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Chapter 1

Introduction

When we solve the Schrödinger equation to study the evolution of a quantum system,
the solution takes the form of a vector |Ψ(t)〉 in the Hilbert space. Unlike the more
familiar Euclidean space of classical mechanics, it is hard to gain intuition about the
Hilbert space using our everyday experience of the physical world. Indeed, |Ψ(t)〉 is
usually a very large vector with complex entries, making it difficult to visualize its
trajectory. The vastness of the Hilbert space makes the solution of the Schrödinger
equation computationally very expensive, to the point that a full solution for |Ψ(t)〉
is often out of reach. Rather than being discouraged, we may change point of view
and take this fact as a great opportunity. That is, we can look at the quantum state
as a computational resource, where information can be stored and manipulated by
exploiting features of quantum mechanics such as superposition, entanglement and
interference [1, 2]. Surprisingly, the computational power of quantum mechanics
seems to supersede that of classical physics, making quantum information a promising
field for technological innovation.

However, preparing and controlling at will a quantum state is not an easy task.
First, we need to be able to reliably store a quantum state, protecting it from the
decoherence due to interaction with the environment. Second, we need a quantum
state to follow precisely the trajectory in the Hilbert space corresponding to a desired
algorithm. In principle, both goals can be achieved using quantum error correction
[3, 4], at the cost of an overhead in memory and time requirements. An alternative
approach, topological quantum computation [5, 6], shows that it is possible to imagine
quantum systems which are naturally endowed with a resilience to decoherence and
the possibility to execute algorithms with great accuracy. The topological approach
uses the fact that some two-dimensional condensed matter systems can host a class of
identical particles – called non-Abelian anyons – whose exchange causes a measurable
change in the quantum state of the system. An entire algorithm can then be realized
as a longer sequence of exchanges involving many particles. The algorithm does not
rely on the details of how the exchanges are performed – similar trajectories will
yield identical results – and is thus topological in nature. The quantum information
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is encoded in the quantum state of the identical particles, and in the presence of an
energy gap it stays protected as long as the particles stay far away from each other,
or do not accidentally exchange their positions.

The theory of non-Abelian anyons is rooted in the abstract domains of mathemat-
ical physics and conformal field theory [7–10]. In condensed matter, non-Abelian
anyons appeared first in the theory of the fractional quantum Hall effect [11–13] and
later in that of superconductivity [14]. At present, there has been no clear experimen-
tal detection of non-Abelian statistics. The central theme of this thesis is to translate
this set of beautiful ideas rooted in mathematical physics into a set of concrete devices
where non-Abelian statistics can be demonstrated and used for quantum informa-
tion purposes. The focus will be on the simplest type of particle which is known to
obey non-Abelian statistics: Majorana modes occurring as zero-energy excitations
in superconducting systems. We will see how the necessary manipulations of Ma-
jorana modes can be achieved using simple circuit elements such as capacitors and
Josephson junctions, and thus arrive at a new concrete design for the experimental
implementation of a fault-tolerant quantum computer. The two design principles
behind this proposal are the use of Coulomb interaction as the fundamental physical
mechanism permitting control of Majorana modes, and the use of magnetic fluxes as
experimental knobs to tune these interactions.

In this introductory chapter, we introduce the main concepts necessary to follow
the rest of the thesis. We first review the concept of identical particles in quantum
mechanics by making use of the notion of the Berry phase. Then, we derive the
non-Abelian statistics of Majorana modes and use them as a concrete example to
understand how topological quantum computation works. Finally, we move on to
describe how Majorana modes affect the behavior of superconducting circuits, and
illustrate the fundamental design principles of our proposal for a Coulomb-assisted,
flux controlled topological quantum computation with Majorana modes.

1.1 Identical particles and Berry’s phase

The symmetrization postulate is one of the cornerstones of quantum mechanics [15].
It divides particles into bosons and fermions according to their spin, integer or half-
integer respectively, and states that quantum states of bosons or fermions have to
be symmetric or antisymmetric with respect to the permutation of the positions of
any two particles in the system. The symmetrization postulate is supported by a
large amount of experimental evidence: the periodic table of chemical elements, the
electron Fermi sea in solids and the phenomenon of Bose-Einstein condensation are
among its most direct consequences. Furthermore, it follows directly from the union
of quantum mechanics with special relativity, which yields a connection between spin
and statistics (in fact, the necessary ingredient for such a connection is the existence
of anti-particles [16]).

Nevertheless, and most interestingly, the symmetrization postulate is not the end
of the story [17]. In two spatial dimensions, quantum mechanics is compatible with
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Figure 1.1: Exchanging identical particles in different dimensions. Top left. In one
dimension, an attempt at exchanging two particles leads unavoidably to a collision.
Hence, quantum statistics of identical particles can not be unambiguously defined.
Right. In three dimensions (or more), the trajectory of a particle enclosing a second
one can always be contracted to a single point. This fact implies that the exchange
phase of the particles is constrained to two possible values only, corresponding to
bosonic and fermionic statistics. Bottom left. In two dimensions, a loop around a
particle cannot be contracted to a single point. Identical particles can therefore exhibit
exotic quantum statistics.

the existence of particles, known as anyons, which do not obey bosonic or fermionic
statistics. In order to see why two dimensions are special, we can consider the closed
trajectory C of a particle around a second, identical particle (Fig. 1.1). This trajectory
is equivalent to a sequence of two position exchanges between the particles, hence it
gives direct insight into their exchange statistics.

The evolution of the system along the loop C is described by a unitary operator
U connecting the initial and final quantum states,

|Ψ(T )〉=U (C , T ) |Ψ(0)〉 . (1.1)

Here, T is time it takes the first particle to complete its trajectory. We consider a
situation in which no “quantum jumps” occur: at all times 0≤ t ≤ T , the quantum
state |Ψ(t)〉 is an instantaneous eigenstate of the Hamiltonian with energy E(t). Under
these conditions, the quantum adiabatic theorem [15] states that as T →∞,

U (C , T ) = exp
�

−i
∫ T

0 E(t)dt
�

exp [iγ(C)] . (1.2)

The first phase factor is the usual dynamical phase factor found in the solution of
the Schrödinger equation. We are more interested in the second phase factor γ(C),
which is known as the Berry phase [18, 19],

γ(C) =

∫ T

0

�

Ψ(t)

�

�

�

�

dΨ(t)
dt

�

dt . (1.3)

Since dt appears both on numerator and denominator in the expression above, the
Berry phase does not depend on T nor on the kinematics of the trajectory, but only
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on the loop C . In general, the Berry phase is the sum of two components. The first
component depends on the geometrical properties of C – for instance, if an external
magnetic field is present, this geometric contribution is the Aharonov-Bohm phase,
which is proportional to the magnetic flux enclosed by the loop, and hence to the
area of the loop. The second component only depends on the topological properties of
C , i.e. on the winding number n, the number of times that the first particle encircles
the second (n = 1 for the paths in Fig. 1.1). Different trajectories which can be
continuously deformed into each other have the same winding number, and hence
are characterized by the same topological contribution to the Berry phase. Its value is
given by 2nθ , where θ specifies the quantum statistics of the two particles and the
factor of two is due to the fact that every loop is equivalent to two exchanges.

As shown in Fig. 1.1, in three dimensions a closed loop C can always be deformed
to a single point, that is to a trajectory where the first particle does not move at
all. Therefore, the topological contribution to the Berry phase vanishes for all loops.
We must in other words require that 2θ = 0 (mod 2π), which yields two possible
exchange phases θ = 0 or θ = π, corresponding to bosonic and fermionic quantum
statistics respectively. In two dimensions, however, the winding number of a loop can
not be changed via a continuous deformation of the loop. Hence, in principle there is
no restriction on the value of θ . Particles which have a value of θ different from 0 or
π are called Abelian anyons.

So far we have implicitly assumed the state |Ψ(t)〉 to be non-degenerate. Let us
now consider the case of a degeneracy D. In this case, the quantum state is specified by
D components |Ψn(t)〉, and the Berry phase factor exp[iγ(C)] appearing in Eq. (1.2)
has to be substituted by a D× D matrix [20],

U(C) = P exp
�

∫ T

0 A(t)dt
�

. (1.4)

Here, P is the path-ordering operator and A is a skew-Hermitian matrix (AT = −A∗)
known as the Berry connection, with matrix elements Anm(t) = 〈Ψm(t)|dΨn(t)/dt〉.
Like its one-dimensional counterpart, the Berry matrix U(C) will have a geometric
component and a topological one. It is therefore possible that the exchange of
two particles results in a non-trivial unitary rotation in the degenerate ground state
manifold. Crucially, Berry matrices corresponding to the exchange of two different
pairs of particles need not commute. Non-Abelian anyons are precisely the class of
identical particles having this property. In the following section, we will clarify this
concept with a concrete and simple example which is central to the whole thesis:
Majorana modes.

1.2 Non-Abelian statistics of Majorana modes

Majorana modes are mid-gap (zero energy) quasiparticles which can appear in super-
conducting systems with broken time-reversal and spin-rotation symmetry [22–24].
Since a clean superconductor does not allow for bulk excitations with energy smaller
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Figure 1.2: Majorana modes (red dots) can appear bound to vortices in superconduct-
ing thin films (left, [14]), or equivalently at domain walls in networks of quantum
wires (right, [21]). In both cases, their positions can be exchanged in space, as de-
picted by the arrows. Because of the non-Abelian statistics of the Majorana modes, the
procedure results in a non-trivial rotation on the quantum state of the superconductor.

than the pairing gap, a Majorana mode can be found either bound to a vortex in a
superconducting film [14, 25] or localized at the end of a superconducting nanowire
[26]. In virtue of particle-hole symmetry of the superconductor and in the absence of
degeneracies, the creation and annihilation operators of a zero energy mode coin-
cide: γ= γ†. Operators corresponding to different modes anti-commute, as normal
fermionic operators, leading to the unusual set of relations

γnγm + γmγn = 2δnm . (1.5)

Note in particular that γ2
n = 1, so that we cannot speak of the Majorana mode being

‘empty’ or ‘occupied’. Out of two Majorana modes, say γ1 and γ2, we can however
construct an ordinary fermionic annihilation operator c = 1

2 (γ1 + iγ2) satisfying
cc† + c†c = 1. Hence, the two Majorana modes can be thought as the real and
imaginary part of a conventional fermion mode. Their peculiarity is that they are well
separated in space. This argument reveals that Majorana modes can only occur in
pairs: if the number of vortices is odd, an additional mode must lie somewhere along
the boundary of the superconductor. It also reveals that the two Majorana modes
form a two-level system, with the two states differing by the presence or absence of a
fermion. As long as the Majorana modes are kept at a distance much longer than the
coherence length, the two levels are degenerate in energy, so that it is not costly to
remove or add a fermion to the system.

Let us now consider a two-dimensional superconductor with 2N vortices hosting
Majorana modes γ1, . . . ,γ2N . We can group the Majorana modes in pairs to form N
fermionic creation operators c1, . . . , cN . These operators span a degenerate manifold
with 2N states |p1 . . . pN 〉 labeled by the occupation numbers pn = 0,1 of the N
fermionic modes. In an isolated superconductor fermion parity is a conserved quantity,
so the manifold is divided in two subspaces containing all the states of even and odd
parity. They are distinguished by the eigenvalue ±1 of the fermion parity operator

P = iN γ1 . . .γ2N , P 2 = 1 . (1.6)

Within the even or odd subspace, which have dimension 2N−1, superpositions of states
are allowed.
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Let us see what happens when two vortices are adiabatically exchanged in space
[27]. We might of course do so by computing the Berry matrix using Eq. (1.4).
However, there is a more direct way which allows to arrive at the result without
much effort. It is convenient to adopt the Heisenberg picture, where the Majorana
operators depend explicitly on time. In particular, the two Majorana modes bound to
the vortices being moved are related to the Berry matrix by the equation

γn,m(T ) = Unm γn,m(0)U
†
nm , (1.7)

up to a phase factor. We have denoted the Berry matrix as Unm since it is natural
to assume that it will only depend on the Majorana modes γn,γm involved in the
exchange. Furthermore, Unm has to preserve fermion parity, [Unm,P ] = 0. This
means that it can only depend on the product γnγm. Finally, unitarity imposes that
the Berry matrix is of the form Unm = exp (αγnγm), with α a real coefficient to be
determined. Direct calculation yields

γn(T ) = cos(2α)γn(0)− sin(2α)γm(0) , (1.8a)

γm(T ) = cos(2α)γm(0) + sin(2α)γn(0) . (1.8b)

We want the two operators to be interchanged by U , leading to the choice α = ±π/4.
The sign of α distinguishes clockwise and counterclockwise exchanges of the vortices,
the precise assignment being arbitrary. The final result is therefore

Unm = exp
�π

4
γnγm

�

. (1.9)

We see that the Berry matrix resulting from the exchange is not simply on overall
phase, but a non-trivial rotation in the ground state manifold. Also, we see that Berry
matrices corresponding to exchanges of different pairs do not commute if the two
pairs share one Majorana, and commute otherwise.

To understand the multiplication properties of these matrices better, let us imagine
that initially all Majoranas are ordered on a line according to their index n. The
exchange between any pair of Majoranas can be generated via a succession of ex-
changes between neighboring Majoranas, hence we may focus on the matrices Un,n+1.
To keep track of all the exchanges, we may imagine that a strand is attached to each
vortex, such that a succession of exchanges forms a braid out of the 2n strands, We see
that to each different braid, we may associate a corresponding unitary operator via a
multiplication of of an appropriate sequence of matrices Un,n+1. It can be checked
that these matrices obey the following relations,

Un,n+1Un+1,n+2Un,n+1 = Un+1,n+2Un,n+1Un+1,n+2. (1.10)

Mathematically, these are precisely the relations obeyed by the generators of the braid
group, which is a generalization of the permutation group to a situation where the
order of the exchanges matter. For this reason, the exchange of two Majorana modes
(or of non-Abelian anyons in general) is usually referred to as braiding.



1.3 Topological quantum computation 7

1.3 Topological quantum computation

The discussion of the previous section is a good starting point to understand topological
quantum computation more in detail, using Majorana modes as a practical example
of non-Abelian anyons. The main ideas are the following:

1. The ground state manifold of 2N Majorana modes is taken as the computational
space. At a fixed total fermion parity, it forms a register of N − 1 qubits. The
physical degree of freedom which is used to encode the qubits is the fermion
parity of pairs of Majorana modes, sometimes also referred to as their topological
charge.

2. Operations on the register are performed by braiding Majorana modes in space.

3. Initialization and measurement of the register entries are carried out by bringing
two Majorana modes very close to each other, an operation sometimes called
fusion. When this happens, the ground state degeneracy splits, allowing for a
readout of the fermion parity of the two joint Majorana modes.

It is essential that the ground state manifold is protected by an energy gap from the
excited states. This ensures that the adiabatic limit can be reached when operating
on the register, and protects the register from dissipation.

The advantages of this approach are:

1. The quantum gates which can be executed via braiding are extremely accurate
and do not depend on the exact trajectory followed during the exchange. In
this sense, they are extremely resilient to implementation inaccuracies.

2. The quantum state of the register is encoded in the fermion parity degrees of
freedom, which are shared non-locally by the Majorana modes. This means that
no local perturbation can change the state of the register and cause decoherence.
An experimentally relevant exception is a change in fermion parity due to the
tunneling of a stray quasiparticle into the system (quasiparticle poisoning).

A crucial question in topological quantum computation is whether braiding opera-
tions are universal, in the sense that any unitary operation on the register can be
approximated with arbitrary accuracy by a finite sequence of braiding operations.
Unfortunately, this is not the case for Majorana modes. In this case, braiding operation
have to be supplemented by non-topological ones.

So far our discussion has not addressed the problem of how to initialize, braid
and measure Majorana modes in practice. As already mentioned and as discussed in
more detail in the next section, our proposal is to use microwave superconducting
circuits for all these purposes.
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1.4 Superconducting circuits with Majorana modes

In superconducting circuits, macroscopic physical observables such as currents and
voltages exhibit quantum behavior. In fact, superconducting circuits are one of the
most prominent platforms for quantum information processing [28–31]. In this
section we will describe in simple terms how Majorana modes affect the physics of
superconducting circuits. In order to do so, we start by describing the “hydrogen
atom” of superconducting circuits - the Cooper pair box.

1.4.1 Cooper pair box in the transmon limit

A Cooper pair box consists of two superconductors connected by a capacitor and a
Josephson junction, possibly split in two arms, see Fig. 1.3. Cooper pairs can flow
between the two island by quantum tunneling across the Josephson junction. This
motion results in fluctuations in the voltage v(t) and current i(t) between the two
nodes of the circuit. The dynamics of the system can be described in terms of the
integrals of current and voltages, which are the phase and charge difference across
the junction,

φ =
2π
Φ0

∫ t

−∞
v(t ′)dt ′ , N =

1
e

∫ t

−∞
i(t ′)dt ′ . (1.11)

Here, Φ0 = h/2e is the superconducting flux quantum. These two quantities are
canonically conjugate variables, similarly to position and momentum of a particle,

[φ, N] = 2i . (1.12)

The factor of two in the commutation relations is due to the fact that electrons form
Cooper pairs in the superconducting condensate, and hence charge is transferred in
units of 2e across the junction. The Hamiltonian describing the Cooper pair box is

H = ECN2 + EJ(1− cosφ) , (1.13)

with EC = e2/2C the charging energy and EJ the Josephson energy. In the split-
junction geometry, the Josephson energy can be varied by threading a magnetic flux
Φ in the loop formed by the two arms of the junction. Neglecting any asymmetry
between the strengths of the two arms, one has EJ = EJ,0 cos(πΦ/Φ0).

The circuit exhibits quantized energy levels, which are observable provided that
temperature and damping-induced broadening of the levels are both much smaller
than the level spacing. We will be particularly interested in the limit EJ� EC, where
the level spacing is approximately constant,

En ' ħhΩ(n+ 1/2) , (1.14)

where ħhΩ =
p

8EJEC is the plasma frequency, which characterizes current oscillations
across the Josephson junction. Typical values of Ω are in the range 5 to 30 GHz,



1.4 Superconducting circuits with Majorana modes 9

Figure 1.3: Left: A Cooper pair box with a split Josephson junction. When the Joseph-
son energy is much larger than the charging energy, and at very low temperatures, the
energy spectrum is consists of almost equally spaced levels separated by the plasma
frequency Ω'

p

8EJEC. Right: If one of the two islands hosts Majorana modes (red
circles), for instance appearing at the ends of a nanowire (grey), every level splits
into a doublet of levels with different fermion parity [35].

allowing the system to be controlled with microwave radiation, using all the technol-
ogy of RF electronic engineering. A Cooper pair box in this regime and coupled to
a transmission line resonator constitutes a transmon, one of the most common and
successful superconducting qubits.

Importantly, the Cooper pair box Hamiltonian only describes the quantum dy-
namics of the superconducting condensate, neglecting the contribution of unpaired
quasiparticles. In principle, this description is accurate when kB T �∆, the supercon-
ducting gap. Only states of even fermion parity are then relevant to the dynamics of
the circuit, as states with odd parity have all energies greater than∆. In practice, how-
ever, non-equilibrium quasiparticles are often observed in superconducting circuits
even at very low temperatures, and cause random switches in the fermion parity of a
superconducting island. For the sake of conceptual simplicity, and also motivated by
recent progress in the enhancement of the parity lifetime of superconducting circuits
[32–34], in what follows we disregard this complication.

1.4.2 Flux-controlled Coulomb interaction of Majorana modes

If one of the two superconducting islands forming the Cooper pair box hosts two
Majorana modes γ1 and γ2, one quasiparticle can be accommodated with no energy
cost. The situation changes drastically, because now there are now two distinct
superconducting condensates, one with even and one with odd parity. In the limit
EC→ 0, when the phase φ becomes a good quantum number, the even and odd states
are to a good approximation given by a coherent superposition of all the charge states
with the appropriate parity,

|φ, e〉=
∑

n

eiφn |2n〉 , (1.15a)

|φ, o〉=
∑

n

eiφ(n+1/2) |2n+ 1〉 . (1.15b)
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Even and odd states behave differently with respect to a shift of the superconducting
phase by 2π: |φ + 2π, e/o〉 = ±|φ, e/o〉. In other words, even and odd states are
respectively periodic and anti-periodic under a shift of φ by 2π. This boundary
condition imposes a constraint between the Majorana operators and the number
operator [36],

iγ1γ2 = (−1)N . (1.16)

The expression above is the mathematical statement corresponding to the fact that
the fermion parity of a superconductor with Majorana modes is equal to the total
charge contained in the superconductor, modulo 2e. Eq. (1.16) is a gauge constraint
on the Hilbert space of the Cooper pair box with Majorana modes. It has to be taken
into account when solving the Cooper pair box Hamiltonian (1.13). A way to do so is
to make a unitary transformation |Ψ〉 7→ R|Ψ〉, with

R= exp[i(1− iγ1γ2)φ/4] . (1.17)

This transformation acts trivially on the even states, but makes the odd states periodic
under a shift of φ by 2π. The Hamiltonian becomes (recall that N = −2i∂φ)

RHR† = EC[N + (1− iγ1γ2)/2]
2 + EJ(1− cosφ) . (1.18)

We see that the Majorana modes now appear explicitly in the charging energy term.
At the same time, since the new Hamiltonian acts on a space of 2π-periodic functions,
the eigenvalues of N are restricted to the even numbers,. Note that the argument
would apply equally to the case of a superconductor having more than two Majorana
modes - in this case, the product iNγ1 . . .γ2N would appear in the Hamiltonian instead
of iγ1γ2.

One might at first be surprised that Majorana modes are related to the charge in
the superconductor, since they are usually presented as neutral objects. The neutrality
of the Majorana modes is due to the presence of a superconducting condensate,
which “absorbs” the charge corresponding to the fermion parity encoded in a pair
of Majorana modes. In a grounded superconductor it is possible to forget about the
charge degrees of freedom by fixing the phase φ of the superconductor, so that the
boundary condition becomes irrelevant. However, in a floating superconductor this is
no longer possible, and the relation between fermion parity and electric charge has
to be restored explicitly.

In the transmon limit, one finds that the energy spectrum of the Cooper pair box
with Majorana modes is given by a sequence of closely spaced doublets corresponding
to states with different parity. Subsequent doublets are still separated by the plasma
frequency ħhΩ. The n-th doublet has a parity-dependent energy splitting given by

∆n ' EC

�

EC

2EJ

�n/2+3/4

exp
�

−
Æ

8EJ/EC

�

. (1.19)

The expert reader may recognize in the above expression the charge dispersion of a
transmon [37]. In fact, the change in the energy spectrum due to the parity encoded in
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Figure 1.4: The two DC SQUID geometries studied in chapter 2, where we show that,
in the presence of charging energy, the system shown in the left has a 4π-periodic
Josephson energy, while the one on the right has a 2π Josephson-energy due to
quantum phase slips through the Josephson junction without Majorana modes.

the Majorana mode is equivalent to the change determined by increasing or decreasing
by e the induced charge on the capacitor plates.

Eq. (1.19) has two important consequences for our purposes. The first is that the
frequencies of the circuit become parity-dependent, as also shown in the rightmost
panel of Fig. 1.3. For the two lowest transmon states, the difference ħh(Ωeven −Ωodd)
is typically in the range 1 to 100 MHz. Such a frequency shift in a transmon can be
easily detected using microwaves, and the detection allows us to measure the fermion
parity of the Majorana modes. The second consequence is that the parity splitting is
very sensitive to the ratio EJ/EC. This means that using a split junction and varying
the flux Φ by half of a superconducting flux quantum, the energy splitting between
different fermion parity states can be varied by a few orders of magnitude.

This exponential sensitivity gives us a very practical handle to operate on the
quantum state of a collection of Majorana modes, while still keeping them at distances
much larger than the coherence length. This is the main design principle behind our
proposal for a superconducting implementation of topological computation.

1.5 This thesis

Before moving on, we give here an outline of the contents go this thesis. In chapters
two to six, we will develop in detail the theory of Majorana modes in superconducting
circuits and the blueprint for a topological quantum computer which is based on
that theory. Chapter seven reports on the first experimental realization of hybrid
superconducting microwave circuits with semiconducting nanowires1. The remaining
chapters extend the results of the first six chapters in different directions and physical
systems. Chapter eight discusses how to measure and manipulate Majorana modes
in fractional quantum Hall systems, while chapter nine generalizes the Majorana
braiding scheme developed in chapter two to a generic model of non-Abelian anyons.
Finally, chapter ten is a study of superconducting arrays in the presence of electron

1The experiments described in chapter seven were performed in Dr. Leo DiCarlo’s group in Delft. My
contribution consisted in the theoretical analysis and interpretation of the experimental data.
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Figure 1.5: The superconducting circuit introduced in chapter three, able to perform
flux-controlled braiding of Majorana modes. An essential element of the circuit is a
T-junction, such as the InSb nanocross [38] shown in the image on the left (image
courtesy of the Kouwenhoven group, TU Delft).

fractionalization, and chapter eleven a study of the transport properties of a linear
array of superconducting islands with Majorana modes. We now give a brief descrip-
tion of the content of each chapter.

Chapter two. A peculiar signature of Majorana modes is the fact that the Josephson
energy of two superconducting islands containing Majorana modes is a 4π-periodic
function of the superconducting phase difference. If the islands have a small ca-
pacitance, their ground state energy is governed by the competition of Josephson
and charging energies. In this chapter, we calculate this ground state energy in the
ring geometries of Fig. 1.4. We show that the dependence on the Aharonov-Bohm
phase 2eΦ/ħh remains 4π-periodic regardless of the ratio of charging and Josephson
energies — provided that the entire ring is in a topologically nontrivial state. If part
of the ring is topologically trivial, then the charging energy induces quantum phase
slips that restore the usual 2π-periodicity. This chapter elucidates the consequences
of the parity constraint, Eq. (1.16), on the properties of superconducting circuits,
and it provides a preliminary understanding on how one can control the coupling of
Majorana modes using Coulomb interactions.

Chapter three. We show how to braid Majorana modes in a network of super-
conducting nanowires by control over Coulomb interaction. The key idea behind
flux-controlled braiding is to control independently the charging energy of the three
arms of a T-junction using flux bias lines. Hence, the required circuit essentially
consists of three copies of a Cooper pair box connected by a T-junction, see Fig. 1.5.
T-junctions can be realized using InSb nanowires [38], making the proposed circuit ex-
perimentally feasible. Furthermore, as we see further in chapter 6, the flux-controlled
braiding scheme can in fact be adapted to other systems which can support Majorana
modes, such as quantum spin-Hall insulator/superconductor heterostructures. An
advantage of this proposal is that the positions of the Majorana modes do not need
to be changed, and local control gates do not need to be tuned during the braiding
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operation.

Chapter four. Here we build on the results of the previous chapter, expanding the
circuit of Fig. 1.5 to a larger one where the state of the Majoranas can be initialized
and the result of a braiding operation can be measured. We identify the minimal
circuit that can perform the initialization–braiding–measurement steps required to
demonstrate non-Abelian statistics of Majorana modes. We then analyze the scal-
ability of the circuit from a quantum information perspective. To this purpose, we
introduce a quantum register, which we call a Random Access Majorana Memory, that
can perform a joint parity measurement on Majoranas belonging to a selection of
topological qubits. Such multi-qubit measurements allow for the efficient creation of
highly entangled states and simplify quantum error correction protocols by avoiding
the need for ancilla qubits.

Chapter five. A major obstacle towards the experimental demonstration of non-
Abelian statistics in nanowire networks might be constituted by the presence of
disorder in the nanowires. Strong disorder may indeed induce the presence of ac-
cidental Majorana modes at unwanted positions in the nanowire networks. In this
chapter, we show that the Coulomb-assisted braiding protocol of the previous two
chapters can be efficiently realized also in the presence of accidental modes. In
particular, the errors occurring during the braiding cycle are small if the couplings of
the computational Majorana modes to the accidental ones are much weaker than the
maximum Coulomb coupling which is necessary during the braiding operation.

Chapter six. In this chapter, we construct a minimal circuit to rotate a qubit formed
out of four Majorana modes at the edge of a two-dimensional quantum spin-Hall
insulator. This circuit is smaller than the one required for a braiding operation, and
might represent a good intermediate step towards braiding. Indeed, unlike braiding
operations, generic rotations have no topological protection, but they do allow for
a full characterization of the coherence times of the Majorana qubit. The rotation
is controlled by variation of the flux through a pair of split Josephson junctions in a
Cooper pair box, without any need to adjust gate voltages. The Rabi oscillations of
the Majorana qubit can be monitored via oscillations in the resonance frequency of
the microwave cavity that encloses the Cooper pair box.

Chapter seven. We present and analyze measurement on quantum microwave
circuits with hybrid Josephson elements, comprised of semiconducting InAs nanowires
contacted by the highly-disordered superconducting alloy NbTiN. Capacitively-shunted
single elements behave as weakly anharmonic oscillators, or transmons, but with
electrically tunable transition frequencies. Double-element circuits display similar
transmon-like behavior at zero applied flux, while when biased at half the flux quan-
tum they exhibit instead a strongly anharmonic spectrum, similar to that of a flux
qubit. Theoretical analysis of the data explains this behavior via the formation of a
double-well Josephson potential, due to the non-sinusoidal current-phase relation
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Figure 1.6: An illustration of the measurement device proposed in chapter 8 to
measure the presence of the Majorana modes bound to charged quasiparticles in the
ν = 5/2 quantum Hall plateau. Two gates suspended on the quantum Hall liquid
form two small dots, each binding a single quasiparticle. Double occupancy on one
of the two dots comes with an extra energy cost associated with the fusion of two
Majorana modes, and this energy can be detected by a charge sensor (right).

of the nanowire Josephson junctions. Close to half a flux quantum, we observe
microwave-driven transitions between states with oppositely flowing persistent cur-
rents, manifesting macroscopic quantum coherence. The hybrid nanowire transmon
devices presented in this chapter are magnetic-field compatible, hence they represent
a first milestone on the road towards experiments combining superconducting circuits
with Majorana modes.

Chapter eight. In this chapter, we shift our attention to the ν = 5/2 quantum
Hall plateau, whose fractionally charged quasiparticles are predicted to have an extra
non-local degree of freedom, known as topological charge. This extra degree of
freedom can in fact be understood as a Majorana mode bound to the quasiparticle.
We show how this topological charge can block the tunneling of these quasiparticles,
and how such topological blockade can be used to readout their topological charge
(see Fig. 1.6), similarly to a charge readout of singlet-triplet qubits. We argue that the
short time scale required for this measurement is favorable for the detection of the
non-Abelian anyonic statistics of the quasiparticles. We also show how topological
blockade can be used to measure braiding statistics, and to couple a topological qubit
with a conventional one.

Chapter nine. The common approach to topological quantum computation is
to implement quantum gates by adiabatically moving non-Abelian anyons around
each other. However, chapters three and four of this thesis presented an alternative
perspective based on the possibility of realizing the braiding of Majorana modes by
adiabatically varying pairwise interactions between them, rather than their positions.
In this chapter we show that this alternative approach is not specific to Majorana
modes, but it works for generic non-Abelian anyons. We analyze a system composed
by four anyons whose couplings define a T-junction and we show that the braiding
operator of two of them can be obtained through a particular adiabatic cycle in the
space of the coupling parameters. We also discuss how to couple this scheme with
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anyonic chains in order to recover the topological protection.

Chapter ten. It is possible to generalize the notion of Majorana modes to system
with electron fractionalization. So-called parafermionic modes with non-Abelian
statistics may indeed exist at the interface between a superconductor and a ferro-
magnet along the edge of a fractional topological insulator. This chapter studies
two-dimensional architectures of these non-Abelian anyons, whose interactions are
generated by the charging and Josephson energies of the superconductors. We derive
low-energy Hamiltonians for two different arrays of fractional topological insulators
on the plane, revealing an interesting interplay between the real-space geometry of
the system and its topological properties. On the one hand, in a geometry where the
length of the FTI edges is independent on the system size, the array has a topologically
ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory.
On the other hand, in a geometry where the length of the edges scales with system
size, we find an exact duality to an Abelian lattice gauge theory and no topological
order.

Chapter eleven. The last chapter is dedicated to the study of the transport properties
of a linear array of superconducting islands with Majorana modes. In particular, we
investigate the effect of quantum phase slips on the linear response of the array to
an external voltage or temperature gradient. The effective low-energy description
of the wire is that of a Majorana chain minimally coupled to a dynamical Z2 gauge
field. Hence the wire emulates a matter-coupled gauge theory, with fermion parity
playing the role of the gauged global symmetry. Quantum phase slips lift the ground
state degeneracy associated with unpaired Majorana edge modes at the ends of the
chain, a change that can be understood as a transition between the confined and
the Higgs-mechanism regimes of the gauge theory. We identify the quantization of
thermal conductance at the transition as a robust experimental feature separating
the two regimes. We explain this result by establishing a relation between thermal
conductance and the Fredenhagen-Marcu string order-parameter for confinement in
gauge theories.



16 Chapter 1. Introduction


