

Quantum computation with Majorana zero modes in superconducting circuits

Heck, B. van

Citation

Heck, B. van. (2015, May 6). *Quantum computation with Majorana zero modes in superconducting circuits. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/32939

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/32939

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/32939</u> holds various files of this Leiden University dissertation.

Author: Heck, Bernard van Title: Quantum computation with Majorana modes in superconducting circuits Issue Date: 2015-05-06

Quantum computation with Majorana modes in superconducting circuits

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. MR. C.J.J.M. STOLKER, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP WOENSDAG 6 MEI 2015 KLOKKE 15.00 UUR

DOOR

Bernard van Heck

GEBOREN TE ROME, ITALIË IN 1986

Promotiecommissie:

Promotor:	Prof. dr. C. W. J. Beenakker
Co-promotor:	Dr. A. R. Akhmerov (Technische Universiteit Delft)
Overige leden:	Dr. L. DiCarlo (Technische Universiteit Delft)
	Prof. dr. E. R. Eliel
	Prof. dr. F. Hassler (Rheinisch-Westfälische Technische Hochschule Aachen)
	Prof. dr. J. Zaanen

Casimir PhD Series, Delft-Leiden 2015-10 ISBN 978-90-8593-218-5

Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die deel uit maakt van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

On the cover: schematic illustration of a superconducting circuit where Majorana modes can be braided (front) and where the braiding result can be measured (back), see chapter 4.

Alla mia famiglia

Contents

1	Intr	oduction	1
	1.1	Identical particles and Berry's phase	2
	1.2	Non-Abelian statistics of Majorana modes	4
	1.3	Topological quantum computation	7
	1.4	Superconducting circuits with Majorana modes	8
		1.4.1 Cooper pair box in the transmon limit	8
		1.4.2 Flux-controlled Coulomb interaction of Majorana modes	9
	1.5	This thesis	11
2	Cou	Coulomb stability of the 4π -periodic Josephson effect of Majorana modes	
	2.1	Hamiltonian of a DC SQUID with Majorana modes	18
	2.2	DC SQUID with two Majorana junctions	20
	2.3	DC SQUID with a single Majorana junction	21
3	3 Coulomb-assisted braiding of Majorana modes in a Josephson junction		
	arra	у	25
	3.1	Majorana-Coulomb Hamiltonian	26
		3.1.1 Single island	26
		3.1.2 Multiple islands	28
		3.1.3 T-junction	29
	3.2	Majorana braiding	31
	3.3	Discussion	33
	3.A	Derivation of the Majorana-Coulomb Hamiltonian	34
		3.A.1 Single island	34
		3.A.2 Multiple islands	35
	3.B	Calculation of the Berry phase of the braiding operation	36
4	Flux	c-controlled quantum computation with Majorana modes	39
	4.1	Minimal circuit for the demonstration of non-Abelian statistics	41
		4.1.1 Flux-controlled braiding	43
		4.1.2 Initialization and readout	44
	4.2	Random Access Majorana Memory	45

	4.3	Multi-qubit measurements as a source of computational power	47
		4.3.1 Quantum gates	47
		4.3.2 Preparation of 2D cluster states	47
		4.3.3 Efficient quantum error correction	50
	4.4	Discussion	50
	4.A	Theoretical description of the π -shaped circuit	51
		4.A.1 Braiding	53
		4.A.2 Readout	55
	4.B	Measurement through photon transmission	56
	4.C	Low energy Hamiltonian for a Random Access Majorana Memory ar-	
		chitecture	57
		4.C.1 Low-energy Hamiltonian in braiding configuration	59
		4.C.2 Low-energy Hamiltonian in the readout configuration	60
	4.D	Universal gates for quantum computation	61
		4.D.1 Notation	62
		4.D.2 Single-qubit operations	63
		4.D.3 CNOT gate	64
		4.D.4 $\pi/8$ Phase Gate	65
	4.E	Computation of the error thresholds	66
		4.E.1 Realization of the Steane code with the RAMM	69
		4.E.2 Steane's code without multi-qubit measurements	69
		4.E.3 Comparison of the error thresholds for the quantum memory .	70
		4.E.4 Comparison of the error threshold in quantum computation	70
	4.F	Characteristic energy scales of the problem	72
-	ъ£С.	ate of disorder on Coulomb assisted busiding of Maisman modes	
5	Ene	Draiding protocol in the process of disorder	75
	5.1 5.2	Analysis of the braiding protocol errors	70
	5.2	Figure and the braiding protocol errors.	79
		5.2.1 Effects of disorder on initialization and readout	/9
	52		01
	5.5 5 A	Summatry relations for the braiding arrors	04 02
	Ј.Л Е D	Apply triang solutions for the braiding errors	02
	J.D		04
6	Min	imal circuit for a flux-controlled Majorana qubit in a quantum spin-	
	Hall	insulator	87
	6.1	Top-transmon	88
	6.2	Minimal circuit	90
	6.3	Characteristic energy scales	92
	6.4	Discussion	94
	6.A	Energy spectrum of the top-transmon	95
		6.A.1 Full Hamiltonian of the circuit	96
		6.A.2 Hamiltonian in the measurement configuration	97
		6.A.3 Energy spectrum in the measurement configuration	98

7	Real	Realization of microwave quantum circuits using hybrid superconducting-			
	semi	conducting nanowire Josephson elements	101		
	7.1	Description of the experimental setup	102		
	7.2	Spectroscopy of single-junction devices	103		
	7.3	Spectroscopy of a double-junction device	104		
	7.A	Materials and Methods	108		
	7.B	Additional data for Device 2	110		
	7.C	Data extraction from flux-bias spectroscopy	111		
	7.D	Theoretical model and fits for Device 3	111		
	7.E	Estimation of Device 3 parameters from model	115		
8	Торо	ological blockade and measurement of topological charge	117		
	8.1	The model	119		
	8.2	Readout	121		
	8.3	Extensions	123		
		8.3.1 Detection of non-Abelian statistics	123		
		8.3.2 Coupling with conventional qubits	124		
	8.4	Conclusions	124		
9	Brai	ding of non-Abelian anyons using pairwise interactions	127		
	9.1	The T-junction	129		
		9.1.1 Ground state degeneracy	130		
		9.1.2 Projectors	131		
	9.2	The adiabatic cycle	133		
	9.3	Discussion and conclusions	136		
		9.3.1 Restoring scalability and topological protection	136		
		9.3.2 Summary	138		
10	Торо	ological phases in 2D arrays of parafermionic modes	141		
	10.1	Effective Hamiltonian for 2D parafermionic architectures	144		
		10.1.1 Josephson energy	147		
		10.1.2 Charging energy	148		
		10.1.3 Effective Hamiltonian	149		
		10.1.4 Conserved quantities and charge constraints	150		
	10.2	Mapping to 2D quantum clock models	151		
	10.3	Topological phases and orders	154		
		10.3.1 A physical realization of \mathbb{Z}_{2m} toric code anyons: the tile model	156		
		10.3.2 The stripe model and the \mathbb{Z}_{2m} gauge theory	161		
	10.4	Conclusions and Outlook	168		
	10.A	Description of the system through bosonization	169		
	10.B	Collective modes of the stripe model and the Z_{2m} gauge theory	171		

11 Thermal conductance as a probe of the non-local order parameter for a				
topological superconductor with gauge fluctuations	173			
11.1 Quantum phase slips in a Majorana chain	. 175			
11.2 Connection with a Higgs lattice field theory	. 176			
11.3 Numerical study of the linear response of the chain	. 177			
11.4 Conclusions	. 180			
12 Outlook	183			
References	185			
Samenvatting	201			
Summary	203			
Curriculum Vitæ	205			
List of Publications	207			