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Chapter 1

Introduction

When we solve the Schrödinger equation to study the evolution of a quantum system,
the solution takes the form of a vector |Ψ(t)〉 in the Hilbert space. Unlike the more
familiar Euclidean space of classical mechanics, it is hard to gain intuition about the
Hilbert space using our everyday experience of the physical world. Indeed, |Ψ(t)〉 is
usually a very large vector with complex entries, making it difficult to visualize its
trajectory. The vastness of the Hilbert space makes the solution of the Schrödinger
equation computationally very expensive, to the point that a full solution for |Ψ(t)〉
is often out of reach. Rather than being discouraged, we may change point of view
and take this fact as a great opportunity. That is, we can look at the quantum state
as a computational resource, where information can be stored and manipulated by
exploiting features of quantum mechanics such as superposition, entanglement and
interference [1, 2]. Surprisingly, the computational power of quantum mechanics
seems to supersede that of classical physics, making quantum information a promising
field for technological innovation.

However, preparing and controlling at will a quantum state is not an easy task.
First, we need to be able to reliably store a quantum state, protecting it from the
decoherence due to interaction with the environment. Second, we need a quantum
state to follow precisely the trajectory in the Hilbert space corresponding to a desired
algorithm. In principle, both goals can be achieved using quantum error correction
[3, 4], at the cost of an overhead in memory and time requirements. An alternative
approach, topological quantum computation [5, 6], shows that it is possible to imagine
quantum systems which are naturally endowed with a resilience to decoherence and
the possibility to execute algorithms with great accuracy. The topological approach
uses the fact that some two-dimensional condensed matter systems can host a class of
identical particles – called non-Abelian anyons – whose exchange causes a measurable
change in the quantum state of the system. An entire algorithm can then be realized
as a longer sequence of exchanges involving many particles. The algorithm does not
rely on the details of how the exchanges are performed – similar trajectories will
yield identical results – and is thus topological in nature. The quantum information
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is encoded in the quantum state of the identical particles, and in the presence of an
energy gap it stays protected as long as the particles stay far away from each other,
or do not accidentally exchange their positions.

The theory of non-Abelian anyons is rooted in the abstract domains of mathemat-
ical physics and conformal field theory [7–10]. In condensed matter, non-Abelian
anyons appeared first in the theory of the fractional quantum Hall effect [11–13] and
later in that of superconductivity [14]. At present, there has been no clear experimen-
tal detection of non-Abelian statistics. The central theme of this thesis is to translate
this set of beautiful ideas rooted in mathematical physics into a set of concrete devices
where non-Abelian statistics can be demonstrated and used for quantum informa-
tion purposes. The focus will be on the simplest type of particle which is known to
obey non-Abelian statistics: Majorana modes occurring as zero-energy excitations
in superconducting systems. We will see how the necessary manipulations of Ma-
jorana modes can be achieved using simple circuit elements such as capacitors and
Josephson junctions, and thus arrive at a new concrete design for the experimental
implementation of a fault-tolerant quantum computer. The two design principles
behind this proposal are the use of Coulomb interaction as the fundamental physical
mechanism permitting control of Majorana modes, and the use of magnetic fluxes as
experimental knobs to tune these interactions.

In this introductory chapter, we introduce the main concepts necessary to follow
the rest of the thesis. We first review the concept of identical particles in quantum
mechanics by making use of the notion of the Berry phase. Then, we derive the
non-Abelian statistics of Majorana modes and use them as a concrete example to
understand how topological quantum computation works. Finally, we move on to
describe how Majorana modes affect the behavior of superconducting circuits, and
illustrate the fundamental design principles of our proposal for a Coulomb-assisted,
flux controlled topological quantum computation with Majorana modes.

1.1 Identical particles and Berry’s phase

The symmetrization postulate is one of the cornerstones of quantum mechanics [15].
It divides particles into bosons and fermions according to their spin, integer or half-
integer respectively, and states that quantum states of bosons or fermions have to
be symmetric or antisymmetric with respect to the permutation of the positions of
any two particles in the system. The symmetrization postulate is supported by a
large amount of experimental evidence: the periodic table of chemical elements, the
electron Fermi sea in solids and the phenomenon of Bose-Einstein condensation are
among its most direct consequences. Furthermore, it follows directly from the union
of quantum mechanics with special relativity, which yields a connection between spin
and statistics (in fact, the necessary ingredient for such a connection is the existence
of anti-particles [16]).

Nevertheless, and most interestingly, the symmetrization postulate is not the end
of the story [17]. In two spatial dimensions, quantum mechanics is compatible with



1.1 Identical particles and Berry’s phase 3

Figure 1.1: Exchanging identical particles in different dimensions. Top left. In one
dimension, an attempt at exchanging two particles leads unavoidably to a collision.
Hence, quantum statistics of identical particles can not be unambiguously defined.
Right. In three dimensions (or more), the trajectory of a particle enclosing a second
one can always be contracted to a single point. This fact implies that the exchange
phase of the particles is constrained to two possible values only, corresponding to
bosonic and fermionic statistics. Bottom left. In two dimensions, a loop around a
particle cannot be contracted to a single point. Identical particles can therefore exhibit
exotic quantum statistics.

the existence of particles, known as anyons, which do not obey bosonic or fermionic
statistics. In order to see why two dimensions are special, we can consider the closed
trajectory C of a particle around a second, identical particle (Fig. 1.1). This trajectory
is equivalent to a sequence of two position exchanges between the particles, hence it
gives direct insight into their exchange statistics.

The evolution of the system along the loop C is described by a unitary operator
U connecting the initial and final quantum states,

|Ψ(T )〉=U (C , T ) |Ψ(0)〉 . (1.1)

Here, T is time it takes the first particle to complete its trajectory. We consider a
situation in which no “quantum jumps” occur: at all times 0≤ t ≤ T , the quantum
state |Ψ(t)〉 is an instantaneous eigenstate of the Hamiltonian with energy E(t). Under
these conditions, the quantum adiabatic theorem [15] states that as T →∞,

U (C , T ) = exp
�

−i
∫ T

0 E(t)dt
�

exp [iγ(C)] . (1.2)

The first phase factor is the usual dynamical phase factor found in the solution of
the Schrödinger equation. We are more interested in the second phase factor γ(C),
which is known as the Berry phase [18, 19],

γ(C) =

∫ T

0

�

Ψ(t)

�

�

�

�

dΨ(t)
dt

�

dt . (1.3)

Since dt appears both on numerator and denominator in the expression above, the
Berry phase does not depend on T nor on the kinematics of the trajectory, but only
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on the loop C . In general, the Berry phase is the sum of two components. The first
component depends on the geometrical properties of C – for instance, if an external
magnetic field is present, this geometric contribution is the Aharonov-Bohm phase,
which is proportional to the magnetic flux enclosed by the loop, and hence to the
area of the loop. The second component only depends on the topological properties of
C , i.e. on the winding number n, the number of times that the first particle encircles
the second (n = 1 for the paths in Fig. 1.1). Different trajectories which can be
continuously deformed into each other have the same winding number, and hence
are characterized by the same topological contribution to the Berry phase. Its value is
given by 2nθ , where θ specifies the quantum statistics of the two particles and the
factor of two is due to the fact that every loop is equivalent to two exchanges.

As shown in Fig. 1.1, in three dimensions a closed loop C can always be deformed
to a single point, that is to a trajectory where the first particle does not move at
all. Therefore, the topological contribution to the Berry phase vanishes for all loops.
We must in other words require that 2θ = 0 (mod 2π), which yields two possible
exchange phases θ = 0 or θ = π, corresponding to bosonic and fermionic quantum
statistics respectively. In two dimensions, however, the winding number of a loop can
not be changed via a continuous deformation of the loop. Hence, in principle there is
no restriction on the value of θ . Particles which have a value of θ different from 0 or
π are called Abelian anyons.

So far we have implicitly assumed the state |Ψ(t)〉 to be non-degenerate. Let us
now consider the case of a degeneracy D. In this case, the quantum state is specified by
D components |Ψn(t)〉, and the Berry phase factor exp[iγ(C)] appearing in Eq. (1.2)
has to be substituted by a D× D matrix [20],

U(C) = P exp
�

∫ T

0 A(t)dt
�

. (1.4)

Here, P is the path-ordering operator and A is a skew-Hermitian matrix (AT = −A∗)
known as the Berry connection, with matrix elements Anm(t) = 〈Ψm(t)|dΨn(t)/dt〉.
Like its one-dimensional counterpart, the Berry matrix U(C) will have a geometric
component and a topological one. It is therefore possible that the exchange of
two particles results in a non-trivial unitary rotation in the degenerate ground state
manifold. Crucially, Berry matrices corresponding to the exchange of two different
pairs of particles need not commute. Non-Abelian anyons are precisely the class of
identical particles having this property. In the following section, we will clarify this
concept with a concrete and simple example which is central to the whole thesis:
Majorana modes.

1.2 Non-Abelian statistics of Majorana modes

Majorana modes are mid-gap (zero energy) quasiparticles which can appear in super-
conducting systems with broken time-reversal and spin-rotation symmetry [22–24].
Since a clean superconductor does not allow for bulk excitations with energy smaller
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Figure 1.2: Majorana modes (red dots) can appear bound to vortices in superconduct-
ing thin films (left, [14]), or equivalently at domain walls in networks of quantum
wires (right, [21]). In both cases, their positions can be exchanged in space, as de-
picted by the arrows. Because of the non-Abelian statistics of the Majorana modes, the
procedure results in a non-trivial rotation on the quantum state of the superconductor.

than the pairing gap, a Majorana mode can be found either bound to a vortex in a
superconducting film [14, 25] or localized at the end of a superconducting nanowire
[26]. In virtue of particle-hole symmetry of the superconductor and in the absence of
degeneracies, the creation and annihilation operators of a zero energy mode coin-
cide: γ= γ†. Operators corresponding to different modes anti-commute, as normal
fermionic operators, leading to the unusual set of relations

γnγm + γmγn = 2δnm . (1.5)

Note in particular that γ2
n = 1, so that we cannot speak of the Majorana mode being

‘empty’ or ‘occupied’. Out of two Majorana modes, say γ1 and γ2, we can however
construct an ordinary fermionic annihilation operator c = 1

2 (γ1 + iγ2) satisfying
cc† + c†c = 1. Hence, the two Majorana modes can be thought as the real and
imaginary part of a conventional fermion mode. Their peculiarity is that they are well
separated in space. This argument reveals that Majorana modes can only occur in
pairs: if the number of vortices is odd, an additional mode must lie somewhere along
the boundary of the superconductor. It also reveals that the two Majorana modes
form a two-level system, with the two states differing by the presence or absence of a
fermion. As long as the Majorana modes are kept at a distance much longer than the
coherence length, the two levels are degenerate in energy, so that it is not costly to
remove or add a fermion to the system.

Let us now consider a two-dimensional superconductor with 2N vortices hosting
Majorana modes γ1, . . . ,γ2N . We can group the Majorana modes in pairs to form N
fermionic creation operators c1, . . . , cN . These operators span a degenerate manifold
with 2N states |p1 . . . pN 〉 labeled by the occupation numbers pn = 0,1 of the N
fermionic modes. In an isolated superconductor fermion parity is a conserved quantity,
so the manifold is divided in two subspaces containing all the states of even and odd
parity. They are distinguished by the eigenvalue ±1 of the fermion parity operator

P = iN γ1 . . .γ2N , P 2 = 1 . (1.6)

Within the even or odd subspace, which have dimension 2N−1, superpositions of states
are allowed.
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Let us see what happens when two vortices are adiabatically exchanged in space
[27]. We might of course do so by computing the Berry matrix using Eq. (1.4).
However, there is a more direct way which allows to arrive at the result without
much effort. It is convenient to adopt the Heisenberg picture, where the Majorana
operators depend explicitly on time. In particular, the two Majorana modes bound to
the vortices being moved are related to the Berry matrix by the equation

γn,m(T ) = Unm γn,m(0)U
†
nm , (1.7)

up to a phase factor. We have denoted the Berry matrix as Unm since it is natural
to assume that it will only depend on the Majorana modes γn,γm involved in the
exchange. Furthermore, Unm has to preserve fermion parity, [Unm,P ] = 0. This
means that it can only depend on the product γnγm. Finally, unitarity imposes that
the Berry matrix is of the form Unm = exp (αγnγm), with α a real coefficient to be
determined. Direct calculation yields

γn(T ) = cos(2α)γn(0)− sin(2α)γm(0) , (1.8a)

γm(T ) = cos(2α)γm(0) + sin(2α)γn(0) . (1.8b)

We want the two operators to be interchanged by U , leading to the choice α = ±π/4.
The sign of α distinguishes clockwise and counterclockwise exchanges of the vortices,
the precise assignment being arbitrary. The final result is therefore

Unm = exp
�π

4
γnγm

�

. (1.9)

We see that the Berry matrix resulting from the exchange is not simply on overall
phase, but a non-trivial rotation in the ground state manifold. Also, we see that Berry
matrices corresponding to exchanges of different pairs do not commute if the two
pairs share one Majorana, and commute otherwise.

To understand the multiplication properties of these matrices better, let us imagine
that initially all Majoranas are ordered on a line according to their index n. The
exchange between any pair of Majoranas can be generated via a succession of ex-
changes between neighboring Majoranas, hence we may focus on the matrices Un,n+1.
To keep track of all the exchanges, we may imagine that a strand is attached to each
vortex, such that a succession of exchanges forms a braid out of the 2n strands, We see
that to each different braid, we may associate a corresponding unitary operator via a
multiplication of of an appropriate sequence of matrices Un,n+1. It can be checked
that these matrices obey the following relations,

Un,n+1Un+1,n+2Un,n+1 = Un+1,n+2Un,n+1Un+1,n+2. (1.10)

Mathematically, these are precisely the relations obeyed by the generators of the braid
group, which is a generalization of the permutation group to a situation where the
order of the exchanges matter. For this reason, the exchange of two Majorana modes
(or of non-Abelian anyons in general) is usually referred to as braiding.
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1.3 Topological quantum computation

The discussion of the previous section is a good starting point to understand topological
quantum computation more in detail, using Majorana modes as a practical example
of non-Abelian anyons. The main ideas are the following:

1. The ground state manifold of 2N Majorana modes is taken as the computational
space. At a fixed total fermion parity, it forms a register of N − 1 qubits. The
physical degree of freedom which is used to encode the qubits is the fermion
parity of pairs of Majorana modes, sometimes also referred to as their topological
charge.

2. Operations on the register are performed by braiding Majorana modes in space.

3. Initialization and measurement of the register entries are carried out by bringing
two Majorana modes very close to each other, an operation sometimes called
fusion. When this happens, the ground state degeneracy splits, allowing for a
readout of the fermion parity of the two joint Majorana modes.

It is essential that the ground state manifold is protected by an energy gap from the
excited states. This ensures that the adiabatic limit can be reached when operating
on the register, and protects the register from dissipation.

The advantages of this approach are:

1. The quantum gates which can be executed via braiding are extremely accurate
and do not depend on the exact trajectory followed during the exchange. In
this sense, they are extremely resilient to implementation inaccuracies.

2. The quantum state of the register is encoded in the fermion parity degrees of
freedom, which are shared non-locally by the Majorana modes. This means that
no local perturbation can change the state of the register and cause decoherence.
An experimentally relevant exception is a change in fermion parity due to the
tunneling of a stray quasiparticle into the system (quasiparticle poisoning).

A crucial question in topological quantum computation is whether braiding opera-
tions are universal, in the sense that any unitary operation on the register can be
approximated with arbitrary accuracy by a finite sequence of braiding operations.
Unfortunately, this is not the case for Majorana modes. In this case, braiding operation
have to be supplemented by non-topological ones.

So far our discussion has not addressed the problem of how to initialize, braid
and measure Majorana modes in practice. As already mentioned and as discussed in
more detail in the next section, our proposal is to use microwave superconducting
circuits for all these purposes.
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1.4 Superconducting circuits with Majorana modes

In superconducting circuits, macroscopic physical observables such as currents and
voltages exhibit quantum behavior. In fact, superconducting circuits are one of the
most prominent platforms for quantum information processing [28–31]. In this
section we will describe in simple terms how Majorana modes affect the physics of
superconducting circuits. In order to do so, we start by describing the “hydrogen
atom” of superconducting circuits - the Cooper pair box.

1.4.1 Cooper pair box in the transmon limit

A Cooper pair box consists of two superconductors connected by a capacitor and a
Josephson junction, possibly split in two arms, see Fig. 1.3. Cooper pairs can flow
between the two island by quantum tunneling across the Josephson junction. This
motion results in fluctuations in the voltage v(t) and current i(t) between the two
nodes of the circuit. The dynamics of the system can be described in terms of the
integrals of current and voltages, which are the phase and charge difference across
the junction,

φ =
2π
Φ0

∫ t

−∞
v(t ′)dt ′ , N =

1
e

∫ t

−∞
i(t ′)dt ′ . (1.11)

Here, Φ0 = h/2e is the superconducting flux quantum. These two quantities are
canonically conjugate variables, similarly to position and momentum of a particle,

[φ, N] = 2i . (1.12)

The factor of two in the commutation relations is due to the fact that electrons form
Cooper pairs in the superconducting condensate, and hence charge is transferred in
units of 2e across the junction. The Hamiltonian describing the Cooper pair box is

H = ECN2 + EJ(1− cosφ) , (1.13)

with EC = e2/2C the charging energy and EJ the Josephson energy. In the split-
junction geometry, the Josephson energy can be varied by threading a magnetic flux
Φ in the loop formed by the two arms of the junction. Neglecting any asymmetry
between the strengths of the two arms, one has EJ = EJ,0 cos(πΦ/Φ0).

The circuit exhibits quantized energy levels, which are observable provided that
temperature and damping-induced broadening of the levels are both much smaller
than the level spacing. We will be particularly interested in the limit EJ� EC, where
the level spacing is approximately constant,

En ' ħhΩ(n+ 1/2) , (1.14)

where ħhΩ =
p

8EJEC is the plasma frequency, which characterizes current oscillations
across the Josephson junction. Typical values of Ω are in the range 5 to 30 GHz,
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Figure 1.3: Left: A Cooper pair box with a split Josephson junction. When the Joseph-
son energy is much larger than the charging energy, and at very low temperatures, the
energy spectrum is consists of almost equally spaced levels separated by the plasma
frequency Ω'

p

8EJEC. Right: If one of the two islands hosts Majorana modes (red
circles), for instance appearing at the ends of a nanowire (grey), every level splits
into a doublet of levels with different fermion parity [35].

allowing the system to be controlled with microwave radiation, using all the technol-
ogy of RF electronic engineering. A Cooper pair box in this regime and coupled to
a transmission line resonator constitutes a transmon, one of the most common and
successful superconducting qubits.

Importantly, the Cooper pair box Hamiltonian only describes the quantum dy-
namics of the superconducting condensate, neglecting the contribution of unpaired
quasiparticles. In principle, this description is accurate when kB T �∆, the supercon-
ducting gap. Only states of even fermion parity are then relevant to the dynamics of
the circuit, as states with odd parity have all energies greater than∆. In practice, how-
ever, non-equilibrium quasiparticles are often observed in superconducting circuits
even at very low temperatures, and cause random switches in the fermion parity of a
superconducting island. For the sake of conceptual simplicity, and also motivated by
recent progress in the enhancement of the parity lifetime of superconducting circuits
[32–34], in what follows we disregard this complication.

1.4.2 Flux-controlled Coulomb interaction of Majorana modes

If one of the two superconducting islands forming the Cooper pair box hosts two
Majorana modes γ1 and γ2, one quasiparticle can be accommodated with no energy
cost. The situation changes drastically, because now there are now two distinct
superconducting condensates, one with even and one with odd parity. In the limit
EC→ 0, when the phase φ becomes a good quantum number, the even and odd states
are to a good approximation given by a coherent superposition of all the charge states
with the appropriate parity,

|φ, e〉=
∑

n

eiφn |2n〉 , (1.15a)

|φ, o〉=
∑

n

eiφ(n+1/2) |2n+ 1〉 . (1.15b)
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Even and odd states behave differently with respect to a shift of the superconducting
phase by 2π: |φ + 2π, e/o〉 = ±|φ, e/o〉. In other words, even and odd states are
respectively periodic and anti-periodic under a shift of φ by 2π. This boundary
condition imposes a constraint between the Majorana operators and the number
operator [36],

iγ1γ2 = (−1)N . (1.16)

The expression above is the mathematical statement corresponding to the fact that
the fermion parity of a superconductor with Majorana modes is equal to the total
charge contained in the superconductor, modulo 2e. Eq. (1.16) is a gauge constraint
on the Hilbert space of the Cooper pair box with Majorana modes. It has to be taken
into account when solving the Cooper pair box Hamiltonian (1.13). A way to do so is
to make a unitary transformation |Ψ〉 7→ R|Ψ〉, with

R= exp[i(1− iγ1γ2)φ/4] . (1.17)

This transformation acts trivially on the even states, but makes the odd states periodic
under a shift of φ by 2π. The Hamiltonian becomes (recall that N = −2i∂φ)

RHR† = EC[N + (1− iγ1γ2)/2]
2 + EJ(1− cosφ) . (1.18)

We see that the Majorana modes now appear explicitly in the charging energy term.
At the same time, since the new Hamiltonian acts on a space of 2π-periodic functions,
the eigenvalues of N are restricted to the even numbers,. Note that the argument
would apply equally to the case of a superconductor having more than two Majorana
modes - in this case, the product iNγ1 . . .γ2N would appear in the Hamiltonian instead
of iγ1γ2.

One might at first be surprised that Majorana modes are related to the charge in
the superconductor, since they are usually presented as neutral objects. The neutrality
of the Majorana modes is due to the presence of a superconducting condensate,
which “absorbs” the charge corresponding to the fermion parity encoded in a pair
of Majorana modes. In a grounded superconductor it is possible to forget about the
charge degrees of freedom by fixing the phase φ of the superconductor, so that the
boundary condition becomes irrelevant. However, in a floating superconductor this is
no longer possible, and the relation between fermion parity and electric charge has
to be restored explicitly.

In the transmon limit, one finds that the energy spectrum of the Cooper pair box
with Majorana modes is given by a sequence of closely spaced doublets corresponding
to states with different parity. Subsequent doublets are still separated by the plasma
frequency ħhΩ. The n-th doublet has a parity-dependent energy splitting given by

∆n ' EC

�

EC

2EJ

�n/2+3/4

exp
�

−
Æ

8EJ/EC

�

. (1.19)

The expert reader may recognize in the above expression the charge dispersion of a
transmon [37]. In fact, the change in the energy spectrum due to the parity encoded in
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Figure 1.4: The two DC SQUID geometries studied in chapter 2, where we show that,
in the presence of charging energy, the system shown in the left has a 4π-periodic
Josephson energy, while the one on the right has a 2π Josephson-energy due to
quantum phase slips through the Josephson junction without Majorana modes.

the Majorana mode is equivalent to the change determined by increasing or decreasing
by e the induced charge on the capacitor plates.

Eq. (1.19) has two important consequences for our purposes. The first is that the
frequencies of the circuit become parity-dependent, as also shown in the rightmost
panel of Fig. 1.3. For the two lowest transmon states, the difference ħh(Ωeven −Ωodd)
is typically in the range 1 to 100 MHz. Such a frequency shift in a transmon can be
easily detected using microwaves, and the detection allows us to measure the fermion
parity of the Majorana modes. The second consequence is that the parity splitting is
very sensitive to the ratio EJ/EC. This means that using a split junction and varying
the flux Φ by half of a superconducting flux quantum, the energy splitting between
different fermion parity states can be varied by a few orders of magnitude.

This exponential sensitivity gives us a very practical handle to operate on the
quantum state of a collection of Majorana modes, while still keeping them at distances
much larger than the coherence length. This is the main design principle behind our
proposal for a superconducting implementation of topological computation.

1.5 This thesis

Before moving on, we give here an outline of the contents go this thesis. In chapters
two to six, we will develop in detail the theory of Majorana modes in superconducting
circuits and the blueprint for a topological quantum computer which is based on
that theory. Chapter seven reports on the first experimental realization of hybrid
superconducting microwave circuits with semiconducting nanowires1. The remaining
chapters extend the results of the first six chapters in different directions and physical
systems. Chapter eight discusses how to measure and manipulate Majorana modes
in fractional quantum Hall systems, while chapter nine generalizes the Majorana
braiding scheme developed in chapter two to a generic model of non-Abelian anyons.
Finally, chapter ten is a study of superconducting arrays in the presence of electron

1The experiments described in chapter seven were performed in Dr. Leo DiCarlo’s group in Delft. My
contribution consisted in the theoretical analysis and interpretation of the experimental data.
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Figure 1.5: The superconducting circuit introduced in chapter three, able to perform
flux-controlled braiding of Majorana modes. An essential element of the circuit is a
T-junction, such as the InSb nanocross [38] shown in the image on the left (image
courtesy of the Kouwenhoven group, TU Delft).

fractionalization, and chapter eleven a study of the transport properties of a linear
array of superconducting islands with Majorana modes. We now give a brief descrip-
tion of the content of each chapter.

Chapter two. A peculiar signature of Majorana modes is the fact that the Josephson
energy of two superconducting islands containing Majorana modes is a 4π-periodic
function of the superconducting phase difference. If the islands have a small ca-
pacitance, their ground state energy is governed by the competition of Josephson
and charging energies. In this chapter, we calculate this ground state energy in the
ring geometries of Fig. 1.4. We show that the dependence on the Aharonov-Bohm
phase 2eΦ/ħh remains 4π-periodic regardless of the ratio of charging and Josephson
energies — provided that the entire ring is in a topologically nontrivial state. If part
of the ring is topologically trivial, then the charging energy induces quantum phase
slips that restore the usual 2π-periodicity. This chapter elucidates the consequences
of the parity constraint, Eq. (1.16), on the properties of superconducting circuits,
and it provides a preliminary understanding on how one can control the coupling of
Majorana modes using Coulomb interactions.

Chapter three. We show how to braid Majorana modes in a network of super-
conducting nanowires by control over Coulomb interaction. The key idea behind
flux-controlled braiding is to control independently the charging energy of the three
arms of a T-junction using flux bias lines. Hence, the required circuit essentially
consists of three copies of a Cooper pair box connected by a T-junction, see Fig. 1.5.
T-junctions can be realized using InSb nanowires [38], making the proposed circuit ex-
perimentally feasible. Furthermore, as we see further in chapter 6, the flux-controlled
braiding scheme can in fact be adapted to other systems which can support Majorana
modes, such as quantum spin-Hall insulator/superconductor heterostructures. An
advantage of this proposal is that the positions of the Majorana modes do not need
to be changed, and local control gates do not need to be tuned during the braiding
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operation.

Chapter four. Here we build on the results of the previous chapter, expanding the
circuit of Fig. 1.5 to a larger one where the state of the Majoranas can be initialized
and the result of a braiding operation can be measured. We identify the minimal
circuit that can perform the initialization–braiding–measurement steps required to
demonstrate non-Abelian statistics of Majorana modes. We then analyze the scal-
ability of the circuit from a quantum information perspective. To this purpose, we
introduce a quantum register, which we call a Random Access Majorana Memory, that
can perform a joint parity measurement on Majoranas belonging to a selection of
topological qubits. Such multi-qubit measurements allow for the efficient creation of
highly entangled states and simplify quantum error correction protocols by avoiding
the need for ancilla qubits.

Chapter five. A major obstacle towards the experimental demonstration of non-
Abelian statistics in nanowire networks might be constituted by the presence of
disorder in the nanowires. Strong disorder may indeed induce the presence of ac-
cidental Majorana modes at unwanted positions in the nanowire networks. In this
chapter, we show that the Coulomb-assisted braiding protocol of the previous two
chapters can be efficiently realized also in the presence of accidental modes. In
particular, the errors occurring during the braiding cycle are small if the couplings of
the computational Majorana modes to the accidental ones are much weaker than the
maximum Coulomb coupling which is necessary during the braiding operation.

Chapter six. In this chapter, we construct a minimal circuit to rotate a qubit formed
out of four Majorana modes at the edge of a two-dimensional quantum spin-Hall
insulator. This circuit is smaller than the one required for a braiding operation, and
might represent a good intermediate step towards braiding. Indeed, unlike braiding
operations, generic rotations have no topological protection, but they do allow for
a full characterization of the coherence times of the Majorana qubit. The rotation
is controlled by variation of the flux through a pair of split Josephson junctions in a
Cooper pair box, without any need to adjust gate voltages. The Rabi oscillations of
the Majorana qubit can be monitored via oscillations in the resonance frequency of
the microwave cavity that encloses the Cooper pair box.

Chapter seven. We present and analyze measurement on quantum microwave
circuits with hybrid Josephson elements, comprised of semiconducting InAs nanowires
contacted by the highly-disordered superconducting alloy NbTiN. Capacitively-shunted
single elements behave as weakly anharmonic oscillators, or transmons, but with
electrically tunable transition frequencies. Double-element circuits display similar
transmon-like behavior at zero applied flux, while when biased at half the flux quan-
tum they exhibit instead a strongly anharmonic spectrum, similar to that of a flux
qubit. Theoretical analysis of the data explains this behavior via the formation of a
double-well Josephson potential, due to the non-sinusoidal current-phase relation
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Figure 1.6: An illustration of the measurement device proposed in chapter 8 to
measure the presence of the Majorana modes bound to charged quasiparticles in the
ν = 5/2 quantum Hall plateau. Two gates suspended on the quantum Hall liquid
form two small dots, each binding a single quasiparticle. Double occupancy on one
of the two dots comes with an extra energy cost associated with the fusion of two
Majorana modes, and this energy can be detected by a charge sensor (right).

of the nanowire Josephson junctions. Close to half a flux quantum, we observe
microwave-driven transitions between states with oppositely flowing persistent cur-
rents, manifesting macroscopic quantum coherence. The hybrid nanowire transmon
devices presented in this chapter are magnetic-field compatible, hence they represent
a first milestone on the road towards experiments combining superconducting circuits
with Majorana modes.

Chapter eight. In this chapter, we shift our attention to the ν = 5/2 quantum
Hall plateau, whose fractionally charged quasiparticles are predicted to have an extra
non-local degree of freedom, known as topological charge. This extra degree of
freedom can in fact be understood as a Majorana mode bound to the quasiparticle.
We show how this topological charge can block the tunneling of these quasiparticles,
and how such topological blockade can be used to readout their topological charge
(see Fig. 1.6), similarly to a charge readout of singlet-triplet qubits. We argue that the
short time scale required for this measurement is favorable for the detection of the
non-Abelian anyonic statistics of the quasiparticles. We also show how topological
blockade can be used to measure braiding statistics, and to couple a topological qubit
with a conventional one.

Chapter nine. The common approach to topological quantum computation is
to implement quantum gates by adiabatically moving non-Abelian anyons around
each other. However, chapters three and four of this thesis presented an alternative
perspective based on the possibility of realizing the braiding of Majorana modes by
adiabatically varying pairwise interactions between them, rather than their positions.
In this chapter we show that this alternative approach is not specific to Majorana
modes, but it works for generic non-Abelian anyons. We analyze a system composed
by four anyons whose couplings define a T-junction and we show that the braiding
operator of two of them can be obtained through a particular adiabatic cycle in the
space of the coupling parameters. We also discuss how to couple this scheme with
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anyonic chains in order to recover the topological protection.

Chapter ten. It is possible to generalize the notion of Majorana modes to system
with electron fractionalization. So-called parafermionic modes with non-Abelian
statistics may indeed exist at the interface between a superconductor and a ferro-
magnet along the edge of a fractional topological insulator. This chapter studies
two-dimensional architectures of these non-Abelian anyons, whose interactions are
generated by the charging and Josephson energies of the superconductors. We derive
low-energy Hamiltonians for two different arrays of fractional topological insulators
on the plane, revealing an interesting interplay between the real-space geometry of
the system and its topological properties. On the one hand, in a geometry where the
length of the FTI edges is independent on the system size, the array has a topologically
ordered phase, giving rise to a qudit toric code Hamiltonian in perturbation theory.
On the other hand, in a geometry where the length of the edges scales with system
size, we find an exact duality to an Abelian lattice gauge theory and no topological
order.

Chapter eleven. The last chapter is dedicated to the study of the transport properties
of a linear array of superconducting islands with Majorana modes. In particular, we
investigate the effect of quantum phase slips on the linear response of the array to
an external voltage or temperature gradient. The effective low-energy description
of the wire is that of a Majorana chain minimally coupled to a dynamical Z2 gauge
field. Hence the wire emulates a matter-coupled gauge theory, with fermion parity
playing the role of the gauged global symmetry. Quantum phase slips lift the ground
state degeneracy associated with unpaired Majorana edge modes at the ends of the
chain, a change that can be understood as a transition between the confined and
the Higgs-mechanism regimes of the gauge theory. We identify the quantization of
thermal conductance at the transition as a robust experimental feature separating
the two regimes. We explain this result by establishing a relation between thermal
conductance and the Fredenhagen-Marcu string order-parameter for confinement in
gauge theories.
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Chapter 2

Coulomb stability of the
4π-periodic Josephson effect of
Majorana modes

The energy HJ of a tunnel junction between two superconductors (a Josephson junc-
tion) depends on the differenceφ of the phase of the order parameter on the two sides
of the junction. The derivative IJ = (2e/ħh)dHJ/dφ gives the supercurrent flowing
through the junction in the absence of an applied voltage. In a ring geometry, the
supercurrent depends periodically on the flux Φ enclosed by the ring, with periodicity
h/2e. This familiar DC Josephson effect [39, 40] acquires a new twist if the junction
contains Majorana modes [26, 41, 42].

Majorana modes are charge-neutral quasiparticles bound to mid-gap states, at zero
excitation energy, which appear in a so-called topologically non-trivial superconductor
[43, 44]. While in the conventional Josephson effect only Cooper pairs can tunnel
(with probability τ� 1), Majorana modes enable the tunneling of single electrons
(with a larger probability

p
τ). The switch from 2e to e as the unit of transferred charge

amounts to a doubling of the fundamental periodicity of the Josephson energy, from
HJ ∝ cosφ to HJ ∝ cos(φ/2). In a ring geometry, the period of the flux dependence
of the supercurrent IJ doubles from 2π to 4π as a function of the Aharonov-Bohm
phase1 ϕ0 = 2eΦ/ħh. This 4π-periodic Josephson effect has been extensively studied
theoretically [42, 45–50], as a way to detect the (so far, elusive) Majorana modes
[51].

Since the Majorana modes in a typical experiment will be confined to supercon-
ducting islands of small capacitance C , the Coulomb energy HC =Q2/2C associated
with a charge difference 2Q across the junction competes with the Josephson energy.

1As a function of the enclosed flux, IJ has the same h/e periodicity as the persistent current IN through
a normal metal ring (radius R). One can distinguish the two currents by their size dependence: While IN
decays as 1/R or faster, IJ has the R-independence of a supercurrent.
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Figure 2.1: Geometry of a DC SQUID, consisting of a superconducting ring (grey)
interrupted by two tunnel junctions (black) and threaded by a magnetic flux Φ. A
semiconductor nanowire (yellow) contains Majorana modes at the end points (red
dots). The two panels distinguish the cases that Majorana modes are present at both
junctions (top), or only at a single junction (bottom). The 4π-periodic Josephson
effect is stable against quantum phase slips in the first case, but not in the second
case.

The commutator [φ,Q] = 2ei implies an uncertainty relation between charge and
phase differences, so that a nonzero HC introduces quantum fluctuations of φ in the
ground state [40]. What is the fate of the 4π-periodic Josephson effect?

As we will show in this chapter, the supercurrent through the ring remains a
4π-periodic function of ϕ0, regardless of the relative magnitude of HC and HJ . This
Coulomb stability requires that all weak links in the ring contain Majorana modes.
If the ring has a topologically trivial segment, then quantum phase slips restore the
conventional 2π-periodicity of the Josephson effect on sufficiently long time scales.
We calculate the limiting time scale for the destruction of the 4π-periodic Josephson
effect by quantum phase slips and find that it can be much shorter than the competing
time scale for the destruction of the 4π-periodicity by quasiparticle poisoning [42].

2.1 Hamiltonian of a DC SQUID with Majorana modes

We apply the general theory of Majorana-Josephson junction arrays of Xu and Fu
[52] to the DC SQUID geometry of Fig. 2.1, consisting of two superconducting islands
separated by tunnel junctions. The islands have a charge difference 2Q = Q1 −Q2,
with Qn = −2ei∂ /∂ φn canonically conjugate to the superconducting phase φn. The
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gauge invariant phase differences across the two junctions are given by φ = φ1 −φ2
and ϕ0−φ. Here we assume that the ring is sufficiently small that the flux generated
by the supercurrent can be neglected, so the enclosed flux equals the externally
applied flux2.

Each island contains a segment of a semiconductor nanowire, driven into a topolog-
ically nontrivial superconducting state by the proximity effect [45, 46] (alternatively,
the nanowire could be replaced by the conducting edge of a two-dimensional topo-
logical insulator [42]). The Majorana modes appearing at the end points of each
segment are represented by anti-commuting Hermitian operators γ1,γ2,γ3,γ4 that
square to unity,

γn = γ
†
n, γnγm + γmγn = 2δnm. (2.1)

The Majorana modes are coupled by the tunnel junction. We distinguish two cases.
In the first case (top panel in Fig. 2.1) each of the two tunnel junctions couples a pair
of Majorana modes. In the second case (bottom panel) one pair of Majorana modes
is coupled by a Josephson junction, while the other pair remains isolated.

The Hamiltonian H = HC + HJ ,1 + HJ ,2 is the sum of charging and Josephson
energies,

HC =
1

2C
(Q+ qind)

2, (2.2)

HJ ,1 = EM ,1Γ1 cos
φ

2
− EJ ,1 cosφ, (2.3)

HJ ,2 = EM ,2Γ2 cos
ϕ0 −φ

2
− EJ ,2 cos(ϕ0 −φ), (2.4)

Γ1 = iγ2γ3, Γ2 = iγ4γ1. (2.5)

The induced charge qind = Cg Vg accounts for charges on nearby electrodes, controlled
by a gate capacitance Cg and gate voltage Vg . The energy scales EM ,n and EJ ,n quantify
the Josephson coupling strength of, respectively, single electrons and electron pairs.
With this Hamiltonian we can describe both cases considered, by putting EM ,2 = 0 for
the junction without Majorana modes.

The eigenstates Ψ(φ1,φ2) of H should satisfy the fermion parity constraint [36]

Ψ(φ1 + 2πn,φ2 + 2πm) = (−1)nq1(−1)mq2Ψ(φ1,φ2), (2.6)

qn =
1
2 (1− pn), p1 = iγ1γ2, p2 = iγ3γ4. (2.7)

The operators qn and pn have, respectively, eigenvalues 0,1 and ±1, depending on
whether island n contains an even or an odd number of electrons. The constraint
(2.6) enforces that the eigenvalues of Qn are even multiples of e for qn = 0, pn = 1
and odd multiples of e for qn = 1, pn = −1.

2The flux induced by the supercurrent IJ due to the nonzero inductance L ' µ0R of the ring may be
neglected relative to the applied flux if LIJ � ħh/e. The magnitude of the supercurrent can be estimated by
ħhIJ/e 'min(EJ , E2

J /EC )≡ Ec . For Ec ' 1meV the induced flux can be neglected if R� 1cm.
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It is possible to solve the eigenvalue problem HΨ = EΨ subject to the constraint
(2.6), along the lines of Ref. [52], but alternatively one can work in an unrestricted
Hilbert space. The restriction is removed by the unitary transformation

Ψ = U1U2Ψ̃, Un = exp(iqnφn/2). (2.8)

The function Ψ̃(φ1,φ2) is 2π-periodic in each of its arguments, so the constraint (2.6)
is automatically satisfied. Now the eigenvalues of Qn are all even multiples of e. The
transformed Hamiltonian H̃ = (U1U2)†HU1U2 becomes

H̃ =
1

2C

�

Q+
eq1 − eq2

2
+ qind

�2

+ 1
2

�

e−iq1φ1
�

EM ,1Γ1 + EM ,2Γ2eiϕ0/2
�

eiq2φ2 +H.c.
�

− EJ ,1 cosφ − EJ ,2 cos(ϕ0 −φ), (2.9)

where we have used the identity

U†
nΓmeiφn/2 = ΓmUn. (2.10)

Notice that the Hamiltonian has become 2π-periodic in the superconducting phases
φ1,φ2, while remaining 4π-periodic in the flux ϕ0. Notice also that H̃ may depend
on the φn’s separately, not just on their difference. This does not violate charge
conservation, because the conjugate variables Qn now count only the number of
Cooper pairs on each island — not the total number of electrons.

The four Majorana modes encode a qubit degree of freedom [6]. The states of
the qubit are distinguished by the parity of the number of electrons on each island.
If the total number of electrons in the system is even (P = 1), the qubit states are
|11〉 and |00〉, while for an odd total number of electrons (P = −1) the states are
|10〉 and |01〉. In this qubit basis, the products of Majorana operators appearing in
the Hamiltonian (2.9) are represented by Pauli matrices,

q1 =
1
2 +

1
2σz , q2 =

1
2 +

1
2P σz , Γ1 = −σx , Γ2 =P σx . (2.11)

It is straightforward to calculate the eigenvalues of H̃, by evaluating its matrix
elements in the basis of eigenstates of Q. The spectrum EPn (ϕ0, qind) as a function of
the enclosed flux and the induced charge has two branches distinguished by the total
fermion parity P = ±1, with

E+n (ϕ0, qind) = E−n (ϕ0 + 2π, qind + e/2). (2.12)

2.2 DC SQUID with two Majorana junctions

We first consider the case that both junctions contain Majorana modes (top panel
in Fig. 2.1). A fully analytical calculation is possible in the limit that the charging
energy dominates over the Josephson energy (EC ≡ e2/2C � EM ,n, EJ ,n). Only the
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Figure 2.2: Spectrum of the DC SQUID in the top panel of Fig. 2.1, containing Majorana
modes at both Josephson junctions. The curves are the result (2.13), in the limit that
the charging energy dominates over the Josephson energy. The parameters chosen
are EM ,1 = EM ,2 = δ. The level crossing is between states of different fermion parity
P , and therefore there can be no tunnel splitting due to the Coulomb interaction
(which conserves P ).

two eigenstates of Q with lowest charging energy Ē ± 1
2δ are needed in this limit and

2e tunnel processes may be neglected relative to e tunnel processes (so we may set
EJ ,n = 0). We thus obtain the simple expression

EP± = Ē ± 1
2

�

δ2 + E2
M ,1 + E2

M ,2 + 2P EM ,1EM ,2 cos
ϕ0

2

�1/2

. (2.13)

The resulting 4π-periodic spectrum is shown in Fig. 2.2.
The crossing of the two branches E+− and E−− at ϕ0 = π is protected, regardless

of the value of EC , because the charging energy cannot couple states of different P .
Quasiparticle poisoning (the injection of unpaired electrons) switches the fermion
parity on a time scale Tp, which means that the 4π-periodicity of the energy of the
ring can be observed if the enclosed flux is increased by a flux quantum in a time
TΦ� Tp.

2.3 DC SQUID with a single Majorana junction

We now turn to the case that one of the two Josephson junctions does not contain
Majorana modes (lower panel in Fig. 2.1). By putting EM ,2 = 0 the Hamiltonian
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Figure 2.3: Spectrum of the DC SQUID in the bottom panel of Fig. 2.1, containing
Majorana modes at only one of the two Josephson junctions. The curves are a
numerical calculation for the full Hamiltonian, in the regime that the Josephson
energy of the trivial junction is the largest energy scale. The parameters chosen are
EJ ,2 = 4EC = 10EM ,1, EM ,2 = 0= EJ ,1, and qind = 0. In contrast to Fig. 2.2, a tunnel
splitting ∆ appears because the level crossing is between states of the same fermion
parity.

becomes 2π-periodic in ϕ0. In Fig. 2.3 we show the spectrum for a relatively large
Josephson energy of the trivial junction. The phaseφ is then a nearly classical variable,
which in the ground state is close to ϕ0 (mod 2π). The charging energy opens a gap
in the spectrum near ϕ0 = π (mod 2π), by inducing tunnel processes from φ = ϕ0 to
φ = ϕ0±2π (quantum phase slips). A tunnel splitting by the P -conserving charging
energy is now allowed because the level crossing is between states of the same P .

A semiclassical calculation of the tunnel splitting due to quantum phase slips at
the trivial Josephson junction, along the lines of Ref. [37], gives for EJ ≡ EJ ,2� EC �
EM ,1 ≡ EM the spectrum

EP± = −EJ +
p

2EC EJ ±
q

E2
M cos2(ϕ0/2) +∆2, (2.14)

∆= 16
�

EC E3
J /2π

2
�1/4

exp
�

−
Æ

8EJ/EC

�

×

×

√

√

√

cos2(πq′ind/e) +
π2E2

M

8EC EJ
sin2(πq′ind/e), (2.15)

where we have abbreviated q′ind = qind + (e/4)(1−P ). The second term on the right-
hand-side of Eq. (2.14) describes the effect of zero-point fluctuations of φ around the
values ϕ0 and ϕ0 ± 2π. Tunnel processes φ = ϕ0 7→ ϕ0 + 2π and φ = ϕ0 7→ ϕ0 − 2π
produce the third term. The sine and cosine factors in Eq. (2.15) accounts for
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Figure 2.4: Tunnel splitting at ϕ0 = π as a function of the induced charge. The
dashed curve correspond to Eq. (2.15), the solid curve to numerical calculations for
the full Hamiltonian, for EJ ,2 = 5 EC = 25 EM ,1 (with EM ,2 = 0= EJ ,1).

interference between these two quantum phase slip processes (Aharonov-Casher
effect) [35, 53–56] .The numerical calculation in Fig. 2.4 agrees quite well with the
semiclassical approximation (2.15).

The tunnel splitting ∆ ensures that the energy of the ring evolves 2π-periodically
if the flux Φ is increased by a flux quantum h/2e in a time TΦ which is long compared
to T∆ = ħhEM ,1/∆

2. For TΦ ® T∆ there is a significant probability exp(−TΦ/T∆) for a
Landau-Zener transition through the gap, resulting in a 4π-periodic evolution of the
energy.

This limiting time scale T∆ originating from quantum phase slips can be compared
with the time scale Tp for quasiparticle poisoning. We require TΦ small compared to
both T∆ and Tp to observe the 4π-periodic Josephson effect. For ∆> (ħhEM ,1/Tp)1/2

one has T∆ < Tp, so quantum phase slips govern. A recent experiment finds Tp ' 2 ms
in Al for temperatures below 160 mK [57]. Since EM ,1 will be well below 1 meV, one
has T∆ < Tp if quantum phase slips occur with a rate∆/ħh higher than 30 MHz. While
quantum phase slip rates can vary over many orders of magnitude due to the exponent
in Eq. (2.15), typical values for a DC SQUID are in the GHz range.

In conclusion, we have shown that Coulomb charging effects do not spoil the
4π-periodic Josephson effect in a superconducting ring, provided that all weak links
contain Majorana modes. Quantum phase slips at a weak link without Majorana
modes restore the 2π-periodicity on time scales long compared to a time T∆, which
may well be shorter than the time scale for quasiparticle poisoning.

The origin of the protection of the 4π periodicity if the entire ring is topologically
nontrivial is conservation of fermion parity [42] (See Ref. [58] for a more general
perspective.) This protection breaks down if part of the ring is a trivial superconductor,
because then the level crossing involves states of the same fermion parity and tunnel
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splitting by the charging energy is allowed (see Fig. 2.3).
We note in closing that the different stability of the 4π-periodic Josephson effect

in the two geometries of Fig. 2.1, examined here with respect to Coulomb charging,
extends to other parity-preserving perturbations of the Hamiltonian. For example,
overlap of the wave functions of two Majorana bound states on the same island
introduces a term Hoverlap = iεγ1γ2. For the lower panel of Fig. 2.1, this term leads to
a tunnel splitting ∆= 2ε which spoils the 4π-periodicity [26]. For the upper panel
of Fig. 2.1, ∆≡ 0 because Hoverlap preserves fermion parity.



Chapter 3

Coulomb-assisted braiding of
Majorana modes in a Josephson
junction array

Non-Abelian anyons have a topological charge that provides a nonlocal encoding of
quantum information [6]. In superconducting implementations [45, 46] the topo-
logical charge equals the electrical charge modulo 2e, shared non-locally by a pair
of mid-gap states called Majorana modes [26]. This mundane identification of topo-
logical and electrical charge by no means diminishes the relevance for quantum
computation. To the contrary, it provides a powerful way to manipulate the topologi-
cal charge through the well-established sub-e charge sensitivity of superconducting
electronics [28, 59].

Following this line of thought, a hybrid device called a top-transmon was recently
proposed, which combines the adjustable charge sensitivity of a superconducting
charge qubit (the transmon [37, 60]) to read out and rotate a topological (top) qubit
[61]. A universal quantum computer with highly favorable error threshold can be
constructed [62] if these operations are supplemented by the braiding of Majorana
modes, which is a non-Abelian operation on the degenerate ground state [14, 27].

Here we show how Majorana modes can be braided by means of charge-sensitive
superconducting electronics. (Braiding was not implemented in Ref. [61] nor in
other studies of hybrid topological/non-topological superconducting qubits [35, 63–
66].) We exploit the fact that the charge-sensitivity can be switched on and off
with exponential accuracy by varying the magnetic flux through a split Josephson
junction [60]. This provides a macroscopic handle on the Coulomb interaction of
pairs of Majorana modes, which makes it possible to transport and exchange them in
a Josephson junction array.

We compare and contrast our approach with that of Sau, Clarke, and Tewari, who
showed (building on the work of Alicea et al. [21]) how non-Abelian braiding statistics
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could be generated by switching on and off the tunnel coupling of adjacent pairs of
Majorana modes [67]. The tunnel coupling is controlled by a gate voltage, while we
rely on Coulomb interaction controlled by a magnetic flux. This becomes an essential
difference when electric fields are screened too strongly by the superconductor to be
effective. (For an alternative non-electrical approach to braiding, see Ref. [68].)

The basic procedure can be explained quite simply, see Sec. 3.2, after the mecha-
nism of the Coulomb coupling is presented in Sec. 3.1. We make use of two more
involved pieces of theoretical analysis, one is the derivation of the low-energy Hamil-
tonian of the Coulomb coupled Majorana modes (using results from Refs. [36, 69]),
and the other is the calculation of the non-Abelian Berry phase [20] of the exchange
operation. To streamline the chapter the details of these two calculations are given in
Appendices.

3.1 Majorana-Coulomb Hamiltonian

3.1.1 Single island

The basic building block of the Josephson junction array is the Cooper pair box [70],
see Fig. 3.1, consisting of a superconducting island (capacitance C) connected to a
bulk (grounded) superconductor by a split Josephson junction enclosing a magnetic
flux Φ. The Josephson energy EJ is a periodic function of Φ with period Φ0 = h/2e. If
the two arms of the split junction are balanced, each with the same coupling energy
E0, the Josephson energy

EJ = 2E0 cos(πΦ/Φ0) (3.1)

varies between 0 and 2E0 > 0 as a function of |Φ|< Φ0/2.
When the island contains no Majorana modes, its Hamiltonian has the usual form

[40]

H =
1

2C
(Q+ qind)

2 − EJ cosφ, (3.2)

in terms of the canonically conjugate phase φ and charge Q = −2ei d/dφ of the
island. The offset qind accounts for charges on nearby gate electrodes. We have chosen
a gauge such that the phase of the pair potential is zero on the bulk superconductor.

A segment of a semiconductor nanowire (typically InAs) on the superconducting
island can have Majorana mid-gap states bound to the end points [45, 46]. For N
segments there can be 2N Majorana modes on the island. They have identical creation
and annihilation operators γn = γ†

n satisfying

γnγm + γmγn = 2δnm. (3.3)

The topological charge of the island equals the fermion parity

P = iN
2N
∏

n=1

γn. (3.4)
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Figure 3.1: Cooper pair box, consisting of a superconducting island (brown) con-
nected to a bulk superconductor by a split Josephson junction (black, with the gauge-
variant phase differences indicated). The island contains Majorana modes (yellow)
at the end points of a nanowire (grey). These are coupled by the Coulomb charging
energy, tunable via the flux Φ through the Josephson junction.

The eigenvalues of P are ±1, depending on whether there is an even or an odd
number of electrons on the island.

The Majorana operators do not enter explicitly in H, but affect the spectrum
through a constraint on the eigenstates [36],

Ψ(φ + 2π) = (−1)(1−P )/2Ψ(φ). (3.5)

This ensures that the eigenvalues of Q are even multiples of e for P = 1 and odd
multiples for P = −1. Since P contains the product of all the Majorana operators on
the island, the constraint (3.5) effectively couples distant Majorana modes — without
requiring any overlap of wave functions.

We operate the Cooper pair box in the regime that the Josephson energy EJ is
large compared to the single-electron charging energy EC = e2/2C . The phase φ
(modulo 2π) then has small zero-point fluctuations around the value φmin = 0 which
minimizes the energy of the Josephson junction, with occasional 2π quantum phase
slips.

In Appendix 3.A we derive the effective low-energy Hamiltonian for EJ � EC ,

Heff = −EJ +
p

2EC EJ − UP , (3.6)

U = 16(EC E3
J /2π

2)1/4e−
p

8EJ/EC cos(πqind/e). (3.7)



28 Chapter 3. Braiding Majorana modes in a Josephson junction array

Figure 3.2: Two Cooper pair boxes, each containing a pair of Majorana modes.
Single electrons can tunnel between the superconducting islands via the overlapping
Majorana’s γ12 and γ21. This tunnel coupling has a slow (cosine) dependence on the
enclosed fluxes, while the Coulomb coupling between the Majorana’s on the same
island varies rapidly (exponentially).

The energy minimum −2E0 at φmin is increased by
p

2EC EJ due to zero-point fluctu-
ations of the phase. This offset does not contain the Majorana operators, so it can
be ignored. The term −UP due to quantum phase slips depends on the Majorana
operators through the fermion parity. This term acquires a dynamics for multiple
coupled islands, because then the fermion parity of each individual island is no longer
conserved.

3.1.2 Multiple islands

We generalize the description to multiple superconducting islands, labeled k = 1, 2, . . .,
each connected to a bulk superconductor by a split Josephson junction enclosing a
flux Φk. (See Fig. 3.2.) The Josephson junctions contribute an energy

HJ = −
∑

k

EJ ,k cosφk, EJ ,k = 2E0 cos(πΦk/Φ0). (3.8)

We assume that the charging energy is dominated by the self-capacitance C of each
island, so that it has the additive form

HC =
∑

k

1
2C
(Qk + qind,k)

2. (3.9)

While both E0 and C may be different for different islands, we omit a possible k-
dependence for ease of notation. There may be additional fluxes enclosed by the
regions between the islands, but we do not include them to simplify the expressions.
None of these simplifications is essential for the operation of the device.
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The set of Majorana’s on the k-th island is indicated by γkn with n= 1, 2, . . . 2Nk.
The fermion parities Pk = iNk

∏

n γkn of neighboring islands k and k′ are coupled
with strength EM by the overlapping Majorana’s γkn and γk′m. We denote the gauge-
invariant phase difference [40] by θkk′ = φk −φk′ + (2π/Φ0)

∫

k→k′ A · d l. The corre-
sponding tunnel Hamiltonian [26]

Hkk′ = Γkk′ cos(θkk′/2), Γkk′ = iEMγknγk′m, (3.10)

is 4π-periodic in the gauge-invariant phase difference, as an expression of the fact
that single electrons (rather than Cooper pairs) tunnel through the mid-gap state. For
example, in the two-island geometry of Fig. 3.2 one has

H12 = iEMγ12γ21 cos(θ12/2), (3.11a)

θ12 = φ1 −φ2 −π(Φ1 +Φ2)/Φ0. (3.11b)

In Appendix 3.A we derive the effective low-energy Hamiltonian in the regime
EJ � EC , EM ,

Heff = const−
∑

k

UkPk +
∑

k,k′
Γkk′ cosαkk′ , (3.12)

αkk′ = lim
φk ,φk′→0

1
2θkk′ . (3.13)

The single sum couples Majorana’s within an island, through an effective Coulomb
energy Uk. The double sum couples Majorana’s in neighboring islands by tunnel-
ing. Both the Coulomb and tunnel couplings depend on the fluxes through the
Josephson junctions, but in an entirely different way: the tunnel coupling varies
slowly ∝ cos(πΦ/Φ0) with the flux, while the Coulomb coupling varies rapidly
∝ exp[−4

p

(E0/EC) cos(πΦ/Φ0)].

3.1.3 T-junction

Since Pk and Γkk′ in the Majorana-Coulomb Hamiltonian (3.12) do not commute,
the evolution of the eigenstates upon variation of the fluxes is nontrivial. As we will
demonstrate, it can provide the non-Abelian braiding statistic that we are seeking.

Similarly to earlier braiding proposals [21, 67], the minimal setup consists of
three superconductors in a T-junction. (See Fig. 3.3.) Each superconductor contains
a pair of Majorana modes γk,γ′k, with a tunnel coupling between γ′1,γ′2, and γ′3. The
Majorana-Coulomb Hamiltonian (3.12) takes the form

Heff = iEM

�

γ′1γ
′
2 cosα12 + γ

′
2γ
′
3 cosα23 + γ

′
3γ
′
1 cosα31

�

−
3
∑

k=1

Uk iγkγ
′
k, (3.14)

with gauge-invariant phase differences

α12 = −(π/2Φ0)(Φ1 +Φ2 + 2Φ3), (3.15a)

α23 = (π/2Φ0)(Φ2 +Φ3), (3.15b)

α31 = (π/2Φ0)(Φ1 +Φ3). (3.15c)
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Figure 3.3: Three Cooper pair boxes connected at a T-junction via three overlapping
Majorana modes (which effectively produce a single zero-mode γ0 at the center).
This is the minimal setup required for the braiding of a pair of Majorana’s, controlled
by the fluxes through the three Josephson junctions to a bulk superconductor.

As we vary |Φk| between 0 and Φmax < Φ0/2, the Coulomb coupling Uk varies
between two (possibly k-dependent) values Umin and Umax. We require Umax� Umin,
which is readily achievable because of the exponential flux sensitivity of the Coulomb
coupling expressed by Eqs. (3.1) and (3.7). We call the Coulomb couplings Umax and
Umin on and off, respectively. We also take Umax � EM , meaning that the Coulomb
coupling is weaker than the tunnel coupling. This is not an essential assumption, but
it allows us to reduce the 6–Majorana problem to a 4–Majorana problem, as we will
now show.

Consider first the case that Uk = 0 for all k. Then the Hamiltonian (3.14) has four
eigenvalues equal to zero: three of these represent the Majorana’s γk far away from
the junction, while the fourth Majorana,

γ0 =
1p
3
(γ′1 + γ

′
2 + γ

′
3) (3.16)

is situated at the T-junction. The T-junction contributes also two nonzero eigenvalues
± 1

2 Egap, separated by the gap

Egap = EM

Æ

cos2α12 + cos2α23 + cos2α31. (3.17)

For Φmax well below Φ0 and Umax� EM these two gapped modes can be ignored, and
only the four Majorana’s γ0,γ1,γ2,γ3 need to be retained.
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Figure 3.4: Schematic of the three steps of the braiding operation. The four Ma-
jorana’s of the T-junction in Fig. 3.3 (the three outer Majorana’s γ1,γ2,γ3 and the
effective central Majorana γ0) are represented by circles and the Coulomb coupling
is represented by lines (solid in the on state, dashed in the off state). White circles
indicate Majorana’s with a large Coulomb splitting, colored circles those with a van-
ishingly small Coulomb splitting. The small diagram above each arrow shows an
intermediate stage, with one Majorana delocalized over three coupled sites. The three
steps together exchange the Majorana’s 1 and 2, which is a non-Abelian braiding
operation.

The Hamiltonian Hint that describes the Coulomb interaction of these four Majo-
rana’s for nonzero Uk is given, to first order in Uk/EM , by

Hint =
3
∑

k=1

∆k iγ0γk, ∆k = −(2EM/Egap)βkUk, (3.18)

β1 = cosα23, β2 = cosα31, β3 = cosα12. (3.19)

3.2 Majorana braiding

The Hamiltonian (3.18) describes four flux-tunable Coulomb-coupled Majorana
modes. Although the coupling studied by Sau, Clarke, and Tewari [67] has an
entirely different origin (gate-tunable tunnel coupling), their Hamiltonian has the
same form. We can therefore directly adapt their braiding protocol to our control
parameters.

We have three fluxes Φ1,Φ2,Φ3 to control the couplings. The braiding operation
consists of three steps, see Table 3.1 and Fig. 3.4. (Ref. [67] had more steps, involving
6 rather than 4 Majorana’s.) At the beginning and at the end of each step two of the
couplings are off (Φk = 0) and one coupling is on (|Φk|= Φmax). We denote by Okk′

the step of the operation that switches the coupling that is on from k to k′. This is
done by first increasing |Φk′ | from 0 to Φmax and then decreasing |Φk| from Φmax to 0,
keeping the third flux fixed at 0.

During this entire process the degeneracy of the ground state remains unchanged
(twofold degenerate), which is a necessary condition for an adiabatic operation. If,
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time Φ1 Φ2 Φ3

0 0 0 −Φmax

Φmax 0 −Φmax

T Φmax 0 0
Φmax Φmax 0

2T 0 Φmax 0
0 Φmax −Φmax

3T 0 0 −Φmax

Table 3.1: Variation of the flux through the three Josephson junctions during the
braiding operation, at time steps corresponding to the diagrams in Fig. 3.4. The flux
Φ3 is varied in the opposite direction as Φ1,Φ2, to ensure that the coupling parameters
∆k ∝ βk do not change sign during the operation.

instead, we would first have first decreased |Φk| and then increased |Φk′ |, the ground
state degeneracy would have switched from two to four at some point during the
process, precluding adiabaticity.

We start from coupling 3 on and couplings 1,2 off. The braiding operation then
consists, in sequence, of the three steps O31, O12, and O23. Note that each coupling
∆k appears twice in the on state during the entire operation, both times with the
same sign sk.

The step Okk′ transfers the uncoupled Majorana at site k′ to site k in a time T . The
transfer is described in the Heisenberg representation by γk(T) = U †(T)γkU (T).
We calculate the unitary evolution operator U (T ) in the adiabatic T →∞ limit in
Appendix 3.B, by integrating over the Berry connection. In the limit Umin → 0 we
recover the result of Ref. [67],

γk(T ) = −sksk′γk′(0). (3.20)

The result after the three steps is that the Majorana’s at sites 1 and 2 are switched,
with a difference in sign,

γ1(3T ) = −s1s2γ2(0), γ2(3T ) = s1s2γ1(0). (3.21)

The corresponding unitary time evolution operator,

U (3T ) =
1
p

2

�

1+ s1s2γ1γ2) = exp
�π

4
s1s2γ1γ2

�

, (3.22)

has the usual form of an adiabatic braiding operation [27]. For a nonzero Umin the
coefficient π/4 in the exponent acquires corrections of order Umin/Umax, see Appendix
3.B.

If one repeats the entire braiding operation, the Majorana’s 1 and 2 have returned
to their original positions but the final state differs from the initial state by a unitary
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operator U (3T )2 = s1s2γ1γ2 and not just by a phase factor. That is the hallmark of
non-Abelian statistics [14].

3.3 Discussion

In summary, we have proposed a way to perform non-Abelian braiding operations
on Majorana modes, by controlling their Coulomb coupling via the magnetic flux
through a Josephson junction. Majorana modes are themselves charge-neutral parti-
cles (because they are their own antiparticle), so one may ask how there can be any
Coulomb coupling at all. The answer is that the state of a pair of Majorana modes in
a superconducting island depends on the parity of the number of electrons on that
island, and it is this dependence on the electrical charge modulo 2e which provides
an electromagnetic handle on the Majorana’s.

The Coulomb coupling can be made exponentially small by passing Cooper pairs
through a Josephson junction between the island and a bulk (grounded) superconduc-
tor. The control parameter is the flux Φ through the junction, so it is purely magnetic.
This is a key difference with braiding by electrostatically controlled tunnel couplings
of Majorana modes [67]. Gate voltages tend to be screened quite efficiently by the
superconductor, so magnetic control is advantageous. Another advantage is that the
dependence of the Coulomb coupling on the flux is governed by macroscopic electrical
properties (capacitance of the island, resistance of the Josephson junction). Tunnel
couplings, in contrast, require microscopic input (separation of the Majorana modes
on the scale of the Fermi wave length), so they tend to be more difficult to control.

Both Ref. [67] and the present proposal share the feature that the gap of the topo-
logical superconductor is not closed during the braiding operation. (The measurement-
based approach to braiding also falls in this category [71].) Two other proposals
[21, 68] braid the Majorana’s by inducing a topological phase transition (either by
electrical or by magnetic means) in parts of the system. Since the excitation gap
closes at the phase transition, this may be problematic for the required adiabaticity of
the operation.

The braiding operation is called topologically protected, because it depends on
the off/on sequence of the Coulomb couplings, and not on details of the timing of
the sequence. As in any physical realization of a mathematical concept, there are
sources of error. Non-adiabaticity of the operation is one source of error, studied
in Ref. [72]. Low-lying sub-gap excitations in the superconducting island break the
adiabatic evolution by transitions which change the fermion parity of the Majorana’s.

Another source of error, studied in Appendix 3.B, is governed by the off/on
ratio Umin/Umax of the Coulomb coupling. This ratio depends exponentially on the
ratio of the charging energy EC and the Josephson energy EJ of the junction to the
bulk superconductor. A value EJ/EC ' 50 is not unrealistic [60], corresponding to
Umin/Umax ' 10−5.

The sign of the Coulomb coupling in the on state can be arbitrary, as long as
it does not change during the braiding operation. Since Umax ∝ cos(πqind/e), any



34 Chapter 3. Braiding Majorana modes in a Josephson junction array

change in the induced charge by ±e will spoil the operation. The time scale for this
quasiparticle poisoning can be milliseconds [57], so this does not seem to present a
serious obstacle.

A universal quantum computation using Majorana modes requires, in addition to
braiding, the capabilities for single-qubit rotation and read-out of up to four Majorana’s
[6]. The combination of Ref. [61] with the present proposal provides a scheme for all
three operations, based on the interface of a topological qubit and a superconducting
charge qubit. This is not a topological quantum computer, since single-qubit rotations
of Majorana modes lack topological protection. But by including the topologically
protected braiding operations one can improve the tolerance for errors of the entire
computation by orders of magnitude (error rates as large as 10% are permitted [62]).

3.A Derivation of the Majorana-Coulomb Hamiltonian

3.A.1 Single island

Considering first a single island, we start from the Cooper pair box Hamiltonian
(3.2) with the parity constraint (3.5) on the eigenstates. Following Ref. [69], it is
convenient to remove the constraint by the unitary transformation

H̃ = Ω†HΩ, Ω= exp[i(1−P )φ/4]. (3.23)

The transformed wave function Ψ̃(φ) = Ω†Ψ(φ) is then 2π-periodic, without any
constraint. The parity operator P appears in the transformed Hamiltonian,

H̃ =
1

2C

�

Q+ 1
2 e(1−P ) + qind

�2 − EJ cosφ. (3.24)

For a single junction the parity is conserved, so eigenstates of H are also eigenstates
of P and we may treat the operator P as a number. Eq. (3.24) is therefore the
Hamiltonian of a Cooper pair box with effective induced charge qeff = qind+e(1−P )/2.
The expression for the ground state energy in the Josephson regime EJ � EC is in the
literature [37, 73],

Eground = −EJ +
p

2EC EJ − 16(EC E3
J /2π

2)1/4 e−
p

8EJ/EC cos(πqeff/e). (3.25)

The first term −EJ is the minimal Josephson energy at φmin = 0. Zero-point
motion, with Josephson plasma frequency ωp =

p

8EC EJ/ħh, adds the second term
p

2EC CJ =
1
2ħhωp. The third term is due to quantum phase slips with transition

amplitudes τ± ' exp(±iπqeff/e)
Æ

ħhωp EJ exp(−ħhωp/EJ ) by which φ increments by
±2π.

Using P 2 = 1, the ground state energy (3.25) may be written in the form

Eground = −EJ +
p

2EC EJ − UP , (3.26)

with U defined in Eq. (3.7). Higher levels are separated by an energy ħhωp, which is
large compared to U for EJ � EC . We may therefore identify Eground = Heff with the
effective low-energy Hamiltonian of a single island in the large-EJ limit.
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3.A.2 Multiple islands

We now turn to the case of multiple islands with tunnel coupling. To be definite
we take the geometry of two islands shown in Fig. 3.2. The full Hamiltonian is
H = H1 +H2 +H12, where H1 and H2 are two copies of the Cooper box Hamiltonian
(3.2) and H12 is the tunnel coupling from Eq. (3.11).

To obtain 2π-periodicity in both phases φ1 and φ2, we make the unitary transfor-
mation H̃ = Ω†HΩ with

Ω= ei(1−P1)φ1/4ei(1−P2)φ2/4. (3.27)

The Cooper pair box Hamiltonians are transformed into

H̃k =
1

2C

�

Qk + eqk + qind,k

�2 − EJ ,k cosφk, (3.28)

with qk =
1
2 (1−Pk). The tunnel coupling transforms into

H̃12 =
1
2 e−iq1φ1Γ12eiq2φ2 eiπ(Φ1+Φ2)/2Φ0 +H.c., (3.29)

where Γ12 = iEMγ12γ21 and H.c. stands for Hermitian conjugate. Since eiqφ = cosφ +
iq sinφ, the transformed tunnel coupling H̃12 is 2π-periodic in φ1 and φ2.

For EJ � EC the phases remain close to the value which minimizes the sum of the
Josephson energies to the bulk superconductor and between the islands. To leading
order in EM/EJ � 1 this minimal energy is given by

Emin = − EJ ,1 − EJ ,2 + Γ12 cos[π(Φ1 +Φ2)/2Φ0]

+O (E2
M/EJ ). (3.30)

The Josephson coupling of the islands changes the plasma frequency ωp,k for phase
φk by a factor 1+O (EM/EJ ), so the zero-point motion energy is

1
2ħhωp,k =

Æ

2EC EJ ,k + EM ×O (EC/EJ )
1/2. (3.31)

The transition amplitudes τ± for quantum phase slips of phase φk are similarly
affected,

τ±,k = −UkPk + EM e−ħhωp,k/EJ ,k ×O (EC/EJ )
1/4. (3.32)

These are the contributions to the effective Hamiltonian Heff = Emin+
∑

k(
1
2ħhωp,k+

τ+,k +τ−,k) for EJ � EC , EM ,

Heff =
�

−U1P1 − U2P2 + Γ12 cos[π(Φ1 +Φ2)/2Φ0]
�

× [1+O (EM/EJ )] + const. (3.33)

Eq. (3.12) in the main text generalizes this expression for two islands to an arbitrary
number of coupled islands.
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3.B Calculation of the Berry phase of the braiding opera-
tion

We evaluate the unitary evolution operatorU of the braiding operation in the adiabatic
limit. This amounts to a calculation of the non-Abelian Berry phase (integral of Berry
connection) of the cyclic variation of the interaction Hamiltonian Hint(∆1,∆2,∆3).

In the Fock basis |00〉, |01〉, |10〉, |11〉 the interaction Hamiltonian (3.18) of 4
Majorana modes is given by the occupation number of the two fermionic operators
c1 = (γ1 − iγ2)/2 and c2 = (γ0 − iγ3)/2. It takes the form

Hint =







−∆3 0 0 −i∆1 −∆2
0 ∆3 −i∆1 −∆2 0
0 i∆1 −∆2 −∆3 0

i∆1 −∆2 0 0 ∆3






. (3.34)

The eigenvalues are doubly degenerate at energy ±ε = ±
q

∆2
1 +∆

2
2 +∆

2
3 (up to a

flux-dependent offset, which only contributes an overall phase factor to the evolution
operator). The two degenerate ground states at −ε are distinguished by an even (e)
or odd (o) quasiparticle number,

|e〉=

√

√ε −∆3

2ε











i
ε +∆3

∆1 + i∆2
0
0
1











, (3.35a)

|o〉=

√

√ε +∆3

2ε











0

i
ε −∆3

∆1 + i∆2
1
0











. (3.35b)

This parameterization is smooth and continuous except along the line ∆1 =∆2 = 0.

If we avoid this line the Berry connection can be readily evaluated. It consists of
three anti-Hermitian 2× 2 matricesAk,

Ak =

�

〈e| d
d∆k
|e〉 0

0 〈o| d
d∆k
|o〉

�

. (3.36)

Off-diagonal terms inAk are zero because of global parity conservation. Explicitly,
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Figure 3.5: The braiding path in three-dimensional parameter space along which the
Berry phase is evaluated. This path corresponds to the flux values in Table 3.1, with
couplings∆k =∆min for Φk = 0 and∆k =∆max for |Φk| = Φmax. The ratio∆min/∆max
in the figure is exaggerated for clarity.

we have

A1 =
∆2

∆2
1 +∆

2
2





i
ε +∆3

2ε
0

0 i
ε −∆3

2ε



 , (3.37)

A2 =
−∆1

∆2
1 +∆

2
2





i
ε +∆3

2ε
0

0 i
ε −∆3

2ε



 , (3.38)

A3 = 0. (3.39)

A closed path C in parameter space has Berry phase [20]

U = exp

�

−
∮

C

∑

k

Ak d∆k

�

. (3.40)

The path C corresponding to the braiding operation in Fig. 3.4 and Table 3.1 is shown
in Fig. 3.5. We take all couplings ∆k positive, varying between a minimal value ∆min
and maximal value ∆max. The parametrization (3.35) is well-defined along the entire
contour.
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The contour integral evaluates to

U = exp
h

−i
�π

4
− ε
�

σz

i

, σz =
�

1 0
0 −1

�

, (3.41)

ε=
3
p

2

∆min

∆max
+O

�

∆min

∆max

�2

. (3.42)

The limit ∆min/∆max → 0 corresponds to the braiding operator (3.22) in the main
text (with s1, s2 > 0 and σz = 1− 2c†

1c1 = iγ1γ2).



Chapter 4

Flux-controlled quantum
computation with Majorana
modes

After the first signatures were reported [74–77] of Majorana bound states in su-
perconducting nanowires [26, 45, 46], the quest for non-Abelian braiding statistics
[11, 14, 21, 27] has intensified. Much interest towards Majorana modes arises from
their technological potential in fault-tolerant quantum computation [6, 78–81]. Their
non-Abelian exchange statistics would allow to perform quantum gates belonging to
the Clifford group with extremely good accuracy. Moreover, topological qubits en-
coded non-locally in well-separated Majorana bound states would be resilient against
many sources of decoherence. Even without the applications in quantum information
processing, observing a new type of quantum statistics would be a milestone in the
history of physics.

The two central issues for the application of Majorana modes are (i) how to
unambiguously demonstrate their non-Abelian exchange statistics and (ii) how to
exploit their full potential for quantum information processing. The first issue requires
an elementary circuit that can perform three tasks: initialization of a qubit, braiding
(exchange) of two Majoranas, and finally measurement (readout) of the qubit. In view
of the second issue, this circuit should be scalable and serve as a first step towards
universal fault-tolerant quantum computation.

Here we present such a circuit, using a superconducting charge qubit in a transmis-
sion line resonator (transmon [37, 60, 82, 83]) to initialize, control, and measure the
topological qubit. In such a hybrid system, named top-transmon [61], the long-range
Coulomb couplings of Majorana modes can be used to braid them and to read out their
fermion parity [61, 84]. While there exist several proposals to control or measure
Majorana modes in nanowires [21, 35, 61, 63–68, 84–87], combining braiding and
measurement without local adjustment of microscopic parameters remains a chal-
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Figure 4.1: Two circuits that can demonstrate non-Abelian statistics, by the initializa-
tion, braiding, and measurement of pairs of Majorana bound states (circles). Braiding
is performed twice to flip the fermion parity of γA and γB [79]. Majoranas that can
be coupled by Coulomb charging energy are connected by a thin line; the line is solid
if the Majoranas are strongly coupled, and dashed if they are uncoupled. A thick
line indicates tunnel coupling of Majoranas. The T-shaped circuit of Ref. [21] (left
column) requires control over tunnel couplings, while the π-shaped circuit considered
here (right column) does not, because both readout and braiding involve a Majorana
localized at a T-junction.

lenge. We show that full macroscopic control is possible if during the measurement
one of the Majorana modes is localized at a T-junction between three superconducting
islands (see Fig. 4.1). All three steps of the braiding protocol, initialization–braiding–
measurement, can then be performed by adjusting magnetic fluxes through split
Josephson junctions. Because local control of microscopic parameters is not neces-
sary, our scheme is less sensitive to problems arising from electrostatic disorder and
screening of gate voltages by the superconductor.

This design principle of flux-controlled braiding and measurements can be scaled
up from a minimal braiding experiment setup to a multi-qubit register that supports
a universal set of quantum gates and allows measurement of any product of Pauli ma-
trices belonging to a selection of topological qubits. Multi-qubit parity measurements
are a powerful resource in quantum information processing, allowing for the efficient



4.1 Minimal circuit for the demonstration of non-Abelian statistics 41

creation of long-range entanglement and direct measurement of stabilizer operators
(thus removing the overhead of ancilla qubits in quantum error correction schemes).
Because the data stored in the register can be accessed in any random order, it truly
represents a Random Access Majorana Memory.

The structure of this chapter is as follows. In Sec. 4.1 we present the circuit
that can demonstrate the non-Abelian Majorana statistics. In Sec. 4.2 we take a
longer-term perspective and describe the Random Access Majorana Memory, whose
potential for quantum computation is discussed in Sec. 4.3. Finally, we conclude
in Sec. 4.4. For the benefit of the reader, we include more detailed derivations and
discussions in the Appendices.

4.1 Minimal circuit for the demonstration of non-Abelian
statistics

To demonstrate non-Abelian Majorana statistics one needs to read out the parity of
two Majoranas, γA and γB, and braid one of these Majoranas γB with another one, γC .
We seek a transmon circuit that can combine these operations in a fully flux-controlled
way, by acting on the Coulomb coupling of the Majoranas. Since γB must be coupled
first to one Majorana (for the braiding) and then to another (for the readout), it
must be able to contribute to two different charging energies. This is possible if γB is
localized at a T-junction between three superconducting islands.

We thus arrive at the minimal circuit shown in Fig. 4.2a. It consists of five
superconducting islands, each containing a nanowire supporting two Majorana bound
states, enclosed in a transmission line resonator. The two bigger superconductors
form a transmon qubit and the three smaller islands are embedded between the two
transmon plates. The Josephson couplings between the islands can be controlled by
magnetic fluxes Φk (k = 0, 1, 2, 3). The nanowires form a π-shaped circuit, with two
T-junctions where three Majorana bound states belonging to adjacent superconductors
are tunnel-coupled. At low energies the three overlapping Majorana bound states at a
T-junction form a single zero mode, so that effectively the system hosts six Majorana
bound states, γA,γB, ...,γF .

The three relevant energy scales for the device are (i) the charging energy
EC,k = e2/2Ck determined by the total capacitance Ck of the four upper supercon-
ductors in Fig. 4.2a, (ii) the Josephson energies EJ,k(Φk) = EJ,k(0) cos(eΦk/ħh), and
(iii) the Majorana tunnel couplings EM at both T-junctions. For strong Josephson
coupling, EJ,k � EC,k, EM, the phases of the order parameter on superconducting
islands (measured with respect to the lower superconductor) are pinned to the value
φk ≡ 0. We distinguish two different operating regimes of the device: one for the
braiding procedure and one for initialization and readout.
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Figure 4.2: Panel a): Minimal circuit for flux-controlled demonstration of non-Abelian
Majorana statistics. Two large superconducting plates form a Cooper pair box in a
transmission line resonator, i.e. a transmon qubit. Three smaller superconducting
islands are embedded between the two transmon plates. Each superconducting island
contains a nanowire supporting two Majorana bound states. At low energies, the
three overlapping Majorana bound states at a T-junction form a single zero mode so
that effectively the system hosts six Majorana bound states, labeled γA, γB, γC , γD,
γE , and γF . The Coulomb couplings between the Majorana modes can be controlled
with magnetic fluxes Φk. This hybrid device can measure the result of the braiding
operation as a shift in the microwave resonance frequency when the fermion parity
iγAγB switches between even and odd. Panel b): Sequence of variation of fluxes
during the initialization (steps 0–2), braiding (steps 3–8) and measurement (step 9).
Panel c): Illustration of the steps required for initialization, braiding and measurement.
Fusion channels of pairs of Majorana modes colored red, blue and white are chosen
to be the basis states in Eq. (4.4). To unambiguously demonstrate the non-Abelian
nature of Majoranas, one needs to collect statistics of measurement outcomes when
the adiabatic cycle describing the braiding operation (steps 3–8) is repeated n times
between initialization and measurement. The probabilities of observing changes
in the cavity’s resonance frequency, pflip, for different values of n should obey the
predictions summarized in the table. The sequence of probabilities shown in the table
repeats itself periodically for larger values of n.
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4.1.1 Flux-controlled braiding

During the braiding procedure we set Φ0 = 0 so that the charging energy of the large
island can be completely neglected. The charging energies of the small islands can be
considered perturbatively [37], resulting in long-range Coulomb couplings,

Uk = 16

�

EC,k E3
J,k

2π2

�

1
4

e−
p

8EJ,k/EC,k cos(qkπ/e), (4.1)

between the Majorana bound states in the corresponding island [61]. The offset
charge qk accounts for the effect of nearby gate electrodes. In order to keep our
analytic calculations more transparent, we assume that Uk � EM. This condition is
not required for braiding to stay accurate in view of the topological nature of the
latter (see also App. 4.F). In this case, the low-energy sector of the system is described
by the effective Hamiltonian (see Appendix 4.A)

Hbraiding = −i∆1γBγE − i∆2γEγF − i∆3γEγC , (4.2)

∆1 =
U1

p

1+ 2 cos2(eΦ1/2ħh)

×
cos α23

p

cos2α12 + cos2α23 + cos2α31

, (4.3a)

∆2 = U2
cos α31

p

cos2α12 + cos2α23 + cos2α31

, (4.3b)

∆3 = U3
cos α12

p

cos2α12 + cos2α23 + cos2α31

, (4.3c)

where α12 = (e/2ħh)(Φ1 + Φ2), α23 = (e/2ħh)(Φ2 + Φ3), and α31 = −α12 − α23 are
gauge-invariant phase differences between the smaller islands. The three couplings
∆i are all tunable with exponential sensitivity via the fluxes Φi , increasing from ∆min
(the off state) to ∆max (the on state) when |Φi | increases from 0 to Φmax < h/4e. On
the other hand, the tunnel couplings at the T-junction vary slowly with the fluxes, so
the three overlapping Majoranas remain strongly coupled throughout the operation.

Out of the six Majorana operators, we define three fermionic creation operators:

c†
1 =

1
2 (γA+ iγB) (4.4a)

c†
2 =

1
2 (γC + iγD) (4.4b)

c†
3 =

1
2 (γE + iγF ). (4.4c)

We will braid the Majoranas γB and γC by using γE and γF as ancillas, as specified
in Fig. 4.2. At the beginning and at the end, the Majoranas γE and γF are strongly
coupled (|Φ2|= Φmax). If all other couplings are off we are left with two degenerate
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states that define a topological qubit. In the odd-parity sector they are
�1

0

�

= |10〉|0〉
and

�0
1

�

= |01〉|0〉. During the exchange of Majoranas γB and γC the fluxes Φ1, Φ2, Φ3
are varied between 0 and ±Φmax according to the table shown in Fig. 4.2b. Computing
the non-Abelian Berry phase for this adiabatic cycle as in Ref. [84] shows that braiding
has the effect of multiplying the topological qubit state with the matrix

U =
1
p

2

�

1 −i
−i 1

�

, (4.5)

up to corrections of order ∆min/∆max, with ∆min/∆max� 1 because of the exponen-
tial sensitivity of these quantities on magnetic fluxes. Repeating the cycle n times
corresponds to applying the gate U n.

4.1.2 Initialization and readout

The ancillas need to be initialized in the state |0〉. This can be achieved by turning
the couplings ∆2 and ∆3 on and allowing the system to relax to the ground state
by adiabatically switching off ∆3 before ∆2 [step 0 in Fig. 4.2 (b)]. In addition to
the initialization of the ancillas, the braiding needs to be preceded and followed by
a readout of the topological qubit. For that purpose, before and after the braiding
flux cycle we increase Φ0 from 0 to Φmax, so that the spectrum of the transmon
depends on the fermion parity P = iγAγB [61]. During the measurement we set
Φ1 = Φ2 = Φ3 = 0, to decouple the four Majoranas γC ,γD,γE ,γF from γA,γB and to
minimize the effect of cross-capacitances [88].

In this configuration it is possible to execute a projective measurement on the
fermion parityP by irradiating the resonator with microwaves. The system composed
by the transmon qubit and microwave resonator can be described by the Hamiltonian

Hreadout =σz

�

1
2ħhΩ0 +P∆+ cos

�πq0

e

��

+P∆− cos
�πq0

e

�

+ħhω0a†a+ħhg(σ+a+σ−a†). (4.6)

Here, ω0 is the bare resonance frequency of the cavity, g is the strength of the
coupling between photons and the transmon qubit, and ħhΩ0 '

p

8EJ,0EC is the
transmon plasma frequency, with EC the charging energy of the transmon including
the contributions of the small islands. We have defined σ± = (σx ± iσy)/2 and

∆± =
δε1 ±δε0

2
1

p

1+ 2 cos2(eΦ0/2ħh)
, (4.7)

where δε1, δε0 ∝ exp(−
Æ

8EJ,0/EC) are determined by the energy levels εn =
ε̄n − (−1)nδεn cos(πq0/e) of the transmon [37]. We assume that the induced charge
is fixed at q0 = 0 for maximal sensitivity.

The transmission line resonator is typically operated far from resonance, in the
so-called dispersive regime [37, 82, 83], when (n+ 1)g2� δω2, with n the number
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of photons in the cavity and δω= Ω0 −ω0. The Hamiltonian (4.6) then produces a
parity-dependent resonance frequency (see Appendix 4.B)

ωeff(P ) =ω0 +σz g2(δω+ 2P∆+/ħh)−1. (4.8)

A flip of the topological qubit can thus be measured as a shift in the resonance
frequency by the amount

ωshift =
4ħhg2∆+

ħh2δω2 − 4∆2
+

. (4.9)

The probability of observing a change in the resonance frequency of the cavity after
n consecutive braidings, pflip(n), is dictated by the Majorana statistics: pflip(n) =
|〈1|U n |0〉|2 = |〈0|U n |1〉|2. The sequence of probabilities, pflip =

1
2 , 1, 1

2 , 0 for n =
1, 2, 3, 4, repeats itself periodically. Therefore, the non-Abelian nature of Majoranas
can be probed by collecting statistics for different values of n.

4.2 Random Access Majorana Memory

The π-circuit of Fig. 4.2 is the minimal circuit which can demonstrate non-Abelian
Majorana statistics, but it does not allow for the application of two independent
braidings. The full computational power of Majoranas can be achieved by increasing
the number of T-junctions. We adopt the triangular loop geometry introduced by
Sau, Clarke, and Tewari [67], which is the minimal circuit for a fully flux-controlled
topological qubit (see Fig. 4.3a). It consists of five Majorana islands placed between
the upper and lower superconducting plates of a transmon qubit, referred to as bus
and (phase) ground respectively, and a transmission line resonator for the readout.

In this geometry the braiding and readout can be performed in a similar way
as in the case of the π-circuit. In the braiding configuration, we set Φ0 = 0. Any
pair of the Majoranas γA,γB,γC can now be braided with the help of magnetic fluxes
Φk (k = 1,2, ..., 5). The qubit manipulations and corresponding quantum gates are
shown in Appendix 4.D. The fourth Majorana γD forming the topological qubit need
not be moved and is situated on the ground island, while γE and γF serve as ancillas.
Moreover, the parity of any pair of Majoranas γA,γB,γC can be measured by moving
them to the “measurement” island, the one coupled to the bus via the flux Φ1 in
Fig. 4.3a. During the measurement Φk = 0 (k = 1,2, ..., 5) and Φ0 = Φmax, so that
all the small islands are coupled via large Josephson energy either to the bus or to
the ground. Therefore, the measurement configuration is described by the readout
Hamiltonian (4.6), where P is the parity of the two Majoranas in the measurement
island.

Since the typical length of a transmon is hundreds of microns, it is in principle
possible to scale up the design by considering a register of several topological qubits,
shown in Fig. 4.3b. The measurement configuration is still described by the readout
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Figure 4.3: Panel a): Minimal transmon circuit for fully flux-controlled topological
qubit. The nanowires are placed in a triangular loop formed out of three T-junctions
[67]. In this geometry, all single-qubit Clifford gates can be implemented. Panel
b): Schematic overview of a Random Access Majorana Memory consisting of eight
topological qubits. Compensating fluxes (dotted circles) are included between the
topological qubits to ensure that the gauge-invariant phase differences in the different
topological qubits are independent of each other (see Appendix 4.C).

Hamiltonian (4.6) (see Appendix 4.C), where the parity operator is now

P = iN
N
∏

n=1

γnXγnY . (4.10)

Here γnX and γnY denote Majorana modes on the measurement island belonging to
topological qubit n: X , Y ∈ {A, B, C}. Thus, a readout of the resonance frequency
corresponds to a projective measurement of this multi-qubit operator. Although the
product in Eq. (4.10) runs over all N qubits, we can still choose not to measure a qubit
by moving the corresponding pair of coupled ancillas γnE ,γnF to the measurement
island. Because these ancillas are always in a state |0〉, they do not influence the
measurement outcome. Since the Majorana modes can be selectively addressed, we
call this architecture a Random Access Majorana Memory (RAMM).

The number of qubits in a RAMM register cannot be increased without limitations.
Firstly, the frequency shift ωshift decreases with the number of topological qubits.
The main decrease is caused by the reduction of the coupling ∆+ with the number
of topological qubits, which occurs because the Majorana modes at the T-junctions
are localized in three different islands (see Appendix 4.C). An additional decrease is
caused by the renormalization of the total capacitance of the transmon due to the
small islands. Furthermore, each topological qubit introduces an extra pathway for
quasiparticles to be exchanged between the bus and the ground. Such quasiparticle
poisoning rates at thermal equilibrium are negligibly small and the poisoning due
to non-equilibrium quasiparticles can, at least in principle, be controlled by creating
quasiparticle traps.

The limited number of qubits is not an obstacle for the scalability of quantum
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computation. Beyond this limit, the computation can be scaled up by using several
transmons in a single transmission line resonator, and the coupling between the topo-
logical qubits in different registers can be achieved by introducing tunable Josephson
junctions between the transmons. Furthermore, the computation can be parallelized,
because transmons can be coupled to several different transmission line resonators
[89–91].

4.3 Multi-qubit measurements as a source of computa-
tional power

Multi-qubit measurements in the RAMM offer two significant benefits. Firstly, these
measurements can be applied without any locality constraint, so that the quantum
fan-out [90], the number of other qubits with which a given qubit can interact, can
become large for the RAMM architecture. Secondly, the overhead in the computational
resources can be reduced because the products of Pauli matrices involving several
topological qubits can be measured directly. We demonstrate these advantages in the
realization of a universal set of gates, fast creation of maximally entangled states,
and implementation of error correction schemes.

4.3.1 Quantum gates

All single-qubit Clifford gates, the CNOT gate, and the π/8 phase gate required for
universal quantum computation [1], can be realized in the RAMM with errors that are
exponentially small in macroscopic control parameters (see Appendices 4.B and 4.D).
Single-qubit Clifford gates can be realized with braiding operations only, and the
quantum circuits for the two remaining gates are summarized in Fig. 4.4. The CNOT

gate, shown in Fig. 4.4a, is a modified version of the Bravyi-Kitaev algorithm [92, 93]
involving three topological qubits (target, control, and one ancilla). Efficient π/8
phase gate implementations are based on distillation protocols [62], requiring several
noisy qubits to prepare one qubit in a particular state |A〉 =

�

|0〉+ eiπ/4 |1〉
�

/
p

2. This
state can then be used to perform the π/8 gate using the circuit shown in Fig. 4.4
b. Distillation may take place in dedicated RAMM registers (see Appendix 4.D) in
parallel with other computation processes, and the distilled state can be teleported to
the computational register (see Fig. 4.4c).

4.3.2 Preparation of 2D cluster states

The RAMM can be used to efficiently create maximally entangled multi-qubit states,
such as 2D cluster states [94–96], which make it possible to realize any quantum
circuit by means of single-qubit operations and measurements [97].

To generate a 2D cluster state in the RAMM architecture one has first to assign a
label to each topological qubit in order to establish its position and neighbors on a
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Figure 4.4: Quantum circuits for universal quantum computation in the RAMM. In
this figure, p1, p2, p3 = ±1 represent results of projective single- or multi-qubit mea-
surements, whose outcomes, carried by classical channels (double lines), determine
post-selected unitary operations. Panel a): CNOT gate. Here R1 = exp

�

i π4σx(1− p1)
�

,
R2 = exp

�

i π4 p2p3σz

�

, R3 = exp
�

i π4 p2p3σx

�

, R4 = exp
�

−i π4 p3σx

�

are all gates ob-
tainable by braidings. Panel b): π/8 phase-gate T = diag

�

1, exp i π4
�

, relying on
distillation of the state |A〉=

�

|0〉+ exp i π4 |1〉
�

/
p

2. The required unitary operations
are in this case Rψ = exp

�

−i π8σz(1− p1)
�

and RA = R1. Panel c): teleportation
protocol. Here R = exp

�

i π4σz(1− p1p2)
�

exp
�

i π4σx(1− p3)
�

. Apart from teleporting
the unknown quantum state |ψ〉, the protocol leaves the remaining two qubits in an
entangled Bell state |Ψ〉.
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Figure 4.5: Preparation of a 9-qubit 2D cluster state with a RAMM. The nine qubits
(represented by circles) are arranged in a 3× 3 square logical lattice, and numbered
from left to right and top to bottom. Panel a): The nine stabilizer operators K1, . . . K9
necessary to prepare the 2D cluster state. They are products of Pauli matrices, in-
volving all qubits connected by lines, with black and grey dots representing σx and
σz operators, respectively. Panel b): The quantum circuit creating the 2D cluster
state in a 9-qubit RAMM register, consisting in a sequence of projective multi-qubit
measurement of the 9 stabilizers.
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logical lattice (see Fig. 4.5a). Due to the non-locality of measurements in the RAMM,
the logical lattice does not need to be related to the physical system. The cluster state
may be prepared in several ways [94, 96]. An efficient procedure requires measuring
the stabilizers

Kα = σx ,α

∏

〈β ,α〉

σz,β , (4.11)

where α goes through all sites of the logical lattice and β labels the nearest neighbors
of α. The total number of measurements required is equal to the number of qubits
in the cluster state. In Fig. 4.5b we draw a circuit to create the 9-qubit 2D cluster
state in a RAMM register. To verify their entanglement properties, one possibility is
provided by the teleportation protocol of Ref. [97].

4.3.3 Efficient quantum error correction

Although topological qubits have intrinsically low error rates, grouping them into
a RAMM register allows to additionally implement efficient error correction. Error
correction schemes [1, 3, 4] are based on measurements of stabilizer generators,
which are products of Pauli matrices belonging to different qubits. The measurement
outcomes give error syndromes, which uniquely characterize the errors and the qubits
where they occurred. The RAMM allows for efficient error correction schemes, due
to the possibility of measuring stabilizers of different length, as well as correcting
errors using single-qubit Clifford gates. There are two advantages in comparison with
architectures where only single- and two-qubit operations are available: higher error
thresholds and reduced overhead in computational resources.

In order to quantitatively compare these advantages, we consider the 7-qubit
Steane code [98] as a concrete example of quantum codes, and assume a realistic
error model. We find that the error threshold of the RAMM can be an order of
magnitude larger than the error threshold of a reference architecture that can only
perform single- and two-qubit operations (see Appendix 4.E). Additionally, the RAMM

implementation of the Steane code is much more compact. Already in the first level
of concatenation, the fault-tolerant implementation of syndrome measurements in
the reference architecture requires 24 ancillas for each logical qubit, while none are
needed in the RAMM.

Although we have calculated the improvements only for the 7-qubit Steane code,
the advantages are characteristic for all error correction schemes, including surface
codes [99, 100].

4.4 Discussion

To control and manipulate quantum information contained in the Majorana zero-
modes of superconducting nanowires it is necessary to braid them and measure their
parity. We have designed a transmon circuit where both operations can be performed
by controlling the magnetic fluxes through split Josephson junctions, without local
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Figure 4.6: The π-shaped transmon circuit discussed in Sec. 4.1, reproduced here
with labels of the ten Majorana bound states.

adjustment of microscopic parameters of the nanowires. The minimal circuit for
the demonstration of non-Abelian Majorana statistics is a π-shaped circuit involving
four independent flux variables. An extended circuit consisting of many topological
qubits in parallel allows for non-local multi-qubit measurements in a Random Access
Majorana Memory, providing the possibilities of efficient creation of highly entangled
states and simplified (ancilla-free) quantum error correction.

Since all the requirements for the realization of the π-circuit and RAMM are
satisfied with the typical energy scales of existing transmon circuits and transmission
line resonators (see Appendix 4.F), flux-controlled circuits are a favorable architecture
for the demonstration of non-Abelian Majorana statistics and the realization of fault-
tolerant quantum computation.

4.A Theoretical description of the π-shaped circuit

The π-shaped circuit discussed in the main text is reproduced here in Fig. 4.6. We
label the two superconducting plates forming the transmon “bus” and “ground”, both
hosting two Majorana bound states, labeled γb1,γb2 and γg1,γg2 respectively. The
smaller superconducting islands are labeled with an integer k = 1, 2, 3. Each of them
supports two Majorana bound states γk1,γk2. We will work in a gauge where all
phases are measured with respect to the phase of the ground island. We denote with
φ the phase of the bus and with φk that of the k-th island.

We start from the Lagrangian of the system,

L = T − VJ − VM . (4.12)
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The first term is the charging energy

T =
ħh2

8e2
C0φ̇

2 +
ħh2

8e2

3
∑

k=1

�

CG,k φ̇
2
k + CB,k

�

φ̇k − φ̇
�2�

+
ħh
2e

�

q0φ̇ +
3
∑

k=1

qkφ̇k

�

. (4.13)

Here C0 is the capacitance between bus and ground, while CG,k (CB,k) is the capaci-
tance between the k-th Majorana island and the ground (the bus). The last two terms
include the induced charge q0 on the bus and qk on Majorana islands. The effect
of cross-capacitances between Majorana islands is negligible assuming that they are
small in comparison with the capacitances to the bus and the ground.

The second term is the Josephson potential

VJ = EJ ,0(Φ) (1− cosφ) +
3
∑

k=1

EJ ,k(Φk)(1− cosφk) . (4.14)

The Josephson energies EJ ,0(Φ0) = 2EJ ,0(0) cos(eΦ0/ħh) and EJ ,k(Φk) = 2EJ ,k(0) cos(eΦk/ħh)
can be varied in magnitude by changing the fluxes between 0 and |Φmax| ® h/4e.
We are assuming for simplicity that the split junctions are symmetrical, but this
requirement can be removed without affecting our results.

The third term is the Majorana-Josephson potential

VM = EM

�

iγb2γg1 cos
�

1
2φ +αbg

�

(4.15)

+ iγg1γ11 cos
�

αg1 −
1
2φ1

�

+ iγ11γb2 cos
�

1
2φ1 −

1
2φ +α1b

��

+EM

�

iγ12γ21 cos
�

1
2φ1 −

1
2φ2 +α12

�

+ iγ21γ31 cos
�

1
2φ2 −

1
2φ3 +α23

�

+ iγ31γ12 cos
�

1
2φ3 −

1
2φ1 +α31

��

.

The two square brackets in this expression group the terms corresponding to the two
T-junctions. All tunnel couplings are for simplicity assumed to be of equal strength EM .
The arguments of the cosines include single-electron Aharonov-Bohm phase shifts
between different islands,

αbg = eΦ0/2ħh (4.16a)

αg1 = eΦ1/2ħh (4.16b)

α1b = − (eΦ0 + eΦ1)/2ħh (4.16c)

α12 = (eΦ1 + eΦ2)/2ħh (4.16d)

α23 = (eΦ2 + eΦ3)/2ħh (4.16e)

α31 = − (eΦ1 + 2eΦ2 + eΦ3)/2ħh (4.16f)
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There is a constraint between the charge contained in each superconducting island
and the parity of the Majorana modes belonging to that island [36]. The constraint
can be eliminated via a gauge transformation [69]

Ω= einφ/2
3
∏

k=1

einkφk/2 (4.17)

n= 1
2 −

1
2 iγb1γb2 , nk =

1
2 −

1
2 iγk1γk2 , (4.18)

where the products extends over all Majorana junctions. The transformation has two
effects on the Lagrangian:

• it changes the induced charges appearing in Eq. (4.13),

q0→ q0 + en , qk → qk + enk (4.19)

so that the Majorana operators enter explicitly in the charging energy, and

• it modifies the Majorana-Josephson potential Ω†VMΩ so that it becomes 2π-
periodic in all its arguments φ,φk.

In the following, we will work in this new gauge where Eq. (4.19) holds. The explicit
form of Ω†VMΩ is not necessary here, as we will only need the equality

Ω†VMΩ
�

�

φk=φ=0 = VM |φk=φ=0 (4.20)

which is trivial since Ω|φk=φ=0 = 1. Starting from the Lagrangian (4.12), we will now
derive the low-energy Hamiltonians used in the main text for the braiding and the
readout.

4.A.1 Braiding

When we want to braid or move the Majoranas, we maximize the energy EJ ,0(Φ0) by
setting Φ0 = 0 and we require the condition

EJ ,0(0), EJ ,k(Φk)� EM , EC , EC ,k (4.21)

where EC ,0 = e2/2C0 and EC ,k = e2/2(CB,k + CG,k). Since the Josephson term VJ

dominates over the kinetic and Majorana terms T and VM , the action S =
∫

L dt is
then minimized for φ = φk = 0 and φ̇ = φ̇k = 0. All the superconducting islands are
in phase. Under the additional condition

EJ ,0(0)

EC ,0
>

EJ ,k(Φk)

EC ,k
, (4.22)
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we can neglect quantum phase slips around the minimum φ = 0, but not around
the other minima φk = 0. The low-energy Hamiltonian HM then contains only the
Majorana operators:

Heff = −
3
∑

k=1

iUkγk1γk2 + Ω
†VMΩ

�

�

φk=φ=0 (4.23)

where

Uk = 16

�

EC,k E3
J,k

2π2

�

1
4

e−
p

8EJ,k/EC,k cos(qkπ/e), (4.24)

is the tunneling amplitude of a phase slip process from φk = 0 to φk = ±2π [37],
also reported in Eq. (1) of the main text.

There are still ten Majorana operators in the Hamiltonian (4.23), but we can
eliminate four of them by assuming that the tunnel couplings are stronger than the
Coulomb couplings: EM � Uk. To first order in perturbation theory in the ratio Uk/EM,
we then obtain the Hamiltonian used in the main text

H = −i∆1γBγE − i∆2γEγF − i∆3γEγC (4.25)

In this passage we have introduced the six Majorana operators γA,γB,γC ,γD,γE ,γF ,
given by

γA = γb1, (4.26a)

γB =
cosαg1γb2 + cosα1bγg1 + cosαbgγ11
Æ

cos2αg1 + cos2α1b + cos2αbg

, (4.26b)

γC = γ32, (4.26c)

γD = γg2, (4.26d)

γE =
cosα23γ12 + cosα31γ21 + cosα12γ31
p

cos2α23 + cos2α31 + cos2α12

, (4.26e)

γF = γ22. (4.26f)

The coupling strengths are

∆1 = U1

cosαbg
Æ

cos2αg1 + cos2α1b + cos2αbg

×
cos α23

p

cos2α12 + cos2α23 + cos2α31

, (4.27a)

∆2 = U2
cos α31

p

cos2α12 + cos2α23 + cos2α31

, (4.27b)

∆3 = U3
cos α12

p

cos2α12 + cos2α23 + cos2α31

. (4.27c)
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4.A.2 Readout

During the readout of the transmon qubit, we set Φ0 = Φmax, so that the Josephson
energy EJ ,0 is minimized, and all Φk = 0. We require then that

EJ ,k(0)

EC ,k
�

EJ ,0(Φmax)

EC ,0
. (4.28)

In physical terms, all Majorana islands are now in phase with the ground: φk = φ̇k = 0.
Neglecting quantum fluctuations and phase slips around these minima, we may re-
write the Lagrangian in a form that depends only on φ

L =
ħh2

8e2
Cφ̇2 +

ħh
2e
(q0 + en)φ̇ − EJ ,0 (1− cosφ)− Ω†VMΩ

�

�

φk=0 . (4.29)

Apart from the contribution of the term VM , the whole system can be treated as a
single hybrid top-transmon [61], with Josephson energy EJ ,0 and capacitance

C = C0 +
3
∑

k=1

CB,k. (4.30)

In the regime EJ ,0� EC = e2/2C , the energy levels of the transmon are given by [37]

εn = ε̄n − (−1)nδεniγb1γb2 cos(πq/e) , (4.31)

where

ε̄n ' −EJ ,0 +
�

n+ 1
2

�Æ

8EJ ,0EC −
EC

12
(6n2 + 6n+ 3) (4.32)

δεn = EC
24n+4

n!

√

√ 2
π

� EJ ,0

2EC

�

n
2+

3
4

e−
p

8EJ ,0/EC . (4.33)

Taking into account the two lowest levels of the transmon (n = 0, 1), we arrive at
a low-energy Hamiltonian

Htop-transmon = σz

�

1
2ħhΩ0 + iγb1γb2 δ+ cos(πq0/e)

�

+iγb1γb2 δ− cos(πq0/e) + Ω
†VMΩ

�

�

φk=φ=0 (4.34)

with definitions ħhΩ0 = ε̄1 − ε̄0, δ± = (δε1 ±δε0)/2. The Pauli matrix σz acts on the
qubit degree of freedom of the transmon. For δ±� EM , the low energy sector of this
Hamiltonian can be written in terms of γA, . . . ,γF as

H̃top-transmon = σz

�

1
2ħhΩ0 + iγAγB∆+ cos(πq0/e)

�

+ iγAγB∆− cos(πq0/e) (4.35)
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where

∆± =
δ± cosαg1

Æ

cos2αbg + cos2αg1 + cos2α1b

. (4.36)

When combined with the Jaynes-Cummings Hamiltonian describing the coupling with
the resonator, this Hamiltonian reproduces Eq. (5) of the main text. The interaction
with the microwaves will be described in detail in the next Appendix 4.B.

4.B Measurement through photon transmission

The Hamiltonian Hreadout of the main text describes the coupling between the top-
transmon and the cavity modes in the system through a Jaynes-Cummings interaction
of strength g. In particular the fermionic parity of the transmon P is a conserved
quantity in the Hamiltonian whose energy levels will directly depend on the value of
P .

We assume that the induced charge is fixed at q0 = 0 to maximize the sen-
sitivity of the read-out. The Jaynes-Cummings interaction couples the pairs of
states (|n,↑,P 〉, |n+ 1,↓,P 〉) where n and n + 1 label the number of photons in
the cavity and | ↑〉, | ↓〉 denote the two lowest energy eigenstates of the trans-
mon. Therefore, the eigenstates of Hreadout are in general superpositions of the
kind α|n,↑,P 〉+ β |n+ 1,↓,P 〉 with the exception of the uncoupled vacuum states
|0,↓,P 〉. Their eigenvalues are, respectively:

εn,±,P =
�

n+
1
2

�

ħhω0 +P∆− ±
1
2

q

(ħhδω+ 2P∆+)2 + 4ħh2 g2 (n+ 1) , (4.37)

ε0,P =P (∆− −∆+)−
1
2
ħhΩ0. (4.38)

In the dispersive regime, δω2� g2(n+ 1), the energies εn,±,P can be approximated
at the first order in g2/δω2 as:

εn,↑,P = nħhω0 +P (∆− +∆+) +
1
2
ħhΩ0 +

ħh2 g2 (n+ 1)
ħhδω+ 2P∆+

(4.39)

εn+1,↓,P = (n+ 1)ħhω0 +P (∆− −∆+)+

−
1
2
ħhΩ0 −

ħh2 g2 (n+ 1)
ħhδω+ 2P∆+

. (4.40)

The respective eigenstates are approximately |n,↑,P 〉 and |n+ 1,↓,P 〉 up to cor-
rections of the order g2/δω2. From the previous equations it is easy to obtain the
effective resonance frequency ωeff (P ) and its shift ωshift corresponding to the differ-
ent states of the topological qubit. Since we are considering the dispersive regime
with a positive detuning, Ω0 >ω0, we assume in the following that the state of the
transmon remains in the ground state | ↓〉.
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We also point out that in the Hamiltonian Hreadout we are neglecting the excited
states of the transmon, which result in a renormalization of the parameters, including
ωshift, through virtual transitions. The precise expressions for the renormalized
parameters are known [37], but are not needed here.

To perform the measurement of the topological qubit we introduce in the cav-
ity photons with a frequency which is approximately ωeff(P = +1). The photon
transmission probability T+ for the state |P = 1〉 is then larger than the probability
T− corresponding to |P = −1〉. We count the number of photons nph that passes
through the cavity during a measurement time tM . The probability distributions for
nph in each state are Poissonian, and for sufficiently long measurement time can be
approximated with normal distributions

P(nph, |P = ±1〉) = Pois(nph,λ±)≈ N(nph,λ±,
Æ

λ±) (4.41)

where λ±∝ T± tMκ and κ' 1−10 MHz is the cavity decay rate. Since T+ > T−, also
λ+ > λ−.

We decide that the measurement outcome is P = +1 if nph > x =
p

λ+λ− and
the outcome is P = −1 if nph < x . Therefore the error of the measurement outcome
is given by the following:

εom =
1
2

∫ x

−∞

dn
p

2πλ+
exp
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−(n−λ+)2

2λ+

�

+

+
1
2
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p

2πλ−
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2λ−

�

. (4.42)

Since λ+, λ−� 1

εom '
e− x̄2

2 x̄
p
π

, (4.43)

where

x̄ =

p

λ+ −
p

λ−p
2

. (4.44)

We notice that the probability of a measurement error decreases exponentially with
κtM . On the other hand, the probability of storage error, namely the chance that
the topological qubit will decay during a time interval tM , increases as ∆min tM/ħh.
Because ∆min/κ can be made exponentially small in macroscopic control parameters,
exponentially small measurement errors can be achieved.

4.C Low energy Hamiltonian for a Random Access Majo-
rana Memory architecture

We will now describe an effective Hamiltonian for RAMM architecture hosting N
topological qubits, such as the one shown in Fig. 3 of the main text. Fig. 4.7a shows
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Figure 4.7: Panel (a): Part of the RAMM circuit showing two fully-controllable topo-
logical qubits. Compensating fluxes are included between the topological qubits in
order that the gauge-invariant phase differences in the different topological qubits
are independent of each other. Panel (b): Topological qubit formed by the six Majo-
rana modes. The five couplings ∆1, . . . ,∆5, see Eq. (4.49e), can all be individually
controlled by the fluxes Φ1, . . . ,Φ5. The parity of the two Majoranas coupled by ∆1
can be measured, as explained in Appendix 4.C.2.

an equivalent setup, including only two topological qubits. By including compensating
fluxes

Φcomp,n = −
5
∑

k=1

Φn,k (4.45)

after each topological qubit, the gauge invariant phases in each topological qubit are
independent of each other. The single-electron Aharonov-Bohm phase-shifts αn,kk′ at
the tunnel junction between islands k and k′ of the n-th qubit are then given by

αn,12 = e(Φ0 +Φn,1 +Φn,2)/2ħh
αn,25 = e(Φn,2 + 2Φn,3 + 2Φn,4 +Φn,5)/2ħh
αn,51 = −e(Φ0 +Φn,1 + 2Φn,2 + 2Φn,3

+ 2Φn,4 +Φn,5)/2ħh
αn,23 = e(Φn,2 +Φn,3)/2ħh
αn,34 = e(Φn,3 +Φn,4)/2ħh
αn,42 = −e(Φn,2 + 2Φn,3 +Φn,4)/2ħh
αn,4g = eΦn,4/2ħh

αn,g5 = eΦn,5/2ħh

αn,54 = −e(Φn,4 +Φn,5)/2ħh. (4.46)

Here, the subscript g denotes the tunnel junctions to the ground island. By starting
from a Lagrangian and following a similar approach to that of Appendix 4.A, we find
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that the low-energy Hamiltonian is described by six Majorana modes

γn,A = γn,32,

γn,B =
cosαn,34γn,22 + cosαn,42γn,31 + cosαn,23γn,41

Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

,

γn,C =
cosαn,g5γn,42 + cosαn,54γn,g1 + cosαn,4gγn,52

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

,

γn,D = γn,g2,

γn,E =
cosαn,25γn,12 + cosαn,51γn,21 + cosαn,12γn,51

Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

,

γn,F = γn,11 . (4.47)

that form the triangular loop network of Fig. 4.7b.

4.C.1 Low-energy Hamiltonian in braiding configuration

In the braiding configuration Φ0 = 0, and the low-energy Hamiltonian is, for each
qubit n,

H(n)qubit =− i∆n,1γFγE − i∆n,2γEγB − i∆n,3γBγA

− i∆n,4γBγC − i∆n,5γEγC , (4.48)

The Majorana γD is situated on the ground island and stays decoupled from the rest
of the system. The long-range Coulomb couplings ∆n,k are

∆n,1 = Un,1

cosαn,25
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

, (4.49a)

∆n,2 = Un,2

cosαn,34
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

×
cosαn,51

Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

, (4.49b)

∆n,3 = Un,3

cosαn,42
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

, (4.49c)
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∆n,4 = Un,4

cosαn,23
Æ

cos2αn,23 + cos2αn,34 + cos2αn,42

×
cosαn,g5

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

, (4.49d)

∆n,5 = Un,5

cosαn,12
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

×
cosαn,4g

Æ

cos2αn,4g + cos2αn,g5 + cos2αn,54

. (4.49e)

For computational purposes, one should be careful that the ∆n,k do not change signs
during the variation of the magnetic fluxes that takes place during a computational
process. This may happen if some of the αn,kk′ in Eq. (4.46) cross the value π/2.
However, during any computation, maximally two of the fluxes are simultaneously
turned on. Therefore, it is always possible to adapt the signs of the magnetic fluxes
in such a way that the fluxes can be tuned in a range |Φn,k| = [0,Φmax], where
Φmax < h/4e. We also notice that the signs of the couplings ∆n,k in Eq. (4.48) depend
on the signs of the microscopic tunnel couplings EM . These signs will determine the
chirality of the braiding of the Majorana modes in each T-junction.

4.C.2 Low-energy Hamiltonian in the readout configuration

During the readout, we set Φ0 = Φmax and all other fluxes Φn,k = 0. Following the same
reasoning of Appendix 4.A.2, we set φn,1 = φ and φn,k 6=1 = 0 for each topological
qubit. The Lagrangian for the RAMM becomes

L =
ħh

8e2
Cφ̇2 +

ħh
2e

�

qtot +
N
∑

n=1

e
�

1
2 −

1
2 iγn,11γn,12

�

�

φ̇

− EJ ,0(1− cosφ)−
N
∑

n=1

Ω†
nV (n)M Ωn

�

�

�

φn,k=0
(4.50)

where V (n)M describes the Majorana-Josephson potential for the three T-junctions in
each topological qubit n,

Ωn =
5
∏

k=1

ei(1−iγn,k1γn,k2)φk/4, (4.51)

C = C0 +
N
∑

n=1

5
∑

k=2

CB,k +
N
∑

n=1

CG,1 (4.52)

and

qtot = q0 +
N
∑

n=1

qn,1. (4.53)
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The low-energy Hamiltonian of the system can now be derived analogously as in
Appendix 4.A.2. By using the equality

cos

�

πqtot/e+π
N
∑

n=1

�

1
2 −

1
2 iγn,11γn,12

�

�

=
N
∏

n=1

iγn,11γn,12 cos (πqtot/e) , (4.54)

we find

H̃RAMM = σz

�

1
2ħhΩ0 +P ∆+ cos(πqtot/e)

�

+P ∆− cos(πqtot/e) (4.55)

where P is now the joint parity operator of the Majorana modes at the measurement
islands

P =
N
∏

n=1

iγn,Fγn,E . (4.56)

The couplings ∆± decrease exponentially with the number of topological qubits
involved in a single RAMM register

∆± = δ±
N
∏

n=1

cosαn,25
Æ

cos2αn,12 + cos2αn,25 + cos2αn,51

. (4.57)

In the design of a RAMM register, shown in Fig. 3b in the main text, the frequency shift
ωshift is decreased by all topological qubits, including the ones which are not involved
in a given multi-qubit measurement. This limitation of RAMM can be relaxed in a more
optimal design, where additional tunable Josephson junctions are introduced from the
measurement island to the ground. In this case only the topological qubits involved in
the given measurement contribute to the decrease of frequency shift. The expense one
needs to pay for introducing new Josephson junctions is that the gauge invariant fluxes
have more complicated magnetic flux dependence and several Josephson couplings
need be simultaneously controlled when the Coulomb couplings are turned on. We
point out that although we have explicitly considered the control of the Coulomb
couplings with the help of magnetic fluxes, at least some of the macroscopic control
parameters EJ ,k/EC ,k of the superconducting islands can alternatively be controlled
with gates.

4.D Universal gates for quantum computation

The RAMM setup allows us to perform universal quantum computation in a fault-
tolerant way. To show this, it is necessary to implement a universal basis of quantum
gates using only braiding operators and multi-qubit measurements as building blocks,
thus ensuring the possibility of obtaining arbitrary multi-qubit gates with errors that
are exponentially small in the macroscopically tunable parameters. One possible set
of gates allowing for universal quantum computation are the single-qubit Clifford
gates, the CNOT gate and the π/8 phase gate. In the following we explain how to
realize these gates in a RAMM architecture.
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Figure 4.8: Flux-controlled sequences of operations that realize single-qubit Clifford
gates and projective measurement on the Pauli basis.

4.D.1 Notation

Each topological qubit n has four computational Majoranas γn,A,γn,B,γn,C ,γn,D and
two ancillary Majoranas γn,E ,γn,F , which are needed to move or braid the computa-
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tional ones. The Pauli matrices for each qubit can be chosen as

σn,z = iγn,Aγn,B (4.58a)

σn,x = iγn,Bγn,C (4.58b)

σn,y = iγn,Aγn,C . (4.58c)

4.D.2 Single-qubit operations

Projective measurements on the Pauli basis and a set of Clifford gates can be obtained
by manipulating the positions of the four computational Majorana modes in the
triangular loop geometry. The positions of the computational Majoranas γn,A,γn,B,γn,C
can be changed using the ancillary Majorana γn,E ,γn,F , which remain strongly coupled
throughout the process. The corresponding qubit transformation can be derived either
by a direct computation of the non-Abelian Berry phase acquired by the ground state
wave function of the Hamiltonian (4.48), or by following the evolution of the Majorana
operators in the Heisenberg picture, as explained in detail in Ref. [86, 101].

Exchanging the positions of γn,A,γn,B (as represented in Fig. 4.8a) or γn,B and γn,C
(Fig. 4.8b) respectively yields the braiding gates

Uz = e−i
π
4 σz , (4.59)

Ux = e−i
π
4 σx . (4.60)

The chirality of the braiding operations (i.e., the sign of the exponent in Uz ,Ux)
is determined by the signs of the couplings of the qubit Hamiltonian, Eq. (4.48).
Physically, the sign depends on the induced charges on the Majorana islands, the
values of the fluxes and the signs of the microscopic tunnel couplings ±EM at the
T-junctions. Here, we have made a specific choice of chirality. Another possibility of
chirality would not be harmful as long as they remain constant during the computation
processes.

A combination of these two operations yields the quantum gate corresponding to
the braiding of γA and γC ,

Uy =U †
x UzUx = e−i

π
4 σy . (4.61)

When combined with the π/8 phase gate described in Appendix 4.D.4, these quantum
gates are sufficient to realize any single-qubit rotation.

To realize projective measurements on σn,z (or σn,x), we first need to bring the
two Majorana modes γn,A,γn,B (or γn,B,γn,C) on the island connected to the bus, the
one occupied by γn,E ,γn,F in Fig. 4.7a. Then we measure the fermion parity operator
(4.56), where now the two Majoranas γn,E ,γn,F are replaced by the computational
ones. For instance, in the case of a measurement of σn,z , we would measure the
operator

P = iγn,Aγn,B

∏

k 6=n

iγk,Eγk,F ≡ σn,z , (4.62)
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since the parity of the ancillary Majorana of each topological qubit is preserved,
Pk,EF = iγk,Eγk,F = +1. In the end, we bring the two computational Majoranas back
to their original place. The whole operation, represented in Fig. 4.8c and Fig. 4.8d
for σn,z and σn,x respectively, corresponds to the application of the projectors

Πz,n(p) =
1
2

�

1+ pσn,z

�

, (4.63a)

Πx ,n(p) =
1
2

�

1+ pσn,x

�

(4.63b)

to the wave function of the N topological qubits. Here, p = ±1 is the outcome of the
measurement. Finally, a projective measurement on σn,y is obtained as

Πy,n(p) =
1
2

�

1+ pσn,y

�

=U †
x Πz,n(p)Ux . (4.64)

Multi-qubit measurements on the Pauli basis are a straightforward extension of these
projective measurements where Majorana modes on different topological qubits are
moved according to Fig. 4.8 to achieve the required basis.

4.D.3 CNOT gate

Bravyi and Kitaev have demonstrated how to realize the CNOT gate with an algorithm
that is based on the following expansion [92, 93]:

exp
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4
γ0γ1γ2γ3

�

|ψ〉= 2eiθ exp
�π

4
(1− p1p2)γ0γ1

�

exp
�π

4
(1− p1p2)γ2γ3

�

×

× exp
�

−
π

4
p2γ2γ5

� 1
2
(1+ p2iγ2γ4)

1
2
(1− p1γ0γ1γ3γ4)|ψ〉, (4.65)

where θ is an unimportant overall phase, γi (i = 0, ..., 5) are Majorana operators and
pi = ±1 are measurements outcomes. The Majoranas γ4 and γ5 are used as ancillas
and the wave function is initialized in state (γ4+ iγ5)|ψ〉 = 0. Importantly, the Bravyi-
Kitaev CNOT algorithm is based only on measurements and braidings of Majorana
modes. However, as one can see from Eq. (4.65), its implementation requires a pair
of ancillary Majoranas that must be coupled to two computational Majoranas in the
target qubit, but must initially be completely independent on them. Due to the parity
constraint in each topological qubit, this is impossible in the RAMM setup unless we
extend the qubit layout shown in Fig. 3a in the main text. Rather than modifying the
RAMM setup to account for these new ancillas, we propose an alternative version of
the CNOT gate, which involves three topological qubits. This alternative version of
the CNOT gate can be implemented with the quantum circuit shown in Fig. 4a in the
main text.

In this circuit the role of the first measurement, with result p1, and of the gate R1
is to initialize the third ancillary qubit in the state |0〉a. After that, a CNOT gate with
q1 as a control and q2 as a target gate is obtained as:

1
2

ei π4 p2 p3(σ1,z+σ2,x ) e−i π4 p3σa,x
�

1+ p3σa,y

�

×

×
�

1+ p2σ1,zσ2,xσa,x

�

|q1, q2, 0〉= eiθ |q1, q1 ⊕ q2, 0〉. (4.66)
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In terms of Majorana operators, this way of representing the CNOT relies on the
following equality
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(1− ip2γ1Aγ1Bγ2Bγ2Cγ3Bγ3C)|ψ〉12|0〉a, (4.67)

which can be considered an extension of Kitaev and Bravyi result. In this case the
applied projections are all on products of parity operators from different qubits, which
can be reduced to the form (4.56) as explained above (see Fig. 4.8); all the other
operators are braiding operators within single topological qubits.

4.D.4 π/8 Phase Gate

To complete the set of universal single-qubit gates we must implement the π/8 phase
gate

T =

�

1 0
0 ei π4

�

, (4.68)

with an accuracy comparable to the other gates.
For this purpose the best techniques are based on distillation protocols [62]. The

basic idea of the distillation procedure is the use of several noisy qubits to prepare one
qubit in a particular state, |A〉=

�

|0〉+ eiπ/4 |1〉
�

/
p

2. A single ancilla qubit prepared
in the state |A〉 is enough to implement the π/8 gate using the circuit shown in Fig. 4b
in the main text.

The distillation protocol of Ref. [62] for the state |A〉 assumes that it is possible
to prepare several noisy copies of |A〉 with an average initial error εi < 0.14. In
the RAMM setup this can be achieved by coupling the Majorana modes to break the
ground state degeneracy [61]. A single distillation step is performed starting from 15
noisy qubits. Neglecting the errors in all the Clifford gates and measurements of the
distillation process, the error of the final state after one iteration is approximately

εdist ≈ 35ε3
i (4.69)

in the limit of small εi .
Since 14 stabilizer multi-qubit measurements and 15 CNOT gates are involved in

the distillation-decoding procedure, the error in theπ/8 gate is approximately an order
of magnitude larger than the errors occurring in braiding or in a single multi-qubit
measurement. Moreover, assuming an achievable initial error εi = 0.01 [61] only a
single distillation step involving 15 noisy ancillas is needed to achieve a final error of
the same order of measurement and gate errors, estimated as ∆min/∆max ∼ 10−5. If
the initial errors are larger or the gate errors are smaller, more distillation steps and a
larger number of ancillas are preferable. Given the amount of qubits required, it is
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realistic to imagine that the distillation procedure will take place in one (or several)
dedicated RAMM registers, so that it can happen in parallel with all other computation
processes. In this way, whenever a π/8 phase gate is needed in the computation, it
will only be necessary to teleport the distilled state |A〉 from the distillation register to
the computational one.

We also note that alternatively to the π/8 gate, the universality can also be
obtained with the help of π/12 gate. This gate can be distilled with fewer noisy
copies of the relevant state and a single distillation step also requires less multi-qubit
measurements [62]. Moreover, the distillation can be improved by exploiting more
efficient error correction codes: for example in Ref. [102] a different procedure
is proposed that enables to obtain two distilled states |A〉 out of 10 noisy ancillas,
providing a better scaling and threshold for the initial errors. Finally we must mention
that the distillation techniques in Ref. [62] require not only multi-qubit measurements
and braiding gates, but also a non-unitary dephasing process. However, it was shown
in Ref. [103] that the dephasing process is not necessarily needed for the convergence
of the noisy states to a high-fidelity final state.

4.E Computation of the error thresholds

Multi-qubit measurements give significant advantages in quantum error correction, as
compared to the usual schemes where only single- and two-qubit operations are avail-
able. The advantages obtained are twofold. Firstly, multi-qubit measurements allow
to significantly increase error thresholds. Secondly, the overhead in computational
resources can be substantially decreased.

Quantum error correction schemes are generally based on measurements of multi-
qubit operators, usually referred to as stabilizer generators gi [1]. Their outcomes
give error syndromes, βi , which uniquely characterize the errors and the qubits where
they have occurred. Depending on the error correction scheme, a different number
of errors can be corrected.

For simplicity, we consider the Steane 7-qubit quantum code [98], which encodes
a logical qubit into seven physical qubits and can recover an arbitrary error occurring
in any of the physical qubits. Its stabilizer generators are g1 = X1X5X6X7, g2 =
X2X4X6X7, g3 = X3X4X5X6, g4 = Z1Z3Z4Z7, g5 = Z2Z3Z5Z7, and g6 = Z1Z2Z3Z6. An
error detected on the i-th qubit can be corrected by implementing a X i , Zi or X i Z j
gate, depending on the type of the error.

In order to quantitatively compare the advantages obtained with the help of
multi-qubit measurements to conventional schemes, we calculate the error threshold
for a quantum memory. The error correction circuit consists of periodic syndrome
measurements and recoveries, interrupted by a time-interval of N time steps. Time
steps are defined so that a single gate (or measurement) can be performed within one
time step. Our error model consists of storage errors, gate errors, data errors during
the measurement and errors in the measurement outcomes. The corresponding error
probabilities are εst, εg, εdm, and εom, respectively. All the errors are considered inde-
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Figure 4.9: Measurement of the six generators of the Steane code. This circuit can be
realized directly in a RAMM architecture.

pendent. In order to obtain the error threshold, we need to calculate the probability
of failure happening during a single period of the error correction circuit, assuming
that no failure has happened before that point. To keep the calculation tractable, we
assume that two errors in different qubits always result in failure (independently on
the type of errors), and that this happens also when one of the errors occurs during the
syndrome-recovery part of the circuit and the other error has happened earlier in the
circuit. Moreover, we assume that the errors occurring during the syndrome-recovery
part of the circuit never get corrected by the same syndrome-recovery part of the
circuit. This way we obtain that the probability of failure during a single period of
the circuit is:

P(failure, N)≈ Pom(2) + Pom(1)
∑

i

�

2Pi,sr + Pi,N

�

+

+
∑

i< j

�

�

2Pi,sr + Pi,N

��

2P j,sr + P j,N

�

− Pi,srP j,sr

�

. (4.70)

Here Pom(m) is the probability of having m errors in the measurement outcomes,
Pi,sr is the probability of obtaining single error in qubit i during syndrome measure-
ment and recovery, and Pi,N = Nεst is the probability of obtaining single error in qubit
i during the N time steps between the successive error detections and recoveries.

To estimate the error threshold we minimize the probability of failure per time
step,

pf =min
N>0
{P(failure, N)/(N + N0)}, (4.71)
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Figure 4.10: Quantum circuit to measure the generators of the Steane code in a
traditional architecture that allows only for single- and two-qubit gates, and single-
qubit measurements. Each of the six generator measurements is realized using four
CNOT gates with an ancilla, which is in turn encoded using four physical qubits to
avoid error propagation. This is the circuit we used to compare the error threshold
with and without multi-qubit measurements.
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where N0 is the number of time steps required to perform the syndrome measurements
and the recovery. The quantum error correction threshold is obtained by demanding
that pf = εst. Because pf ∝ ε2

st, this equation determines a threshold value εth
st . If

εst < ε
th
st , the errors can be corrected by successively applying the scheme described

above. For this kind of concatenated codes, the failure probability scales with the
number of levels of encoding k as

pf,k = ε
th
st (εst/ε

th
st )

2k
, (4.72)

whereas the number of physical qubits needed to construct the logical qubits scales as
7k. In addition to the physical qubits needed for construction of the logical qubits, a
large number of ancillas are typically needed to perform the syndrome measurements.
These ancillas constitute the overhead in the required computational resources.

4.E.1 Realization of the Steane code with the RAMM

In the case of the RAMM, the syndromes can be directly measured. For simplicity, we
assume that one single-qubit gate is always performed during the recovery part of the
circuit. Considering that each qubit is on average involved in 24/7 measurements,
the total number of time-steps required to perform the syndrome measurements is 6,
and the circuit contains 6 measurements, we obtain

Pom(1) = 6εom , (4.73a)

Pom(2) =
1
2 · 6 · 5ε

2
om = 15ε2

om , (4.73b)

Psr =
24
7 εdm +

24
7 εst +

1
7εg . (4.73c)

These values allow to compute explicitly P(failure, N) for the RAMM via Eq. (4.70).

4.E.2 Steane’s code without multi-qubit measurements

We want to compare the error threshold in RAMM with a reference system, where
multi-qubit measurements are not available. The syndrome measurements are then
performed with the help of ancillas. In particular, the fault-tolerant realization of the
six syndrome measurements requires a total of 24 ancillas, each quadruplet being
used for measuring one of the syndromes [4] (see Fig. 4.10).

Each syndrome is measured by first initializing the ancilla quadruplet in a Shor
state, which guarantees that measuring the four ancillas will not destroy the state
encoded in the logical qubit. The second step consists of encoding the syndrome
into the quadruplet, which requires performing a total of four CNOT gates between
different ancillas and physical qubits. Since these involve independent qubit pairs, we
assume that these four gates are performed simultaneously. Additionally, we assume
that the syndrome is measured immediately after the CNOT gates and the initialization
of the ancilla quadruplet takes place already before the syndrome measurements.
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Because errors occurring in the ancillas essentially have the same effect as the errors
in the measurement outcomes, we include all possible ancilla errors in Pom(m).

The initialization of the ancillas to a Shor state is explained in Ref. [4]. It involves
7 time steps with 5 CNOT and 5 Hadamard gates. Moreover, a measurement is
required to confirm that the Shor state was successfully encoded, otherwise the
initialization process is repeated. We only consider gate and storage errors occurring
in the initialization of the four ancillas. Each of the ancillas is acted on with 13/4
gates on average.

The syndrome measurements involve 9 time steps and each of the 7 physical
qubits is acted upon with 38/7 gates on average, while recovery part only involves
one single-qubit gate. Finally, we need to take into account the errors occurring in
any of the 24 ancillas during the syndrome block, which contribute to Pom. This way
we obtain

Pom(1) = 24 (Pinit + Psyndrome) , (4.74a)

Pom(2) =
24×23

2 (Pinit + Psyndrome)
2 , (4.74b)

Psr =
38
7 εg +

25
7 εst +

1
7εg +

6
7εst , (4.74c)

with

Pinit = εom + εdm , (4.75a)

Psyndrome =
13
4 εg +

15
4 εst + εg + εom +

72
24εst. (4.75b)

These values allow to compute P(failure, N) in the absence of multi-qubit measure-
ments.

4.E.3 Comparison of the error thresholds for the quantum memory

We minimize the probability of failure per time step with respect to N for both imple-
mentations of the error correction scheme. We characterize the relative probabilities
of errors by fixing the ratios εg/εst, εdm/εst and εom/εst, and calculate the error thresh-
old for εst. Results are shown in Fig. 4.11. We find that for εg = εdm = εom = εst the
error threshold of the RAMM is approximately an order of magnitude larger than the
error threshold of a reference architecture that can only perform single- and two-qubit
operations. The ratio of the error thresholds for the different architectures becomes
smaller with increasing measurement errors (larger ratios εdm/εst and εom/εst), be-
cause it becomes favorable to increase the waiting time between the consequent error
correction steps; but even for εg = εdm = εom = 10εst we still find that the RAMM has
an error threshold five times larger than the reference architecture.

4.E.4 Comparison of the error threshold in quantum computation

To estimate the error threshold in quantum computation, we consider an algorithm
where each qubit participates in a two-qubit gate with a randomly chosen other qubit
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Figure 4.11: Ratio of the Steane code error thresholds with and without multi-qubit
measurements as a function of the ratio between gate and storage errors, εg/εst.
The solid, dashed, dotted, and dash-dotted curves correspond to ratios εom/εst =
εdm/εst = 1,2, 5, and 10, respectively.

Figure 4.12: Ratio of the computational error thresholds with and without multi-qubit
measurements as a function of M . Here ε = εom = εdm = εg, with ε/εst = 1 (solid), 5
(dashed), and 10 (dotted). The range of M starts from 11, because of the condition
M − N0 − 1≥ 0.

after every M > N0 time steps. We assume that the syndrome and recovery steps
are performed once after each two-qubit gate. To estimate the error threshold we
calculate the probability of failure in any one of the logical qubits during the M -step
period. To keep the calculation tractable, we consider that all the errors appearing
in a logical qubit during the syndrome and recovery steps just before the two-qubit
gate propagate to the other qubit. Notice that due to the special construction of the
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Steane code, the error occurring in ith physical qubit in one of the logical qubits will
affect only the ith physical qubit in the other logical qubit. As before, we assume that
two errors in a single logical qubit always result in failure. This way, we find

P(failure, M)≈ Pom(2) + Pom(1)
∑

i

�

3Pi,sr + εg + Pi,M−N0−1

�

+
∑

i< j

�

3Pi,sr + εg + Pi,M−N0−1

��

3P j,sr + εg + P j,M−N0−1

�

− 2
∑

i< j

Pi,srP j,sr , (4.76)

which we compute for both architectures using Eqs. (4.73), (4.74). The probability
of failure per time step is then

pf = P(failure, M)/M , (4.77)

and the threshold for quantum error correction can be determined by comparing this
probability to the probability of failure without error correction. Results are shown
in Fig. 4.12. Similarly as in the case of quantum memory, we find that the error
threshold for performing the quantum computation can be an order of magnitude
larger for the RAMM.

4.F Characteristic energy scales of the problem

We need to satisfy the following inequalities

EJ ,k,ħhΩk,∆g > EJ ,0,ħhΩ0,ħhω0� EM ,∆max� kB T,∆min, (4.78)

where ħhΩk ≈
p

8EJ ,k EC ,k is the plasma frequency of the small islands and ∆g ∼
100 GHz is the induced gap in the nanowire. The condition EM ,∆max � kB T is
required to guarantee a relaxation to the ground state.

In the earlier sections we assumed that EM � Uk in order to turn our analytical
calculations more transparent, but in view of the topological nature of the braiding
our results must remain valid also when EM and ∆max are comparable to each other.
This is easy to understand, since independently on the ratio of Uk and EM as long
as the ground state manifold remains isolated from the excited states the adiabatic
time-evolution operator for the braiding cycle takes the form of Eq. (4.5), because of
the topological nature of the operation.

Additionally, during the measurement we need to satisfy the inequalities

EM �∆+, (4.79)

and
ωshift > κ, (4.80)
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where κ∼ 1− 10 MHz describes the characteristic cavity and qubit decay rates. The
typical coupling between the microwaves and transmon is given by g/2π∼ 100 MHz.

The first set of inequalities can be satisfied taking EJ ,0,ħhΩ0,ħhω0 ∼ 100 GHz,
EM ,∆max ∼ 10 GHz, and kB T ∼ 1 GHz. The condition ∆max ∼ 10 GHz can be
satisfied by having very large plasma frequency Ωk or alternatively by tuning the
EJ ,k(Φmax)/EC ,k ratio smaller than 10, so that the superconducting islands do not stay
in the transmon regime. Much larger Coulomb couplings can be achieved in this way,
although the asymptotic expression given by Eq. (4.1) is not valid anymore.

Importantly, the insensitivity of the couplings ∆k to noise is needed only when
the couplings are turned off. Since the topological protection of the braiding result
only allows errors of order ∆min/∆max, the exponential smallness of ∆min guarantees
that the result of the braiding cycle is not sensitive to low-frequency charge noise,
which only affects the couplings which are turned on. Furthermore, by assuming that
EJ ,0/EC ,0 = 10 during the measurement, we obtain ∆+ ∼ 10−2 EJ ,0 from Eq. (4.33),
consistent with the chain of inequalities. The inequality (4.80) can be satisfied by
tuning δω and does not contradict with the requirement that we are working in the
dispersive limit. Finally, as we have just remarked, the errors in the braiding are
on the order ∆min/∆max, which can be made exponentially small. The braiding and
measurement should be performed fast in comparison to ħh/∆min and the characteristic
quasiparticle tunneling time, which is on the order of milliseconds [104, 105]. In
order that ∆min is limited by the charging energy, we need ∆g exp(−L/ξ) < ∆min,
where L is the length of the wire and ξ is the Majorana decay length in the wire.
Assuming that∆g ∼ EJ ,k, this means that L ≈ 20ξ, so that L should be at least several
microns.
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Chapter 5

Effects of disorder on
Coulomb-assisted braiding of
Majorana modes

Majorana zero-modes appear at domain walls between the topologically distinct
phases that characterize one-dimensional superconductors [26]. The search for
these quasiparticles is motivated by their non-Abelian statistics [11, 14, 21, 27, 106]
and the perspective they offer in quantum computation [6, 107]. The topologically
nontrivial phase can be realized with the help of an effective p-wave pairing in a
spin-orbit coupled nanowire, proximity coupled to a superconductor [45, 46], and
first signatures of Majorana modes have been reported in these setups[74, 77]. Other
systems supporting Majorana modes include the edge of quantum spin Hall insulators
[42, 108] and chains of magnetic atoms [109–114], with recent experimental progress
in both directions [115–117]. After the first proposals for braiding protocols in
nanowire networks [21, 63, 67, 84, 86, 107], there is a need for a detailed analysis
of the limitations which might hinder the braiding operation [72, 118–120] or cause
decoherence of Majorana qubits [121–127].

According to Anderson’s theorem, electrostatic disorder has little influence in
s-wave superconductors [128], but in unconventional superconductors it can induce
sub-gap states at arbitrarily low energies [129]. Indeed, electrostatic disorder is
an unavoidable feature in experimental setups, and consequently much attention
has been devoted to its impact on Majoranas [129–146]. Importantly, Majorana end
modes are found to be surprisingly robust against strong disorder despite the presence
of localized low-energy bound states [144].

It is therefore important to investigate what happens to their non-Abelian statistics
in the presence of disorder. To understand the potential problem, let us consider a
disorder potential inducing two weakly coupled accidental Majorana modes, pinned to



76 Chapter 5. Effects of disorder on braiding of Majorana modes

Figure 5.1: (Color online) Detrimental effect of accidental Majorana modes (red) on a
braiding manipulation: when a domain wall binding a computational Majorana mode
(blue) approaches an accidental mode, these two Majoranas are fused. Quantum
information is lost and the braiding protocol may proceed in a faulty manner, involving
another accidental Majorana.

a particular location within the wire1. When a domain wall binding a computational
Majorana moves towards an accidental one, the two modes couple strongly and
disappear into the continuum of states above the energy gap (see Fig. 5.1). This
fusion event leads to a loss of the information stored in the computational Majoranas.

Non-Abelian Majorana statistics can also be demonstrated using superconducting
circuits [61, 84, 107] implementing an interaction-based braiding protocol [147, 148].
In these hybrid Majorana-transmon qubit devices, the braiding and readout protocols
are realized by controlling Coulomb couplings between the Majoranas. In this Letter,
we show that these protocols are efficiently realized even in the presence of disorder.
We identify the dangerous physical processes and show that the braiding errors are
small if the couplings of the computational Majoranas to the accidental modes are
much weaker than the maximum Coulomb coupling, leaving a large parameter space
available for a braiding experiment.

The structure of this chapter is as follows. We start in Section 5.1 by shortly
reviewing the transmon circuit for the Coulomb-assisted braiding protocol, which was
introduced in Ref. [107], and by presenting an effective model for the setup which
captures the presence of disorder in the nanowries. In Sec. 5.2 we study numerically
the time-evolution of the system during the flux-controlled protocol, and evaluate the
effects of disorder on the braiding as well as on the initialization and measurement.
To better streamline the presentation of results, we include some of the material as
Appendices. We conclude with a few remarks in Sec. 5.3.

1If we consider for example a sufficiently strong long-range correlated disorder, there will be accidental
domain walls within the wire, giving rise to spatially well-separated Majorana modes with an exponentially
weak coupling. Alternatively, we may consider a strong impurity within the wire, which pins a pair of zero
energy Majoranas as shown in Ref. [140].
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Figure 5.2: Transmon circuit for demonstration of non-Abelian statistics [107]. Two
large superconducting islands (bus and ground) are used in the readout of the
topological qubit and three smaller superconducting islands are needed for braiding.
The nanowires form a π-shaped circuit hosting six computational Majoranas, ΓA, ΓB,...,
ΓF . A strong disorder can induce accidental Majorana modes γk,n, where k labels the
island and n the accidental Majorana mode within the island. These accidental modes
are coupled to each other with couplings δk,n, and the accidental Majoranas closest
to the end of the wires are coupled to the corresponding end states with εk1 and εk2.

5.1 Braiding protocol in the presence of disorder

To demonstrate non-Abelian statistics it is necessary to read out a topological qubit,
described by the parity of two Majoranas ΓA and ΓB, and to braid one of them, ΓB, with
another one, ΓC . This task can be performed in a minimal fashion using a π-shaped
nanowire network in a transmon circuit, following a flux-controlled braiding protocol
[107]. Although we consider Majoranas at the ends of nanowires, our results are
applicable also to quantum spin Hall systems, where circuits can be constructed by
using constrictions [108].

The circuit for braiding and readout is shown in Fig. 5.2, and involves nanowires
forming a π-shaped network hosting six computational Majoranas, ΓA, ΓB,..., ΓF . The
couplings between them can be controlled via the flux-dependence of the Joseph-
son energy, EJ ,k(Φk) = EJ ,k(0) cos(eΦk/ħh), of each superconducting island, k. The
charging energies EC ,k of the islands result in Coulomb couplings∆k(Φk) between the
Majoranas, which, for EJ ,k(Φk)� EC ,k, have an exponential dependence ∆k(Φk)∝
exp

�

−
Æ

8EJ ,k(Φk)/EC ,k

�

[61, 84], that allows to turn them on (∆k =∆max) and off
(∆k =∆min)with fluxes. A non-demolition readout of the topological qubit is possible,
because the plasma frequency of the transmon formed by the bus and ground islands
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(a) (b)

Figure 5.3: Two possible paths of variations of Coulomb couplings resulting in braiding
of Majorana zero-modes ΓB and ΓC . The braiding errors caused by the accidental
modes depend on the braiding path (see Fig. 5.4).

(see Fig. 5.2) can be tuned close to the resonance frequency of the transmission line
resonator. Once the magnetic flux Φ0 is turned on, the coupling between photons
and the transmon qubit renormalizes the resonance frequency of the cavity, so that
it is conditioned on the fermion parity of ΓA and ΓB [61, 107]. On the other hand,
the Majorana modes ΓB and ΓC can be braided with the help of ancillas ΓE and ΓF ,
by varying the Coulomb couplings ∆k along a specific type of closed path [84] (see
Fig. 5.3). The corresponding operation on the topological qubit isU = exp(isπσx/4)
[27], where s describes the braiding chirality.

As we already pointed out, strong disorder induces accidental low-energy bound
states in unconventional superconductors. These states can be described using Majo-
rana operators γk,n, where k labels the island and n the accidental Majorana modes
within it. We assume that neighboring Majoranas interact with random couplings. In
particular, the accidental Majoranas closest to the end of each wire are coupled to the
corresponding Γ end modes with couplings εk1 and εk2 (see Fig. 5.2). Unlike in the
clean case, the Coulomb interaction involves the total fermion parity of each island,
so braiding should be performed by controlling many-body interactions between Ma-
joranas, instead of the simple pairwise ones considered in Refs. [84, 107]. Similarly,
the measurement is now sensitive to the total fermion parity of the bus island.

During the braiding procedure we set Φ0 = 0 so that the charging energy of the
bus island can be neglected. The low-energy Hamiltonian is

Hbr = HC +Hδ +Hε (5.1a)

HC = i∆1ΓBΠ1ΓE + i∆2ΓEΠ2ΓF + i∆3ΓEΠ3ΓC , (5.1b)

Hδ = i
∑

k,n

δk,n γk,nγk,n+1, (5.1c)

Hε = iεb1ΓAγb,1 + iεg1ΓBγg,1 + iε11ΓBγ1,1 + iε21ΓEγ2,1

+ iε31ΓEγ3,1 + iεb2γb,Nb
ΓB + iεg2γg,Ng

ΓD

+ iε12γ1,N1
ΓE + iε22γ2,N2

ΓF + iε32γ3,N3
ΓC , (5.1d)
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where HC describes the Coulomb couplings between the Majoranas, and Hδ, Hε
describe the tunnel couplings of the accidental Majoranas to each other, and to the
computational ones, respectively. We have denoted the total parity of the accidental
Majoranas in island k with Πk = e−iπNk/4

∏Nk
n=1 γk,n.

If Hε = 0, then [Hbr,Πk] = 0, which means that the computational and accidental
Majoranas form two decoupled quantum systems. In a sector of the eigenstates of
Πk with eigenvalues pk, HC ({pk}) = ip1∆1ΓBΓE + ip2∆2ΓEΓF + ip3∆3ΓEΓC , which was
considered in Refs. [84, 107]. The Hilbert space is divided into ground and excited
state manifolds, separated by an energy 2E0, where E0 =

q

∆2
1 +∆

2
2 +∆

2
3 ≥ ∆max.

Because the braiding is performed adiabatically with respect to ∆max, the transitions
between these manifolds can be neglected and the time-evolution operator within
each parity sector is

U0({pk}, panc) = eis({pk},panc)πσx/4
∏

i

Uint,i({pk}, panc), (5.2)

where Uint,i({pk}, panc) describes the internal time-evolution of the accidental Majo-
ranas in island i, s({pk}, panc) denote the chirality of the braiding in different sectors
of the Hilbert space, and panc is the parity of the ancillas ΓE and ΓF .

We now assume that the measurement projects the system to an eigenstate of
total parity on the bus island P = −iΓAΠbΓB. (The requirements for a successful
measurement are analyzed below.) The protocol for demonstrating non-Abelian
Majorana statistics consists of a measurement P followed by n braiding cycles, after
which the parity is measured again. The probability of observing a parity flip after
n consecutive braidings, pflip(n), is dictated by the Majorana statistics. For clean
wires the sequence of probabilities is pflip = 1/2,1,1/2,0 for n = 1,2,3,4, and it
repeats itself periodically for larger values of n [107]. Given Eq. (5.2), the sequence
is independent on the accidental Majoranas and the initial state of the ancillas as
long as Hε = 0. Thus, the only limitations in this case are quasiparticle poisoning and
inelastic relaxation processes2.

5.2 Analysis of the braiding protocol errors.

5.2.1 Effects of disorder on the braiding cycle

The interaction Hε between computational and accidental Majoranas may lead to
fermion parity exchanges, giving rise to braiding errors. We assume that these
coupling constants satisfy εk1,εk2�∆max, which allows to choose the braiding speed
so that εk1,εk2 � ∆0 � ∆max, where the energy scale ∆0 = ħh/T0 is determined
by the duration T0 of one segment of the braiding cycle in Fig. 5.3. Thus, we can
calculate the unperturbed time-evolution operator U0(t) in each parity sector using

2We note that while the accidental Majoranas do not influence the sequence of probabilities pflip, they
affect the chirality of the braiding, which can be important in more advanced quantum manipulations.



80 Chapter 5. Effects of disorder on braiding of Majorana modes

the adiabatic approximation and consider the effect of Hε perturbatively. The total
time-evolution operator for one braiding cycle can be written as

U =U0 +
∑

k

�εk1

∆0
δUk1 +

εk2

∆0
δUk2

�

, (5.3)

where U0 is the unperturbed time-evolution, which in different parity sectors is
described by Eq. (5.2), and δUk1,2 are corrections which can in principle be computed
for an arbitrary disordered wire. These corrections couple the different parity sectors
and can result in braiding errors.

Next, we analyze in detail the case where each nanowire contains a single pair of
accidental Majorana modes, which are coupled to each other by δ. This allows to
identify the fundamental mechanisms of errors, which are present also in nanowires
with many accidental Majorana modes.

We first note that the couplings εb1 and εg2 have no effect on the braiding protocol
within the lowest order perturbation theory. We characterize the errors caused by
other couplings by calculating the matrix norms ||δUki ||23, which depend on δ and
act as effective pre-factors of εki/∆0 in Eq. (5.3). Based on symmetry arguments,
we find that ||δUb2||2 = ||δUg1||2, ||δU11||2 = ||δU22||2 = ||δU32||2 and ||δU12||2 =
||δU31||2 (see Appendix 5.A). This leaves four different cases, which are plotted in
Fig. 5.4 (a)-(d) and (e)-(h) for the two paths of Fig. 5.3(a),(b), respectively. The errors
show peaks when accidental Majorana modes are either uncoupled (δ ≈ 0) or the
energy of their bound state is in resonance with the energy gap between the ground
and excited state manifolds (δ ≈ E0). The peak appearing close to δ = 0 is extremely
narrow for both paths, but the resonance at δ ≈∆max is strongly path dependent. For
the circular path, shown in Fig. 5.3(a), E0 is constant during the whole braiding cycle
resulting in narrow resonance peak at δ ≈ ∆max. On the other hand, for the path
shown in Fig. 5.3(b), E0 varies between [∆max,

p
2∆max] during the braiding cycle so

that the resonance peak spreads over a wide range of δ. In the case of circular path it
is possible to obtain closed form analytic solutions for δUki . Away from the peaks
where ||δUki ||2 ∼ 1, they vanish asymptotically as ∼Max

�

∆0/δ,∆0/
�

�∆max ±δ
�

�

�

or
faster (see Appendix 5.B). We have verified the validity of the perturbation theory
for εki/∆0 < 0.1 by numerically calculating the full time-evolution operator. We also
point out that the assumption that the couplings δk,n and εki are time-independent is
not essential. Our qualitative findings are valid also if these couplings are changing
adiabatically in time due to the variations of the Coulomb couplings.

With increasing disorder, more low-energy sub-gap states will appear in the energy
spectrum. For an increased number of accidental bound states, the braiding errors
as a function of ∆max will contain several peaks, appearing whenever an energy
of the accidental Majoranas is in resonance with E0. This means that it becomes
more and more difficult to avoid errors by properly choosing ∆max. At the same
time, the accidental modes will appear closer to the ends of the wires, increasing the
couplings εki , which control the heights of the peaks in the braiding errors. As this

3The matrix norm ||U ||2 is defined as the largest singular value of U .
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coupling becomes comparable to the maximum Coulomb coupling, εki ∼∆max, one
can no longer choose a ∆0 such that the braiding process is adiabatic with respect
to the Coulomb coupling and non-adiabatic with respect to εki . At this point, the
non-Abelian statistics is not observable anymore. An interesting theoretical question
is whether this breakdown of the non-Abelian statistics happens in conjunction with a
disorder-induced topological transition to a trivial phase of the nanowire, or whether
it precedes it. We note that, in our model, the braiding process can in principle
be optimized by choosing the coupling ∆max in such a way that it is comparable
to the topological gap, ∆max ∼ Egap. In this case, non-Abelian statistics becomes
unobservable when εki ∼ Egap, so that the critical disorder strength is comparable
to the critical disorder strength inducing the topological phase transition. However,
our model is strictly speaking a low-energy effective theory, which is only valid in the
nontrivial phase, and therefore it cannot be used for a detailed quantitative description
of the breakdown of the non-Abelian braiding statistics and the topological phase
transition happening at large disorder.

5.2.2 Effect of disorder on initialization and readout

Errors can arise not only during the braiding cycle, but also during the readout,
performed through a measurement of the fermion parity P = −iΓAΠbΓB of the bus
island. The Hamiltonian describing the interaction of the transmon qubit and the
cavity is [107]:

Hro = ħhω0a†a+ħhg
�

τ+a+τ−a†
�

+τz

�

1
2
ħhΩ0 +∆+P

�

+∆−P +Hb

�

εbn,δb,n,m

�

+ iε11ΓBγ11 + iδγ11γ12. (5.4)

The first line describes the photons with bare resonance frequency ω0 and the
interaction with the transmon qubit with a coupling constant g. Here Ω0 is the
transmon plasma frequency, Pauli matrices τx ,y,z act on the transmon qubit and
τ± = (τx ± iτy)/2. The term proportional to P arises due to the Coulomb coupling
[107], and the Hamiltonian Hb defines the tunnel couplings of the Majoranas inside
the bus island. The last two terms describe the coupling of the computational Majorana
ΓB to an accidental pair of modes outside the bus island. We assume that the trans-
mission line resonator is operated in the dispersive regime, where (n+ 1)g2� δω2,
with n the number of photons in the cavity and δω= Ω0 −ω0.

Without accidental Majoranas, the Hamiltonian (5.4) produces a parity-dependent
resonance frequency of the cavity ωeff(P ) = ω0 + τz g2(δω+ 2P∆+/ħh)−1, which
allows to measure the topological qubit [61, 107]. As before, we consider perturbative
corrections caused by the couplings between computational and accidental Majoranas.
The term Hb conserves the parity P and therefore it does not modify ωeff within the
lowest order perturbation theory. The presence of the external coupling ε11 implies
that the measurement eigenstates of the renormalized cavity frequency no longer have
a definite parity P , but can be written in a form ψ=

p
1− ε2|P , . . .〉+ ε| −P , . . .〉,
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where away from resonances the measurement error vanishes as ε ∼ ε11/
�

∆+−∆−−
|δ|
�

. This scaling is in agreement with the expected parity flow to the accidental
Majorana modes. Close to the resonances∆+−∆− ≈ |δ| the parity flow will be limited
by the finite measurement time tM so that the errors are ∼ ε11 tM/ħh. Therefore, the
conditions for successful measurement coincide with the requirements for small
braiding errors.

5.3 Summary

We have shown that the Coulomb-assisted braiding protocol is realizable also in the
presence of disorder-induced accidental bound states, and that the braiding errors
are small if the coupling of the computational Majoranas to the accidental states is
much weaker than the maximum Coulomb coupling. A few remarks are in order
concerning the experimental relevance of our results. First, the requirement of weak
coupling between the computational and accidental Majorana modes coincides with
the definition of the topological phase in disordered systems, and therefore based on
the findings in Ref. [144], we expect that there is a large parameter space available
for braiding the Majorana modes. Secondly, the low-energy states in the wires can
in principle be characterized using spatially resolved scanning tunneling microscopy
[117] or by coupling to microwaves [149–152]. Because braiding errors depend
strongly on the energies of the accidental modes, they can be systematically decreased
by controlling these energies with the help of Zeeman fields or gate voltages. Finally,
we point out that our results are relevant also in the case of clean wires, because
they allow to simplify the experimental setup by replacing the π shaped network
of Ref. [107] with two spatially separated T-junctions. In this case, two additional
Majorana quasiparticles are intentionally created, which influence the braiding the
same way as the accidental Majoranas considered here. However, in clean wires the
additional Majoranas are automatically weakly coupled to the computational ones if
the wires are sufficiently long, leading to negligible braiding errors.

5.A Symmetry relations for the braiding errors

When the couplings between the accidental and the computational Majoranas is
much smaller than the maximum Coulomb coupling, their effects can be treated
independently. In the following we analyze each of the ten terms in Hε and show that
there are only four independent terms which contribute to errors during the braiding
cycle.

Since the Coulomb Hamiltonian HC commutes with both iεb1ΓAγb,1, as well as
iεg2γg,Ng

ΓD, it is clear that these terms cannot cause errors during the braiding cycle.
Their counterparts, iεb2γb,Nb

ΓB and iεg1ΓBγg,1 involve accidental Majoranas outside
the braiding T-junction and do cause errors, as shown in Fig. 5.4. Furthermore,
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these errors are identical, ||δUb2||2 = ||δUg1||2, because they are only related by a
relabeling of the accidental Majorana indices.

Out of the six remaining terms, only three contribute in an independent fashion.
To make this apparent, we will consider the case where there are only two accidental
Majoranas in the braiding T-junction, which we label γ1 and γ2 for ease of nota-
tion. They may be placed in any of the three islands, and connected to any of the
computational Majoranas. The six resulting Hamiltonians read:

H11 = ∆1ΓBγ1γ2ΓE + i∆2ΓEΓF + i∆3ΓEΓC + iδγ1γ2 + iεΓBγ1 (5.5)

H12 = ∆1ΓBγ1γ2ΓE + i∆2ΓEΓF + i∆3ΓEΓC + iδγ1γ2 + iεγ2ΓE (5.6)

H21 = i∆1ΓBΓE +∆2ΓEγ1γ2ΓF + i∆3ΓEΓC + iδγ1γ2 + iεΓEγ1 (5.7)

H22 = i∆1ΓBΓE +∆2ΓEγ1γ2ΓF + i∆3ΓEΓC + iδγ1γ2 + iεγ2ΓF (5.8)

H31 = i∆1ΓBΓE + i∆2ΓEΓF +∆3ΓEγ1γ2ΓC + iδγ1γ2 + iεΓEγ1 (5.9)

H32 = i∆1ΓBΓE + i∆2ΓEΓF +∆3ΓEγ1γ2ΓC + iδγ1γ2 + iεγ2ΓC . (5.10)

Following Bravyi and Kitaev [92], we write a representation of the six Majorana
operators as:

ΓB = σ0 ⊗σ0 ⊗σx (5.11)

ΓC = σ0 ⊗σ0 ⊗σy (5.12)

ΓE = σ0 ⊗σx ⊗σz (5.13)

ΓF = σ0 ⊗σy ⊗σz (5.14)

γ1 = σx ⊗σz ⊗σz (5.15)

γ2 = σy ⊗σz ⊗σz , (5.16)

where σi are the Pauli matrices and ⊗ denotes the Kronecker product.
The three Hamiltonians containing a coupling of an accidental Majorana to ΓB,

ΓF , or ΓC are identical up to unitary transformations, and therefore lead to identical
errors ||δU11||2 = ||δU22||2 = ||δU32||2. The unitary transformations are

H11 = U12H22U†
12, H11 = U13H32U†

13, (5.17)

with

U12 =
�

σz ⊗σz 0
0 σx ⊗σx

�

, (5.18)

U13 =
�

σz ⊗σz 0
0 σz ⊗σ0

�

. (5.19)

The Hamiltonians H12 and H31 can also be related by a unitary transformation,
provided that one interchanges ∆1 and ∆3,

H12 = eU13H31(∆1↔∆3)eU
†
13 , (5.20)
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where

eU13 =
1
p

2

�

iσ0 ⊗ (σx +σy) 0
0 σ0 ⊗ (σx +σy)

�

. (5.21)

Since replacing ∆1 with ∆3 and vice versa amounts to performing the braiding cycle
in a time-reversed order (see Fig. 5.3), these two Hamiltonians produce identical
errors ||δU12||2 = ||δU31||2.

Such a transformation also exists for H12 and H21, but involves replacing∆1↔∆2,
which changes the braiding path, and therefore leads to different errors, as shown in
Fig. 5.4.

5.B Analytical solutions for the braiding errors

In order to calculate the four independent corrections ||δUki ||2, we write the total
time-evolution operator as U(t) = U0(t)Ũ(t), where U0(t) is the time-evolution
operator for Hε = 0 and Ũ describes the lowest order correction caused by Hε. We
assume that ∆0 � ∆max, so that the unperturbed time-evolution operator U0(t)
for the computational Majoranas in each parity sector can be calculated using the
adiabatic approximation. The lowest order correction Ũ can be found using the
equation:

Ũ(t) = 1−
i
ħh

∫ t

0

d t1U†
0(t1)HεU0(t1). (5.22)

In this way we obtain that the total time-evolution operator for one braiding cycle is
given by Eq. (5.3), where U0 is the unperturbed time-evolution, which in different
parity sectors is described by Eq. (5.2), and δUk1 and δUk2 are corrections, which
can be solved by calculating the integral in Eq. (5.22).

For the circular braiding path [Fig. 5.3(a)] with one pair of accidental Majoranas
in each island, the integral in Eq. (5.22) can be computed exactly, resulting in closed
form analytic solutions for δUki . Although the full expressions are not very insightful,
they allow us to determine how the braiding error estimates, εki ||δUki ||2/∆0, vanish
asymptotically far away from the resonant peaks in Fig. 5.4. We obtain

‖δU12‖2 =Max
�

π| cos(2δ/∆0)|
4δ2/∆2

0

,

| cos
�

3(δ±∆max)/∆0

�

± sin
�

3(δ±∆max)/∆0

�

|
p

2|δ±∆max|/∆0

�

, (5.23a)

‖δU11‖2 =
| sin(3δ/∆0)|
|δ/∆0|

(5.23b)

‖δU21‖2 =Max
� | sin(3δ/∆0)|
|δ/∆0|

,
π| cos

�

3(δ±∆max)/∆0

�

|
4(δ±∆max)2/∆2

0

�

, (5.23c)



5.B Analytical solutions for the braiding errors 85

and

||δUb2||2 =Max
�

p

1± sin(6δ/∆0)p
2|δ/∆0|

,
π| cos(2(δ±∆max)/∆0)|

4(δ±∆max)2/∆2
0

�

. (5.23d)
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Figure 5.4: Errors occurring during the braiding cycle can be estimated by
εki ||δUki ||2/∆0 [Eq. (5.3)], with four different types of corrections ||δUki ||2, which
are plotted as a function of δ. These corrections, related to the two adiabatic cycles
of Fig. 5.3(a),(b), are shown in figures (a)-(d) and (e)-(h), respectively. The insets
show magnifications of the peaks around δ = 0. Away from the peaks the errors are
efficiently suppressed. In all figures ∆max = 500∆0.



Chapter 6

Minimal circuit for a
flux-controlled Majorana qubit in
a quantum spin-Hall insulator

Among the many exotic properties of topological insulators [43, 44], the prediction
[153] that they can host Majorana zero-modes stands out both for its fundamental
interest and for possible applications in topological quantum computing [6]. To
braid Majoranas is the prize-winning experiment, since it would identify them as a
fundamentally new type of quasiparticles with non-Abelian statistics [14]. The road
towards this goal has several milestones, starting from the detection of the zero-mode
itself [74].

One intermediate milestone is the construction of a qubit out of Majorana zero-
modes and the measurement of its coherence times. This would be essential informa-
tion for a subsequent braiding experiment to demonstrate its non-Abelian nature. Here
we describe a minimal circuit that can initialize, rotate, and read-out the Majorana
qubit by coupling it to a transmon (a superconducting charge qubit in a microwave
transmission line resonator [37]). This is the hybrid topological-transmon qubit
(top-transmon) introduced in Ref. [61].

The circuit we propose here for the characterization of the Majorana qubit is a
reduced version of the full braiding circuit of Ref. [107]. By sacrificing the possibility to
perform topologically protected operations, we now need only 4 and not 6 Majoranas.
For an early generation of experiments this might well be a significant simplification.
The reduced circuit shares with the full circuit the feature that all operations are
performed by control over Coulomb interactions rather than tunneling [84]. This
control is achieved by external variation of magnetic fluxes through macroscopic
Josephson junctions, without requiring microscopic control over tunnel couplings.

We focus on Majorana zero-modes induced by the superconducting proximity effect
at the edge of a quantum spin-Hall insulator [42], motivated by recent experimental
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Figure 6.1: Schematic of a Cooper pair box in a transmission line resonator (transmon)
containing a pair of Majorana zero-modes at the edge of a quantum spin-Hall insulator.
This hybrid device (top-transmon) can couple charge qubit and topological qubit by
variation of the flux Φ through a Josephson junction.

progress in this direction [115, 116, 154]. Relative to the nanowire realization [45,
46], this system has several favorable properties (single-mode conduction, insensitivity
to disorder). It also brings along some challenges (how to confine the Majoranas,
how to make a T-junction), that we propose to overcome along the lines suggested in
Ref. [108].

6.1 Top-transmon

Before proceeding to a description in the next section of the minimal circuit that can
operate on a Majorana qubit, we summarize the basic ingredients. The device is a
hybrid structure [61], dubbed a top-transmon, combining a topological qubit formed
out of Majorana zero-modes with a non-topological transmon qubit.

The basic building block of the transmon, shown in Fig. 6.1, is a Cooper pair
box [70] (a superconducting island with charging energy EC � Josephson energy
EJ) coupled to a microwave transmission line (coupling energy ħhg). The plasma
frequency ħhΩ0 '

p

8EJ EC is modulated by an amount∆+ cos(πqind/e) upon variation
of the charge qind induced on the island by a gate voltage V . Additionally, there is a
qind-dependent contribution ∆− cos(πqind/e) to the ground state energy. The charge
sensitivity ∆±∝ exp(−

p

8EJ/EC) can be adjusted by varying the flux Φ enclosed by
the Josephson junction, which modulates the Josephson energy EJ ∝ cos(2πeΦ/h).
In a typical device [83], a variation of Φ between Φmin ≈ 0 and Φmax ® h/4e changes
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∆± by several orders of magnitude, so the charge sensitivity can effectively be switched
on and off by increasing the flux by half a flux quantum.

Including also the coupling to the microwave photons (creation operator a† at
resonant frequency ω0), the Hamiltonian of the transmon has the form [37, 83]

Htransmon =
1
2ħhΩ0σz + (∆+σz +∆−) cos(πqind/e)

+ħhω0a†a+ħhg(σ+a+σ−a†). (6.1)

The charge qubit is represented by Pauli matrices σx ,σy ,σz , with σ± = (σx ± iσy)/2.
Majorana zero-modes are represented by identical creation and annihilation

operators γn = γ†
n, with anti-commutation relation

γnγm + γmγn = 2δnm. (6.2)

The number of Majoranas on a superconducting island is necessarily even, say 2N .
They encode a topological quantum number, which is the±1 eigenvalue of the fermion
parity operator [26]

P = iN
2N
∏

n=1

γn. (6.3)

The top-transmon Hamiltonian

Htop-transmon =
1
2ħhΩ0σz + (∆+σz +∆−)P cos(πqind/e)

+ħhω0a†a+ħhg(σ+a+σ−a†) (6.4)

contains a term σzP that couples the charge qubit to the topological qubit, see
Ref. [84] for a derivation.

Since Majorana modes are charge-neutral particles (being their own antiparticle),
one may ask how there can be any coupling at all. The answer is that the state of the
2N zero-modes in a superconducting island depends on the parity of the number of
electrons on that island, and it is this dependence on the electrical charge modulo 2e
that provides for a flux-controlled Coulomb coupling between the Majoranas.

A measurement of the resonance frequency ωeff of the transmission line now
becomes a joint projective measurement of the charge qubit and topological qubit
[61, 107],

ωeff =ω0 +
σz g2

Ω0 −ω0 + 2P∆+/ħh
. (6.5)

This measurement is performed far off resonance (g � |Ω0 − ω0|, the so-called
dispersive regime), so the charge qubit is not excited. If it is in the ground state we
may just replace σz 7→ −1 and ωeff directly measures P . In particular, a shift in the
resonance frequency signals a bit-flip of the topological qubit.
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Figure 6.2: Topological qubit formed out of four Majorana zero-modes, on either
two or three superconducting islands. Dashed lines indicate flux-controlled Coulomb
couplings, as in the Cooper pair box of Fig. 6.1. In the linear layout (panel a)
the coupling between Majoranas on different islands is via a tunnel barrier (thick
horizontal line), requiring gate voltage control. By using a T-junction (panel b) all
three couplings can be flux-controlled Coulomb couplings.

6.2 Minimal circuit

The conservation of fermion parity on a single superconducting island implies a
minimum of two islands for a Majorana qubit, each containing a pair of Majorana
zero-modes. The minimal circuit that can operate on a Majorana qubit would then
have the linear layout of Fig. 6.2a. While the couplings between Majoranas on the
same island are flux-controlled Coulomb couplings, the inter-island coupling is via a
tunnel barrier, which would require microscopic control by a gate voltage.

An alternative layout that has only Coulomb couplings needs three rather than two
islands, forming a T-junction as in Fig. 6.2b. A T-junction pins a Majorana zero-mode
[21], which can be Coulomb-coupled to each of the other three Majoranas [107]. The
T-junction also binds higher-lying fermionic modes, separated from the zero mode
by an excitation energy EM. This is the minimal design for a fully flux-controlled
Majorana qubit. In Fig. 6.3 we have worked it out in some more detail for the quantum
spin-Hall insulator.

Three superconducting islands allow for two independent charge differences, so
they produce two charge qubits σ(1)z and σ(2)z . These are coupled to four Majorana
zero-modes γA, γB, γC , γD. The Hamiltonian is two copies of the top-transmon
Hamiltonian (6.4),

H = ħhω0a†a+
2
∑

n=1

�

1
2ħhΩ

(n)
0 σ

(n)
z +ħhg(n)(σ(n)+ a+σ(n)− a†)

�

+ iγAγB[σ
(1)
z ∆

(1)
+ (Φ0) +∆

(1)
− (Φ0)]

+ iγBγC[σ
(2)
z ∆

(2)
+ (Φ1) +∆

(2)
− (Φ1)], (6.6)

where for simplicity we have set qind = 0 on each island. We have ignored the
higher-lying fermionic modes at the T-junction, see the Appendix for a calculation
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Figure 6.3: Top-transmon circuit to rotate the qubit formed out of four Majorana
zero-modes at the edge of a quantum spin-Hall insulator. One of the Majoranas
(γB) is shared by three superconductors at a constriction. The topological qubit is
rotated by coupling it to a Cooper pair box in a transmission line resonator (transmon).
The coupling strength is controlled by the magnetic flux Φ through a pair of split
Josephson junctions. The diagrams at the top indicate how the Coulomb couplings of
pairs of Majoranas are switched on and off: they are off (solid line) when Φ= 0 and
on (dashed line) when Φ = Φmax ® h/4e. This single-qubit rotation does not have
topological protection, it serves to characterize the coherence times of the Majorana
qubit.
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that includes these.
Without loss of generality, we will fix the overall parity to be even. The Majorana

qubit then has the two states, |00〉 and |11〉, in terms of the occupation number of
the fermionic modes c†

1 =
1
2 (γA+ iγB) and c†

2 =
1
2 (γC + iγD). Pauli matrices that act

on the states
�1

0

�

= |00〉 and
�0

1

�

= |11〉 are defined by

τx = iγBγC , τy = iγAγC , τz = iγAγB. (6.7)

With the resonator mode and the charge qubit in their ground state, the Majorana
qubit has Hamiltonian

HM =∆z(Φ0)τz +∆x(Φ1)τx , (6.8)

with ∆z = ∆
(1)
− − ∆

(1)
+ and ∆x = ∆

(2)
− − ∆

(2)
+ . Each of the two couplings ∆x(Φ)

and ∆z(Φ) can be varied between ∆min and ∆max, by variation of the flux between
Φmin ≈ 0 and Φmax ® h/4e. This circuit does not allow to implement braiding (not
enough adjustable couplings). However, it does allow for a complete characterization
of the Majorana qubit.

For starters, one can demonstrate that the four Majoranas constitute a quantum
mechanical two-level system, by following these two steps. The first step is the
initialization of the qubit in an eigenstate of τz , by setting ∆z = ∆max, ∆x = ∆min
and waiting for the system to relax to its ground state; or alternatively, one can
perform a projective measurement onto a τz eigenstate via microwave irradiation
of the transmon qubit [61]. Once the qubit is initialized, the second step is to set
∆x =∆max. The qubit will then start to rotate around the x-axis of the Bloch sphere
at a frequency∆max/ħh. This Rabi oscillation can be detected via a shift in the resonant
frequency of the microwave transmission line.

Since the Hamiltonian (6.8) is that of a fully controllable qubit, and since we
are allowed to measure τz , all usual qubit tests can be performed. In particular, the
coherence times T1 and T2 can be measured. The switching time T1 will likely be
dominated by quasiparticle poisoning when all Coulomb couplings are off (∆x =
∆z =∆min). The intrinsic coherence time T2 is usually measured via a Ramsey fringe
experiment, applying two π/2 rotations around the x-axis separated by a time delay
δt, while keeping ∆z on so that the two qubit states are separated in energy. In the
time interval between the π/2 pulses, the qubit rotates freely around the z-axis. A
measurement of τz after the second pulse should result in decaying oscillations as a
function of δt, allowing to determine T2. In principle, such measurements can also
be used to determine ∆min and ∆max through the period of the Ramsey fringes.

6.3 Characteristic energy scales

The characteristic energy scales of the two charge qubits are the magnetic flux de-
pendent Josephson energy EJ(Φ) and the charging energy EC, which give a plasma
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frequency ħhΩ0 ' (8EJ EC)1/2. The Josephson and charging energies may or may not
be the same on the two islands, that does not matter for the operation of the circuit.

For the sake of generality we allow for an asymmetry d in the arms of the split
Josephson junction, leading to a flux-dependence [37]

EJ(Φ) = E(0)J cos(eΦ/ħh)
Æ

1+ d2 tan2(eΦ/ħh). (6.9)

Typical values of d are in the 10% range. Hence, for Φmax ' h/4e one obtains
EJ(Φmax)' 0.1 E(0)J . In the transmon regime one has

EC� EJ(Φmax)� E(0)J . (6.10)

For a flux-controlled coupling of the Majorana zero-modes we require that the
inter-island tunnel coupling EM (across the constriction in Fig. 6.3) and the intra-island
Coulomb coupling satisfy [84]

∆max,∆+(Φmax)� EM � EJ(Φmax)� E(0)J . (6.11)

The inequalities involving EM should not be interpreted too strictly, in particular since
we do not require EM to be under accurate experimental control. In the Appendix
we show that EM can vary in a large energy window without compromising the
functionality of the device.

The inequalities can be satisfied for E(0)J ' 300GHz, EC ' 5GHz, EM ' 5GHz
and a split junction asymmetry of d ' 0.1, such that EJ(Φmax)' 30 GHz. Numerical
calculation of the energy spectrum for this set of parameters, see Fig. 6.6, yields
∆max ' 120 MHz, ∆+(Φmax) ' 0.85 GHz, and Ω0(Φmax) ' 27.5 GHz, for induced
charges close to zero.

Let us now turn to the parameters of the microwave cavity. The dispersive regime
requires g � (Ω0 ± 2∆+ −ω0). Furthermore, g should be strong enough that the
dispersive frequency shift from Eq. (6.5) is large compared to the resonance width κ,

κ�ωshift =
4g2∆+(Φmax)

|Ω0(Φmax)−ω0|2 − 4∆2
+

. (6.12)

Both conditions can be satisfied for ω0 ' 25 GHz, g ' 100 MHz, κ' 1 MHz, yielding
in particular ωshift ' 10 MHz. (We have set ħh≡ 1.)

The operating temperature should be low enough that excitation of the circuit
can be avoided,

kBT � EM, ħhΩ0, ∆gap, (6.13)

where ∆gap is the excitation gap induced at the quantum spin Hall edge by the
superconducting proximity effect. At T = 10 mK the thermal energy kBT = 1.3 GHz,
so one would need ∆gap ¦ 10GHz.

In the braiding circuit of Ref. [107] the initialization of the ancillas also requires
that kBT �∆max, so the Coulomb coupling∆max cannot be much smaller than 10 GHz.
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Figure 6.4: Implementation of the braiding circuit of Ref. [107] in a quantum spin-
Hall insulator. The two T-junctions are formed by a pair of constrictions. The flux-
controlled braiding protocol requires four independently adjustable magnetic fluxes.
The Majorana qubit formed out of zero-modes γA,γB,γC ,γD is flipped at the end of
the operation, as can be measured via a shift of the resonant microwave frequency.
This braiding operation has topological protection.

There is no such requirement for the simpler circuit of Fig. 6.3, because no ancillas
are needed for the non-topological rotation of a Majorana qubit. This is one reason,
in addition to the smaller number of Majoranas, that we propose this circuit for the
first generation of experiments on Majorana qubits.

6.4 Discussion

The key ingredients of the top-transmon [61] are: 1) a charge qubit to couple Majorana
zero-modes; 2) a flux-controlled Josephson junction to switch the Coulomb coupling
on and off ; 3) a microwave resonator to read out the Majorana qubit. There exist
many alternative proposals to operate on Majorana qubits [21, 64, 67, 68, 85, 86,
149, 151, 155–160], including an alternative hybrid design that uses a flux qubit
instead of a charge qubit [35, 63, 65, 66, 150, 161, 162].

In addition, there is a great variety of candidate systems that could host the Majo-
ranas. Three stand out as being closest to experimental realization: 1) semiconductor
nanowires [45, 46, 74]; 2) chains of magnetic nanoparticles [109, 111]; 3) the quan-
tum spin-Hall edge [42, 115, 116, 154]. All three systems can be integrated with a
transmon device, see for example Fig. 6.4 for a circuit that can braid the Majoranas
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Figure 6.5: Schematic representation of the top-transmon circuit of Fig. 6.3. Colors
distinguish different superconducting islands. The three Majoranas coupled by the
constriction at the center together produce one zero-mode γB.

via a pair of constrictions in a quantum spin-Hall insulator.
The braiding operation is called “topologically protected” because ideally the

error is of order ∆min/∆max and can be made exponentially small [84]. Larger errors
are to be expected in the first generation of experiments, caused by quasiparticle
poisoning [124], non-adiabatic effects [72, 119], non-equilibrium noise [121], and
coupling of the Majoranas to localized low-energy states induced by disorder [163].
The quasiparticle poisoning time may well remain as the ultimate limiting factor —
times ¦ 100 ms have been reported in Al-Cu devices [164], but the quantum spin-Hall
insulator is likely to be less favorable.

In Figs. 6.3 and 6.4 we showed an implementation of the top-transmon circuits
at the quantum spin-Hall edge, because of recent experimental developments that
suggest this might be a favorable host of Majorana zero-modes [115, 116, 154].
The role of T-junctions [21, 107], which in nanowire networks can be fabricated by
allowing nanowires to meet and merge during the growth process [38], is played by
constrictions [108], but since a constriction has four legs rather than three, one of
the edges has to be closed off by a barrier. This will require breaking of the time-
reversal symmetry that prevents backscattering of the helical edge states [43, 44].
The weak-field barriers suggested in Ref. [108] will presumably not be sufficiently
resistive to realize the braiding operation. The alternative is to open up a gap at the
edge by a ferromagnetic insulator or by an in-plane magnetic field. Ref. [116] found
no gap opening in their InAs/GaSb quantum wells for in-plane fields up to 10 T, but
this might be strongly dependent on the detailed structure of the quantum wells.

6.A Energy spectrum of the top-transmon

In the main text we have described the top-transmon circuit of Fig. 6.3 via the Hamil-
tonian (6.6), which captures the essential features of the coupling of the topological
Majorana qubit to the non-topological charge qubit. Two simplifying assumptions are
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made in this Hamiltonian [84, 107]. Firstly, it is assumed that the superconducting
phase on each island is pinned to zero by the large Josephson energy EJ � EC, so
it does not enter as a dynamical variable. Secondly, the fermionic excited states in
the tunnel junction connecting the islands are neglected. In this Appendix we relax
both assumptions and calculate the full energy spectrum numerically, following the
general procedure of Ref. [107]. For simplicity we do not include the coupling to the
microwave cavity.

6.A.1 Full Hamiltonian of the circuit

A schematic representation of the circuit of Fig. 6.3 is given in Fig. 6.5. The circuit is
formed by three superconductors, numbered 1 to 3 in Fig. 6.5. Two split Josephson
junctions connect the superconductors 1 and 2 to the third one. A further connection
between all three superconductors is provided by the quantum spin Hall constriction.
We will work in a gauge where all superconducting phases are measured with respect
to that of the third superconductor.

The circuit is described by the Hamiltonian

H = H1 +H2 +HM, (6.14)

where H1 and H2 are two copies of a Cooper-pair box Hamiltonian describing super-
conductors 1 and 2,

Hn = EC(Nn + q(n)ind/e)
2 − EJ(Φn) cos(φn − φ̃n). (6.15)

The phase and charge operators φn, Nn of the two superconductors are canonically
conjugate variables, with commutator [φn, Nn] = 2i. The charge induced capacitively
is q(n)ind. The energy EC = e2/2C is the charging energy due to the capacitance C to the
third superconductor. We have taken the same charging energy for superconductors
1 and 2 and assumed that their mutual capacitance is negligible. The Josephson
energies EJ of the two Josephson junctions depend on the flux via Eq. (6.9). The
asymmetry dn in the arms of each split junction introduces a phase offset φ̃n for each
island, determined by tan φ̃n = dn tan(eΦn/ħh).

The term HM in Eq. (6.14) describes the constriction in the quantum spin Hall
(QSH) insulator, where three superconducting islands meet. Each superconductor
contributes one of the three Majorana modes γB1, γB2, and γB3. Their tunnel coupling
is given by the Hamiltonian

HM = iEM

�

γB2γB1 cos ( 1
2φ1 −

1
2φ2 +α12)

+ γB1γB3 cos ( 1
2φ1 −α13) + γB3γB2 cos ( 1

2φ2 +α23)
�

. (6.16)

We take the same strength EM for all three couplings, but the flux-induced phase
shifts differ: α12 = −e(Φ0 + Φ1)/2ħh, α23 = eΦ1/2ħh, and α13 = eΦ0/2ħh. The three
eigenvalues of HM are symmetrically arranged around zero energy, so there is one
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flux-independent zero-mode. This is the Majorana mode γB of Fig. 6.3. Additionally,
there is a fermionic mode at excitation energy ' EM.

The other Majorana modes of Fig. 6.3 have no tunnel coupling, so they do not
appear explicitly in the Hamiltonian (6.14). They influence the spectrum via a
constraint on the number operators [36],

iγAγB1 = (−1)N1 , iγB2γC = (−1)N2 . (6.17)

These constraints express the fact that for each island separately the fermion parity
(represented on the left-hand-side) equals the number of electrons modulo 2 (repre-
sented on the right-hand-side). The product γDγB3 enters only via the global fermion
parity of the three superconducting islands, but since this is conserved it does not
provide for an independent constraint.

6.A.2 Hamiltonian in the measurement configuration

We wish to extract the parameters Ω0 and ∆± appearing in Eq. (6.6) from the full
Hamiltonian (6.14). In order to do so, it is sufficient to consider the measurement
configuration of the circuit, i.e. set Φ1 = 0 and Φ0 = Φmax ' h/4e. The second
superconductor then remains in its ground state, and the Hamiltonian reduces to

H = EC(N1 + q(1)ind/e)
2 − EJ(Φmax) cos(φ1 − φ̃1)

+ iEM

�

γB1(γB3−γB2) cos ( 1
2φ1−

1
4π) + γB3γB2

�

. (6.18)

For concreteness, we take even global fermion parity,

(iγAγB1) (iγB2iγB3) (iγC γD) = +1. (6.19)

The product iγCγD = ±1 ≡ P is conserved in the measurement configuration, so
it can be treated as a c-number. The other products of Majorana operators can be
represented by Pauli matrices ρi ,

iγAγB1 = P iγB3γB2 = Pρz , (6.20a)

iγB1γB3 = PiγAγB2 = Pρx , (6.20b)

iγAγB3 = −PiγB1γB2 = ρy . (6.20c)

Following Ref. [69], we remove the parity constraint (6.17) by a unitary transfor-
mation,

H̃ = U†HU , U = exp
�

iφ
4
(1− Pρz)

�

. (6.21)

The transformed Hamiltonian is

H̃ = EC

�

N1 +
1
2 (1− Pρz) + q(1)ind/e

�2

− EJ(Φmax) cos(φ1 − φ̃1) + EMρz

+ 1
2 EM P (ρx +ρy)

�

cos(φ1 −
1
4π) + cos( 1

4π)
�

+ 1
2 EM (ρx −ρy)

�

sin(φ1 −
1
4π) + sin( 1

4π)
�

. (6.22)
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Notice that, while H from Eq. (6.18) is 4π-periodic in φ1, the transformed H̃ has
become 2π-periodic. This is why now we can forget about the parity constraint (6.17)
and straightforwardly diagonalize the Hamiltonian.

6.A.3 Energy spectrum in the measurement configuration

We numerically diagonalize the Hamiltonian H̃ in the basis of eigenstates of N1 and
ρz , truncating the Hilbert space until convergence is reached. To obtain the full
spectrum for even global fermion parity, we diagonalize H̃ for both values of P = ±1
and merge the results. The low-lying part of the spectrum is shown in Fig. 6.6 for the
choice of parameters of Sec. 6.3.

From the effective Hamiltonian (6.6), we can identify two good quantum numbers
for the low-lying part of the spectrum of H̃ in the measurement configuration: the
σz eigenvalues σ = ±1 of the charge qubit and the τz eigenvalues τ = ±1 of the
topological qubit. Additionally, there is the occupation number f = 0,1 of the
fermionic state in the constriction. These three quantum numbers can be used to label
the eight lowest energy states |σ,τ〉| f 〉 and their energies ε f

σ,τ. The top-transmon
parameters Ω0, ∆±, and ∆max follow from

Ω0 =
1
2 [(ε

0
+1,+1 + ε

0
+1,−1)− (ε

0
−1,−1 + ε

0
−1,+1)] (6.23a)

∆± =
1
4 [(ε

0
+1,+1 − ε

0
+1,−1)± (ε

0
−1,−1 − ε

0
−1,+1)] (6.23b)

∆max =∆+ −∆− =
1
2 (ε

0
−1,−1 − ε

0
−1,+1) . (6.23c)
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Figure 6.6: Energy spectrum of the top-transmon circuit of Fig. 6.3, obtained from
numerical diagonalization of the Hamiltonian (6.22) for EJ = 300 GHz, EC = 5 GHz,
Φmax = h/4e. The junction asymmetry was d = 0.1, so that EJ(Φmax) ' 30 GHz. In
panel (a), the lowest eight energy levels for EM = 5 GHz are shown as a function of the
induced charge q(1)ind. They correspond to the eight eigenstates |σ,τ〉| f 〉, whereσ = ±1
labels the excited/ground state of the charge qubit, τ = ±1 labels the even/odd parity
state of the topological qubit, and f = 0,1 the occupation number of the fermionic
state in the constriction. As indicated by the colored arrows, the ground and excited
state of the charge qubit are separated by an energy Ω0 ± 2∆+ ' (27.5)± (1.7) GHz,
depending on the state of the topological qubit. The inset shows the weak charge
dispersion of the ground state doublet (∆max ' 120 MHz). In panel (b), the same
energy levels are shown as a function of the tunnel coupling EM for a fixed value of
q(1)ind = 0. For a proper operation of the circuit it is required that the states f = 1 with
an excited fermionic mode are well separated from both ground and excited states of
the charge qubit. We have highlighted between grey panels a large energy window
3 GHz® EM ® 8 GHz where this requirement is met.
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Chapter 7

Realization of microwave
quantum circuits using hybrid
superconducting-semiconducting
nanowire Josephson elements

In superconducting electronic circuits, macroscopic degrees of freedom like currents
and voltages can exhibit quantum mechanical behavior. These circuits can be de-
signed to behave as artificial atoms, having a discrete set of energy levels which can
be driven coherently [30]. In the field of circuit quantum electrodynamics (cQED),
these artificial atoms are coupled to resonators to perform microwave quantum optics
in the solid state [165, 166]. Over the last decade, cQED has also grown into a
promising platform for quantum information processing, wherein the ground and
first-excited levels of each atom serve as an effective qubit [31]. To date, imple-
mentations of superconducting quantum circuits have relied almost exclusively on
aluminum/aluminum-oxide/aluminum (Al/AlOx/Al) tunnel junctions as the source
of non-linearity without dissipation. However, many exciting applications require
magnetic fields (∼ 0.5 T) at which superconductivity in aluminum is destroyed, calling
for an alternative approach to realizing microwave artificial atoms.

Recent advances in materials development and nanowire (NW) growth have
enabled the development of superconductor-semiconductor (super-semi) structures
supporting coherent charge transport without dissipation [167], and providing signa-
tures of Majorana bound states citemourik2012. To date, super-semi-super Josephson
elements (JEs) have been studied exclusively in quasi-DC transport [168–171]. Build-
ing microwave circuits operating in the quantum regime, in which transition energies
between levels exceed the thermal energy, offers news ways to investigate the physics
of hybrid super-semi structures using spectroscopy [150, 151, 155].
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Figure 7.1: Hybrid Josephson elements in cQED. (A) Overview of cQED chip allowing
control and readout of NW circuits using dedicated resonators (green) coupled to a
common feedline (blue). For readout, a microwave tone with frequency fc is applied
near the fundamental of the resonator coupling to the NW circuit under study. The
signal is amplified and down-converted to 1 MHz using a local oscillator at fLO for
subsequent digitization and processing. Additional controls on a subset of devices
include side gates (orange) for electrostatic tuning of carrier density in the NW of
single-junction devices, and short-circuited transmission lines (purple) for threading
flux through the loops of split-junction devices. (B) Optical zoom-in of Device 1,
containing a single-junction NW circuit (red). (C) Scanning electron microscope
(SEM) image of an InAs NW (blue) contacted by NbTiN electrodes (red) separated by
500 nm. (D) Normalized feedline transmission as a function of readout power. The
resonator shifts from fc = 3.9464 GHz at single-photon level to fbare = 3.9470 GHz
above 105 photons. This shift confirms the coupling of the resonator to a non-linear
circuit..

7.1 Description of the experimental setup

We report the realization of super-semi microwave circuits in cQED. Our chip (Fig. 7.1A)
contains multiple capacitively shunted single and double NW JEs coupled to dedi-
cated transmission-line resonators for control and readout using a common feedline
(Fig. 7.1B). The chip contains side gates for electrostatic tuning of some single-junction
devices and current-bias lines for threading flux through the loops of split-junction de-
vices. We created each JE by deterministically placing an InAs NW between the leads
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of a pre-patterned NbTiN interdigitated capacitor (IDC) and contacting the NW to
each lead in a subsequent NbTiN deposition. The charging energy EC ≈ h× 300 MHz
of the devices is chosen much smaller than the estimated Josephson coupling energy
EJ of the NW junction, as in conventional transmon devices [37], leading to a weakly
anharmonic energy spectrum (energies Ei) of circuit plasma modes. We first verify
the presence of the non-linear NW circuit by measuring the feedline transmission
near the fundamental frequency of the coupled resonator (Fig. 7.1D). The Jaynes-
Cummings interaction leads to different resonator frequencies fc and fbare at single-
and many-photon probe levels, respectively [172, 173]. We then search for the qubit
transition frequency f01 of the NW circuit by monitoring feedline transmission at fc
while sweeping a second tone [60] near the estimated frequency fbare+( fbare − fc)/g2,
where g is the coupling strength between NW circuit and resonator.

7.2 Spectroscopy of single-junction devices

We first investigate the electric-field effect on the NW-circuit spectrum (Fig. 7.2A).
Device 2 has one NW junction (measured length L ≈ 550 nm) and a proximal side-
gate electrode for tuning the carrier density in the NW. We observe fully reproducible
fluctuations (see Appendix 7.B) in f01 as a function of the side-gate voltage Vg, indi-
cating diffusive charge transport in the NW. Using the plasma-oscillation relation [37],
EJ ≈ f 2

01/8EC, we determine the root-mean-square Josephson-energy fluctuation
p

〈δ2EJ〉/h ≈ 2 GHz in the Vg = 0− 10 V range. Matching this scale to the Thou-
less energy [174], ETh = ħhD/L2, and assuming highly transparent contacts [170],
we estimate the diffusion constant D ≈ 40 cm2/s. This value is typical for InAs
wires [168].

Side-gate tuning of the NW junction offers a new means to control the spectrum
of transmons. Decreasing Vg brings f01 into resonance with the resonator, revealing
multiple avoided crossings (Fig. 7.2B). The minimum splitting indicates g/2π =
34± 1 MHz (Fig. 7.2C). We note that while we only perform quasistatic field-effect
tuning of f01 throughout this experiment, nanosecond control should be possible by
increasing the bandwidth of off-chip filtering.

We now discuss the impact of charge fluctuations on the observed linewidth of
the f01 transition, which is of interest for qubit applications. Transmon qubits are by
design insensitive to charge offset fluctuations on the superconducting islands [37],
owing to the exponential suppression of charge dispersion when EJ � EC. Field-effect
control of the Josephson coupling can make f01 sensitive to nearby fluctuating charges.
One may expect a region with ∂ f01/∂ Vg = 0 to constitute a charge sweet-spot [175]
and thus to correlate with a linewidth reduction. However, we do not observe
a correlation between the linewidth γ/2π > 10 MHz and

�

�∂ f01/∂ Vg

�

�, suggesting a
different dominant decoherence channel (see Appendix 7.B). We surmise a connection
between this broad linewidth and the soft gap induced in NWs contacted by NbTiN
using similar fabrication techniques [74]. Parallel experiments by the Copenhagen
group achieve hard induced gaps in epitaxial Al-InAs NWs [176] and∼ 1 µs coherence
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Figure 7.2: Side-gate tuning of a NW circuit and mesoscopic Josephson coupling
fluctuations. (A) Left inset; false-colored optical image of Device 2. Right inset; SEM
micrograph showing the single NW junction and the proximal side gate (orange) for
voltage control. Sweeping this voltage induces reproducible fluctuations in the qubit
transition frequency f01. Lower inset; example spectroscopy of the qubit transition,
showing an inhomogeneously broadened linewidth γ/2π = 13.2 ± 0.3 MHz. A
downward trend in f01 is observed as Vg decreases. At Vg < −15 V, f01 fluctuates
around the resonator fundamental (green line). (B) A zoom-in around Vg = −22 V
shows multiple avoided crossings. (C) At Vg = −22.3 V, the NW circuit fully hybridizes
with the resonator. From the minimum splitting, we extract the NW circuit-resonator
coupling strength g/2π= 34 ± 1 MHz.

times in a single-JE hybrid transmon [177].

7.3 Spectroscopy of a double-junction device

Next, we consider a split-junction device where the two parallel JEs (each with
L = 150 nm) are created from one 5 µm long NW (Fig. 7.3A). As in conventional
transmons, f01 first decreases as flux Φ is threaded through the loop. However, near
Φ ∼ Φ0/2 (Φ0 = h/2e is the flux quantum), a clear departure from transmon-like
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Figure 7.3: Flux bias spectroscopy of a split-junction NW circuit. (A) Inset: false-
colored optical image showing Device 3 (red), its resonator (green), and flux-bias
line (purple). Bottom inset: SEM micrograph of the two JEs made from one NW.
Flux-bias spectroscopy shows the tuning of f01 with Φ. (B) A high-resolution sweep
around Φ= Φ0/2 shows a strong flux dependence of the NW circuit transitions. (C)
Measurement of resonator transmission around fc with same horizontal range as in
(B). The avoided crossing of the lowest transition with the resonator reveals a much
reduced coupling strength.

behavior is observed (Fig. 7.3B). Multiple strongly flux-dependent transitions and
a new, strong avoided crossing appear symmetrically about Φ0/2. In addition, the
avoided crossing between the lowest transition and the resonator is strongly reduced
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(Fig. 7.3c) compared to that of Device 2 1.
The observed deviation from the conventional transmon energy spectrum provides

a signature of non-sinusoidal current-phase relations (CΦRs) in the NW junctions
[178]. We now show that the observed spectrum can be fully explained by the Hamil-
tonian of a Cooper-pair box (CPB): H = 4ECN̂ + V1(δ̂) + V2(2πΦ/Φ0 − δ̂), provided
its split junctions do not follow a cosine-shaped Josephson potential (Fig. 7.4A).
Here, the operators N̂ and δ̂ represent the charge imbalance between islands and
the phase difference across NW junction 1, respectively. The Josephson potential
Vi(ϕi) of junction i is linked to its CΦR by Ii(ϕi) = (2π/Φ0)∂ Vi/∂ ϕi , where ϕ1 ≡ δ̂
and ϕ2 ≡ 2πΦ/Φ0 − δ̂. Crucially, we require Vi to be 2π-periodic but not neces-
sarily cosine shaped. Using a simple phenomenological model [174] of the form
Vi(ϕi) = −Ki

Æ

1− Ti sin2(ϕi/2) and performing a non-linear least-squares fit with
five free parameters, we obtain a quantitative match to all spectral data (best-fit values
are EC/h = 279±1 MHz, K1/h = 376±13 GHz, K2/h = 233±2 GHz, T1 = 0.86±0.02,
and T2 = 0.885± 0.004, see also Appendix 7.D). As shown in Fig. 7.4A, the corre-
sponding CΦRs are evidently skewed. A three-parameter fit using Vi corresponding
to the CΦR of a short, diffusive point contact in the many-channel limit [178, 179]
showed only slightly worse agreement, as did a truncated Fourier series expansion of
Vi . All approaches produce similar skewed CΦRs (see Appendix 7.D).

Interestingly, this device can be operated in two distinct regimes by tuning Φ.
Near Φ= 0, it operates like a transmon, whose eigenstates are plasma modes with a
weakly anharmonic spectrum. Around Φ' Φ0/2, it operates like a flux qubit [180]
whose two lowest energy levels carry opposite persistent currents Ip,i = ∂ Ei/∂Φ,
which we estimate to be of order ±100 nA (see Appendix 7.E). The possibility to drive
transitions between these distinct persistent-current states using coherent microwaves
constitutes a manifestation of macroscopic quantum coherence [181] in our NW
circuits.

In conclusion, we have realized the first hybrid microwave circuits made from
super-semi NW JEs and characterized them using spectroscopy. NW circuits offer
several advantages over traditional aluminum circuits. First, tuning qubit transitions
using the field effect in single NW JE devices offers an attractive alternative to flux
biasing of split-junction Al devices. Second, these NW circuits are made exclusively
from magnetic-field compatible materials. Magnetic-field compatible super-semi NW
microwave circuits have the potential to open new avenues of research. In particular,
very pure solid-state electron spin ensembles (e.g., nitrogen impurities in diamond or
phosphorous donors in silicon) could be field-polarized to make coherent quantum
memories [182, 183] for hybrid quantum processors. In addition, the microwave
circuits realized here may be useful to control and readout Majorana bound states [21,
107] in proposed demonstrations of non-Abelian exchange statistics [6, 11, 14, 27].
Immediate next experiments will therefore focus on the study of these circuits in up

1Moreover, several flux-independent lines appear. We can attribute many of these to the fundamentals
and higher harmonics of other resonators on the chip (they are also observed when we studied other
devices on this chip) and are not considered henceforth.
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Figure 7.4: Fitting theory to the spectrum of the split-junction NW circuit. (A)
Top inset; equivalent circuit of the device, a split Cooper-pair box containing a loop
interrupted by two NW JEs (phase differences ϕ1,2), threaded by an externally applied
flux Φ, and shunted by a capacitance, giving total charging energy EC. Around Φ = 0,
the Josephson potential has a single minimum, producing a weakly anharmonic
spectrum. (B) The non-sinusoidal current-phase relation of the NW JEs determines
the particular flux-dependence of the transition frequencies around Φ= Φ0/2 as the
Josephson potential develops a symmetric double-well profile that tilts as Φ is tuned
away from Φ0/2. All curves are the result of a least-squares non-linear fit of the
theoretical model described in the text. We identify four fundamental transitions
from the ground state and three transitions from the first-excited state.

to ∼ 0.5 T in-plane magnetic fields.
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7.A Materials and Methods
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Figure 7.5: Overview of the chip.

Device RRT (kΩ) L (nm) fc (GHz) f01 (GHz) Description

1 5.7 500 4 6.7 single
2 6.2 500 4.5 6.2 (Vg = 0 V) single, with gate
3 2.2 200 6.5 17 (max) split, with flux control
a 3.03 200 7 not < 20 single
b 3.07 200 6 13.6 single, with gate
c short 50 11 - single
d open 100 8.5 - single, with gate
e short 50 10 - single
f 3.5 500 5 9.1 (max) split, with flux control
g short 50 10.5 - single
h 1.4 100 8 not < 20 split, with flux control
i 2.6 100 9 not < 20 single

Table 7.1: Overview of devices on the chip. RRT is the two-terminal resistance probed
close to the junction at room temperature. L indicates the design length.. The first
three devices in the table are those discussed in the main text, in Figures 7.1, 7.2,
and 7.3 respectively.

The chip was fabricated on a sapphire substrate (single-side polished, C-plane
cut, 430 µm thickness). After cleaning the substrate in buffered HF, a NbTiN film
(80 nm thickness) was sputtered. Ground planes, resonators and IDCs were defined
by negative tone electron-beam lithography and reactive ion etching.

In the next step, InAs NWs of typical length 5− 10 µm and radius 50− 100 nm
were controllably deposited using a micro-manipulator setup equipped with an optical
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microscope. Detailed structural and DC transport characterization of the InAs NWs
used in this experiment have been published in earlier reports [184].
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Figure 7.6: Wiring schematic of the experimental setup outside and inside the 3He-4He
dilution refrigerator (Leiden Cryogenics CF-650). Readout (green) and spectroscopic
(red) microwave drives are combined in a single coax line (blue) at room temperature.
The line is attenuated at the 3 K and 20 mK stages before connecting to the chip
feedline. The feedline output is isolated from the higher temperature stages by two
circulators. The signal is amplified at the 3 K stage by a HEMT amplifier (Caltech
Cryo1-12, 0.06 dB noise figure) and at room temperature by two Miteq amplifiers.
The signal is down-converted to 1 MHz, further amplified, digitized and saved for
processing. The setup contains wiring for gate (orange) and flux (purple) control on
a subset of devices. Both types of control line are low-pass filtered.

The fine patterns were designed based on optical alignment to the NWs. The
semiconductor-superconductor interface area was maximized by covering the NW
as much as possible. The overlap between the coarse and the fine superconducting
structures in each IDC was designed to be several tens of µm2. After defining the fine
pattern by positive tone electron-beam lithography, the semiconductor surface was
cleaned in buffered HF for 20 s and then a 100 nm thick NbTiN film was sputtered in
order to overlay the coarse structures as well.

In total, twelve devices were fabricated on the chip (Fig. 7.5), and each was
coupled to a coplanar waveguide quarter-wave resonator with a distinct fundamental
frequency in the range 4 to 11GHz. Table 7.1 gives an overview of all the devices
on the chip. Gate voltages in the range ±40 V were applied through on-chip 50 Ω
transmission lines with open ends proximal to the NW. Off-chip, the lines are filtered
by a second-order RC filter and a copper-powder (CuP) filter mounted to the mixing
chamber plate of the refrigerator (Fig. 7.1). The two filters have ∼ 50 kHz and
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∼ 1 GHz cutoff frequencies, respectively. The JEs of split-junction devices were
embedded in a superconducting loop of area 13× 24 µm2. Flux through the loop is
controlled using on-chip 50 Ω transmission lines, with short-circuited termination
proximal to the loop. Off-chip, the lines are low-pass filtered with nominal 1 GHz
cutoff frequency.

7.B Additional data for Device 2

Figure 7.7: Reproducibility of the f01 fluctuations. Two sweeps of two-tone spec-
troscopy show the reproducibility of the f01 fluctuations. These sweeps were separated
by two days.

A

B

C

Figure 7.8: Absence of correlation between f01 field-effect sensitivity and linewidth γ.
(A) Qubit transition frequency f01 as a function of Vg, extracted from Fig. 7.2. (B)
Computed field-effect sensitivity

�

�∂ f01/∂ Vg

�

�. (C) Extracted γ. Vanishing
�

�∂ f01/∂ Vg

�

�

does not correlate with a reduction in γ.
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7.C Data extraction from flux-bias spectroscopy

In order to perform fits to the observed spectroscopy lines, we have extracted a set
of data points with error bars from the raw data, consisting of a 2D scan of feedline
transmission measured as a function of frequency f and voltage Vbias applied to the
50 Ω bias line. We used the following procedure to extract the points 2.

1. We applied a Gaussian filter to suppress noise fluctuations, and subtracted the
residual background signal.

2. We converted Vbias into flux Φ through the loop, assuming a linear relation
Φ= AVbias + B.

3. We identified isolated features in the raw data by removing all points below a
transmission threshold. Every isolated feature consisted of a connected set of
data points surrounding peaks of high transmission in the f -Φ plane.

4. Within every feature, we extract a single data point for each voltage value. The
frequency f and uncertainty ∆ f of every point was computed by taking the
average frequency of all points in the same feature with the same V , weighted
by their transmission amplitude. This procedure provided a collection of data
points (Φ, f ,∆ f ). The points were manually divided into groups forming
continuous f (Φ) transition lines.

7.D Theoretical model and fits for Device 3

Many features of the observed transitions coincide with those expected for a double-
well potential. The first is the linear vanishing of f01 at Φ = Φ0/2, which is consistent
with the small energy difference between the ground and first-excited states in a
symmetric double-well potential. The second is the appearance of a strong avoided
crossing between the two lowest transitions at Φ ' 0.49Φ0. The avoided crossing
naturally arises in a tilted double-well potential, when the lowest energy state in the
shallower well becomes resonant with the first-excited state of the deeper well. The
third is the visibility of transitions whose frequency decreases away from Φ= Φ0/2,
which is consistent with residual thermal population of the first-excited state close to
Φ0/2.

The transition frequencies obtained from the energy levels of the split-junction
CPB Hamiltonian,

H = 4ECN̂ + V1(δ̂) + V2(2πΦ/Φ0 − δ̂) . (7.1)

were fit to the extracted data points. The energy levels were computed numerically in
the eigenbasis of the charge operator N̂ , truncating the Hilbert space to ∼ 200 states

2A dynamic IPython Notebook containing the relevant code and illustrating the data extraction process
is available online at the page http://goo.gl/3xfGr8.

http://goo.gl/3xfGr8
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Figure 7.9: Fit to the K-O model. Best-fit values are EC/h = 266± 2 MHz, K1/h =
218± 1 GHz, and K2/h= 141± 1 GHz.

such that convergence was reached. Via a Fourier series expansion of the 2π-periodic
functions

Vi(ϕi) = −
∑

n

Ai,n cos(nϕi) , (7.2)

the Josephson terms in the Hamiltonian can be easily expressed in the same basis
using the raising and lowering operators N̂± = exp (±iδ̂),

V1(δ̂) = −
∑

n

A1,n(N̂+ + h.c.),

V2(2πΦ/Φ0 − δ̂) = −
∑

n

A2,n(N̂+e−i2πΦ/Φ0 + h.c.) .

Hence, the Fourier series of Vi contains higher harmonics with period 2π/n, with
n> 1, allowing the total Josephson energy V1 + V2 to develop several local minima in
a 2π interval, thereby forming a double-well potential. This situation is particularly
relevant at Φ' Φ0/2, where the odd harmonics of V1 and V2 subtract. Time-reversal
symmetry makes the minima degenerate at Φ= Φ0/2 (Fig. 7.4).

Lacking exact knowledge of the CΦR of the junctions, we have tried different
phenomenological models for the Vi(ϕi):

1. The model presented in the text,

Vi(ϕi) = −Ki

q

1− Ti sin2(ϕi/2), (7.3)
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is strictly valid only for short junctions, with total amplitude Ki ' ni∆0, with∆0
the induced gap in the NW, resulting from ni transport channels with a typical
transparency Ti . This model leads to a Hamiltonian with five free parameters:
EC, K1, K2, T1, and T2. For the fit we took the Fourier series expansion of
Vi and truncated to seven harmonics in the numerical diagonalization of the
Hamiltonian.

2. The Kulik-Omelyanchuk (K-O) model for the zero-temperature current-phase
relation of a diffusive and short point contact [178, 179] gives

Vi(ϕi) = −2Ki

∫ π/2

0

q

1− sin2(ϕi/2) sin
2 x dx . (7.4)

The above relation can be obtained from Eq. (3) by integrating over the prob-
ability distribution of transmission coefficients T in a diffusive point contact.
This model leads to a Hamiltonian with three free parameters, EC, K1, and K2.
As before, the Fourier series was truncated to seven harmonics. The best-fit
results are shown in Fig. 7.9.

3. We have also performed a direct fit of the Fourier coefficients Ai,n, increasing
the number of coefficients until a good agreement with the data was observed.
The fit is more sensitive to the Fourier coefficients of the weak junction, as
the asymmetry in junction strength makes the phase difference across the
strong junction stay close to zero at any Φ. The best-fit values of the seven-
parameter fit are EC/h = 275 ± 1 MHz, A1,1/h = 95.5 ± 0.4 GHz, A2,1/h =
68.9 ± 0.2 GHz, A2,2/h = −11.78 ± 0.06 GHz, A2,3/h = 3.28 ± 0.02 GHz,
A2,4/h = −0.98± 0.03 GHz, and A2,5/h = 0.21± 0.03 GHz. Including more
Fourier coefficients did not improve the agreement with the data, and increased
the variance of the best-fit values.

Due to the non-linearity of the fitting model and correlated errors in the extracted
data points, it is not straightforward to extract a figure of merit for quantitative
comparison of the models. All models require at least one non-sinusoidal CΦR to fully
explain all the features of the data set.

Although the data are well fit by non-sinusoidal CΦRs, there are other mechanisms
that can produce similar spectra in superconducting circuits. First, the presence of
a super-inductance is known to produce a potential landscape with several minima,
as for the fluxonium [185]. NbTiN is known for its high kinetic inductance Lk.
Indeed, in our circuit we estimate Lk ≈ 0.2 nH and loop geometric inductance
Lgeo ≈ 30 pH. The associated total inductive energy EL = (Φ0/2π)2/Lk ≈ h×800 GHz
is, however, much larger than EJ ≈ (K1T1 + K2T2)/4 = h× 132 GHz and therefore
cannot produce multiple minima (fluxonium requires EL < EJ). Second, microwave-
induced excitation of Andreev bound states (ABS) confined to the junction can also
produce a qualitatively similar spectrum [186]. However, ABS transitions below
2 GHz require almost perfectly transparent transport channels, which has proven
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Figure 7.10: CΦRs for the three models. (A) Phenomenological model used in the
main text. (B) K-O model. (C) Fourier series using one harmonic for JE 1 and five
harmonics for JE 2.

challenging in even the most ideal atomic point contacts [186]. We therefore surmise
that the JEs remain in their ABS ground state and that the observed spectrum is fully
due to plasma modes. The potential to observe ABS transitions provides an exciting
prospect for future work.
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Figure 7.11: Flux-bias dependence of the NW-circuit-resonator coupling matrix ele-
ments for Device 3. The absolute matrix element

�

�〈k|N̂ |l〉
�

� determines the visibility
of the transitions in Fig. 7.3 of the main text. As expected for transmons, only the
matrix elements

�

�〈k|N̂ |k+ 1〉
�

� remain strong away from Φ= Φ0/2.

7.E Estimation of Device 3 parameters from model

It is possible to estimate interesting properties of Device 3 using the best-fit model
values presented in the main text. In particular, we can compute the dipolar couplings
of the NW circuit to its resonator. The coupling strength of the dipole-induced
transition between two eigenstates |k〉 and |l〉 of the split-junction CPB Hamiltonian
is proportional to the corresponding matrix element of N̂ , nkl = 〈k|N̂ |l〉.

Fig. 7.11 shows the calculated relative couplings |n01|, |n02|, |n03|, and |n12| near
Φ= Φ0/2. Their flux dependence explains some interesting features of the data, in
particular:

1. The vanishing visibility of the 0→ 2 transition at Φ= Φ0/2.

2. The strong visibility of the 0→ 3 transition near Φ= Φ0/2.

3. The reduction of |n01| near Φ0/2 (see Fig. 7.3) compared to that of Device 2.
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A

B

Figure 7.12: Energy levels of the split-junction NW circuit around Φ0/2. (A) Calcu-
lated energy levels for the parameters of Fig. 7.4 of the main text. (B) The states
belonging to the lowest energy levels, E0 and E1, carry opposite persistent currents
Ip,i = ∂ Ei/∂Φ. The two states hybridize at Φ= Φ0/2. Driving f01 with microwaves
induces transitions between these two macroscopically distinct current states.



Chapter 8

Topological blockade and
measurement of topological
charge

The 5/2 fractional quantum Hall plateau is expected to be described by the Moore-
Read wave function [11] or its particle-hole conjugate Anti-Pfaffian state [187, 188].
This means that every pair of e/4 quasiparticles appearing in this phase have an
extra neutral degree of freedom, topological charge, which does not affect local
measurements and does not influence the energy of the system as long as they are
well separated.

Topological charge manifests itself in the peculiar braiding statistics of these
quasiparticles [12, 189]: they are non-Abelian anyons and their topological degree of
freedom can be manipulated through ordered exchanges of quasiparticles whose result
is independent of the path used for braiding. Such stability under local perturbations
allows to exploit non-Abelian anyons to store and process quantum information in a
way that is highly protected from thermal noise and thus to potentially implement a
topological quantum computer [5, 6].

However there is no definite experimental proof that topological charge indeed
exists. Even when two quasiparticles are close to each other, there are no clear cut
signatures of the topological charge: this extra degree of freedom is completely charge-
neutral, and hence very hard to detect. The most actively developed tool predicted to
readout the combined state of several non-Abelian anyons, and to prove they possess
fractional statistics, is non-Abelian Fabry-Perot interferometry [6, 79–81, 190, 191].
However, the currently existing non-Abelian interference experiments [192–195] are
not conclusive. The interferometers are relatively sensitive to dephasing, since the
length of the trajectory has to be sufficiently large. Moreover they are described by a
rather complicated theory [196] due to the presence of many types of edge excitations
[197, 198]. In addition the interferometers are sensitive to all the anyons encircled
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Figure 8.1: Panel (a): two electrons with charge e (grey circles) trapped by several
gates (rectangles) form a singlet-triplet qubit. The singlet and triplet states of the qubit
acquire different energies when one of the electrons tunnels. Panel (b): a topological
qubit is formed by two quasiparticles of the Moore-Read quantum Hall state with
charge e/4. They are trapped by gates (filled circles). When one of these quasiparticles
tunnels to the other, two degenerate wave functions of the qubit corresponding to
the vacuum and fermion fusion channels acquire different energies. Panel (c): A
sketch of a possible implementation of the topological blockade measurement setup
featuring two local gates to form the quantum dots with size ∼ 100 nm, and a charge
sensor. The voltage applied to each dot is just enough to attract a single quasiparticle.

by the interference loop, some of which may even be coupled to edge states, further
obscuring the interpretation of the results [101, 199–202]. Other tools exist designed
to probe macroscopic consequences of the existence of topological charge [203–206],
however they do not allow to follow the behavior of a single anyonic excitation. Here
we propose a setup for measuring the topological charge that does not suffer from
these limitations. Our setup is local, so it is only sensitive to the topological charge
of two anyons, and it does not rely on using edge states. Instead it is based on the
phenomenon of topological blockade, explained below.

We begin our consideration from the simple observation that any inherent property
of a particle that may impose an energy penalty, can also prevent its motion. The most
commonly known examples are the electric charge, which causes Coulomb blockade,
and spin, resulting in spin blockade [207–214]. Less common examples include the
position of a particle, causing elastic blockade [215]. Topological charge makes no
exception: if the energy cost required to move two anyons onto the same region in
space (fusing) is too high due to their topological charge, then the anyons will not
move. Since anyons have charge, detecting their position is not much harder than that
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of usual electrons, and standard techniques such as QPC charge sensing [208, 216] or
single electron transistor probes [217] can be used for this purpose [218]. Blockade
measurements are a standard technique in quantum systems, and they are much
simpler than the measurement of a force acting on a single quasiparticle, proposed as
an alternative to interferometry in Ref. [219].

The particular setup for the detection of topological charge that we propose is
very similar to that of a singlet-triplet spin qubit (see Fig. 8.1), where spin blockade
is successfully used to distinguish a singlet state of two electrons from a triplet one
[210, 213]. Two anyons are trapped to two dots formed by metallic gates1. The
energies of the anyons are controlled by gate voltages, and the charge position is
measured by a nearby charge sensor.

In the following we analyze the performance of the proposed topological blockade
readout of topological charge using a model calculation. We continue by discussing
experimental challenges and important energy scales for measuring topological block-
ade. Finally, we propose several applications of topological blockade: a setup that
should measure non-Abelian braiding statistics, and a setup allowing to entangle a
topological qubit with a singlet-triplet qubit.

8.1 The model

A topological qubit, shown in Fig. 8.1b, consists out of two quantum dots trapping a
pair of quasiparticles with charge e/4 (Ising anyons). The energy levels of the dots can
be separately controlled by varying gate voltages. When the gate voltage difference is
small, the occupation number of both dots is equal, so that the system is in the (1, 1)
configuration, where each index describes the occupation of each dot. When the volt-
age difference between the two dots is sufficiently large, a quasiparticle tunnels from
the left dot to the neighboring one, and the ground state of the system becomes (0, 2).
Different states of the qubit are characterized by the fusion channel of two quasiparti-
cles: vacuum (1) or fermion (Ψ). We consider a limited gate voltage interval such
that the excited orbital states and the charge (2, 0) arrangement are higher in energy
than the four states relevant for the readout: {|(0, 2)1〉, |(1,1)1〉, |(0,2)Ψ〉, |(1, 1)Ψ〉}.

Similar to the singlet-triplet qubit case [211], the Hamiltonian of the topological
qubit is given by

H =
�

H1 0
0 HΨ

�

, with Ha =
�

εa δ
δ ε

�

. (8.1)

Here ε is the energy of states |(1, 1)1〉 and |(1, 1)Ψ〉, while ε1 and εΨ are the energies
of the states |(0,2)1〉 and |(0,2)Ψ〉 respectively. For definiteness we assume that
εΨ < ε1 [219], however our conclusions are not limited to this assumption. The
tunneling between different charge configurations has amplitude δ. As any local
process, this tunneling preserves the topological charge.

1The charge of the quasiparticle attracted to the gate voltage does not matter for our considerations:
both dots, which trap e/4 quasiparticles, and anti-dots, which trap e/4 quasi-holes, work identically.
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Figure 8.2: Main idea of topological blockade: spectrum of the Hamiltonian (8.1)
as ε, which states the energy of the (1,1) charge configuration, is varied. Two
avoided crossings occur when ε is degenerate with the fusion energies εΨ ,ε1 of the
anyons. Blue solid (red dashed) lines identify the eigenstates of the Hamiltonian
with topological charge 1 (Ψ). In the energy window between εΨ and ε1 a blockaded
regime occurs, with the (1,1) charge configuration favorable if the topological charge
is 1 but not if it is Ψ. For ε� εΨ and ε� ε1, the charge configurations (1,1) and
(0, 2) are respectively favored, independently on the topological charge shared by the
anyons (far-detuned regimes).

The energy levels of the Hamiltonian (8.1) are shown in Fig. 8.2 as a function of
ε, which is controlled by gate voltages. The two charge configurations (1,1), (0,2)
become degenerate in the Ψ (1) channel when ε = εΨ (ε = ε1), and consequently
δ leads to avoided crossings in the spectrum. Between the two crossings, there
exists an energy window of width ∆ = ε1 − εΨ where the (0, 2) occupancy is favored
with respect to the (1,1) occupancy if the topological charge is Ψ but not if it is 1.
This identifies the blockaded regime, where charge tunneling is allowed or blocked
depending on the fusion channel of the anyons. The energy∆ is similar to the singlet-
triplet exchange splitting in spin blockade. This blocked region allows for efficient
conversion from topological charge to real charge and hence allows readout of the
topological state.

The topological charge of the double-dot system is subject to decoherence, due to
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Figure 8.3: Probability P to measure the charge configuration (0, 2) when the system
starts in the configuration (1, 1) with initial topological charge Ψ (bottom panel) or 1
(top panel), as a function of pulse duration τ and ε. Obtained from the numerical
solution of the master equation (8.2), with parameters ∆= 10δ, γ= 0.1δ.

coupling to the edges or other impurities in the quantum Hall liquid surrounding the
system, which may cause transitions between the 1 and Ψ states in the same charge
configuration. Assuming this process is independent of ε, we introduce a constant
decay rate γ and model the time evolution of our system using a Lindblad master
equation

ρ̇ = −i [H,ρ] + 1
2

∑

j

2L jρL†
j − {L

†
j L j ,ρ} (8.2)

with operators L1 = L†
2 =
p
γ|(1,1)Ψ〉〈(1,1)1| and L3 = L†

4 =
p
γ|(0,2)Ψ〉〈(0,2)1|

describing the topological charge relaxation.

8.2 Readout

The topological charge in the (1,1) configuration at ε� εΨ , can be determined by
bringing it adiabatically through the avoided crossing into the blocked region, and
measuring the final charge configuration. This requires that the charge manipulation
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is performed on a time scale τ � h/δ (to avoid Landau-Zener transitions at the
crossing).

If instead the topological charge relaxes too rapidly to perform the adiabatic
passage, a faster readout procedure is needed. We describe here a method analogous
to the rapid single-shot measurements of singlet-triplet qubits [213]. The system is
initialized at ε� εΨ and the energy is then increased non-adiabatically to ε ∼ εΨ for
a short pulse of duration τ, after which ε is driven back to the initial value with a
second fast pulse. The topological charge is again inferred by a charge measurement
of the final occupancies of the dots.

During the pulse, two anyons in the Ψ channel oscillate between the (1,1) and
(0,2) charge configurations with period h/2δ. If τ equals half of this period, the
transition probability from |(1, 1)Ψ〉 to |(0, 2)Ψ〉 is maximized. An analogous charge
transition in the vacuum channel is strongly suppressed because the state |(0,2)1〉
lies at a higher energy ε1. In the ideal case, the initial topological charge can be
inferred by the final occupancies of the dot, with (1,1) and (0,2) corresponding to
1 and Ψ respectively. Unlike the adiabatic measurement, the time allowed for the
charge measurement in this case is limited by the electric charge relaxation to the
ground state, (0,2)→ (1, 1).

In a more realistic scenario, incoherent processes may alter the results and the
position of the resonance cannot be known in advance with great accuracy. Fig. 8.3
shows the probability to measure the charge configuration (0,2) after a pulse of
duration τ is performed at an energy ε, sweeping a range of width∆ centered around
εΨ , for the two different initial topological charges. Coherent oscillations dominate in
the Ψ channel for τ� h/γ, leading to fringes with peaks at τ∗n = (n+1/2)h/2δ. The
brightest peak occurs at τ∗0 = h/4δ, making this the optimal duration of the pulse. If
ε is varied for longer times and away from the resonance, the period of the fringes
shortens and their intensity diminishes. Since this readout method works identically
if ε ∼ ε1 (only with the roles of 1 and Ψ states interchanged), either can be used to
detect the topological charge of the prepared state.

The sum of the charge manipulation time τ and the charge readout time should be
much shorter than the topological charge relaxation time, which is equal to h/γ. The
adiabatic charge manipulation requires τ� h/δ, while the coherent manipulation
requires a faster time scale τ ∼ h/4δ, hence we arrive at the condition δ � γ. If
single shot readout is desired, the charge readout time should also be much shorter
than the topological charge relaxation time h/γ. However, a quick low fidelity readout
of the charge position is sufficient for the detection of the topological charge, since
the measurements can be repeated many times. Additionally, in order for for the two
topological charges to be distinguishable, the blockaded region should be larger than
the region where charge tunneling occurs δ�∆.

The appropriate parameter conditions can be reached by a careful design of the
setup. It has been estimated that an effective potential in the two-dimensional electron
gas with a width of a few magnetic lengths (lB) can trap single quasi-holes with a
typical radius of 3lB ≈ 30 nm [220–222]. Under this assumption, numerical works
calculated ∆≈ 0.01e2/εlB with an upper bound of 1K [219, 221]. For larger dots ∆
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is reduced since it is bounded from above by the level spacing. The speed of relaxation
of the topological charge γ due to the coupling to disorder-induced anyons can be
estimated as ∆e−l/ξ, with ξ ≈ 2.3lB the characteristic length scale associated with
the quantum Hall liquid excitation gap [219] and l the distance of the double-dot
system from the nearest impurity. Requiring γ ≈ 0.01∆ then yields a lower bound
l ≈ 100 nm. Finally δ is exponentially small in the distance between the dots, so the
condition δ�∆ requires the inter-dot distance to be larger than ξ.

These requirements are less stringent than the requirements for operation of a
non-Abelian interferometer. There the readout time must still be shorter than h/γ,
however it should also be much larger than the time of flight of a neutral excitation
through the interferometer loop. This time of flight is given by L/v ® ħhL/∆ξ, with
L � ξ the length of the interferometer path. Additionally, γ is increased due to
the coupling of the interferometer loop to bulk anyons [101, 201]. The non-Abelian
interferometers however have the advantage that they are able to measure the Abelian
part of the braiding statistics [6, 194, 202], to which topological blockade is completely
insensitive. The interferometers can also measure topological charge of more than
two anyons, unlike the topological blockade.

Quasiparticles in the Abelian 331 state [223], which is the most likely alternative
to the Pfaffian state, have finite spin polarization, and hence may cause spin blockade.
However due to the large Zeeman splitting, the equilibrium spin distribution is highly
imbalanced, unlike the topological charge. This imbalance can be easily detected by
performing a series of repeated blockade measurements.

Using existing technology, the smallest dots can be formed by local top gates
with size ∼ 100 nm. This is similar to the expected quasiparticle size. The effective
confinement potential is expected to be still smoother than this scale because the
2DEG is located ∼ 50 nm away from the gate. Nevertheless since the splitting is only
suppressed linearly with the size of the un-gapped region, we expect that this will
not result in big suppression of the ∆. As long as the gate potentials are sufficiently
small, these local gates just attract excess quasiparticles without forming the edge
states. A local charge sensor similar to the one used in Ref. [218] could be fabricated
in proximity to one of the dots, as shown in Fig. 8.1c.

8.3 Extensions

8.3.1 Detection of non-Abelian statistics

In order to detect non-Abelian braiding statistics of the anyons, one needs to combine
the topological blockade-based readout device with a minimal setup for exchanging
two anyons [224]. This setup is shown in Fig. 8.4a, and it consists of a topological
qubit with two extra dots hosting a single e/4 quasiparticle. The quasiparticles are
moved by varying the potential of the dots. Both braiding and detection can then be
performed in the four dot setup, using the same protocol proposed in Ref. [79] in the
context of interferometric devices.
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Figure 8.4: Applications of topological blockade. Panel (a): two-qubit system formed
out of a topological and a spin qubit. For both qubits the computational degrees
of freedom correspond to different charge configurations. Entanglement between
the qubits can be induced by a capacitive coupling between the two double-dots.
Panel (b): setup for the detection of non-Abelian statistics of the ν= 5/2 fractional
excitations. Three anyons (A, B, C) are hosted in four dots and can be moved by
varying gate potentials. Two counterclockwise exchanges of B and C , implemented
using the fourth empty dot, act as a NOT gate on the qubit formed by A and B [79].

8.3.2 Coupling with conventional qubits

Since topological blockade allows to translate the topological charge into the posi-
tion of the electric charge, it becomes possible to couple a topological qubit with
conventional quantum systems, similarly to what was done with Majorana qubits in
superconducting systems [61, 65, 66]. Both topological and spin blockade translate
the qubit degree of freedom into an electric charge configuration. In the case of
singlet-triplet qubits, this effect has been used to couple two neighboring double
dots in order to produce two-qubit entanglement [225]. The same method can be
explored to couple capacitively a topological qubit to a singlet-triplet qubit hosted
in a nearby double quantum dot (see Fig. 8.4b). Independent measurements on the
two qubits can still be performed via two charge-sensing quantum point contacts.
Additionally, the oscillatory motion of electric charge at the transition between (1, 1)
and (0, 2) states can also be used to couple the topological charge to electromagnetic
radiation, thus allowing coupling of a topological qubit with cavity qubits. Since the
gate pattern needed to define the double-dot hosting the singlet-triplet qubit will
likely introduce undesired edges in the quantum Hall liquid, it would be necessary to
have the second qubit in a different layer of the nano-structure. Another difficulty
to overcome is the presence of a strong magnetic field which increases the Zeeman
splitting of the triplet states and makes it comparable with the exchange splitting in
the singlet-triplet system, potentially ruining the operation of the spin qubit.

8.4 Conclusions

In conclusion, we have showed how to use topological blockade to measure topological
charge. While we focused on the most experimentally relevant case of the 5/2
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fractional quantum Hall plateau, the same method applies to any non-Abelian phase
as long as the anyons also have electric charge. We have shown that the topological
blockade is more robust than the non-Abelian interferometry, in part due to being
insensitive to the Aharonov-Bohm phase. The downside is that it cannot probe
the Abelian part of the braiding statistics. Finally, we have also shown how to use
topological blockade to measure braiding statistics and to couple topological qubits
with a singlet-triplet spin qubit.
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Chapter 9

Braiding of non-Abelian anyons
using pairwise interactions

The purpose of topological quantum computation (TQC) is to realize a reliable quan-
tum computer, exploiting the existence of non-Abelian anyons in certain condensed
matter systems [5, 6]. The presence of several such particles gives rise to degenerate
ground states which cannot be distinguished by local measurements. The ground
state manifold is then adopted as the computational space, and quantum gates can
be performed by braiding (exchanging the positions of the anyons), as shown in
Fig. 9.1a). The resulting unitary transformation of the wave function depends only on
the order of the exchanges and not on the details of their paths, thus these quantum
gates are said to be topologically protected. In the standard scheme of TQC [6], there
are two main ingredients needed to implement braiding. First, it must be possible to
change the positions of anyons in such a way that the wave function of the system
always belongs to the space of the degenerate ground states. Second, at all stages
of the braiding the interactions between the anyons used for the computation must
be negligible in order to preserve the degeneracy of the ground states and to avoid
the presence of non-adiabatic time-dependent phases. This requires the anyons to be
well separated in space.

The possibility to realize braiding operators without moving the anyons was
then introduced by Bonderson, Freedman and Nayak in Refs. [71, 226]. In their
scheme, the measurement-only TQC, the braid operators are obtained as a result
of a probabilistically determined sequence of non-demolition measurements of the
computational anyons as shown in Fig. 9.1b). This measurement would rely, for
example, on the non-Abelian edge state interferometry [79–81, 190, 191, 227], which
has been actively developed both experimentally and theoretically [101, 191–195,
199, 201, 202].

A different way to braid non-Abelian anyons without moving them around each
other has been theoretically developed in the case of Majorana modes appearing
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Figure 9.1: Different ways to braid quasiparticles in topological quantum computation.
Panel (a): the original scheme for braiding, where quantum gates are obtained by
moving the non-Abelian quasiparticles (red and blue dots) one around the other.
Panel (b): measurement-only TQC, in which ancillary anyons are added to the system
(white dot), and quantum gates are obtained as a sequence of non-demolition pairwise
measurements (represented by the dashed ellipses) which induce teleportation of the
computational anyons through the ancillary ones. Panel (c): the interaction-based
braiding, which makes use of the interaction between computational and ancillary
anyons in a T-junction geometry.

at the ends of one-dimensional topological superconductors [26, 45, 46]. Initially,
it was shown in Ref. [21] how braids can be realized in wire networks by moving
the Majorana modes through T-shaped junctions. In this case, the movement of
the quasiparticles is restricted to a quasi one-dimensional system, thus relaxing
the limitation of braiding to two dimensions. Subsequent proposals however have
eliminated the need to physically move the topological defects altogether, showing
how the same ground state transformations can be implemented using the mutual
interactions between Majoranas, controlling either tunnel couplings via gate voltages
[67] or capacitive couplings via magnetic fluxes [69]. Finally, in Ref. [86] a general
theory of adiabatic manipulations of Majorana modes in nanowires was formulated.
Unless we allow for physically bending and rotating the wires, the minimal setup
required for the braid operation is a T-shaped configuration of nanowires where a
central Majorana is coupled to at least three neighbors. The evolution over a path
in parameter space results in the same non-Abelian Berry phase expected after an
exchange of two quasiparticles in real space.

In this chapter, we aim to show that in a broad range of anyonic models braiding
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is not only a property of the particle motion, but it is also encoded in the many-body
Hamiltonian of coupled anyons. We will show how it is possible to engineer effective
braidings by manipulating mutual couplings between neighboring anyons, rather than
their coordinates in space. The motion of anyons is unnecessary also in measurement-
only TQC, however our proposal is different because the braid operation is performed
in a deterministic manner and does not rely on the procedure of anyon measurement.

The outline of this chapter is the following. In Section 9.1 we present the minimal
braiding setup, formed by four anyons in a T-shaped junction, and we give an expres-
sion of the interaction Hamiltonian in terms of the F -matrices of a generic anyon
model. In Sec. 9.2 we present in detail the adiabatic cycle in parameter space used to
braid the non-Abelian anyons, while in Sec. 9.3 we discuss how errors affecting the
adiabatic evolution can be reduced by embedding the braiding junction in a bigger
system of anyon chains and conclude.

9.1 The T-junction

We consider a system of four anyons with the same topological charge t in a T-junction
geometry, with a central anyon (labeled tC) coupled to other three (labeled tL, tR, tB

for left, right and bottom), as shown in Fig. 9.1c and Fig. 9.2. We assume that they
have fusion rules

t× t=
n
∑

i=1

fi (9.1)

with {fi} the set of the n possible fusion channels (see Refs. [6, 78, 228] for introduc-
tions on non-Abelian anyons and their fusion rules).

We also assume that the anyons do not move, and we focus on the pairwise
interactions between them. These interactions result in the fusion channels fi having
different energies, so that the Hamiltonian can be written as a sum of projectors onto
different fusion outcomes. In the case of the T-junction and given the fusion rule
(9.1), it takes the form

H = −
∑

K

n
∑

i=1

εi,KΠ
K
i (9.2)

where K runs over {L,B,R} and ΠK
i is the projector onto the states in which the

anyon tK fuses with tC into the i-th channel, with a relative coupling εi,K. In order
for braiding to work we require that the interaction of each anyon with the central
one favors an Abelian channel aK ∈ {fi}, with a fusion energy εa,K ≡ max{εi,K}.
This means that the anyons C and K fusing in the aK channel will be separated
by an excitation gap from all the other mutual fusion channels. In the following
we will assume that all the pairwise interactions favor the same fusion channel, i.e.
aL = aR = aB = a, even though this condition is not strictly necessary1.

1In the general case, the interactions between C and the other anyons may favor different Abelian
fusion channels aK if all the fusions t× aK assume the same topological charge. The main example is the



130 Chapter 9. Braiding of anyons via pairwise interactions

Figure 9.2: Graphical representation of the T-junction system as a fusion tree of
the four anyons, corresponding to the basis choice made in the text, see Eq. (9.4).
Different sequences of the fusion outcomes x1,x2,xtot define the basis states of the
Hilbert space. Three Hamiltonians HL, HR, HB describe the interaction between
different pairs of anyons. In particular, HL couples the anyons L and C which, in this
basis, are not nearest neighbors.

To the purpose of implementing a braiding operator between anyons tL and
tR we require that all the pairwise interactions HK =

∑n
i=1 εi,KΠ

K
i in (9.2) can be

adiabatically switched off. In reality a single interaction HK can not be totally switched
off (even though it can be likely made exponentially small), and we will relax this
assumption in Sec. 9.3.1.

9.1.1 Ground state degeneracy

To prove that the Hamiltonian (9.2) is of any use for TQC, we must identify a degen-
erate manifold of its ground states, at least in some regions of the parameter space
spanned by the energies εi,K.

It has been shown that tunneling couplings between anyons lift completely the
topological degeneracy of the ground state [229], and the Hamiltonian (9.2) makes
no exception if all εa,K are non-zero. On the other hand, if all the couplings are zero,
the ground state manifold coincides with the whole Hilbert space of the anyon system.
We focus here on the intermediate domain between these two extreme cases, namely
when only a subspace of the full Hilbert space has its degeneracy left intact.

The Hamiltonian (9.2) has an n-fold degenerate ground state when at least one
of the HK is zero and one is non-zero. Let us consider HL = HR = 0, εa,B > 0. The
two anyons L and R are completely decoupled and share an arbitrary topological

case of Ising anyons σ, which obey the fusion rules σ×σ = I+Ψ, σ× I= σ×Ψ = σ, with both I and Ψ
Abelian; in this case changing the favored fusion channel of the pairwise interaction between L (or R) and
C determines a change in the chirality of the braiding [67, 86]. This is due to an additional symmetry of
the Ising anyon model:

R−1
LRΠ

L
ΨRLR =RLRΠ

L
IR
−1
LR (9.3)

where ΠΨ = 1−ΠI is the projector over the fermionic fusion channel Ψ. This relation implies that changing
the favored fusion channel for one of the two anyons R or L, the role of RLR and R−1

LR
are exchanged

throughout the adiabatic cycle and effectively reverses the braiding direction.
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Figure 9.3: Top: graphical representation of Eq. (9.6). The fusion outcomes are
explicitly written along the fusion tree. To write down the projectors ΠR

i in the basis
of Fig. 9.4, we need two F -moves. A similar transformation, not shown, is needed
to write down ΠB

i , see Eq. (9.5). Bottom: in the case of ΠL
i , two braiding matrices

RLR make their appearance in addition to the F -moves. This introduces the braiding
matrix RLR in the Hamiltonian of the T -junction.

charge x1 which may assume one of the n different values {fi}, while the anyons B
and C fuse into the Abelian channel a. The total topological charge equals xtot =
(tR × tL)× (tB × tC) = x1 × a. Since a is Abelian, the fusion x1 × a can only have one
possible outcome, and additionally there cannot be another charge x′1 such that x′1×a
has the same outcome. Therefore there exists a one-to-one mapping between the
charges x1 and xtot, implying that the ground state wave function |Ψ〉 will generically
be a superposition of n orthogonal ground states Ψi with total topological charge
fi × a, |Ψ〉=

∑

i ai |fi × a〉.
When a second coupling, say HL, is also nonzero, the anyon L fuses with tC×tB = a

and the three have a total charge t× a. The overall degeneracy cannot change, since
tR × (tL × tB × tC) = t× (t× a) = (

∑

i fi)× a, which again gives n orthogonal states.
We conclude that if all the couplings HK are neither on nor off at the same time,

the ground state of the Hamiltonian (9.2) has an n-fold degeneracy.

9.1.2 Projectors

In order to describe the wave function evolution in the n-fold degenerate ground state
subspace of (9.2), we need to write down the Hamiltonian (9.2) explicitly in a certain
basis. To describe the evolution and the eigenstates of this system we closely follow
the methods used for the study of anyon chains and lattices (see e.g. [230–234]).

The different quantum states of a system of anyons can be specified by the sequence
of fusion outcomes along a certain fusion path. The choice of a fusion path is equivalent
to the choice of a basis in the Hilbert space. Once a fusion path is chosen, the projector
of two anyons on a given channel fi is represented by a simple diagonal matrix if
the two anyons fuse directly together along the path with outcome fi . Otherwise a
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projector must be written via appropriate transformations called F -matrices (see e.g.
[6, 228, 230]). We choose the following fusion path shown also in Fig. 9.2:

(((tL × tR→ x1)× tC→ x2)× tB→ xtot) , (9.4)

with x1,x2,xtot belonging to the sets of possible fusion channels at each step of the
fusion path. All states in the Hilbert space can be written as |x1,x2,xtot〉. The basis
(9.4) describes a path where tL and tR are first fused with outcome x1, then with tC

resulting in a second outcome x2, and finally with the fourth anyon tB to give xtot.
The latter is the total topological charge of the system: subspaces of the Hilbert space
corresponding to different xtot are decoupled. Adopting this basis we can now write
down explicitly all the terms appearing in the Hamiltonian (9.2). To this purpose we
consider different bases in which each operator has a diagonal form, and then we
move to the basis in Eq. (9.4) using appropriate basis transformations.

We start with ΠB
i . The anyons tC and tB are nearest neighbor, but they do not

fuse directly together in our fusion path: to write ΠB
i we must use the appropriate

F -matrices,

�

ΠB
i (x1,xtot)

�

x′2,x2
=
∑

y

�

F x1tCtB
xtot

�−1

x′2,fi
δfi ,y

�

F x1tCtB
xtot

�

y,x2
=

=
�

F x1tCtB
xtot

�−1

x′2,fi

�

F x1tCtB
xtot

�

fi ,x2

(9.5)

with y ∈ {fi} and x2,x′2 belonging to the set of fusion channels of three t anyons.
As indicated on the left hand side of Eq. (9.5), the matrix elements of the projector
depend on indices x1,xtot. In a similar way we obtain for ΠR

i the following form:

�

ΠR
i (x2)

�

x′1,x1
=
�

F tLtRtC
x2

�−1

x′1,fi

�

F tLtRtC
x2

�

fi ,x1
(9.6)

with x1,x′1 ∈ {fi}. The graphical representation of this equation is shown in the top
panel of Fig. 9.3.

Unlike the two other cases, in the fusion tree of Fig. 9.2 the anyons L and C are
not nearest neighbors in the chosen basis. Since they would be nearest neighbors if
L and R were interchanged, the transformation to a basis when they fuse directly
together includes a braiding matrix RLR, as shown in the bottom panel of Fig. 9.3.
The particular braiding matrix (RLR orR−1

LR) that appears in this basis transformation
depends on the real space positions of the anyons and on the microscopic details of
the Hamiltonian. The two possible choices correspond to two mirror-symmetric anyon
models [228]. It is this term that is responsible for the appearance of braiding during
the adiabatic Hamiltonian evolution. In particular mirroring the T-junction layout
inverts the chirality of R . As shown in the bottom panel of Fig. 9.3, the projector ΠL

i
can be obtained from ΠR

i via RLR

R−1
LRΠ

R
i RLR = Π

L
i (9.7)
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Figure 9.4: Illustration of the adiabatic cycle which reproduces the braiding operator
RLR of two topological charges t (red and blue circles) in a four anyon system.
The cycle is divided in three steps of duration T . At the end of each step only one
interaction HK is on. The arrows follow the transfer of an unpaired topological charge
t at intermediate stages, represented as the spreading of the colored circles over
different anyons.

In the fusion basis (9.4), RLR is a diagonal matrix and, explicitly, we have
�

ΠL
i (x2)

�

x′1,x1
=
�

R−1
LR

�

x′1

�

ΠR
i

�

x′1,x1
(RLR)x1

=

=
�

R−1
LR

�

x′1

�

F tLtRtC
x2

�−1

x′1,fi

�

F tLtRtC
x2

�

fi ,x1
(RLR)x1

.
(9.8)

Knowing the F -matrices of a given anyon model, Eqs. (9.5,9.6,9.8) allow to write
explicitly the four-anyon Hamiltonian (9.2). In particular, we note that the braiding
operator RLR now appears explicitly in

HL =
∑

i

εi,LΠ
L
i =

∑

i

εi,LR−1
LRΠ

R
i RLR. (9.9)

Before concluding this section, we point out that because the interactions are
local, the fusion product tB × tC cannot be affected by the braiding of R and L. The
projectors ΠB

i and the braiding operator RLR must therefore commute:

ΠB
i RLR =RLRΠ

B
i . (9.10)

9.2 The adiabatic cycle

In this section we show that the braiding of the anyons R and L appears as a result
of any closed path in parameter space starting from a point where only HB 6= 0,
and continuously passing through the points where first only HL 6= 0, and finally
only HR 6= 0 in such a way that the degeneracy is always preserved. For the ease
of presentation we divide the path into three separate steps of duration T such that
during each step one of HK is turned on and one off. The time evolution of the
Hamiltonian along such a path is shown in Fig. 9.4.

Let us consider the evolution of the ground state wave function |Ψ(t)〉 of H
along this adiabatic cycle. The wave function can at any moment be written as a
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Figure 9.5: The derivation of Eq. (9.13). We transform the ground states |Ψxtot
(t)〉

from the basis ((tL × tC→ fi)× tB→ t× a) to the basis (9.4). The phase factor
�

F tat
xtot

�

t×a,t×a
from Eq. (9.13) is not explicitly shown here.

superposition over states with different total topological charge xtot,

|Ψ(t)〉=
∑

xtot

axtot
|Ψxtot

(t)〉. (9.11)

The states |Ψxtot
(t)〉 define the n-fold ground state manifold. The absolute values of

the superposition coefficients axtot
are conserved because the total topological charge

is a conserved quantity. This implies that the time evolution of the ground state
manifold is a diagonal operator in the basis given by |Ψxtot

(t)〉. Therefore, each term
in the superposition (9.11) can only acquire a phase, possibly dependent on xtot, or
in other words the Berry matrix is diagonal in this basis. This allows us to follow the
evolution of each |Ψxtot

(t)〉 independently from all other states.
We should note that the superposition (9.11) is only possible if other anyons

are present in the system other than L,R,C,B. We imagine that these anyons do
not interact with the T-junction while the adiabatic cycle is performed, so that their
presence can be ignored.

During the first step 0≤ t ≤ T , the anyon R is left unpaired from the other three.
The topological charge of the three anyons L,C,B is then conserved and equal to its
initial value tL× (tC× tB) = t× a. The general form of a wave function satisfying this
constraint is given by:

|Ψxtot
(t)〉=

∑

x1,x2,fi

Uxtot,x1,x2,fi
αfi
(t) |x1,x2,xtot〉, (9.12)

where αfi
(t) can always be chosen to not depend on xtot, and the unitary matrix U is

the transformation from the basis ((tL × tC→ fi)× tB→ t× a), where the anyons L,
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C and B fuse directly into t× a before adding the anyon R, to the basis (9.4):

Uxtot,x1,x2,fi
=
�

F tat
xtot

�

t×a,t×a

�

R−1
LR

�

x1

�

F tRtLtC
x2

�−1

fi ,x1

�

F tRfitB
xtot

�−1

t×a,x2

. (9.13)

The F - and R-moves required for this transformation are shown in Fig. 9.5.
In particular, at t = 0, only HB 6= 0 and each |Ψxtot

(0)〉 is an eigenstate of ΠB
a

defined in Eq. (9.5):

|Ψxtot
(0)〉=

�

F tat
xtot

�

t×a,t×a

∑

x1,x2

�

R−1
LR

�

x1

×
�

F x1tCtB
xtot

�−1

a,x2

�

F tRtLa
xtot

�−1

t×a,x1
|x1,x2,xtot〉 , (9.14)

These wave functions (9.14) can be obtained from the Eqs. (9.12) and (9.13) by
substituting αfi

(0) =
�

F tLtCtB
t×a

�−1

a,fi
and applying the pentagon equation [228]. The

presence of the last F symbol in Eq. (9.14) implies x1 = xtot × a, which simplifies the
sum over x1 due to a being Abelian. The phase factor (R−1

LR)x1
is needed in order to

guarantee the independence of αfi
(t) on xtot.

As t evolves from 0 to T , these states acquire a Berry phase,

θT =

∫ T

0

〈Ψxtot
(t)|∂t |Ψxtot

(t)〉dt =

∫ T

0

∑

fi

α∗fi
∂tαfi

dt. (9.15)

The time-independent unitary matrix U naturally drops out of the expression for the
Berry phase. We conclude that the Berry phase acquired in our basis during the first
step is the same for every state, or in other words it is Abelian.

At t = T , only HL 6= 0, and the ground state wave function must be in an eigenstate
of ΠL

a ,

|Ψxtot
(T )〉=

∑

x1

�

F tRtLtC
x2

�−1

a,x1

�

R−1
LR

�

x1
|x1,x2,xtot〉, (9.16)

now with x2 = t× a since L and C fuse into a, and the phases once again fixed by the
requirement that αfi

do not depend on xtot. Note that the wave functions (9.16) are
of form given by Eq. (9.12). The net result of the evolution from t = 0 to t = T is the
transfer from L to B of an unpaired topological charge t.

During the second step T ≤ t ≤ 2T the wave function coefficients can be chosen
to be independent on xtot in the basis of Eq. (9.4). The wave function evolves from
the eigenstate (9.16) of ΠL

a into an eigenstate of ΠR
a . Due to the relation (9.7) and

Eq. (9.16) we can write the ground state wave functions at t = 2T as

|Ψxtot
(2T )〉=

∑

x1

�

F tLtRtC
x2

�−1

a,x1
|x1,x2,xtot〉. (9.17)

The integral of the Berry connection 〈Ψxtot
(t)|∂t |Ψxtot

(t)〉 from T to 2T is common
to all states and provides an Abelian Berry phase due to the independence of all the
coefficients on xtot.
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In the last step, 2T ≤ t ≤ 3T , we repeat the procedure of the first one. We write
the wave function in a basis ((tR × tC→ fi)× tB→ t× a), where tR, tC, tB fuse into
t× a before the anyon L is added. The corresponding transformation to the basis
(9.4) is given by the Eq. (9.13), but without the matrix (RLR)

−1. This ensures that
the wave function |Ψxtot

(t)〉 stays continuous at t = 2T . In this last step, the wave
function acquires another Abelian Berry phase and ends up again in an eigenstate of
ΠB

a . We end up with:

|Ψxtot
(3T )〉=

�

F tat
xtot

�

t×a,t×a

∑

x1,x2

�

F x1tCtB
xtot

�−1

a,x2

�

F tRtLa
xtot

�−1

t×a,x1
|x1,x2,xtot〉. (9.18)

Having performed an adiabatic evolution over a closed path, the final wave
function must be connected to the initial one via a unitary matrix U , |Ψ(3T)〉 =
U |Ψ(0)〉. Using Eq. (9.14) and (9.18) we find

〈Ψxtot
(0)|Ψxtot

(3T )〉= (RLR)x1
(9.19)

where we recall that xtot = x1 × a. For the whole wave function we can write

|Ψ(3T )〉=RLR |Ψ(0)〉 (9.20)

up to an Abelian Berry phase. This means that the braiding of anyons L and R was
performed in the adiabatic cycle. By performing the whole protocol in reverse, we
obtain instead the inverse braiding.

9.3 Discussion and conclusions

9.3.1 Restoring scalability and topological protection

The braiding procedure of Sec. 9.2 relies on the ability to turn off the pairwise
interactions HK completely. This is only possible if the separation between the anyons
becomes infinite, and hence one may argue that this procedure is only approximating
topological quantum computation. In a finite system the non-Abelian Berry phase
will in general have a correction, and additionally non-adiabatic errors will appear
due to the presence of finite ground state splitting [72].

This imperfection can be removed and the topological nature of the braiding can
be restored by bringing the anyons L,R,B further away from the central one C. If
anyonic chains with controllable couplings are then introduced along the three arms
of the T-junction (see Fig. 9.6), this still allows to perform the braiding in a similar
fashion, but with a higher fidelity. Since we are interested in the low energy spectrum
of the Hamiltonian we approximate the interactions between nearest-neighbor anyons
K,K′ with the projector ΠK,K′

a over their lowest energy topological charge and we
consider all the other fusion channels to have the same energy, so that the Hamiltonian
of each junction becomes:

HK,K′ = −εΠK,K′

a , (9.21)
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Figure 9.6: Panel (a): three staggered anyon chains forming a T-junction. Weak (εmin,
dashed lines) and strong (εmax, double solid lines) couplings alternate. The bottom
arm of the T-junction, connecting the original anyons C and B, is in a dimerized
phase with no unpaired anyons and approximately contains no net topological charge.
On the other hand, in the right and left arm the dimerization leaves two almost
unpaired anyons L and R at the end (blue and red dot). Due to the residual coupling,
the topological charge of L and R is spread over the neighboring anyon pairs, as
represented by the color gradings. The left and right arm are in therefore in the
non-trivial phase. The two arms interact weakly via the centre of the T-junction,
leading to renormalized couplings ε′L and ε′R between L, R and C, as in panel (b).
The residual interaction splits the ground state degeneracy of an energy exponentially
small in the length of the chains.

where a should again be Abelian. We require that ε can be varied in a range
(εmin,εmax), so that the chains can be driven into a staggered phase with alternating
weak and strong couplings, as in the Kitaev Majorana chain [26] and its parafermionic
generalization [235].

The termination of the chain ending with a weak link differs from the termination
by a strong link by the presence of an extra t anyon, and the chain ending with a strong
link can be continuously connected to a chain of fully fused a-type anyons. This means
that if the chain is gapped, whenever it ends in a weak link, its end has a topological
charge of t, spread over several anyons, as shown in Fig. 9.6. While we are not aware
of a proof that a general anyonic chain with staggered antiferromagnetic couplings
is gapped, it is true for many relevant cases [232, 236, 237]. When εmin � εmax,
the effective minimal coupling between an unpaired anyon at the edge of the T-
junction and the central anyon C can be calculated perturbatively, and it is equal
to ε′ ' εmin(κεmin/εmax)N , with N the number of anyon pairs in the chain, and κ
a geometric factor which depends on the specific anyon model. For Ising anyons
κ = 1, and for Fibonacci anyons κ = 2/φ2, with φ =

�

1+
p

5
�

/2 the golden ratio
[236, 237]. The maximal coupling is achieved in the staggered configuration which
ends with a strong bond, and the maximal coupling εmax is only weakly modified.

To implement the braiding, each part of the adiabatic evolution can be decomposed
into steps which require to change the pairwise couplings of three anyons, just as it
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happens for the steps illustrated in Fig. 9.4. In this way, during the adiabatic cycle, we
create and move domain walls which drive the transition between the two different
staggered configurations of the chains (see Fig. 9.7). The two unpaired topological
charges encoding the computational degree of freedom are localized in these domain
walls which are moved along the three arms. Since the distance between the unpaired
charges is always larger than the length N of a single arm of the T-junction, their
residual interaction is exponentially suppressed, allowing to likewise exponentially
suppress the error in the final result.

9.3.2 Summary

In summary, we have investigated an approach to topological quantum computation.
In order to implement the necessary braiding operations of non-Abelian anyons,
we couple the anyons instead of moving them or measuring their state. We have
considered a simple system composed of four interacting non-Abelian anyons in a
T-junction geometry and we have shown how adiabatic control over the interactions
results in the Berry matrix expected when two anyons are moved around each other.
If the coupling between the anyons cannot be completely turned off, errors are
introduced in the braiding operations due to the residual splitting of the ground
state degeneracy. We have discussed how these errors can be limited by means of
enlarging the number of anyons involved in the adiabatic evolution. The protection
is exponential in the number of anyons which are added to the system, so the whole
procedure is similar to increasing the separation between anyons in the original
approach.

Our approach, inspired by recent theoretical proposals for the braiding of Majorana
modes in superconductors, is applicable to most anyon models. These include all
the SU(2)k models (such as the Ising and Fibonacci anyons expected to appear in
fractional quantum Hall systems), as well as the fractionalized Majorana modes very
recently proposed in Refs. [235, 238–242].

A possible implementation of our scheme in the fractional quantum Hall systems,
would require to engineer systems of dots hosting single anyonic quasiparticles and to
tune their interactions via the voltages induced by gates or scanning tips, in a similar
spirit to the blockade measurement of topological charge [243].

Alternative, but even more exotic, implementations of this scheme include for
example the braiding procedure presented in Refs. [239, 244] for fractional Majorana
modes in superconductor/quantum-Hall heterostructures. Additionally, the recent
progress in the design of several systems thought to host non-Abelian excitations,
ranging from physical realizations of the Kitaev honeycomb lattice model [78] (see, for
example [245–247]) to ultra-cold atomic gases subjected to artificial gauge potentials
[248, 249], could also fall into the category of systems where interactions between
anyons are easier to control than their positions.
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Figure 9.7: The first step of the adiabatic braiding sequence realized in a system
of staggered anyonic chains. The topological charge t is moved from the left arm
of the junction to the bottom arm. As in Fig. 9.6, blue and red colors represent a
topological charge t spread over several anyons. The charges are localized at domain
walls between the two possible phases of the staggered chain. Domain walls can be
moved: each movement involves three different anyons of the chain. The domain
wall that is moved is marked by a black arrow.
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Chapter 10

Topological phases in 2D arrays
of parafermionic modes

Systems that exhibit topological quantum order [250] have been a focus of attention
in recent years. Part of the interest is due to the fact that they have been proposed as
fault-tolerant quantum memories and platforms for quantum computation [6], the
paradigmatic example being Kitaev’s toric code [5]. The goal is to design architectures
effectively governed by topologically-ordered Hamiltonians, where qubits may be
stored and manipulated in a physically protected way. zero-modes Majorana zero-
modes, realized as superconducting mid-gap excitations in either one [26] or two
[14, 25] spatial dimensions, are promising building blocks for such architectures. Two
unpaired Majorana modes at the ends of a one-dimensional (1D) superconducting
wire encode non-locally a qubit [26] and, when allowed to move in a non-strictly 1D
geometry, exhibit non-Abelian statistics [11, 21, 27], allowing to implement a non-
universal set of quantum gates through ordered exchanges of their positions. Interest
in Majorana modes has increased considerably in recent times, since there are now
several experimentally accessible systems that may host these quasiparticles (see Refs.
[22] and [23] for a review). A notable example is the edge of a two-dimensional (2D)
topological insulator [43, 44], which hosts gapless helical (i.e., counter-propagating)
modes, in proximity to an s-wave superconductor (SC) and a ferromagnet (FM). The
competition between the proximity-induced SC and FM pairing along the edge results
in the presence of a Majorana mode at each domain wall [42].

Recently, an interesting extension of this model was proposed in Refs. [238–241].
While the edge excitations of a 2D topological insulator are normal electrons, it is
possible to consider instead edge quasiparticles with a fractional charge e/m, where
m is an odd integer. Such gapless quasiparticles appear, for example, at the edge of
the Laughlin fractional quantum Hall states, where they are described by a chiral
Luttinger liquid theory [251, 252]. Due to the absence of time-reversal symmetry,
these are chiral excitations. Helical e/m quasiparticles would arise at the interface



142 Chapter 10. Topological phases in parafermion arrays

between two ν = 1/m quantum Hall liquids with Landé g-factors of opposite sign or,
similarly, as a Kramers doublet at the edge of a fractional topological insulator [253]
(FTI).

The simplest way to model FTIs is to consider them as fractional quantum spin
Hall systems constituted by a two-dimensional gas of electrons subject to both a spin-
dependent magnetic field (or a position-dependent spin-orbit coupling) and Coulomb
interactions [254]. The first element creates two time-reversal symmetric Landau level
structures, whereas the second gives rise to topologically ordered fractional states.
These systems are gapped in the bulk (where Abelian anyonic excitations appear), but
present fractional gapless edge modes. While such time-reversal invariant topological
phases have been thoroughly studied theoretically [253, 255–258], no host material
has emerged so far as an experimental candidate. We should also mention a recent
proposal to realize a fractional helical liquid in quantum wires [259].

Along the FTI edges, the proximity effect with superconductors and ferromagnets
results in the presence of zero-modes [238, 239]. Since the second-quantization oper-
ators associated with these zero-modes inherit a fractional exchange phase (2π)/(2m)
from the unperturbed edge fields, we shall refer to them as Z2m parafermionic (PF)
zero-modes. They are projective non-Abelian anyons [244, 260], with fusion rules
that generalize those of Majorana modes, affording extended computational power
[238, 239, 242, 244, 261].

These superconducting zero-modes realize a 1D model with Z2m symmetry studied
by Fendley [235], which is an extension of Kitaev’s Majorana chain model [26] and
hosts PF zero-modes localized at the edges of the system. While the Kitaev chain is
dual to the quantum Ising chain via a Jordan-Wigner transformation, the Z2m chain
model is dual to the 1D chiral Potts (p-clock) model, with p = 2m.

Indeed, PFs as collective degrees of freedom are indeed well-known in statistical
mechanics (see for instance Ref. [262] and references therein). They appear natu-
rally in the study of the 2D p-state clock models [263–265] and their quantum 1D
counterparts [266]. In lattice systems, they arise as products of order and disorder
operators defined for self-dual systems. Moreover, PFs admit a description in terms
of a Zp invariant conformal field theory [267] (CFT) featuring the PFs as primary
fields. PF zero-modes in superconducting systems are however related only to CFTs
with unit central charge (see, for example, Ref. [268]), arising from a bosonization
description of the FTIs edge modes.

In light of this body of research, it is interesting to extend the recent works on
Z2m PFs to 2D networks of superconductors. For Majorana zero-modes, this question
has already been addressed in literature [52, 269, 270]. Majorana lattice models can
be mapped into Ising models, allowing for a description of their phase diagram. They
can exhibit topologically ordered phases and realize the toric code in a perturbative
regime [269]. The extension of these analyses to Z2m PFs may reveal new Hamiltonian
realizations of fault-tolerant stabilizer codes [99, 271] for quantum bits with 2m states,
and hence novel platforms for quantum memories generalizing the toric code [272].
However, for Z2m PFs the extension to 2D lattices is less immediate than in the
Majorana case, partially because of the connection to clock models, which are less
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Figure 10.1: The two different 2D architectures considered in this chapter. They are
composed of superconductors (SC, blue) and ferromagnets (FM, red) deposited on
top of a 2D array of fractional topological insulators (FTI, grey). Z2m PF zero-modes,
marked as black stars, arise at each SC/FM interface along the edge. We consider
two possible geometries: in panel (a), the FTIs extend for the whole length of the
system, while in panel (b) the FTIs have fixed size. If we enlarged on the horizontal
direction the system in panel (a), the number of FTIs would stay constant and the
edge length would increase, while the vice versa would happen in panel (b). In the
main text, we refer to the two architectures as the stripe and tile models respectively.
As shown schematically in panel (c), the two models can also be distinguished by
different tunneling regimes between the two edge segments gapped out by the same
superconducting island. If the SC covers a single FTI (left), tunneling of fractional
charge e/m may take place between the two edges, while if the SC covers two different
FTIs (right), only electron tunneling is allowed, since transport of a fractional charge
cannot take place via a topologically trivial bulk. The tile model (b) only has SC
islands of this second kind, while the stripe architecture (a) has both.
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well understood than Ising models.
In order to fill this gap, in this chapter we consider two distinct 2D architectures

of Z2m PFs, shown in Fig. 10.1. The architectures are obtained from a pattern of
superconductors and ferromagnets layered on top of an array of 2D FTIs. The only
difference between the two models is the geometry of the underlying FTI array. In
Fig. 10.1(a) the array is formed by long stripes of FTIs extending for the whole length
of the system, while in Fig. 10.1(b) the stripes are cut in smaller pieces (or tiles) of
fixed dimension. For ease of discussion, we shall refer to these two architectures as
the stripe and tile model respectively.

Similarly to Refs. citexu2010, terhal2012, nussinov2012, the effective Hamilto-
nian of the two models is dictated by two mesoscopic phenomena:

1. the fractional Josephson effect, mediated by the tunneling of e/m quasiparticle
between two different superconductors, and

2. the charging energy of the superconductors.

The fractional Josephson effect arising with Z2m PF zero-modes has already been
investigated in Refs. [238, 240], while to our knowledge the interplay between PF
zero-modes and Coulomb energy was not considered in previous works.

While both the stripe and the tile architectures give rise to a square lattice of Z2m
PF zero-modes, and despite the fact that the effective Hamiltonian contains the same
set of local interactions in both models, we will show that the different geometry
of the FTI edges is crucial to determine their properties, which turn out to be quite
distinct. Indeed, since different edge geometries yield a different set of commutation
rules for the Z2m PF operators and different physical constraints on the Hilbert space,
they can determine different topological properties.

This chapter is organized as follows: in Sec. 10.1 we derive the effective Hamilto-
nian for the stripe and tile architectures, considering both Josephson and Coulomb
energies, and explain the physical constraints and conservation laws specific to each
array. In Sec. 10.2 we map the effective Hamiltonian into two different clock models,
using two non-isomorphic sets of PF Jordan-Wigner transformations. We analyze the
phase diagram of the two models in Sec. 10.3, where we show that the tile model
realizes a qudit toric code Hamiltonian in perturbation theory while the stripe model
is dual to a gauge theory. We conclude with an outlook in Sec. 10.4.

10.1 Effective Hamiltonian for 2D parafermionic architec-
tures

In the two architectures in Fig. 10.1, each FM/SC interface along the edge of a FTI
hosts a PF zero mode. Hence the stripe and tile architectures generate arrays of
interacting Z2m PFs, which are protected by the superconducting and ferromagnetic
gaps and thus determine the low-energy physics of the system. In this section we
derive an effective Hamiltonian in terms of Z2m PF operators for a square lattice
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Figure 10.2: A square lattice of Z2m PF zero-modes of dimensions Lx = 8 and L y = 4.
To label the PFs, we follow the convention established in the main text: first we
order the FTI edges with an index a, and then we order the PFs along each edge with
an index j, starting from an arbitrary origin. Each PF zero mode is then denoted
as α{a, j}, and all commutation rules between operators at different sites are fixed
unambiguously.

of dimensions Lx × L y with open boundaries1. Generalizations to other boundary
conditions can be easily implemented.

Each PF zero mode is described by a second-quantization operator α satisfying
the relations:

α2m = 1, (10.1)

α† = α2m−1. (10.2)

We can associate to α and α† respectively the annihilation and creation of a charge
e/m on the adjacent superconductor, in such a way that a Cooper pair is split in
2m quasiparticles [239]. Eqs. (10.1-10.2) can be derived from the Luttinger liquid
description of the FTI fractional edges, as done in detail in Refs. [238, 239] and as
outlined in Appendix 10.A.

Furthermore, these PF operators obey unconventional commutation rules. Denot-
ing two different PF operators with generic, ordered labels µ and ν, we have

αµαν = e−iεµνπ/m αναµ, (10.3)

α†
µαν = e+iεµνπ/m ανα

†
µ, (10.4)

where εµν = −ενµ = ±1 is a sign that must be fixed by convention. As we outline in
Appendix 10.A, Eqs. (10.1-10.4) can be derived from the underlying helical Luttinger
liquid theory for the FTI edges. Note that for m = 1 the εµν’s do not play any role
and the equations (10.1-10.4) reproduce all the properties of Majorana modes.

In the 1D case, µ and ν are integers denoting the positions of the PFs on a line.
All signs are fixed by assigning an orientation to the line, so that εµν = sgn(µ−ν). In
two dimensions the ordering procedure is slightly more complicated and proceeds in
the following way.

1Note that the geometry of the array constrains L y to be even and Lx to be a multiple of four.
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1. We label each FTI edge of the system with an integer a, thus introducing an
ordering of the edges. We also assign a counterclockwise orientation to each
edge a.

2. Starting from an arbitrary origin and following the counterclockwise orientation,
we label all ferromagnets along the edge with an integer k = 1, . . . , M (similarly
to what was done in Ref. [239]). The number M is the total number of FMs
along each FTI edge: note that M = 4 for the tile model, while M = Lx for the
stripe model (see Fig. 10.2).

3. We identify the SC/FM interfaces at the left and the right of each FM with an
integer j = 2k− 1 or j = 2k respectively.

The PFs αµ,αν are thus labelled by a composite index µ= {a, j}, ν= {a′, j′} and we
fix all the conventional signs as

εµν = sgn(a− a′) +δaa′ sgn( j − j′). (10.5)

In Fig. 10.2 we explicitly illustrate the procedure for labeling all the PFs of our
square array, in both the tile and stripe architecture. Due to the different number
and disposition of the FTIs, the PFs in the stripe model are actually distinct from
(non-isomorphic to) the PFs in the tile model. The value of εµν may differ for pairs of
PFs in the same site of the square lattice, and consequently the set of commutation
relations Eqs. (10.3,10.4) is not the same for the two geometries. From the point of
view of the physical components, this difference can be traced back to the following
fact [see also Fig. 10.1(c)]. In the tile model, the array is fully constituted by SC
islands connecting two different FTIs. Quasiparticle tunneling from one FTI edge
to the other is forbidden since the two edges are separated by a topologically trivial
region. The stripe model, instead, is composed also by a second type of SC island,
connecting two edges of the same FTI. In this case, tunneling of a charge e/m from
one edge segment to the other is possible, albeit suppressed by the bulk gap, akin to
what happens in a fractional quantum Hall constriction [273].

In order to describe physical interactions between PFs, it is useful to introduce
the operator

Pµν = eiεµνπ/2mα†
ναµ, (10.6)

defined for every given pair αµ,αν. For m = 1, Pµν represents the Z2 fermionic parity
associated with two Majorana modes. Here we are extending this notion to the Z2m
symmetry of the PFs, and we shall refer to Pµν as Z2m charge. From its Hermitian
conjugate,

P†
µν = e−iεµνπ/2mα†

µαν, (10.7)

we see that it is a unitary operator,

PµνP†
µν = P†

µνPµν = 1. (10.8)



10.1 Effective Hamiltonian for 2D parafermionic architectures 147

Moreover P2m
µν = 1. Thus its eigenvalues must be the (2m)-th roots of unity,

λn = einπ/m, n= 0,1, · · · , 2m− 1. (10.9)

A pair αµ, αν can be irreducibly represented on a 2m-dimensional Hilbert space, with
a basis given by the states |n〉 such that Pµν|n〉= λn|n〉. The Hilbert space dimension
of a square lattice of PF zero-modes of size Lx × L y is therefore (2m)Lx ·L y/2.

Now that we have set the basic algebraic rules, we can write down the physical
ingredients of the model - Josephson and charging energy. These will form the basic
local bonds used to write an effective 2D Hamiltonian for the PFs.

10.1.1 Josephson energy

Thanks to the presence of zero-modes, phase-coherent tunneling of e/m quasiparticles
may take place across the ferromagnetic region between adjacent superconductors
along a common edge. The resulting Josephson effect is characterized by an anoma-
lous periodicity of 4πm (in units of the superconducting flux quantum Φ0 = h/2e),
essentially because the tunneling quasiparticle’s charge is reduced by a factor 2m with
respect to the charge of a Cooper pair [42, 238–240]. In other words, the anomalous
period reflects the fact that the junction can be in 2m different states associated to the
Z2m charge of two PFs located at its ends. Physically, these states are distinguished
by the fractional spin of the ferromagnet inside the junction [239], or equivalently by
the number of the fractional quasiparticles trapped in it (modulo 2m).

Using the notation introduced in Fig. 10.2, the Z2m charge of a junction situated
on edge a can be written as

P{a,2k−1},{a,2k} = e−iπ/2m α†
{a,2k}α{a,2k−1}. (10.10)

It acts as a transfer operator, destroying one e/m charge inside the superconductor on
one side of the junction and creating it on the other side. Such tunneling processes
can be modeled by an effective Hamiltonian of the form

HJ = −
J
2

�

ei(δ−π)/2m α†
{a,2k}α{a,2k−1} +H.c.

�

. (10.11)

Here J is the tunneling strength and δ is the phase difference between the two
superconductors. The tunneling Hamiltonian splits the states of the junction in 2m
energy branches given by

EJ,n = −J cos
�

δ

2m
+

nπ
m

�

(10.12)

with n= 0, . . . , 2m− 1.
As in the case of Majorana zero-modes [42, 52], the fractional Josephson effect

mediated by PF modes prevails over the ordinary Josephson effect mediated by Cooper
pairs, which is a higher-order effect. Moreover, the addition of the ordinary Josephson
term, with 2π periodicity in the phase difference, would not modify qualitatively our
results, thus it is neglected here and in the following.
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10.1.2 Charging energy

Let us now consider a single superconducting island of our array, and let us denote with
φ and N = −2i d

dφ the phase and number operators of this island. The presence of the
PF zero-modes becomes manifest through non-trivial (twisted) boundary conditions
in the condensate ground state wave-function Ψ(φ) [36],

Ψ(φ + 2π) = eiπq Ψ(φ) . (10.13)

Here q represents the charge in units of e inside the superconductor (modulo 2e).
The spectrum of the number operator depends on these twisted boundary conditions,
since its twisted eigenfunctions χs(φ) = ei(s+q/2)φ/

p
2π satisfy

Nχs = (2s+ q)χs, s ∈ Z. (10.14)

In a conventional superconductor, q = 0, we have periodic boundary conditions, and
N counts Cooper pairs. In the presence of Majoranas q may assume either value
{0, 1} giving periodic or anti-periodic boundary conditions depending on the fermion
parity of the superconductor [36]. In the presence of Z2m PF zero-modes, the possible
values of q are extended to fractional values:

q = { n
m}= {0, 1

m , 2
m , . . . , 1, m+1

m , . . . , 2m−1
m }. (10.15)

The resulting boundary conditions are twisted with possible phases einπ/m, and the
spectrum of N is given by rational numbers with denominator m.

Ground states with different values of q are not anymore degenerate if the charging
energy of the superconducting island,

Hch = EC (N − nind)
2 , (10.16)

is taken into account. Here EC = e2/2C , C is the self-capacitance of the supercon-
ductor, and nind the charge (in units of e) induced on the island by nearby voltage
gates.

For our purposes, it is useful to separate the contribution of the fractional charges
to the charging energy from that of the Cooper pairs. We will therefore work in a
regime which highlights the role of the former, as done in Ref. [84] for Majorana
modes. If all superconducting islands are connected to a grounded superconductor via
a conventional Josephson junction of energy EJ � EC , the superconducting phases are
pinned to their classical minima, freezing the bosonic degree of freedom associated
with Cooper pairs. The charging energy splits the ground state degeneracy by inducing
quantum phase slips. In this semiclassical regime, Hch can be replaced by an effective
Hamiltonian of the form [37]

H∆ = −∆ cos(πq+πnind) . (10.17)

The cosine dependence on the charge in this effective Hamiltonian is reminiscent of
the Aharonov-Casher effect [274]. When a (Josephson) vortex encircles a supercon-
ducting island, it acquires a phase proportional to the charge contained in it. The
energy ∆ is exponentially small in the ratio EJ/EC .
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Let us now write explicitly the interaction (10.17) in terms of the PF operators.
We denote as qa,k the fractional charge trapped inside the segment of an FTI edge a
between the k-th and (k+ 1)-th ferromagnet. As such, it can be expressed as

eiπqa,k ≡ P{a,2k}{a,2k+1} = e−i π2m α†
{a,2k+1}α{a,2k}. (10.18)

In the special case k = M , Eq. (10.18) has to be supplemented with the boundary
condition

α{a,2M+1} = e−iπqa α{a,1}, (10.19)

where qa is the total fractional charge along the edge a. Eq. (10.19) appears naturally
in the bosonization description of the PFs as the boundary condition of a closed edge
with total charge qa surrounding no net magnetic flux [239], see also App. 10.A. This
boundary condition constitutes a constraint that the physical states of the system
must fulfill, as we will discuss more extensively in the final part of this section.

In our 2D architecture, each SC gaps out either one or two segments of an FTI
edge, depending on whether it lies at the boundary of the system or in the bulk. In the
second case, the total fractional charge q contained in it is the sum of two charges qa,k,
qa′,k′ and can be expressed as eiπq = eiπ(qa,k+qa′ ,k′ ) = P{a,k}{a,k+1}P{a′,k′}{a′,k′+1}, since
two Z2m charges operators always commute if they do not share a PF operator. The
charging energy takes the form

H∆ =















−
∆

2

�

eiπnind e−iπ/2m α†
{a,2k+1}α{a,2k} + h.c.

�

on the boundary

−
∆

2

�

eiπnind e−iπ/m α†
{a,2k+1}α{a,2k}α

†
{a′,2k′+1}α{a′,2k′} + h.c.

�

in the bulk

(10.20)
The total charges qa of the FTI edges may appear in the Hamiltonian (10.20) as
additional phases, due to Eq. (10.19).

10.1.3 Effective Hamiltonian

Adding together the contributions from all islands and junctions, we arrive to an
effective Hamiltonian

H =
∑

islands

H∆ +
∑

junctions

HJ . (10.21)

Each PF of the array belongs to one superconducting island and one junction and
therefore it appears twice in the effective Hamiltonian, once in H∆ and once in HJ.

Note that the effective Hamiltonian is the same for the stripe and the tile archi-
tectures, which share the same lattice, the same number of parafermions and the
same set of local interactions. Nevertheless, the presence of two different sets of
commutation rules for the PF operators is enough to give the two systems markedly
different properties.
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10.1.4 Conserved quantities and charge constraints

The two different commutation rules between PFs in the stripe and tile architectures
are due to the fact that the Hilbert spaces of the two system are constrained in
physically different ways. To see this, notice that the total charge qa at the edge of
each FTI a must be conserved since no term in the Hamiltonian (10.21) introduces
tunneling between different fractional topological insulators. That is,

[eiπqa , H] = 0 (10.22)

for every a. Moreover, the total charge of each FTI (edge plus bulk) is not only
conserved but also constrained to be an integer multiple of the electron charge e.
Thus, if we make the simplifying assumption that there are no fractional excitations
trapped in the bulk of the FTIs, we come to the conclusion that all qa’s must be
integer-valued. This requirement restricts the possible eigenvalues of eiπqa to ±1,
corresponding to the even or odd fermion parity sectors. Without loss of generality,
we will assume that each FTI has an even number of electrons, qa = 0,±2,±4, . . . ,
leading to the set of conditions

eiπqa =
M
∏

k=1

P{a,2k},{a,2k+1} = 1. (10.23)

This choice amounts to restricting the twisted boundary conditions (10.19) to the
periodic case.

The constraint (10.23) is violated if a quasiparticle or a quasi-hole is introduced
in the bulk of the FTI. Due to the incompressibility of the FTI liquid, this process is
related to the presence of an additional flux quantum Φ0 = h/2e piercing the bulk
FTI [253, 255]. Thus, we can translate the conservation of electric charge on the
edge of the FTI into a conservation of the magnetic flux threaded through the bulk.
The latter is measured by the Aharonov-Bohm phase of a quasiparticle performing a
counter-clockwise loop along the edge of the FTI. Mathematically, the Aharonov-Bohm
phase factor is given by the string product Σa of the tunneling operators along such
loop,

Σa =
M
∏

k=1

P{a,2k−1},{a,2k} (10.24)

which obeys [Σa, eiπqa] = 0, [Σa, H] = 0 and (Σa)2m = 1 and has eigenvalues
σa = eiπn/m, n = 0, . . . , 2m − 1. One can derive from Eqs. (10.3) and (10.4) the
commutation rule

Σaα
†
{a, j} = e−iπ/mα†

{a, j}Σa , (10.25)

which confirms that the operator α†
{a, j}, creating a charge e/m on the edge of the FTI,

at the same time adds −π/m to the Aharonov-Bohm phase.
Consistently with the constraint (10.23), we consider as physical only the sector

of the full Hilbert space in which

Σa = 1 , (10.26)
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so that the magnetic flux in each FTI must be a multiple of 4mΦ0. Changing the fluxes
that pierce each FTI, we choose a different set of eigenvalues σa and select a different
physical sector.

The differences between the tile and stripe model originate from the fact that, for
fixed system size, the number of FTIs is greater in the tile than in stripe model. This
in turn determines the number of independent constraints on the Hilbert space, as
reflected in the extent M of the product defining the string operator in Eq. (10.24) -
we recall that M = 4 in the tile model and M = Lx in the stripe model. The result is a
different dimensionality of the physical sector of the Hilbert space of the two models.

10.2 Mapping to 2D quantum clock models

To highlight the differences between the two models, it helps to use a mapping onto
quantum 2D 2m-clock models. These models are defined on a 2D lattice where each
site r is a 2m-level quantum system and their Hamiltonians possess discrete Z2m local
symmetries. Clock Hamiltonians are defined in terms of degrees of freedom σr and
τr that satisfy

σ2m
r = τ

2m
r = 1 (10.27)

τ†
r = τ

−1
r , σ†

r = σ
−1
r . (10.28)

Operators on any given site have commutation rules similar to those of PFs,

σrτr = eiπ/m τrσr (10.29)

but operators on different sites commute. If m = 1 these relations are satisfied by
Pauli matrices σz

r ,σx
r . In the mathematical literature, the algebra describing PFs is

known as a generalized Clifford algebra. Its representation theory has been worked
out in detail in Refs. [275, 276], and from it, it is possible to infer a mapping relating
the PF operators α and the clock operators σ,τ. This mapping can be achieved via a
parafermionic Jordan-Wigner transformation [235, 275, 277].

To each couple of adjacent PFs α{a,2k},α{a,2k+1} on the same superconductor, we
associate a couple of operators σa,k,τa,k. These operators therefore live on (a subset
of) the links of the square lattice defined by the PFs. The mapping between PFs and
clock operators is given by

α{a,2k} = κaσa,k+1

∏

1≤l≤k

τa,l (10.30)

α{a,2k+1} = κa ei π2m τa,k+1σa,k+1

∏

1≤l≤k

τa,l (10.31)

Here κa are fractional Klein factors taking care of the commutation rules between
parafermions on different edges [278, 279],

κ−1
a = κ

†
a (10.32)

κaκa′ = ei sgn(a′−a)π/m κa′κa. (10.33)
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Figure 10.3: The transformation defined in Eqs. (10.30), (10.31) maps the PF
operators living on the sites of a square lattice into a set of clock operators σ,τ
defined on the links of the lattice occupied by a superconductor (marked in figure as
black dots). Here, as an example, we show the positions of the clock operators in the
case of a FTI in the tile model. The mapping between α1 . . . ,α8 and σ1,τ1, . . . ,σ4,τ4
shown in this figure is explicitly written down in Eq. (10.37).

These commutation rules must be compared with Eqs. (10.3,10.4,10.5). Apart from
fixing the commutators, the Klein factors do not play a role and drop out from any
quadratic operator considered in this chapter. The boundary conditions (10.19) and
the constraints (10.23),(10.26) are taken into account by setting

σa,M+1 = σa,1 (10.34)

τa,M+1 = τa,1 (10.35)
M
∏

k=1

τa,k = 1 (10.36)

Let us write down an explicit example of the transformation for the case M = 4,
relevant for the tile architecture. In this case the relations (10.30) and (10.31),
dropping the index a and the Klein factors for clarity, read (see also Fig. 10.3)

α8 = σ1 , α1 = ei π2mτ1σ1 ,
α2 = σ2τ1 , α3 = ei π2mτ2σ2τ1 ,
α4 = σ3τ2τ1 , α5 = ei π2mτ3σ3τ2τ1 ,
α6 = σ4τ3τ2τ1 , α7 = ei π2mτ4σ4τ3τ2τ1 .

(10.37)

We now rewrite the Hamiltonian in terms of the clock operators. For the Josephson
energy, Eq. (10.11), we obtain

HJ = −
J
2

�

eiδ/2m σ†
a,k+1σa,k + h.c.

�

, (10.38)

while the charging energy, Eq. (10.20), becomes

H∆ =















−
∆

2

�

eiπnind τa,k + h.c.
�

on the boundary

−
∆

2

�

eiπnind τa,kτa′,k′ + h.c.
�

in the bulk

(10.39)
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Figure 10.4: Layout of the stripe and tile architecture in terms of clock operators σ,τ
(black dots), living on the links of the square lattice occupied by a superconductor.
Since clock operators at different sites commute, it is not necessary to order the FTI
nor to assign an orientation to the FTI edges. However, notice that the clock operators
for the two models live on two inequivalent lattices.

Note that the locality of the interactions is preserved. At this point, it is useful to split
the array Hamiltonian of Eq. (10.21) into bulk and boundary contributions,

H = Hbulk +Hboundary, (10.40)

with

Hbulk = −
� J

2

∑

junctions

σ†
a,k+1σa,k +

∆

2

∑

islands
∈bulk

τa,kτa′,k′

�

+ h.c. (10.41)

and
Hboundary = −

∆

2

∑

islands
∈bdr

�

τa,k +τ
†
a,k

�

, (10.42)

see also Fig. 10.4. In writing Eqs. (10.41),(10.42) we have, for simplicity, set nind = 0
for all islands and, in agreement with our choice of the physical sector, δ = 0 for all
junctions. Then the couplings J ,∆ become purely real and all equal.

Splitting the Hamiltonian into bulk and boundary contributions is useful for
studying various boundary conditions. For simplicity, in the remainder of this chapter
we will set Hboundary = 0 and focus on bulk properties of the array, assuming the system
size is large enough to justify neglecting Hboundary. Also Hboundary = 0 corresponds
(for any system size) to the exact boundary conditions in case every superconducting
island at the boundary of the array is grounded (since in that case ∆ = 0 at the
boundary).

The Hamiltonian Hbulk of Eq. (10.41) commutes with an extensive set of local
operators

ξs = σa,kσ
†
a′,k′ , [ξs, H] = 0, (10.43)

associated to every bulk superconducting island s for both the tile and stripe models.
Notice however that only those operators ξs that commute with the constraints
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Figure 10.5: Sketch of the phase diagram of the two models, as outlined in the
introduction to Sec. 10.3. We distinguish between two regimes, depending on whether
Coulomb or Josephson energy dominates. The Coulomb regime shows, for both
models, a non-local behavior, with degenerate ground states distinguished by the
expectation values of string-operators. Only the tile model, however, presents a truly
topological order characterized by anyonic excitations (see Sec. 10.3.1). The stripe
model is instead dual to a Z2m lattice gauge theory (see Sec. 10.3.2) which undergoes
a deconfinement/confinement phase transition with increasing J/∆ [280].

described in the previous section are actual physical symmetries: if a 6= a′, the operator
(10.43) moves one fractional charge from one edge to the other, thus violating the
charge constraint.

The difference between the tile and the stripe architectures can now be better
appreciated, as shown in Fig. 10.4. The effective Hamiltonian (10.21) associated to
either architecture is defined on the square lattice in terms of PFs. In contrast, Heff is
defined on inequivalent lattices when represented in terms of clock operators as in
Eq. (10.41). The tile model Hamiltonian Htile is obtained by specializing Hbulk to a a
decorated square lattice, while the stripe model Hamiltonian Hstripe is obtained by
specializing Hbulk to a brick-wall lattice.

10.3 Topological phases and orders

The quantum phase diagram of the tile and stripe models at zero temperature is
controlled by the single parameter J/∆. In the following we will call Coulomb-
dominated the regime ∆� J and Josephson-dominated the opposite regime J �∆.
In this section we study the two regimes for both models, with a focus on the presence
(or absence) of topological order. We dedicate Sec. 10.3.1 to the tile model and
Sec. 10.3.2 to the stripe model. Let us summarize, here and in Fig. 10.5, the main
findings.

The Josephson-dominated regime shows no topological features for either model.
On one hand, the ground state of the tile model is singly degenerate in this limit due
to the charge constraints. Moreover, exactly at ∆ = 0, the ground wave function
reduces to a product state of wave functions for local four-body clusters, emphasizing
the absence of long-range entanglement. On the other hand, at ∆ = 0 the stripe
model reduces to a system of decoupled, one-dimensional vector Potts chains in zero
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transverse field. Hence, in the thermodynamic limit, the stripe model has ferromag-
netic order in the Josephson-dominated regime J �∆. The charge constraints do
not suffice to select a unique ground state like for the tile model, but rather correlates
the magnetization for pairs of chains.

In the opposite Coulomb-dominated regime, and specifically at J = 0, both the tile
and stripe models show dramatically increased (relative to ∆= 0) ground-manifold
degeneracy. This suggests that at least one phase transition separates the two regimes
in the thermodynamic limit for both models.

We will show that the tile model is topologically ordered in the Coulomb-dominated
regime, since

1. the degeneracy of its ground manifold depends on the topology of the lattice,
and

2. the model has anyonic excitations completely equivalent to those in the qudit
toric code with Z2m discrete symmetry [272, 281].

The second point is especially noteworthy, since the tile model is akin but neither
strictly equivalent to the Z2m toric code by Kitaev [5] nor to its generalizations
[272, 281].

Unlike the tile model, which can be defined naturally on a surface of arbitrary
genus due to the limited extension of its FTIs, the stripe model fits naturally only
open, cylindrical, or periodic (toroidal) boundary conditions. We will see that in
the Coulomb-dominated regime its ground state degeneracy is not protected against
local operators. Hence we do not consider the stripe model topologically ordered.
We will argue nevertheless that the ∆� J regime is characterized by a non-local
order parameter, which we will define using a duality mapping the stripe model to
the Z2m lattice gauge theory [280]. Thus, even in the absence of a topological order,
the Coulomb-dominated phase of the stripe model can be addressed more generically
as a topological phase.

The connection between topological order and lattice gauge theories in Josephson
junction arrays has already been the subject of detailed studies, for both Z2 symmetric
models [282–284] and more general Abelian and non-Abelian gauge symmetries
[285]. These models are based on superconducting architectures of Josephson junc-
tions, where the required degeneracies are obtained with fine tuned magnetic fluxes.
Such architectures can present topological phases in the Josephson-dominated regime,
as experimentally verified in Ref. [286]. The two models studied differ in two im-
portant aspects: the absence of fine-tuning to create and control the elementary
components of the arrays, which is due to the topological origin of the PF modes, and
the fact that the topological phases are obtained in the Coulomb-dominated regime,
essentially exchanging the role of electric and magnetic excitations with respect to
Ref. [282].
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Figure 10.6: Panel (a): The notation adopted for the decorated square lattice on
which the tile model can be conveniently rearranged. The grey diamonds, sitting
on the sites r of a square lattice, are FTI. To each site r there correspond four clock
operators σr ,i ,τr ,i , arranged counterclockwise. Blue links are SC, red links are FM.
Panel (b): The operator Br in Eq. (10.48) is the counterclockwise product of four
σσ† operators around the same plaquette.

10.3.1 A physical realization of Z2m toric code anyons: the tile model

To analyze the effective Hamiltonian for the tile architecture, it is useful to adopt a
decorated square lattice were each FTI sits on a site r = ie1 + je2, with (i, j) a pair of
integers, see Fig. 10.6. In this lattice, the array Hamiltonian Hbulk of Eq. (10.41) is
given by

Htile =−
� J

2

∑

r

4
∑

i=1

σ†
r ,iσr ,i+1 +

∆

2

∑

〈r ,r ′〉

Q〈r ,r ′〉

�

+ h.c. (10.44)

where Q〈r ,r ′〉 labels the charging energy terms of the superconducting islands, now
sitting on the links of the square lattice between two neighboring diamonds,

Q〈r ,r+e1〉 = τr ,3τr+e1,1 , Q〈r ,r+e2〉 = τr ,4τr+e2,2. (10.45)

Let us now consider the limit J = 0 deep in the Coulomb-dominated regime. The
system is then in a limit state where tunneling between islands is forbidden. Each
superconductor minimizes the charging energy in the space of physical states specified
by the charge constraints:

Q〈r ,r+e1〉 =Q〈r ,r+e2〉 = 1. (10.46)

These conditions allow for (2m)-fold degeneracy for each superconducting link,
corresponding to the presence of the local symmetries (10.43). However in the sector
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of physical states we must impose the constraints

4
∏

i=1

τr ,i = 1 (10.47)

derived from Eq. (10.23). Nearly half of the previous states are then projected
out, leaving a ground state manifold of dimension (2m)#SC/2. This number is exact
asymptotically in the system size, but depends slightly on the boundary conditions.
For example, for periodic boundary conditions the exact degeneracy of the ground
manifold is (2m)1+(#SC/2).

The degeneracy of the Coulomb-dominated limit at J = 0 is partially lifted when
weak tunneling terms are reintroduced, that is, we allow J 6= 0. The Coulomb-
dominated regime J �∆ can be treated perturbatively by introducing an effective
low-energy Hamiltonian affecting only the ground state manifold at J = 0. We need
to keep only those operators in the perturbative expansion that do not couple the
ground state manifold to the excited states. This is a standard technique [287], and
the computation is analogous to the perturbative derivation of the Z2 toric code
Hamiltonian from Kitaev’s honeycomb model [78], so we will only streamline the
essential points.

At first order, the perturbation σ†
r ,iσr ,i+1 creates two charged ±e/m excitations

on adjacent superconductors, increasing the energy of the system by an amount
G = 2∆(1− cosπ/m). Similarly, at all odd orders we obtain terms that we neglect
as they do not leave the J = 0 ground state manifold invariant. At second order, we
obtain only terms describing the tunneling back and forth of a fractional charge e/m
across a single Josephson link. These terms renormalize the ground energy level, that
is, they provide an energy offset to the full Hamiltonian. At fourth order we obtain
the first relevant contribution. It is a plaquette operator of the form (see Fig. 10.6)

Br =
�

σr ,4σ
†
r ,3

�

×
�

σr+e1,1σ
†
r+e1,4

�

× (10.48)

×
�

σr+e1+e2,2σ
†
r+e1+e2,1

�

×
�

σr+e2,3σ
†
r+e2,2

�

,

describing the tunneling of an e/m excitation along a loop of four FTI edges and four
superconducting islands. The resulting perturbative Hamiltonian reads

Htile
pert = −

�∆

2

∑

〈r ,r ′〉

Q〈r ,r ′〉 +
5J4

4G3

∑

r

Br

�

+ h.c. (10.49)

where we note that, in the case m = 1, the coefficient of Br matches the one obtained
in a similar perturbative expansion in Ref. [269], where equivalent plaquette operators
are obtained.

Since the operators Br commute with the charge constraints, the space of physical
states for the perturbative Hamiltonian Htile

pert is left untouched. The bond operators
Q〈r ,r ′〉 and Br , together with their Hermitian conjugates, constitute a completely
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Figure 10.7: The four non trivial loop operators that define the ground state manifold
of the tile model on a torus. The operators Hτ, Vτ are defined as the product of all τ
along the path described by the two blue lines, in the order established by the arrows.
Similarly, the operators Hσ, Vσ are defined as the product of all σσ† operators along
the path given by the red lines. Loop operators corresponding to different paths only
differ by a product of stabilizer operators Q〈r ,r ′〉 or Br .

commuting set of stabilizers for a qudit surface code [272]. This surface code protects
against every local error that excites a ground state of Hpert into a state of higher energy
[272]. In particular, the Q〈r ,r ′〉 operators enforce the absence of charge excitations
in the superconducting islands, while the Br operators enforce the absence of flux
excitations.

Let us note that the Hamiltonian Htile
pert is not exactly equivalent to the Z2m toric

code originally discussed by Kitaev in Ref. [5], since the stabilizers Q〈r ,r ′〉 and Br are
not projectors. The construction of these operators is instead more closely related to
the qudit surface codes introduced in Ref. [272] - although, strictly speaking, Htile

pert is
not equivalent to those models as well, since it is not possible to canonically associate
our stabilizers Q〈r ,r ′〉 and Br to vertices and faces of a two-dimensional simplicial
complex. Despite these minor differences, however, the topological properties of
these models are the same.
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The conditions

Q〈r ,r ′〉 = 1, Br = 1,
∏

i

τr ,i = 1, (10.50)

specify the ground manifold of the system. Its degeneracy can be determined from
symmetry considerations. On the torus (periodic boundary conditions) there are
four types of loop symmetries Hτ, Hσ, Vτ, Vσ, defined in Fig. 10.7, associated to non-
contractible loops and compatible (commuting) with the charge constraints. It is
interesting to notice (for comparison with other Z2m surface codes in the literature)
that the loop symmetries Hτ, Vτ, (Hσ, Vσ) are disjoint, that is, they do not have any
clock degrees of freedom in common. As usual, any two loop symmetries of a given
type, τ or σ, associated to equivalent but different non-contractible loops differ only
by a product of the stabilizer operators in (10.50) (or their hermitian conjugate).
Hence, in the ground manifold, all these loop symmetries collapse into just four
inequivalent ones. These form two non-commuting pairs,

Hτ Vσ = e−iπ/m Vσ Hτ, (10.51)

Hσ Vτ = e−iπ/m Vτ Hσ, (10.52)

while [Hτ, Hσ] = [Vτ, Vσ] = [Vτ, Vσ] = [Hτ, Hσ] = 0. Since V 2m
σ = 1 = H2m

σ , it
follows that each pair identifies 2m different ground states, yielding a ground state
degeneracy of (2m)2. This is the dimension of the code space defined by Htile

pert.
Our stabilizer code can be adapted to a planar geometry with open boundary

conditions along the lines set in Ref. [99]. In this case there will be only two non-trivial
string operators and thus 2m ground states. In planar geometries with g holes, the
ground-state manifold degeneracy increases to (2m)g .

The Hamiltonian Htile
pert has two different types of excitations illustrated in Fig. 10.8:

1. Two localized charge excitations ±e/m can be created on two different links by
an open string of tunneling operator of the form S =

∏

(σσ†). The operator
S† switches the sign of the charges at the end of the open string.

2. Two ±h/2e vortices are created on neighboring plaquettes by one of the two
operators τ on the link separating the plaquettes. (The other τ operator
belonging to the same link creates the same vortices, but with opposite sign.)
The vortices can be moved apart without further energy costs applying a string
T =

∏

τ of consecutive τ operators sharing one common plaquette.

Both charge and flux excitations are bosons when considered separately (since differ-
ent S operators commute with themselves, as well as different T operators). However,
when a charge excitation is moved in a loop around a flux excitation, the wave
function will acquire a (Aharonov-Bohm) phase eiπ/m, implying that charges and flux
excitation are mutually Abelian anyons with a fractional exchange phase eiπ/2m. This
can be verified by computing the commutator of a pair of S and T strings intersecting
each other. Additionally, the underlying Z2m symmetry allows the presence of multiple
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Figure 10.8: Vortex and charge excitations in the tile model, appearing at the ends of
open string of τ and σσ† operators respectively. The vortices live on the plaquettes of
the lattice, while the charges on the superconducting links. They are mutual Abelian
anyons, with an exchange phase eiπ/2m.

excitations of charge ne/m and flux nh/2e, with n = 0, . . . , 2m− 1, created by the
n-th power of S and T operators, as in the usual qudit surface codes [272].

Let us discuss possible terms that may destroy the topological order. Higher orders
in perturbation theory yield larger loop operators, which can be decomposed in terms
of products of Br operators and their powers. These higher-order terms commute with
Htile

pert and strengthen the absence of fluxes in the plaquettes, leaving the ground-state
manifold intact. The description breaks down only when the perturbation order L is
equal to the system size. At this point, the loop operators Hσ, Vσ are generated in the
perturbative expansion, lifting the ground-state degeneracy by an energy O(J L/∆L−1).

However, we may worry about external perturbations of the form

h
∑

r ,i

(τr ,i +τ
†
r ,i), (10.53)

which would break the ground state degeneracy. This perturbation corresponds to
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an external magnetic field in the vector Potts description and may drive a transition
from the topologically ordered phase to a topologically trivial one constituted by
a condensate of the vortex excitations. For the Z3 toric code, this transition was
observed numerically in Ref. [281]. A general analysis [288, 289] of the phase
diagram of Zp (p = 2, 3, . . .) Wen-Levin models [290] suggests that the transition, in
the 2+1D transverse-field Potts universality class, is of the first order for any p > 3
(m > 1), thus easily detectable due to the discontinuity in the energy density. Our
model however is of the vector Potts (rather than simple Potts) type and further
investigations are required to assert the equivalence of the two cases for generic m.

Finally, let us briefly discuss the Josephson-dominated regime. The topological
order in the Coulomb-dominated regime of the tile model disappears when the
tunneling terms become comparable to the charging energy. In the opposite extreme
limit, ∆ = 0, the FTIs decouple and the Hamiltonian is just the sum of the Josephson
interactions along each diamond of the lattice in Fig 10.6. In particular, to minimize
the energy, the four clock operatorsσ for each FTI must be aligned and, considering the
charge constraint (10.36), one obtains that the ground state of each FTI is constituted
by an equal superposition of all the polarizations:

|GS〉r =
1
p

2m

2m−1
∑

k=0

|σr ,1 = σr ,2 = σr ,3 = σr ,4 = ei kπ
m 〉. (10.54)

Thus the total ground state is simply the product of the states |GS〉r of all the FTIs.
Due to the charge constraints, it is unique independently of the topology of the system.

For fixed system size, the ground state will remain non-degenerate also when we
consider a small charging energy contribution, ∆� J , in the Josephson-dominated
regime. In particular the effect of applying all the charging operators Q〈r ,r ′〉 in a closed
area S is to rotate all the clock operators σ inside S . The result is the formation
of a domain wall constituted by all the links along the edge of S , where the clock
operators are not aligned anymore. The energy cost of the domain wall is proportional
to J∂S , where ∂S is the number of broken Josephson links along the perimeter of
S . Therefore, the Hamiltonian in the Josephson dominated regime can be seen as
the confined phase of a loop model [291], where the loops are the edges of domains
with different spin alignment: J provides a tension to the loops whereas∆ constitutes
their kinetic energy. Between the topologically ordered Coulomb-dominated regime
and the topologically trivial Josephson-dominated regime other phases may appear
and the full phase diagram of the tile model deserves further investigations.

10.3.2 The stripe model and the Z2m gauge theory.

As anticipated at the end of the previous section, the stripe model is naturally sup-
ported on a brick-wall lattice. It is convenient to place the clock degrees of freedom
σ(i, j) and τ(i, j) on the sites

{(i, j) | i = 0, . . . , Lx − 1, j = 0, . . . , L y − 1}
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of an Lx × L y square lattice and distinguish between the two sub-lattices defined by
the conditions (i+ j) = even and (i+ j) = odd. In the bulk of this geometry the stripe
model becomes the generalization of the XXZ honeycomb compass model [270] with
Z2m symmetry:

Hstripe = −
�∆

2

∑

i+ j=even

Q(i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

σ(i, j)σ
†
(i+1, j)

�

+ h.c. (10.55)

with
Q(i, j) ≡ τ(i, j)τ(i, j+1). (10.56)

Depending on the chosen boundary condition, Hstripe must be supplemented with an
additional boundary term that we will disregard for the sake of simplicity. The stripe
unitary operators

S jS j+1 =
Lx−1
∏

i=0

Q(i, j), j = 0, 2, . . . , L y − 2 (10.57)

represent the physical constraint on the electric charge of the FTIs, Eq. (10.36);
therefore the physical states |Ψ〉 must satisfy:

S jS j+1|Ψ〉= |Ψ〉, j = 0, 2, · · · , L y − 2. (10.58)

The next task is to specify the physical symmetries of the stripe model. The set of
non-trivial unitary operators that commute with Hstripe is generated by

S j =
Lx−1
∏

i=0

τ(i, j), j = 0, 1, . . . , L y − 1, (10.59)

ξ(i, j) = σ(i, j)σ
†
(i, j+1), i + j = even. (10.60)

We need to specify those operators in this set that also commute with the charge
constraints of Eq. (10.58). The symmetries S j trivially satisfy this condition, but they
are not all independent in the sector of physical states. We can keep

S j , j = 0, 2, · · · , L y − 2, (10.61)

as an independent set of one-dimensional symmetries for the stripe model. As ex-
plained in the introduction to this section, these symmetries are spontaneously broken
in the Josephson-dominated regime (at zero temperature). The effective dimensional
reduction displayed by the stripe model in this regime is intimately connected to the
one-dimensional symmetries of Eq. (10.61) [270].

The local physical symmetries of the stripe model are given by the minimal
combination of the operators ξ(i, j) that commute with the charge constraints and they
assume the form

B(i, j) = ξ(i, j)ξ
†
(i+2, j), i + j = even. (10.62)
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Figure 10.9: Notation adopted to study the stripe model. The black and white sites
identify clock operators σ,τ, distinguished by a sub-lattice degree of freedom. Grey
stripes are FTI, blue links are superconductors and red links ferromagnets. Notice
that half of the vertical links are missing, thus the stripe model is effectively defined
on a brick-wall lattice. The flux threaded through a single plaquette of the lattice is
measured by the operator B in the figure (see Eq. (10.62)). As in the tile model, flux
excitations (the oriented blue circles) can be created by an open string of τ operators:
however, the geometry constrains their movement in the horizontal direction.

These local symmetries have an immediate interpretation: they describe the Aharonov-
Bohm phase associated to the magnetic fluxes threading the plaquettes of the brick-
wall lattice (see Fig. 10.9).

The stripe model has no global symmetries independent on the lower-dimensional
symmetries already discussed. The global symmetry S1S3 . . . SL y−1 is trivially sponta-
neously broken in the Josephson-dominated regime by the spontaneous breakdown of
its one-dimensional constituents. Other global symmetries appear as products of the
local symmetries discussed in the previous paragraph, and so cannot be spontaneously
broken by Elitzur’s theorem [292]. This suggests that any ordered phase of the stripe
model (outside the Josephson-dominated limit) must be characterized in terms of a
generalized, non-local order parameter [293]. However this is not enough to assert
that the system shows topological order according to our previous definition based
on the topological ground state degeneracy and the presence of anyonic excitation.
Rather, in the absence of a Landau local order parameter, we speak more generically
of topological phases.

To the purpose of comparing the tile and stripe models in the Coulomb-dominated
regime it is useful to perform a perturbative analysis also of the stripe model in the
limit ∆� J . Just as for the tile model, the first non-trivial term appears at the fourth
order in perturbation theory, where the perturbative Hamiltonian of the stripe model
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becomes:

Hpert
stripe = −

∑

i+ j=even

�∆

2
Q(i, j) +

5J4

4G3
B(i, j)

�

+ h.c. (10.63)

As in the case of the tile model, also for this Hamiltonian it is possible to define localized
fractional charge excitations and vortex excitations as end of open strings of τ and
σσ† operators. However, for this architecture the vortex excitations can propagate
only in the horizontal direction, as can be realized noting that superconductors of
different rows share no common plaquette.

Indeed, in the Hamiltonian Hpert
stripe each row of superconducting islands is de-

coupled from the others, and is characterized by a ground state degeneracy of 2m.
However, the rows between different FTIs present a non-physical symmetry ξ which
does not commute with the constraint (10.58). Thus, accounting for the charge con-
straints, the overall degeneracy of the ground states in the physical sector is (2m)#FTIs.
Crucially, this degeneracy is not protected against the local symmetries ξ(i, j). Since
these local operators may cause transitions between different ground states, the stripe
model does not posses a proper topological order. Despite this fact, the model is
characterized by a non-local order parameter, as we will discuss in the following.

To this purpose, and more in general to investigate the phase diagram, it is useful
to exploit the bond-algebraic theory of dualities [266, 294] which allows us to study
the bulk properties of the constrained stripe Hamiltonian for large system size. Our
strategy will be to find a duality (consistent with the constraints), mapping Hstripe to
a known model. As shown in Refs. [266, 294], quantum dualities can be obtained
as isomorphisms of bond algebras of interactions preserving locality. In principle,
we could study the minimal bond algebra of interactions generated by the bonds
Q(i, j) (i + j = even) and σ(i, j)σ

†
(i+1, j) in Hstripe. However, a duality derived from this

bond algebra, that is, an alternative local representation of these interactions, may
not preserve the charge constraints of Eq. (10.58), because these constraints are not
contained in this minimal bond algebra. Hence we consider a larger set of generators

Q(i, j) , i = 0, · · · , Lx − 1 ; j = 0, · · · , L y − 2;

σ(i, j)σ
†
(i+1, j) , i = 0, · · · , Lx − 2 ; j = 0, · · · , L y − 1

(and Hermitian conjugates) for the stripe model’s bond algebraAstripe. That is, we are
including also the bonds Q(i, j) (i + j = odd), which are absent from the Hamiltonian.
Such extended bond algebra does contain the charge constraints in Eq. (10.58);
hence a duality forAstripe maps these constraints in a well defined fashion either to
the identity operator (in which case the duality solves the constraints [266]) or to
constraints of the dual model.

The characterization ofAstripe in terms of relations among its bond generators
reveals the following dual representation of the bond algebra of interactions:

Q(i, j)
Φd−→ Bd (i, j), (10.64)

σ(i, j)σ
†
(i+1, j)

Φd−→ τ(i, j), (10.65)
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Figure 10.10: The dual lattice on which the Z2m lattice gauge theory of Eq. (10.67) is
defined. Clock operators now live on those links of the original square lattice which
are marked by a blue dot. On this new lattice we find that in perturbation theory the
physical interactions are given by the plaquette and star operators Bd and Ad defined
in Eqs. (10.66), (10.69).

with

Bd (i, j) ≡

¨

σ†
(i, j)σ

†
(i, j+1) if i = 0,

σ†
(i, j)σ

†
(i, j+1)σ(i−1, j)σ(i−1, j+1) otherwise.

(10.66)

Then the dual Hamiltonian, HG = Φd(Hstripe), reads

HG = −
�∆

2

∑

i+ j=even

Bd (i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

τ(i, j)

�

+ h.c. (10.67)

and it is unitarily equivalent [266] to the stripe model. In Appendix 10.B we write
down explicitly the dual clock operators and show that it is possible to interpret the
gauge theory Hamiltonian (10.67) as the Hamiltonian governing the collective modes
of the stripe model.

Up to boundary terms, i.e. the incomplete plaquettes B(0, j) ( j = 0, 2, . . . , L y − 2),
and a redefinition of the lattice that places the clock degrees of freedom on links
rather than sites, we recognize HG as the Hamiltonian of the Z2m lattice gauge theory
studied in connection to the problem of confinement in QCD [280] (see Fig. 10.10).
The local symmetries B(i, j) of the stripe model, Eq. (10.62), map under duality to

B(i, j)
Φd−→ Ad (i, j), i + j = even, (10.68)

with
Ad (i, j) ≡ τ(i, j)τ(i+1, j)τ

†
(i, j+1)τ

†
(i+1, j+1). (10.69)
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As is guaranteed by the formalism, the unitary operators Ad (i, j), (i + j = even),
commute with the dual Hamiltonian HG. They correspond to the gauge symmetries of
the Z2m gauge theory and they have the interpretation of measuring the local density
of external Z2m charge. Hence our duality maps the magnetic fluxes in the stripe
model, as described by the Aharonov-Bohm operators B(i, j) in Eq. (10.62), to external
Z2m electric charges in the gauge theory.

At this point we can exploit Eq. (10.68) to compute the dual representation
Hpert D

stripe = Φd(H
pert
stripe) of the perturbative Hamiltonian of Eq. (10.63),

Hpert
G = −

∑

i+ j=even

�∆

2
Bd (i, j) +

5J4

4G3
Ad (i, j)

�

+ h.c. . (10.70)

Remarkably, this is the Hamiltonian for the qudit toric code model [272, 281]. To clar-
ify the notation, notice that due to our definition of the plaquette operator Eq. (10.66),
the two operators Ad (i, j), Bd (i, j) share one vertical link of the lattice, with Ad (i, j) to the
right and Bd (i, j) to the left of that link (see Fig. 10.10). This duality, however, is a
non-local transformation with respect to the clock operators σ and τ. Thus, even if
the spectrum of Hpert

stripe is equivalent to the Z2m toric code, the stripe model in the
Coulomb-dominated regime does not present topological order.

To assert that the phase diagram of the gauge theory and the stripe model are
connected by the duality Φd , we need to investigate the effect of the duality mapping
on the charge constraints of Eq. (10.58). Remarkably, the charge constraints are
holographic [293], since they map to boundary constraints for HG,

S jS j+1
Φd−→ σ†

(Lx−1, j)σ
†
(Lx−1, j+1), (10.71)

for j = 0,2, · · · , L y − 2. Then the physical states |Ψ〉d = Φd|Ψ〉 for HG, seen as a
dual representation of the stripe model, are characterized by the condition

σ†
(Lx−1, j)σ

†
(Lx−1, j+1)|Ψ〉d = |Ψ〉d (10.72)

for j = 0, 2, · · · , L y −2, and not by the standard condition of gauge invariance [that
is, invariance under the A(i, j), (i + j = even)]. [280] Despite this difference we will
argue in the following that the stripe model and the Z2m lattice gauge theory share
the same phase diagram.

The dual gauge theory HG presents unusual open boundary conditions. Since
the charge constraints are holographic, this is in perspective required to guarantee
that the dual charge constraints supported on the boundary commute with the dual
Hamiltonian HG (just as the charge constraints commute with Hstripe).

However, the standard view that boundary conditions do not affect the phase
diagram in the thermodynamic limit suggests in this case that the dual charge con-
straints do not affect the phase diagram of HG, which must then coincide with the
standard phase diagram of the Z2m gauge theory. This view is strengthened by the
fact that the dual charge constraints commute with the gauge symmetries of HG, and
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Figure 10.11: The generalized order parameter (string tension) in both the original
and dual lattices.

so the ground state of HG will belong to the gauge-invariant sector even after the
condition Eq. (10.72) is imposed. Finally this implies that the stripe model presents
the same phase diagram independently on the choice of the charge of each FTI edge
in the constraint (10.23), thus in all the different physical sectors.

In view of these considerations, we can argue that the stripe model shares the phase
diagram of the Z2m gauge theory as described in Ref. [280] (and references therein). It
follows that there is indeed one second-order phase transition separating the Coulomb-
dominated from the Josephson-dominated regime. In the gauge-theory language this
transition is understood as a confinement-deconfinement transition. In particular, the
Coulomb-dominated regime of the stripe model is dual to to the deconfined phase of
the gauge theory, while the Josephson-dominated regime corresponds to the confined
phase.

The phases of a gauge theory cannot be distinguished by a Landau order parameter
[292]. However, for the Z2m gauge theory dual to the stripe model, there exists a
generalized order parameter, the so-called string tension [293], which is non-zero in
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the confining phase and vanishes continuously, but non-analytically at the transition
point. The string tension is the expectation value of a string of τ’s in the Z2m gauge
theory, which corresponds to an open string of tunneling operators σσ† in the stripe
model (see Fig. 10.11, analogously to the string operators creating charge excitations
in the tile model. The ground-state expectation value of such string falls continuously,
but non-analytically to zero at the second-order phase transition separating the
Josephson-dominated regime (where it is different from zero) from the Coulomb-
dominated regime. On the gauge theory side of the duality, the two phases can be
distinguished also by a different scaling of the expectation value of the Wilson loops,
which map to sets of τ operators in compact regions in the stripe model.

10.4 Conclusions and Outlook

In summary, we have studied two-dimensional arrays of interacting parafermionic
zero-modes. Such exotic states form along the edge of fractional topological insulators,
at the domain walls between proximity-induced superconducting and ferromagnetic
pairing. The dynamic of these zero-modes is dictated by two competing effects:
the charging energy of each superconducting island and the fractional Josephson
tunneling of quasiparticles between different islands.

The underlying fractional edge modes, which are originally described by a helical
Luttinger liquid theory, determine crucially the possible lattice geometries and the
physical constraints of these parafermionic systems. We have analyzed two possible
architectures, the tile and the stripe model. They differ mainly for the fact that in the
former the length of the edges is constant, while in the latter it scales with the total
size of the architecture. We have discussed how this feature gives rise to different
physics, despite the fact that the models are characterized by the same lattice of
parafermions and the same local interactions.

The difference is appreciated by exploiting a Jordan-Wigner transformation map-
ping the parafermionic operators into clock operators. Through this transformation
the tile model is described by a Hamiltonian on a decorated square lattice whereas the
stripe model becomes a compass model, with Z2m symmetry, on a brick-wall lattice.

The tile model presents, at least in perturbation theory, the same topological order
of the surface codes characterized by a Z2m symmetry: it shows the same topological
degeneracy of the ground state and the same anyonic excitations. Thus the system
we described is a possible physical candidate to the realization of qudit surface code
Hamiltonians. It is known that the ground state degeneracy of these systems suffers
from thermal fragility [295, 296]. However, we note that the intrinsic noise due to
the presence of induced charges on the superconducting islands could help localize
the anyonic excitations of the system, and thus to protect the information which may
be encoded in the ground states. [297, 298]

The stripe model provides instead a physical realization of the Z2m lattice gauge
theory, a toy model often exploited to study confinement-related problems in lattice
field theory. The duality mapping between the stripe model and the lattice gauge
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theory is non-local in terms of the single clock degrees of freedom, but it is local
in terms of the interactions. Unlike in the tile model, a toric code Hamiltonian can
only be retrieved in the dual theory, where the operators are non-local. Interestingly
enough the physical charge constraints of the FTI edges maps to an holographic
constraint in the gauge theory which affects only boundary terms.

To conclude, our work addressed the problem of finding topologically ordered
phases in the phase diagram of these two-dimensional collections of topological
defects. Comparing the results obtained for the two architectures, we can see that
that it is not only the nature of the interactions between the defects (in this case, the
Z2m PF zero-modes) that determines the presence of topological order, but also the
intrinsic geometry of the topological phases originally generating the defects (in this
case, the edges of the fractional topological insulators). Understanding the interplay
between this two aspects is crucial to design topologically-ordered architectures.

10.A Description of the system through bosonization

In this Appendix we summarize the main features of the bosonization description
of our system and we provide an expression in terms of massless bosonic fields of
the parafermion operators α and thus of the related interaction terms. We follow the
approach in Refs. [239] and [238], where more details can be found.

In absence of the interactions provided by the superconducting islands and the
ferromagnetic insulators, the edge of the FTIs defining our systems, or, equivalently,
the double edges of juxtaposed fractional quantum Hall layers with opposite polariza-
tion, can be described in terms of the Luttinger liquid Hamiltonian proposed by Wen
[251, 252]. In particular the massless edge modes are described by the following
Hamiltonian:

H0 =
mv
2π

∫

dx
�

(∂xϕ)
2 + (∂xθ )

2� , (10.73)

where v is the speed of the two counter-propagating modes and ϕ,θ are dual massless
bosonic fields obeying the commutation relation:

�

ϕ (x1,a, t) ,θ
�

x2,a′, t
��

= i
π

m
δa,a′Θ (x2 − x1) , (10.74)

where Θ is the Heaviside step function. In particular for each FTI edge a it is possible
to define two chiral bosonic fields

ϕL/R (x ± t,a)≡ ϕ (x , t,a)∓ θ (x , t,a) , (10.75)

in such a way that the left and right fermionic modes, with opposite spin polarization,
are defined by the operators ψL/R(x , t,a) = ηa eimϕL/R(x±vt,a) where ηa are fermionic
Klein factors. The charge density associated with each edge is ρ = ∂xθ/π, thus, in a
closed edge with length L , the total charge of the edge is related to the boundary
conditions of the θ field:

πqtot(a) = θ (x +L ,a)− θ (x ,a) (10.76)
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and analogous conditions relate the field ϕ with the spin density [239].
For each edge the interaction terms corresponding to the proximity induced super-

conducting coupling and the backscattering give rise to the interaction Hamiltonian:

HI ∝
∫

dx [−gS(x) cos (2mϕ)− gF (x) cos (2mθ )] (10.77)

where gS and gF describe respectively the position dependence of the induced super-
conducting and ferromagnetic couplings.

By selecting a position in the bulk of either a superconducting or a ferromag-
netic segment of the edge, if the couplings g are strong enough, one can consider
respectively the fields ϕ and θ as pinned to the semiclassical minima ϕk,θk =
0,π/m, 2π/m, . . . , (2m− 1)π/m. Adopting this approximation and considering the
limit of sharp transitions between superconducting and ferromagnetic regions, the
parafermion operators can be written as:

α2k−1,a = κa ei(ϕk,a−θk,a) (10.78)

α2k,a = κa ei(ϕk+1,a−θk,a) (10.79)

where k = 1, . . . , M labels the ferromagnets and the superconductors along the edge
a and the tile and stripe models are characterized respectively by M = 4 and M = Lx .
The fractional Klein factors κa enforce the correct commutation rules (10.3) and
(10.4). This definition of the parafermionic modes is not unique (see Refs. [239]
and [238] for more detail) but it suffices to our purposes. Finally, for a complete
description of the system, it is necessary to take into account the correct boundary
conditions.

Through this definition of the parafermionic operators it is easy to derive Eqs.
(10.1,10.2,10.3,10.4) and verify that the tunneling operators assume the form

e−i(ϕk+1,a−ϕk,a) = P{a,2k−1},{a,2k} . (10.80)

Thus we recover the usual form for the fractional Josephson interaction (10.11):

HJ = −J cos
�

ϕk+1,a −ϕk,a −
δ

2m

�

(10.81)

Moreover the tunneling string operator Σa defined in (10.24) for the two models
becomes Σa = exp

�

−i
�

ϕM+1,a −ϕ1,a

��

, emphasizing the relation between the bound-
ary conditions of the field ϕ and the magnetic flux enclosed by the FTI edges. The
boundary condition (10.19) assumes a natural form in the bosonized description due
to the boundary relation (10.76) since:

α{a,2M+1} = κa ei(ϕM+1,a−θM+1,a) = e−iπqa α{a,1}Σ
†
a. (10.82)

Once we apply the parafermionic Jordan-Wigner transformation (10.30,10.31) to
map the system in a quantum clock model, the previous boundary conditions are
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translated in the following relations:

eiπqa = ei(θM+1,a−θ1,a) =
M
∏

k=1

τ†
k+1 (10.83)

Σa = e−i(ϕM+1,a−ϕ1,a) = σ†
M+1σ1 (10.84)

which generalize the boundary conditions (10.34,10.35,10.36).

10.B Collective modes of the stripe model and the Z2m

gauge theory

It is interesting to reinterpret the duality for the stripe model in terms of collective
modes. Let us define a new set of clock degrees of freedom as

σ̂(i, j) ≡ Φ−1
d (σ(i, j)), τ̂(i, j) ≡ Φ−1

d (σ(i, j)). (10.85)

Here Φ−1
d is the duality mapping the Z2m gauge theory to the stripe model, obtained

from Eqs. (10.64) and (10.65) by reading all arrows in reverse. As we will show
shortly, the dual variables σ̂(i, j), τ̂(i, j) are non-local operators when written in terms
of the clock degrees of freedom σ(i, j),τ(i, j). The duality mapping Φ−1

d shows that
these collective modes of the stripe model are governed by the Z2m gauge theory
Hamiltonian, since

Hstripe = Φ
−1
d (HG)−

�∆

2

∑

i+ j=even

bBd (i, j) +
J
2

L y−1
∑

j=0

Lx−2
∑

i=0

τ̂(i, j)

�

+ h.c. , (10.86)

with bBd (i, j) defined just as in Eq. (10.66) up to the substitution σ(i, j) → σ̂(i, j). It
follows that the stripe model realizes the Z2m gauge theory in terms of its collective
modes σ̂(i, j), τ̂(i, j).

To compute the dual variables explicitly it is necessary to extend the bond algebra
of the Z2m gauge theory by adding the boundary operators τ(Lx−1, j) ( j = 0, . . . , L y−1),
σ†
(0,0), and σ†

(i,0)σ(i−1,0) (i = 1, . . . , Lx − 1) to its list of bond generators. We also need
to determine an algebraic extension of the duality mapping to these extra bonds,

σ†
(0,0)

Φ−1
d−→ τ(0,0), (10.87)

σ†
(i,0)σ(i−1,0)

Φ−1
d−→ τ(i,0), (10.88)

τ(Lx−1, j)

Φ−1
d−→ σ(Lx−1, j). (10.89)
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This completes the preliminaries. It follows that

σ̂(i, j) = τ
†
(0, j)τ

†
(1, j) . . .τ†

(i, j), (10.90)

and

τ̂(i, j) =

�

σ(Lx−1, j) if i = Lx − 1,
σ(i, j)σ

†
(i+1, j) otherwise. (10.91)

It is possible to check directly that the dual variables satisfy the correct algebra for
clock degrees of freedom.



Chapter 11

Thermal conductance as a probe
of the non-local order parameter
for a topological superconductor
with gauge fluctuations

Topological phases of matter cannot be characterized by any local order-parameter
and, hence, signatures of these phases are not accessible by a local experimental probe.
For free fermions, the complete classification of topological phases has recently been
established [299–301] and a connection between the (experimentally accessible) lin-
ear response properties of a system and the value of its topological invariant has been
obtained. A prominent and illustrative example are one-dimensional (1D) topological
superconductors [26, 42, 45, 46], currently the subject of intense theoretical [22, 23]
and experimental investigation [74–77, 115, 154]. In this case, the topological phase
is characterized by unpaired Majorana zero-modes at the ends of the superconductor,
whose presence allows to non-locally store one bit of quantum information encoded
in the total fermion parity of the superconductor [26] This topological phase can
be recognized by striking transport properties [23]. Perfect Andreev reflection off
a Majorana end mode leads to a quantized zero-bias conductance of G0 = 2e2/h.
[302–305] The peak can only be removed if the system undergoes a phase transition
into a phase without Majorana modes. Exactly at the transition, the two unpaired
Majorana modes combine into a perfectly transmitting mode. As a consequence, the
thermal conductance through the wire peaks at a value equal to its superconducting
quantum K0 = π2k2

B T/6h at temperature T [306]. The quantization of the peak is a
way to identify the topological phase transition even in a wire of finite size [306]. In
the topologically trivial phase, both zero-bias Andreev and thermal conductance are
zero.
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(a)

(b)

Figure 11.1: Panel (a): An s-wave superconductor (gray) is deposited on top of a
helical quantum wire (green), which can be for example a semiconducting nanowire
or the edge of a quantum spin Hall insulator. We consider the effect of quantum phase
slips in the superconductor (black arrows). Once a moderate magnetic field is applied
to break time reversal invariance, Majorana modes (orange dots) appear at the ends
of the wire and at weak links when the phase slips happen. Panel (b): We show an
equivalent circuit describing the system [see Eq. (11.1)]. Here, as usual, a box with
a cross denotes a Josephson junction and its capacitance. On the other hand, a box
with only half of a cross denotes the 4π-periodic Majorana junction. Arrows represent
coupling to external leads to the Majorana modes at the end with strength ΓL and ΓR.

It is currently a challenge in condensed matter physics to extend the classification
of topological phases to interacting fermionic systems (see Refs. [307–309]) and in
particular to provide a similar connection with experimental probes. Often, insight
into interacting topological phases is offered by non-local order parameters [310, 311].
However, such quantities lack an obvious thermodynamic meaning and do not enable
natural mean-field approximations. If available, they are useful theoretical tools
[293, 312], without direct experimental implications. Thus, not surprisingly, they are
dubbed ‘hidden’.

In this chapter, we will show that non-local order parameters can be directly linked
to transport properties in the linear response regime. We will show this for the case
of a 1D topological superconductor subject to quantum phase slips, see Fig. 11.1. The
system is described by an effective interacting Hamiltonian akin to a matter-coupled
lattice gauge theory, the 1D Z2 Higgs model [313]. A non-local order parameter is in
this case known: the Fredenhagen-Marcu string order parameter [314], originally
proposed as a criterion for confinement [315] and recently revisited in the context of
topological order [316]. We will show that the Fredenhagen-Marcu order parameter
is connected in our system to a simple transport coefficient, the thermal conductance.



11.1 Quantum phase slips in a Majorana chain 175

11.1 Quantum phase slips in a Majorana chain

Let us start by discussing the role of quantum phase slips (QPS) in topological supercon-
ductors. QPS are quantum tunneling events where the phase of the superconducting
order parameter changes locally by 2π. In 1D, QPS destroy the superconducting
phase at zero temperature [317–319] and thus remove the topological protection of
a Majorana qubit [320], since the latter presupposes the superconducting ordering
which breaks the electromagnetic U(1) symmetry down to Z2. For d-dimensional
superconductors with d > 1, QPS are suppressed as they generate a domain wall in
the superconducting order parameter, leading to κ∝ exp[−(L/ξ)d−1], with L the
linear dimension of the system and ξ the coherence length. In this sense, Kitaev’s
model of topological protection is not purely one-dimensional, since a bulk (3D)
superconductor is crucial for achieving the fault-tolerance of a Majorana qubit [67].

To study QPS in a concrete setting, we follow the approach of Ref. [321] and
consider a chain of coupled superconducting islands, with superconducting phase
φm, placed on top of a nanowire or of a quantum spin Hall edge, see Fig. 11.1. The
junctions between the islands then naturally form weak links through which QPS

happen. The Euclidean action describing a chain of N islands reads S =
∫ 1/T

0 L dt,
with [155, 322]

L =
N−1
∑

m=1

�

ϕ̇2
m

2EC
+ EJ (1− cosϕm)− iEM bmam+1 cos(ϕm/2)

�

−
N
∑

m=1

iham bm , (11.1)

with ϕm = φm+1−φm the phase difference across each junction. The charging energy
EC = e2/2C and the Josephson energy EJ = ħhIc/2e are respectively determined by
the capacitance C and the critical current Ic of the junction. A topological supercon-
ducting wire hosts two Majorana zero-energy modes am, bm on each island. They are
responsible for the term proportional to EM in (11.1), describing tunneling of individ-
ual electrons [42]. The Hermitian operators am, bm obey the anti-commutation rules
{am, bn} = 0 and {am, an} = {bm, bn} = 2δmn. Additionally, the finite size of the is-
lands leads to an overlap between Majorana modes and an associated energy splitting
denoted by h. The local fermion parity pm = ±1 at each junction is defined via the occu-
pation number of a fermionic mode cm =

1
2 (bm − iam+1) as pm = 1−2c†

mcm = i bmam+1.

The total fermion parity operator (−1)F = ia1

∏N−1
m=1 pm bN is a global symmetry of

the system.
Different from previous studies [52, 88, 323], we are interested in the regime

EJ � EM , EC , h, where the superconducting phase difference at any junction can
only be a multiple of 2π, due to the large Josephson energy. The relevant quantum
fluctuations in the chain are QPS connecting classical minima, whose amplitude
κ' (EC E3

J )
1/4 exp(−8

p

EJ/EC ) can be computed in the semiclassical approximation
[321]. A shift of ϕm by 2π changes the sign of EM cos(ϕm/2) and thus it also changes
the energetically-favored value of the junction parity pm [322]. In this regime, the
value of cos(ϕm/2) is reduced to a Z2 quantum degree of freedom. The effective
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Hamiltonian of the chain,

H = −
N
∑

m=1

iham bm −
N−1
∑

m=1

�

iEM bmam+1τ
z
m + κτ

x
m

�

, (11.2)

describes Majorana modes coupled to N − 1 Pauli matrices τz
m = cos(ϕm/2), one per

junction [293]. The last term in the Hamiltonian describes QPS that change ϕm by
2π at a rate κ/ħh.

In the absence of fluctuations of the superconducting order parameter, that is,
at κ= 0, we recover the Kitaev model. In this case, the τz

m degrees of freedom are
redundant. The Hamiltonian H can be block-diagonalized by freezing them in some
classical configuration. All blocks in this decomposition have identical energy spectra.
For any classical configuration of the spins τz

m, a quantum critical point at h = EM
separates a topologically non-trivial phase at h< EM from the trivial phase at h> EM .
The non-trivial phase has a twofold ground state degeneracy if both even and odd
total fermion parities (−1)F = ±1 are considered, signaling the presence of unpaired
Majorana modes at either ends of the chain.

The interaction of the fluctuating superconducting phase with the Majorana modes
is such that, for each island, a local symmetry Cm of H emerges, given by

C1 = ia1 b1 τ
x
1 , CN = τ

x
N−1 iaN bN ,

Cm = τ
x
m−1 iam bm τ

x
m (m= 2, . . . , N − 1) . (11.3)

These local symmetries are gauge symmetries and appear because the phase difference
and fermion parity of a junction are not independent degrees of freedom [36]: a
change in the occupation number of the fermionic mode cm is equivalent to advancing
the phase ϕm by 2π. As a result, the global fermion parity (−1)F can be expressed as
a product of the local gauge-symmetries (−1)F =

∏N
m=1 Cm [293]. It follows that the

τz
m play the role of a Z2 gauge field, minimally coupled to the fermionic degrees of

freedom and with dynamics generated by QPS.

11.2 Connection with a Higgs lattice field theory

The link to lattice field theories can be made more explicit. Our effective Hamiltonian
H of Eq. (11.2) can be interpreted as an approximation to the lattice-regularized 1D
Higgs model [313], given by

HH = −
N
∑

m=1

λ

2
∂ 2
φm
+

N−1
∑

m=1

�

−
g2

2
∂ 2
θm
+ v2 cos(ϕm − θm)

�

. (11.4)

This Hamiltonian follows by standard techniques [324, 325] from the Euclidean action
of the Higgs model of Ref. [313]. Here, the angular variables φm,θm represent the
Higgs and electromagnetic gauge field respectively. The parameter v2 is the vacuum
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expectation value of the Higgs field in the broken-symmetry state. The parameters
λ, g2 control the strength of the fluctuations of the matter and gauge fields.

Our Hamiltonian H is obtained from that of the Higgs model HH by using the
approximation −π2∂ 2

x /2 ≈ cos(π∂x) − 1 for x = φm,θm and truncating the an-
gular variables to the values φm,θm ∈ {0,π}. Within the truncated Hilbert space,
cos(π∂φm

) = σx
m and cos(π∂θm

) = τx
m. Hence, HH reduces (up to an irrelevant additive

constant) to the spin chain Hamiltonian

HZ2
=

N
∑

m=1

λ

π2
σx

m +
N−1
∑

m=1

� g2

π2
τx

m + v2σz
mτ

z
mσ

z
m+1

�

. (11.5)

The Hamiltonian HZ2
is precisely that of the Z2 Higgs model [313]. Finally, the

Jordan-Wigner transformation am = σx
m

∏m−1
j=1 σ

z
j , bm = σ y

m

∏m−1
j=1 σ

z
j shows that the

Z2 Higgs model is equivalent to our Hamiltonian H, provided we identify h = −λ/π2,
κ= −g2/π2, and EM = −v2. (Note that the phase diagram does not depend on the
signs of λ,κ, EM .)

As our effective Hamiltonian H is related to the Higgs model, we might expect
the Higgs mechanism to be present. As a result, gapless excitations should become
gapped for arbitrarily small values of κ, that is, for arbitrarily weak fluctuations of the
superconducting order parameter. In other words, the small but finite charging energy
EC of each island breaks the ground state degeneracy and splits the otherwise unpaired
Majorana modes. In this way, the Higgs-mechanism offers a way to locally break
the topological degeneracy of the Majorana chain. It is known that this expectation
is indeed correct in the thermodynamic limit, as at κ 6= 0 the Hamiltonian (11.5)
has no phase transitions and describes a gapped phase with a single ground state
[293, 313, 326]. However, in a finite chain signatures of the topologically non-trivial
phase, which is present at κ= 0 and h< EM , should survive up to a finite value of κ.
If this is true, then the Hamiltonian of a finite chain should be gapless along a line in
the (h,κ) plane.

11.3 Numerical study of the linear response of the chain

In the following, we will show that in the linear response regime, the topological
transition reflects itself in the thermal conductance K through the system also at
finite κ, whereas upon increasing κ, the local probe of Andreev conductance G
quickly becomes blind to it. To this end, we couple the left and right end of the
chain with Hamiltonian H to normal leads through tunneling Hamiltonians [36]
HL = γLc†

La1 e−iφ1/2+H.c., HR = γRc†
R bN e−iφN /2+H.c.; here, γL and γR denote the

amplitudes for tunneling events into the left (L) and right (R) leads, and c†
L , c†

R are
the creation operators for electrons in the non-interacting leads. We fix the gauge by
choosingφ1 = 0, so thatφN =

∑N−1
m=1ϕm. In the low-energy limit, e−iφN /2 =

∏N−1
m=1 τ

z
m,
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so we get

HL = γL(c
†
L + cL)a1 , HR = γR(c

†
R + cR)bN

N−1
∏

m=1

τz
m . (11.6)

The tunneling Hamiltonians must break one of the gauge symmetries, since a tunneling
event changes the total fermion parity. Due to our gauge choice, we obtain {HL,R, C1} =
0 while [HL,R, Cm] = 0 for m= 2, . . . , N .

The Andreev conductance G is determined by the charge transport across a normal
metal-superconductor interface. To compute G, we set γR = 0, γL = γ, apply a bias
voltage V to the left lead, and ground the rightmost superconducting island. In
contrast, the thermal conductance K is determined by the heat transport between two
normal leads. To compute K we set γL = γR = γ and establish a small temperature
difference between the right lead at temperature T and the left lead at temperature
T +δT . In the limit T, V → 0, we obtain G as G = G0 Γ Im[G11(0)] [327], and K as
K = 4K0Γ

2 |G1N (0)|2, in terms of the tunnel coupling Γ = 2π|γ|2ρ0 to a wide-band
lead with density of states ρ0 and the retarded Green’s functions1

G11(ω) = −i

∫ ∞

0

dt eiωt
¬

{a1(t), a1(0)}
¶

, (11.7a)

G1N (ω) = −i

∫ ∞

0

dt eiωt
¬

{bN (t)
∏N−1

m=1 τ
z
m(t), a1(0)}

¶

. (11.7b)

The averages in Eqs. (11.7a) are taken over the ground state wave function |0〉 of
our effective Hamiltonian H. For any κ, h, EM > 0, the ground state of H is unique
and belongs to the gauge-invariant sector with Cm|0〉 = |0〉 for all m. Note that at
κ= 0, the ground manifold is 2N−1-times degenerate, but we continue to choose |0〉
to be the unique gauge-invariant state in the ground manifold. The time-evolution in
Eqs. (11.7a) is determined by the total Hamiltonian Htot = H+HR+HL. The retarded
Green’s function G11(t) =

∫

(dω/2π) e−iωt G11(ω) is the amplitude for a reflection
process whereby an electron enters the chain from the left lead at time t i = 0 and
exit again from the left lead after a time t f = t. Similarly, G1N (t) is the amplitude for
a transmission process whereby the electron enters at t i = 0 from the left lead and
exits from the right lead after a time t f = t.

We highlight that the thermal transport probes non-local quasiparticle transfer
processes through the chain characterized by the string correlator

G1N (t) = −i〈{bN (t)
∏N−1

m=1 τ
z
m(t), a1(0)}〉 , (11.8)

which is a generalization of the conventional correlator −i〈{bN (t), a1(0)}〉 studied in
the context of the Majorana chain without the gauge degrees of freedom [303]. Due
to the presence of the gauge string

∏N−1
m=1 τ

z
m, the Green’s function G1N is similar to

1In this formula for K we neglect inelastic processes mediated by phonons and assume that the occupation
of single-particle states is that of independent particles in thermal equilibrium.
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Figure 11.2: Numerical results: Andreev conductance (top left, in units of G0 = 2e2/h),
Fredenhagen-Marcu order parameter MMF (top right), and thermal conductance
(bottom, in units of K0 = π2k2

B T/6h) plotted as a function of h and κ. The results
are obtained for a chain of N = 11 islands with coupling constant Γ = 0.01EM to
the leads, in the limit of vanishing temperature T and small applied voltage V . The
Andreev conductance G is averaged over a small voltage interval 10−4EM to account
for the finite-size energy splitting of the Majorana modes as for a finite size wire
we trivially have G = 0 [88, 303]. The Andreev conductance only shows a signal
along the axis. On the other hand, the string-order parameter allows to distinguish a
confined regime - corresponding to the topological regime with Majorana end modes
- from the trivial Higgs-regime. The separation between these two regimes can be
clearly identified by the peak in the thermal conductance. The inset in the right panel
shows line cuts of the thermal conductance at κ/EM = 0, 0.01, 0.02, going from right
to left as shown by the arrow. Due to finite size effects, the transition at κ = 0 is
shifted from h/EM = 1 to h/EM ' (Γ/EM )1/11 ' 0.7, as expected. Increasing κ, the
topological regime shrinks and only the Higgs-regime survives.
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the Fredenhagen-Marcu string-order parameter [314],

MFM = −i〈bN

∏N−1
m=1 τ

z
m a1〉, (11.9)

which measures the presence of the topological phase in the model with fluctuation
gauge degrees of freedom. In the following we probe this relation numerically.

To calculate the Green’s function Gmn(ω), we follow the approach [328] of de-
coupling the gauged Majorana chain from the leads to first order in the lead coupling
Γ and neglecting higher-order (co-)tunneling processes. The bare Green’s functions
without the leads are calculated by exact diagonalization of the Hamiltonian (11.2),
using a Lehmann spectral representation in terms of the exact eigenstates. The pres-
ence of the symmetries (11.3) greatly simplifies the task of computing Gmn. In fact,
we only need to know the energy and the wave function of the ground state |0〉 and
of all the states |ψ〉 such that C1|ψ〉= −|ψ〉 while Cm6=1|ψ〉= |ψ〉. Indeed, since C1
is the only symmetry of H which does not commute with the tunneling Hamiltonian
HL,R, but anti-commutes instead, these are the only excited states to which transitions
from the ground states are possible upon tunneling of an electron from the leads. For
a chain of N islands, there are 2N−1 of these states—against a dimension of 22N−1 of
the total Hilbert space2.

The numerical results for a chain of N = 11 islands are shown in Fig. 11.2. At
κ= 0, coherently with known results, we observe an Andreev reflection plateau at
G0 in the non-trivial regime and a thermal conductance peak at the transition, which
appears shifted to h' EM (Γ/EM )1/N due to finite chain size and coupling to the leads.
At finite κ, the Andreev plateau is quickly suppressed, except close to h= 0, a limit
where two isolated Majorana modes are always present. However, the quantized
peak in thermal conductance persists in the interacting part of the parameter space,
indicating the presence of a gapless transmitting mode and hence a strong signature of
the existence of a topological regime. In fact, the position of the thermal conductance
peak qualitatively follows the line of maximum change in the order parameter. We
have checked that the agreement persists when varying the system size N .

11.4 Conclusions

To conclude, we have shown that QPS in a Majorana chain implement the Z2 Higgs
model where the fluctuations of the gauge field are determined by the rate κ/ħh for
QPS. QPS locally destroy the topological phase of the Kitaev model at fixed fermion
parity via a Z2 version of the Higgs mechanism. However, for finite system size and
small κ, signatures of the topological phase remain visible in the thermal conductance
through the system. The reason is that it is linked to the Fredenhagen-Marcu order
parameter for the Z2 Higgs theory, which indicates the topological regime with

2Note that when the total Hamiltonian is projected onto a single gauge sector, it takes the form of a
transverse-field Ising model in a longitudinal field κ. This projected Hamiltonian is the one we numerically
diagonalize. Within this simpler model in a fixed gauge sector, it is well known that any finite κ > 0
introduces a relevant perturbation [326].
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gauge fluctuations present. The thermal conductance provides a clear transport
signature of the transition from the topological to the trivial regimes in the presence
of the interactions with the gauge field, whereas no signature of the transition is
present in the Andreev conductance at a finite rate of QPS. Our results suggest that in
topological quantum matter, bulk transport measurements offer access to non-local
order parameters, just like susceptibility measurements do for local order parameters
in broken-symmetry phases. It remains an interesting question for further studies
how this scenario can be generalized to higher dimensions and non-Abelian gauge
fields.
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Chapter 12

Outlook

This thesis contains the theoretical design of a topological quantum computer based
on Majorana modes in superconducting circuits. Will the theoretical ideas contained
in this thesis be realized in practice? What is the status of the field, and what are its
prospects? To guide the discussion of these crucial questions, I have assembled the
schematic table in Fig. 12.1, which identifies some intermediate stages of development,
and which might be useful to make a rough measurement of future experimental
progress.

Where are we now? Chapter 7 of this thesis reaches the first milestone along this
road, the successful realization of microwave quantum circuits with semiconducting
nanowire Josephson elements embedded in a cQED chip [329]1. These circuits
contained no Majorana modes, so current efforts are focusing on achieving the second
stage in the figure. Mainly three different platforms are under scrutiny in this race:
semiconducting nanowires [38, 74, 77], quantum spin Hall systems [116, 154, 330],
and chains of magnetic adatoms [117], all covered by a large body of theoretical
work.

While realizing Majorana modes is obviously a prerequisite for all stages in the
figure beyond the second, there will certainly be many other practical challenges. A
commonly mentioned one is the ubiquitous presence of non-equilibrium quasiparticles
in superconducting circuits, which breaks the topological protection of Majorana
qubits. Recently, there has been a lot of progress in the suppression of quasiparticle
poisoning [32–34], even though the origins and dynamics of these stray quasiparticles
remain largely unknown. Quasiparticle poisoning can prevent a clear observation of
the 4π-periodic Josephson effect, which represents the third step - see for instance
the discussion in Chapter 2. It certainly poses an upper bound on the coherence time
of a Majorana qubit, which must always be operated in a parity-protected fashion.

Chapters 3 to 6 describe in great detail stages four to seven in Fig. 12.1, from the
characterization of a Majorana qubit to the full execution of a quantum algorithm

1Similar results were also achieved by the group of C. Marcus at the University of Copenhagen [177].
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Realization of hybrid superconducting circuits with semiconducting Josephson elements

Stabilizing Majorana modes in hybrid superconducting circuits

Observation of 4π Josephson effect in two- and multi-terminal junctions

Non-topological operations on parity-protected Majorana qubit

Braiding, demonstration of non-Abelian statistics

Topological operations on parity-protected Majorana qubit

Algorithms

Time

Co
m

pe
xi

ty

Figure 12.1: Development stages for the realization of a topological quantum com-
puter with Majorana modes, following the ideas presented in this thesis. The drawing
is inspired by a similar one by Devoret and Schoelkopf appearing in Ref. [31], out-
lining the realization of a universal quantum computer with conventional qubits. It
should in fact be interpreted by quoting their words: “Each advancement requires
mastery of the preceding stages, but each also represents a continuing task that must
be perfected in parallel with the others” [31].

in a topological fashion. The major milestone is certainly the demonstration of
non-Abelian statistics, which stands out in this research program as a fundamental
discovery. Whether or not a topological quantum computer is eventually realized, non-
Abelian statistics are a fascinating feature of quantum mechanics. Their observation
would once again demonstrate the seemingly inextinguishable ability of quantum
mechanics to predict new phenomena, and to surprise us.

As usual, the next generations of experiments will yield unexpected results, and
most probably offer opportunities to deviate from the path outlined here and explore
territories which are at the moment unforeseen. Perhaps, these unknown unknowns
will be what will keep us busy and curious in the years to come.
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Samenvatting

Majorana toestanden zijn een speciaal soort deeltjes die kunnen verschijnen aan de
eindpunten van supergeleidende draden of in magnetische vortices in supergeleidende
films. Zij zijn interessant vanwege de voorspelling dat ze een nieuw soort “niet-Abelse”
statistiek bezitten. Dat houdt in dat de aanwezigheid van meerdere Majorana toe-
standen in een supergeleider een ontaarding in de grondtoestand veroorzaakt, en dat
het uitwisselen van de positie van twee toestanden tot een rotatie van de golffunctie
in deze ontaarde ruimte leidt. Omdat opeenvolgende rotaties niet commuteren, kun
je met een serie rotaties een gecompliceerde bewerking uitvoeren op de golffunctie.
Deze bewerking kan een bouwsteen zijn voor een kwantumcomputer. Supergeleiders
met Majorana toestanden hebben een ingebouwde bescherming voor fouten die bij de
berekening kunnen optreden, vanwege het topologische karakter van de niet-Abelse
statistiek.

Hoe je in de praktijk de Majorana toestanden kunt uitwisselen is makkelijker
gezegd dan gedaan. De eerste zes hoofdstukken van het proefschrift bevatten een
concreet voorstel om Majorana toestanden te manipuleren, uitgaande van bestaande
technieken uit de supergeleidende elektronica. Het kernidee achter dit voorstel is dat
de grondtoestand weliswaar ontaard is als de supergeleider geaard is, maar dat de
ontaarding kan worden opgeheven als de supergeleider elektrisch geïsoleerd is. Dit is
mogelijk omdat de ontaarde toestanden corresponderen met een verschillend aantal
elektronen. Het verschil in elektrostatische energie kan in een elektrisch geïsoleerde
supergeleider gemeten worden, en zo kun je de ontaarding opheffen.

De elektrostatische energie van een supergeleidend gebiedje kan heel nauwkeurig
gecontroleerd worden door het magnetische veld te variëren in een zogenaamde
Josephson-junctie, die de supergeleider met aarde verbindt. Dit is een bekende tech-
niek uit de supergeleidende elektronica. Zo hebben we een praktische en nauwkeurige
manier om de wisselwerking van de Majorana toestanden te beheersen. Het effect
van een magnetisch veld op de Majorana toestanden wordt in hoofdstuk 2 bestudeerd
in een zogenaamde DC SQUID geometrie, en in hoofdstukken 3 en 4 in grotere schake-
lingen, die meer mogelijkheden bieden: het uitwisselen van Majorana toestanden, het
uitlezen van de rotatie van de golffunctie, en de toepassing op complexe bewerkingen.
De uitwisselingsoperatie wordt uitgevoerd zonder de Majorana toestanden fysiek
door de ruimte te bewegen, hetgeen grote praktische voordelen biedt.
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Hoofdstuk 7 bevat de resultaten van een samenwerking met de experimentele
groep van Dr. Leo DiCarlo in Delft. We analyseren het gedrag van eenvoudige schake-
lingen gemaakt van niobium-titaan-nitride, een bijzondere supergeleider die bestand
is tegen hoge magnetische velden. Omdat de dichtheid van elektronen door een
elektrisch veld kan worden gevariëerd, hebben deze schakelingen een resonantiefre-
quentie die variabel is. Mijn theoretische analyse van het microgolfspectrum toont
aan dat de schakeling heel gevoelig is voor afwijkingen van de sinus-vorm in de
stroom-fase relatie van de Josephson-junctie. Deze supergeleidende schakelingen
vormen een eerste stap op weg naar de experimentele realisatie van de door ons
ontworpen Majorana-schakelingen.

In de volgende hoofdstukken passen we de theoretische ideën uit de eerdere
hoofdstukken toe op gerelateerde problemen. In hoofdstuk 8 tonen we aan dat
de elektrostatische wisselwerking niet alleen nuttig is om Majorana toestanden in
supergeleiders te manipuleren, maar ook van dienst kan zijn in het zogenaamde
fractionele kwantum-Hall effect, waar ook het optreden van Majorana toestanden is
voorspeld (bij vulfractie ν= 5/2). Hoofdstuk 9 laat zien dat het idee om Majorana
toestanden te verwisselen zonder ze fysiek door de ruimte te bewegen uitgebreid
kan worden naar andere deeltjes met niet-Abelse statistiek, zogenaamde “niet-Abelse
anyonen”. We hoeven slechts enkele eenvoudige veronderstellingen te maken over
hun wisselwerking. In hoofdstuk 10 onderzoeken we de eigenschappen van zoge-
naamde parafermion-toestanden, die beschouwd kunnen worden als het analogon
van de Majorana toestanden in het fractionele kwantum-Hall effect bij vulfractie
1/3. Tenslotte, in hoofdstuk 11 behandelen we de transporteigenschappen van een
reeks supergeleidende gebiedjes op de rand van een zogenaamde kwantum spin-Hall
isolator. Dit is een veelbelovende methode om Majorana toestanden te realiseren. We
laten zien dat elektrische wisselwerking een storend effect heeft op de elektrische
geleiding (de kwantisatie verdwijnt), maar niet op de thermische geleiding (die blijft
gekwantiseerd).



Summary

Majorana modes are special zero-energy quasiparticles that can appear at the ends
of superconducting wires or bound to vortices in superconducting films. They are
interesting because they are predicted to have non-Abelian quantum statistics. This
means that the presence of several Majorana modes in a superconductor leads to a
degenerate quantum ground state, and that exchanging the position of two modes
may result in a rotation of the ground state wave function within this degenerate
manifold. Different rotations may not commute with each other, hence a sequence of
these exchanges can be seen as a quantum algorithm executed on the initial wave
function. Superconductors with Majorana modes are prominent candidates to realize
a quantum computer naturally endowed with resilience to errors and decoherence,
so that, ideally, its operation would not require quantum error correction.

It is a challenge to manipulate and measure the quantum state of a collection
of Majorana modes. The first six chapters of this thesis contain a concrete design
proposal to realize both tasks using the powerful techniques of superconducting
circuits. The main idea behind the proposal is that different ground states of a
collection of Majorana modes are degenerate if the superconductor is grounded,
but can be split in energy if the superconductor is floating. The reason behind this
behavior is that the quantum states differ by fermion parity, which is equal to the
electric charge contained in the superconductor modulo 2e. In the presence of a small
but finite electrostatic energy, this difference in fermion parity becomes measurable.

The electrostatic energy of a superconducting island can be controlled with expo-
nential sensitivity by varying the magnetic flux through a split Josephson junction
connecting the island to the ground, as is routinely done in experiments with super-
conducting circuits. This gives us a realistic and flexible tool to control the interaction
between Majorana modes. The response of Majorana modes to a magnetic flux is
studied in chapter 2 in a simple DC SQUID geometry, and in chapters 3 and 4 in larger
circuits which allow for braiding of two Majorana modes, the readout of the result,
and even the execution of more complex algorithms. The braiding operation, in
particular, is implemented not by adiabatic motion of the Majorana modes, but by
performing an adiabatic trajectory in the parameter space of their pairwise Coulomb
couplings.

Chapter 7 contains the results of a collaboration with the experimental group of
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Dr. Leo DiCarlo in Delft. We analyze the behavior of simple NbTiN superconducting
circuits with Josephson junction formed by InSb nanowires, rather than the more
conventional oxide tunnel junctions. Because the density of carriers can be modulated
by a side gate, these devices have a gate-tunable plasma frequency. Moreover, the
theoretical analysis of the microwave spectroscopy of current oscillations across a split
junction reveals that the spectrum is very sensitive to the non-sinusoidal current-phase
relation of the nanowire junction. These hybrid superconducting circuits constitute a
first step towards the realization of the Majorana circuits described in the previous
chapters.

In chapters 8 we apply the ideas of the first six chapters in different contexts.
For instance, in chapter 8 we demonstrate that charging interactions are useful not
only for manipulating Majorana modes appearing in superconductors, but also for
their ancestors appearing in the fractional quantum Hall effect at filling ν = 5/2.
Chapter 9 shows instead that the idea to braid Majorana modes by controlling their
mutual coupling - rather then directly moving them in space - can be generalized to
all types of non-Abelian anyons, provided some simple assumptions on their mutual
interactions hold. Chapter 10 explores the properties of parafermionic zero modes,
which are the “fractional” analogue of Majorana modes occurring in systems where
superconductivity is induced on the edge of a fractional quantum Hall edge at filling
1/3. Finally, chapter 11 focuses on the transport properties of a linear array of
superconducting islands situated on the quantum spin Hall edge, a system which
effectively realizes a chain of coupled Majorana modes. We show that weak Coulomb
interactions, appearing as quantum phase slips between different islands, remove
the quantization of Andreev conductance in the topological phase, while thermal
conductance at the Majorana phase transition remains quantized.
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