ,n quantify
the Josephson coupling strength of, respectively, single electrons and electron pairs.
With this Hamiltonian we can describe both cases considered, by putting EM ,2 = 0 for
the junction without Majorana modes.

The eigenstates Ψ(φ1,φ2) of H should satisfy the fermion parity constraint [36]

Ψ(φ1 + 2πn,φ2 + 2πm) = (−1)nq1(−1)mq2Ψ(φ1,φ2), (2.6)

qn =
1
2 (1− pn), p1 = iγ1γ2, p2 = iγ3γ4. (2.7)

The operators qn and pn have, respectively, eigenvalues 0,1 and ±1, depending on
whether island n contains an even or an odd number of electrons. The constraint
(2.6) enforces that the eigenvalues of Qn are even multiples of e for qn = 0, pn = 1
and odd multiples of e for qn = 1, pn = −1.

2The flux induced by the supercurrent IJ due to the nonzero inductance L ' µ0R of the ring may be
neglected relative to the applied flux if LIJ � ħh/e. The magnitude of the supercurrent can be estimated by
ħhIJ/e 'min(EJ , E2

J /EC )≡ Ec . For Ec ' 1meV the induced flux can be neglected if R� 1cm.
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It is possible to solve the eigenvalue problem HΨ = EΨ subject to the constraint
(2.6), along the lines of Ref. [52], but alternatively one can work in an unrestricted
Hilbert space. The restriction is removed by the unitary transformation

Ψ = U1U2Ψ̃, Un = exp(iqnφn/2). (2.8)

The function Ψ̃(φ1,φ2) is 2π-periodic in each of its arguments, so the constraint (2.6)
is automatically satisfied. Now the eigenvalues of Qn are all even multiples of e. The
transformed Hamiltonian H̃ = (U1U2)†HU1U2 becomes

H̃ =
1

2C

�

Q+
eq1 − eq2

2
+ qind

�2

+ 1
2

�

e−iq1φ1
�

EM ,1Γ1 + EM ,2Γ2eiϕ0/2
�

eiq2φ2 +H.c.
�

− EJ ,1 cosφ − EJ ,2 cos(ϕ0 −φ), (2.9)

where we have used the identity

U†
nΓmeiφn/2 = ΓmUn. (2.10)

Notice that the Hamiltonian has become 2π-periodic in the superconducting phases
φ1,φ2, while remaining 4π-periodic in the flux ϕ0. Notice also that H̃ may depend
on the φn’s separately, not just on their difference. This does not violate charge
conservation, because the conjugate variables Qn now count only the number of
Cooper pairs on each island — not the total number of electrons.

The four Majorana modes encode a qubit degree of freedom [6]. The states of
the qubit are distinguished by the parity of the number of electrons on each island.
If the total number of electrons in the system is even (P = 1), the qubit states are
|11〉 and |00〉, while for an odd total number of electrons (P = −1) the states are
|10〉 and |01〉. In this qubit basis, the products of Majorana operators appearing in
the Hamiltonian (2.9) are represented by Pauli matrices,

q1 =
1
2 +

1
2σz , q2 =

1
2 +

1
2P σz , Γ1 = −σx , Γ2 =P σx . (2.11)

It is straightforward to calculate the eigenvalues of H̃, by evaluating its matrix
elements in the basis of eigenstates of Q. The spectrum EPn (ϕ0, qind) as a function of
the enclosed flux and the induced charge has two branches distinguished by the total
fermion parity P = ±1, with

E+n (ϕ0, qind) = E−n (ϕ0 + 2π, qind + e/2). (2.12)

2.2 DC SQUID with two Majorana junctions

We first consider the case that both junctions contain Majorana modes (top panel
in Fig. 2.1). A fully analytical calculation is possible in the limit that the charging
energy dominates over the Josephson energy (EC ≡ e2/2C � EM ,n, EJ ,n). Only the
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Figure 2.2: Spectrum of the DC SQUID in the top panel of Fig. 2.1, containing Majorana
modes at both Josephson junctions. The curves are the result (2.13), in the limit that
the charging energy dominates over the Josephson energy. The parameters chosen
are EM ,1 = EM ,2 = δ. The level crossing is between states of different fermion parity
P , and therefore there can be no tunnel splitting due to the Coulomb interaction
(which conserves P ).

two eigenstates of Q with lowest charging energy Ē ± 1
2δ are needed in this limit and

2e tunnel processes may be neglected relative to e tunnel processes (so we may set
EJ ,n = 0). We thus obtain the simple expression

EP± = Ē ± 1
2

�

δ2 + E2
M ,1 + E2

M ,2 + 2P EM ,1EM ,2 cos
ϕ0

2

�1/2

. (2.13)

The resulting 4π-periodic spectrum is shown in Fig. 2.2.
The crossing of the two branches E+− and E−− at ϕ0 = π is protected, regardless

of the value of EC , because the charging energy cannot couple states of different P .
Quasiparticle poisoning (the injection of unpaired electrons) switches the fermion
parity on a time scale Tp, which means that the 4π-periodicity of the energy of the
ring can be observed if the enclosed flux is increased by a flux quantum in a time
TΦ� Tp.

2.3 DC SQUID with a single Majorana junction

We now turn to the case that one of the two Josephson junctions does not contain
Majorana modes (lower panel in Fig. 2.1). By putting EM ,2 = 0 the Hamiltonian
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Figure 2.3: Spectrum of the DC SQUID in the bottom panel of Fig. 2.1, containing
Majorana modes at only one of the two Josephson junctions. The curves are a
numerical calculation for the full Hamiltonian, in the regime that the Josephson
energy of the trivial junction is the largest energy scale. The parameters chosen are
EJ ,2 = 4EC = 10EM ,1, EM ,2 = 0= EJ ,1, and qind = 0. In contrast to Fig. 2.2, a tunnel
splitting ∆ appears because the level crossing is between states of the same fermion
parity.

becomes 2π-periodic in ϕ0. In Fig. 2.3 we show the spectrum for a relatively large
Josephson energy of the trivial junction. The phaseφ is then a nearly classical variable,
which in the ground state is close to ϕ0 (mod 2π). The charging energy opens a gap
in the spectrum near ϕ0 = π (mod 2π), by inducing tunnel processes from φ = ϕ0 to
φ = ϕ0±2π (quantum phase slips). A tunnel splitting by the P -conserving charging
energy is now allowed because the level crossing is between states of the same P .

A semiclassical calculation of the tunnel splitting due to quantum phase slips at
the trivial Josephson junction, along the lines of Ref. [37], gives for EJ ≡ EJ ,2� EC �
EM ,1 ≡ EM the spectrum

EP± = −EJ +
p

2EC EJ ±
q

E2
M cos2(ϕ0/2) +∆2, (2.14)

∆= 16
�

EC E3
J /2π

2
�1/4

exp
�

−
Æ

8EJ/EC

�

×

×

√

√

√

cos2(πq′ind/e) +
π2E2

M

8EC EJ
sin2(πq′ind/e), (2.15)

where we have abbreviated q′ind = qind + (e/4)(1−P ). The second term on the right-
hand-side of Eq. (2.14) describes the effect of zero-point fluctuations of φ around the
values ϕ0 and ϕ0 ± 2π. Tunnel processes φ = ϕ0 7→ ϕ0 + 2π and φ = ϕ0 7→ ϕ0 − 2π
produce the third term. The sine and cosine factors in Eq. (2.15) accounts for
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Figure 2.4: Tunnel splitting at ϕ0 = π as a function of the induced charge. The
dashed curve correspond to Eq. (2.15), the solid curve to numerical calculations for
the full Hamiltonian, for EJ ,2 = 5 EC = 25 EM ,1 (with EM ,2 = 0= EJ ,1).

interference between these two quantum phase slip processes (Aharonov-Casher
effect) [35, 53–56] .The numerical calculation in Fig. 2.4 agrees quite well with the
semiclassical approximation (2.15).

The tunnel splitting ∆ ensures that the energy of the ring evolves 2π-periodically
if the flux Φ is increased by a flux quantum h/2e in a time TΦ which is long compared
to T∆ = ħhEM ,1/∆

2. For TΦ ® T∆ there is a significant probability exp(−TΦ/T∆) for a
Landau-Zener transition through the gap, resulting in a 4π-periodic evolution of the
energy.

This limiting time scale T∆ originating from quantum phase slips can be compared
with the time scale Tp for quasiparticle poisoning. We require TΦ small compared to
both T∆ and Tp to observe the 4π-periodic Josephson effect. For ∆> (ħhEM ,1/Tp)1/2

one has T∆ < Tp, so quantum phase slips govern. A recent experiment finds Tp ' 2 ms
in Al for temperatures below 160 mK [57]. Since EM ,1 will be well below 1 meV, one
has T∆ < Tp if quantum phase slips occur with a rate∆/ħh higher than 30 MHz. While
quantum phase slip rates can vary over many orders of magnitude due to the exponent
in Eq. (2.15), typical values for a DC SQUID are in the GHz range.

In conclusion, we have shown that Coulomb charging effects do not spoil the
4π-periodic Josephson effect in a superconducting ring, provided that all weak links
contain Majorana modes. Quantum phase slips at a weak link without Majorana
modes restore the 2π-periodicity on time scales long compared to a time T∆, which
may well be shorter than the time scale for quasiparticle poisoning.

The origin of the protection of the 4π periodicity if the entire ring is topologically
nontrivial is conservation of fermion parity [42] (See Ref. [58] for a more general
perspective.) This protection breaks down if part of the ring is a trivial superconductor,
because then the level crossing involves states of the same fermion parity and tunnel
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splitting by the charging energy is allowed (see Fig. 2.3).
We note in closing that the different stability of the 4π-periodic Josephson effect

in the two geometries of Fig. 2.1, examined here with respect to Coulomb charging,
extends to other parity-preserving perturbations of the Hamiltonian. For example,
overlap of the wave functions of two Majorana bound states on the same island
introduces a term Hoverlap = iεγ1γ2. For the lower panel of Fig. 2.1, this term leads to
a tunnel splitting ∆= 2ε which spoils the 4π-periodicity [26]. For the upper panel
of Fig. 2.1, ∆≡ 0 because Hoverlap preserves fermion parity.


