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CHAPTER 5. AN ALGORITHMIC PROCESS MODEL: MODELLING
GRADIENTS USING PETRI NETS

Omnia mutantur, nihil interit.
Everything changes, nothing perishes.

- Ovid, Metamorphoses XV, v.165

The third category of modelling approaches discussed in chapter 1 comprises
algorithmic process models, among which Petri nets, and the current chapter presents a
case study of the application of Petri nets to the field of developmental biology. We
have chosen to model the process of gradient formation, since this process is modular
and concurrent in nature and can be placed in a hierarchical structure with other
simultaneous and interlinked processes. Petri nets are distinguished by their ability to
model these features; the combination of modelling approach and the process to be
modelled therefore provides an optimal context to fully explore the possibilities of this
approach for developmental biology. Here a qualitative method is applied, not taking
into account exact numerical data. In the next chapter a more quantitative approach is
applied to the same developmental process.

Based on: Bertens L.M.F, Kleijn J., Koutny M., Verbeek F.J., ‘Modelling gradients using
Petri nets’, in: Proceedings International Workshop on Biological Processes & Petri Nets
(BioPPN) Braga, Portugal, June 21 2010, 55-69.
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5.1 INTRODUCTION

Petri nets (Reisig and Rozenberg, 1998) have been shown to be very promising for
molecular and cellular biology, in particular for metabolic, signalling and gene-regulatory
networks (see e.g. Banks, 2009; Banks et al., 2009; Chaouiya, 2007; Gilbert and Heiner,
2006; Gilbert et al., 2007; Heiner et al., 2008; Koch et al., 2004; Steggles et al., 2006;
Talcott and Dill, 2006). We believe Petri nets to be useful for higher level developmental
processes as well, e.g. on tissue and organ level. Therefore this chapter concerns the use
of Petri nets as an abstract modelling tool for higher level processes in the organism,
taking cells as central elements. To this end we have selected one developmental
process, the formation of a morphogen gradient, as a case study for this approach. This
process helps instigate the differentiation of cells along the developing axis in the
organism. In early development, gradients are crucial (Wolpert, 2002) and finding a
modelling solution for the generic process of gradient formation will not only serve the
theoretical goal of investigating the use of Petri nets for developmental biology. It will
also, in a more practical sense, be useful for the modelling of other developmental
processes in which gradients play a role. By staying very close to the biological sequence
of events in gradient formation, rather than focusing on a concrete outcome, the model
should be generally applicable and robust. The implications of this approach are further
addressed in chapter 6.

Throughout this chapter the emphasis will be on abstraction and modelling
decisions, as opposed to implementation of specific biological data (which will be
addressed in chapter 6). The main question dealt with in this chapter is: how can Petri
nets be used to model higher level developmental processes, which focus on cells as the
central units? We present a basic Petri net, modelling gradient formation, which serves
as a proof of concept for our approach. In the remainder of this chapter we outline the
biological background of gradient formation, we describe our modelling decisions and
we present the model. In the last section the possibilities of the model and future work
are discussed.

5.2 PT-NETS WITH ACTIVATOR ARCS

For a general introduction to Petri nets we refer to (Reisig and Rozenberg, 1998). Here,
we use PT-nets with activator arcs (Kleijn and Koutny, 2007) and a maximally concurrent
execution rule (Burkhard, 1983).

Petri nets are defined by an underlying structure consisting of places and
transitions. These basic elements are connected by directed, weighted arcs. In the Petri
net model considered in this chapter, there are moreover activator arcs connecting
places to transitions. In modelling, places are usually the passive elements, representing
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local states, and transitions the active elements. Here, global states, referred to as
markings, are defined as mappings assigning to each place a natural number (of tokens
corresponding to available resources).

A PTA-net, is a tuple N = (P, T,W,Act ,m,) such that:
— P and T are finite disjoint sets, of the places and transitions of N, respectively.

—W:(TxP) U(PxT)-> N is the weight function of N.
—Act C P x Tis the set of activator arcs of N.

—my: P> N is the initial marking of N.

In diagrams, places are drawn as circles, and transitions as boxes. Activator arcs are
indicated by black-dot arrowheads. If W(x, y) = 1, then (x, y) is an arc leading from x to y;
it is annotated with its weight if this is greater than one. A marking m is represented by
drawing in each place p exactly m(p) tokens as small black dots. We assume that each
transition t has at least one input place (there is at least one place p such that W(p, t) 2
1).

When a single transition t occurs (‘fires’) at a marking, it takes tokens from its
input places and adds tokens to its output places (with the number of tokens
consumed/produced given by the weights of the relevant arcs). Moreover, if there is an
activator arc (p, t) € Act, then transition t can only be executed at the given marking if p
contains at least one token, without the implication of tokens in p being consumed or
produced when t occurs. Thus, the difference with a self-loop, i.e., an arc from p to t and
vice versa, is that the activator arc only tests for the presence of tokens in p.

We define the executions of N in the more general terms of simultaneously
occurring transitions. A step is a multiset of transitions U : T - N. Thus U(t) specifies
how many times transition t occurs in U. (Note that if we exclude the empty multiset,
single transitions can be considered as minimal steps.) Step U is enabled (to occur) at a
marking m if m assigns enough tokens to each place for all occurrences of transitions in
U and, moreover, all places tested through an activator arc by a transition in U, contain
at least one token. Formally, step U is enabled at marking m of N if, forallp € P:

-m(p) 22,7 U(t) - W(p, t)
—m(p) =2 1 whenever there is a transition t such that U(t) > 1 and (p, t) € Act.

If U is enabled at m, it can be executed, leading to the marking m' obtained from m
through the accumulated effect of all transition occurrences in U:

—-m'(p) =m(p) + . r U(t) - (W(t, p) -W(p, t)) for all p € P.
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Finally, a step U is said to be max-enabled at m if it is enabled at m and there is
no step U'that strictly contains U (meaning that U' #= U and U(t) < U'(t) for all transitions
t) and which is also enabled at m. And we write m[U ) m'if U is max-enabled at m and
execturion of U at m leads to m’. A (max-enabled) step sequence is then a sequence o =
U; ... U, of non-empty steps U; such that m, [U1> my ..My [U,,) m,, for some markings

m;, ..., m, of N. Then m, is said to be a reachable marking of N (under the maximally
concurrent step semantics).

To conclude this preliminary section, we elaborate on the choice of this
particular net model. First, it should be observed that it follows from the above
definitions that the semantics allow auto-concurrency, the phenomenon that a
transition may be executed concurrently with itself. This approach makes it possible to
use transitions for a faithful modelling of natural events like the independent (non-
sequential) occurrence in vast numbers of a biochemical reaction in a living cell. Note
that the degree of auto-concurrency of a transition can easily be controlled by a
dedicated place with a fixed, say k, number of tokens connected by a self-loop with that
transition implying that never more than k copies of that transition can fire
simultaneously.

Activator arcs were introduced in (Janicki and Koutny, 1995) as a means of
testing for the presence of at least one token in a place, and so they are similar to other
kinds of net features designed for the same reason. We mentioned already self-loops by
which the presence of a token in a place can be tested only by a single transition (which
‘takes and returns’ the token) and not simultaneously by an arbitrary number of
transition occurrences in a step. Two other mechanisms related to activator arcs, which
do allow such multiple testing are context arcs (Montanari and Rossi, 1995) and read (or
test) arcs (Vogler, 2002). Both, however, display important differences when compared
with activator arcs. A context arc testing for the presence of a token in place p by
transition t indicates that after a step in which t participates has been executed, p must
still contain a token which precludes the occurrence in the same step of transitions that
have p as an input place. A read arc is also different, but less demanding in that there
must exist a way to execute sequentially (i.e., one-by-one) all transition occurrences in
the step, without violating the read arc specification. In both cases, one can easily see
that activator arcs are most permissive since they only check for the presence of a token
before the step is executed (this is often referred to as a priori testing). We feel that a
priori testing is more appropriate for biological applications as the ‘look ahead’ implied
by the other two kinds of test arcs is hard to imagine in reality.

Finally, we rely in this chapter on maximal concurrency in the steps that are
executed which reflects the idea that execution of transitions is never delayed. This may
also be viewed as a version of time-dependent Petri nets where all transitions have a
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firing duration of 1. However, the maximal concurrency we apply here does not derive
from Petri nets with time, but rather from Petri nets with localities (Kleijn et al., 2006)
leading to locally maximal semantics. This semantics is what we plan to use to model
other aspects of the development as well. Here one may think of e.g. the locally
synchronous occurrence (in pulses) of reactions in individual compartments of a cell.

5.3 BIOLOGICAL BACKGROUND AND MODELLING DECISIONS
5.3.1 Mechanisms of biological gradient formation

In biology, the term gradient is used to describe a gradual and directed change in
concentration of a morphogen through a group of cells, e.g., a tissue. Morphogens are
signalling molecules that cause cells in different places in the body to adopt different
fates and thereby help establish embryonic axes. Morphogens are produced in a
localized source of a tissue, the source cell(s), and emanate from this region, forming a
concentration gradient (Gurdon and Bourillot, 2001; Teleman et al, 2001). A
morphogen gradient has an immediate effect on the differentiation of the cells along it;
cells are able to ’read’ their position along the gradient and determine their
developmental fate accordingly. They have a range of possible responses and the
morphogen concentration dictates which response will be exhibited (Gurdon and
Bourillot, 2001; Teleman et al., 2001).

The mechanisms by which the morphogen travels through a cell layer have
been the topic of some debate and are not yet fully understood. Three mechanisms
have been described, shown schematically in Figure 5.1: (A) diffusion through the
extracellular matrix (Fischer et al., 2006; Gurdon et al., 1994; Lander et al., 2002), either
passively, like a drop of ink in water (Gurdon et al., 1994), or facilitated by receptors on
the cell surface which guide the morphogens along (Fischer et al., 2006), as shown in the
figure; (B) sequential internalization of the morphogen molecules in vesicles in the cells,
a process called endocytosis, and subsequent re-emission (Entchev and Gonzalez-
Gaitan, 2002; Fischer et al., 2006; Teleman et al., 2001); (C) direct contact between the
cells by means of tentacle-like threads of cytoplasm, called cytonemes, connecting the
cells (Gurdon and Bourillot, 2001). These mechanisms are not necessarily mutually
exclusive and some studies conclude that a combination of mechanisms underlies the
formation of a gradient, (cf. Kicheva et al. 2007, on which the case study in 6.4 is based).
It is important to note that both diffusion and endocytosis take place between
neighbouring cells, while cytonemes connect all cells directly to the source. This makes
it very different from a modelling perspective, as will be discussed below. In this and the
next chapter we will solely be concerned with communication between neighbouring
cells, i.e. through diffusion and endocytosis.
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Figure 5.1. Three possible mechanisms for
gradient formation: diffusion (A),
endocytosis subsequent re-emission (B) and
transport through cytonemes (C).

Unfortunately, knowledge of the exact concentrations and shapes of most
gradients is often limited. This is mainly due to the transient nature of morphogen
gradients and the low concentrations at which they are effective, both of which make it
difficult to visualise the morphogens (Gurdon et al., 1994). Many morphogens are
rapidly degraded or prevented from binding to receptors by antagonistic proteins
(Gurdon et al., 1994). Much of the information on gradients is therefore obtained
indirectly, by observing their effect, i.e., the responses of the cells involved (Gurdon et
al., 1994). A qualitative approach, such as the one presented in this chapter,
circumvents this issue by not relying on exact quantitative data. However, in cases for
which quantitative data is available, incorporating this in the model will yield a more
detailed and practical model of process under study. Such a quantitative model is
presented in chapter 6, along with a case study based on experimental observations.

5.3.2 Modelling decisions

We have chosen cells as the elementary units in our model, to be represented by places
in the Petri net. Earlier studies (Bonzanni et al., 2009; Krepska et al., 2008; Matsuno et
al., 2003) have successfully modelled cell-to-cell signalling, starting from a lower
biological level, using places to represent genes and proteins. Although this allows a
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high level of detail, it also complicates the net and makes it difficult to identify single
cells. In our approach the cellular level represents the intermediate level between the
subcellular levels, on which the morphogen signalling between cells takes place, and the
tissue/organ level, where whole cell layers may move.

Furthermore, the process lends itself to be modelled using a modular
approach; for each of the neighbouring biological cell pairs identical modules of places
and transitions are used. This makes it easy to change or extend the model or to adjust
parameter values according to different experimental data.

We let tokens represent morphogen levels, conducted from cells to
neighbouring cells by the transitions. By changing the interpretation of the tokens a
range of levels is possible, from exact quantitative modelling, in which each token
corresponds to a precise morphogen number, to strictly qualitative modelling (Kleijn et
al., 2006), in which markings become binary, indicating merely the presence or absence
of morphogens in a cell. In an intermediate, semi-qualitative approach, increasing token
numbers equal increasing morphogen levels, without exact molecular numbers. Petri
nets allow modelling at all these different levels. Biological gradients often work in a
rather discrete, semi-qualitative manner; a number of cell responses (such as activation
of a particular gene) exists for a given gradient and threshold values in morphogen
concentration demarcate the boundaries between these responses, resulting in a
stepwise change in cellular behaviour throughout the tissue. Due to this, both semi-
qualitative and quantitative ways of modelling can represent biological situations
realistically; our Petri net model is applicable to both. Moreover, it is possible to model
the formation of a gradient in a quantitative manner, but let other processes which
depend on the morphogen levels do so in a semi-qualitative way, by using threshold
values. Since we do not use experimental quantitative data in the current chapter, the
model can be interpreted as semi-qualitative; in the next chapter an example will be
presented of an entirely quantitative approach, in which tokens numbers directly
corresponds to numbers of morphogen molecules.

Instead of merely calculating the final distribution of the tokens, we want our
net to model the gradual process of morphogen movement through the tissue, i.e. to
represent all intermediate steps. This will allow the user to simulate experiments in
which the process is altered while running; e.g. grafting experiments, in which parts of
the tissue get removed or replaced, can be simulated by taken cells out of the net at a
certain moment during the process or depleting them of tokens.

Our model focuses on local signalling between neighbouring cells. Therefore
we take into account cell-to-cell communication mechanisms, e.g. endocytosis and
diffusion, but not long distance transport mechanisms, e.g. through cytonemes. In the
situation of local signalling, the number of morphogens to be transported from one cell
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to the next depends solely on the difference in morphogen level between these two
neighbouring cells; cells have no 'knowledge' of morphogen transport in other parts of
the tissue. In order to accurately reflect this situation we base the computation of
transported tokens solely on the difference in token numbers between the
neighbouring cells. This makes the model easily scalable, i.e. the number of cells in the
tissue is irrelevant to the computation and can be adjusted without altering the
workings of the model.

5.3.3 Implementation

Often exact quantitative data for the processes of morphogen transport and
degradation between neighbouring cells are not known, and these may vary depending
on the gradient considered. Therefore we do not discern the molecular mechanisms of
diffusion, endocytosis and degradation of morphogens in this model but we introduce a
parameter p in our model to represent the effective ratio of concentration levels
between neighbouring cells and to determine the amount of tokens to be transported
between places during the simulation of gradient formation. In other words, p
represents the final ratio of morphogens between neighbouring cells and morphogen
degradation is implicit. In the next chapter we present a model in which production,
transport and degradation are modelled explicitly.

In the organism, gradient ratios arise passively as a consequence of physical
laws. However, to accurately reflect the biological process of gradient formation
underlying the spread of morphogens from cell to cell, our formal model has to compute
the number of tokens passed on based on the ratio p. Hence, the model includes an
explicit separate computational unit for each pair of neighbouring cells, to perform the
necessary calculations. In particular, these parts of the net control the transport of
tokens between places. In this way a close relation to the biological process can be
maintained in one part of the net, with the underlying computations being performed in
the background by another part of the net. At all times, the marking of the places
representing biological cells will be consistent with biological observations of (the effect
of) the gradient, i.e., the ratio is maintained and places corresponding to cells further
away from the source will never have more tokens than places (cells) closer to it.

Another important feature of the model is the use of concurrent steps rather
than individually occurring transitions. Morphogen transport between cells is not
directly influenced by events taking place in non-adjacent cells, which means these
processes should be able to take place concurrently and non-adjacent cells can be
simultaneously involved in the transport of morphogens. This leads to an execution
mode consisting of concurrent steps. Moreover, since in the biological situation
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morphogens move to the next cell as soon as this is possible, we have chosen to use a
maximally concurrent steps.

5.4 GRADIENTS AND PETRI NETS
5.4.1 Modelling solution

Following the ideas outlined in the previous section, we will propose a formal model for
the formation of a gradient. Our assumptions regarding the biological process of
gradient formation are as follows. Given is a segment of k adjacent cells with the i-th cell
immediate neighbour of the (i+1)-th cell. Morphogens can be transported only between
immediate neighbours. Morphogens move from cells with higher concentration to
neighbours with lower concentration, as long as the concentration ratio between these
cells does not exceed a given gradient ratio 0 < p < 1. We assume that p is a rational
number, i.e., p = N/M, where M > N > 1. Initially, the first cell x; (the source) contains a
quantity (i.e. has a concentration level of) K of a morphogen. These assumptions lead to
the following modelling problem.

Given are k > 1 places x, ..., X, representing a segment of k cells with place x;
corresponding to the i-th cell. In the initial marking m,, the first place x; contains K
tokens and there are no tokens in the other places. In the net modelling the mechanism
of gradient formation, we need to shift tokens from x; in the direction of the last place
X.. Places and/or transitions may be added, but in such a way that for any reachable
marking m the following hold.

1. The number of tokens in the x;'s remains constant, i.e.,

m(xy) + ...+ m(x) =K token preservation
2. The tokens are distributed monotonically along the sequence of k places, i.e.,
m(xy) 2 ... 2 m(x) monotonicity

3. The ratio of the numbers of tokens in two neighbouring places does not exceed p, i.e.,
for every 1 <i< k with m(x;) = 1:
(m(xi.1)/m(x)) < p ratio
4. Shifting continues until moving even one token would violate the above, i.e., if no
tokens are shifted after marking m was reached, then for every 1 <i < k with m(x;) > 1:
(m(x;1)+1)/(m(x;)-1) > p termination

Moreover, the relative position of a place within the sequence plays no role. In

particular, the mechanism should be easily scalable and insensitive to the specific values
of k and K.
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If we look at the above formulation of properties (2) and (3) — monotonicity
and preservation of the gradient ratio — and recall that p = N/M and M > N, it is easy to
observe that these two properties are together equivalent to stating that, for every 1 <i
< k, N-m(x;) -M-m(x;,1) 2 0. We will call a marking m satisfying this inequality consistent
and denote a; = N-m(x;)-M-m(x;,,), for every 1 < i < k. Note that the initial marking is
consistent.

Similarly, if we look at the above formulation of properties (2) and (4) —
monotonicity and termination — it is easy to observe that together they are equivalent
to the statement that, for every 1 <i < k, N-m(x;) -M-m(x;.1) < M + N. We will call a
consistent marking m satisfying this inequality stable. Note that for a given p, k and K,
there may be more than one stable marking. For example, if p =1/2, k=5 and K = 111,
then the following are two different stable markings:

X1 X5 X3 Xs X5 X, X5 X3 X4 X5
59 29 14 6 3 58 29 14 7 3

We are now ready to propose a generic solution for the above problem. For a
given consistent marking m and each 1 <i < k, move f; tokens from x; to x;.; where f; <

. . o.
——L |, and at least one f; must be non-zero if at least one of the values | ——
M+ N M+ N

is non-zero. We denote the resulting marking by m, 5 .

An intuitive reason for proposing such a mechanism for shifting tokens is that
the number of tokens in x; that are ‘balanced’ by tokens in x4 is (M/N)-m(x;,), because
each token in x;,4 is equivalent to M/N tokens in x;. Hence there are m(x;) — (M/N)-m(x;.1)
unbalanced tokens in x;. The ‘portion’ of each unbalanced token that could be safely
transferred to x,, is N/(M+N). Hence in total we may safely transfer

N M a.
—(m(x.)—— -m(x. tokens, which is precisel — 1 | tokens.
{va( (x)-% (,H))J precisely {MHVJ

Clearly, some of the numbers f,, ..., fr-1 can be zero, and by the condition above, all /s
are zeros if and only if the marking is stable:

Proposition 1. 1 =- - - = S, = 0 if and only if m is stable.

Crucially, by the mechanism proposed consistent markings are always transformed into
consistent markings.

Proposition 2. If m is a consistent marking then m BBy is also consistent.
. . o
According to the above, any number of tokens not exceeding | ——- | can
M+ N

be moved simultaneously from x; to x;, (for every i < k), and consistency will be
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preserved. Clearly, the new consistent marking is different from the previous one if and
only if, for at least one i, we have f; 2 1. The idea now is to keep changing the marking

. . a, .
on Xy, ..., X, until a marking m has been reached such that i‘—’J =0,foralll1<i<

M+ N

k, which is equivalent to a; < M + N, for all 1 < i < k. In other words, this m is a stable
marking. Since tokens cannot be shifted forever, this procedure will always terminate in
a stable marking (formally, we can show this by considering a weighted distance to the
end of the chain of the K tokens; it never increases and always decreases in a non-stable
state).

Looking now from the point of view of a Petri net implementation of the
proposed mechanism, what we are after is a net Ny, comprising the places xi, ... , X,
and such that if m is a marking of Ny, whose projection on these k places is consistent,
then a step U can occur at m if

. o, .
— it moves at most | ——— | tokens from x; to x;,1, forall 1 <i<k;
M+ N

— at least one token is moved from x; to x;,; for at least one 1 << k, unless the
projection of m onto xy, ..., x is stable.

In fact, in the proposed implementation, we will be preceding the ‘token-shifting’ with a
‘pre-processing’ stage which seems to be unavoidable unless one uses some kind of arcs
with complex weights depending on the current net marking.

5.4.2 Implementation

In the implementation of the proposed shifting mechanism, as many tokens as possible
should be shifted from one neighbour to the next. That means that, at each stage we

have :Bi = L
M

J for every 1 < i < k. Moreover, tokens are shifted from a place
+N

without any assumptions whether new tokens will come to that place from its other
neighbour. Thus we need to provide a Petri net structure capable of ‘calculating’ the

N-m(x»—M-m(me

value of expressions like L
M+ N

Our proposed gradient forming mechanism distinguishes three phases: |, Il and

IIl. An auxiliary net Njppese, shown in Figure 5.2B, is used to schedule the transitions

implementing the calculations. It controls these transitions via the places w' and w" and

activator arcs. For the full picture of the system one should combine the figures for all
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pairs (x;, xi1) with a single copy of the net in Figure 5.2B. Note that all places with
identical label (in particular w, w", and w") should be identified. That other parts of the
encompassing net model do not interfere with the calculations carried out during
phases | and Il can be ensured by connecting the relevant transitions with the place w"

using activator arcs.

For every 1 <j < k, transition t; is intended to shift tokens from x; to x;.; (phase
I1). To achieve this, we use two disjoint sets of new, auxiliary places, x", ..., xc and x"; ,
..., X"t. These places are initially empty. The idea is to fill x’; with N-m(x;) tokens and x";;
with M-m(x;.,) tokens (phase I). The latter are used for the removal of M-m(x;.,) tokens
from x’; (phase Il). After this, there are «; tokens remaining in x’. Finally, for each group
of N +M tokens in x’, one token is shifted from x; to x;,,. The construction (for x; and xj.4)
is shown in Figure 5.2A.

The overall mechanism operates in cycles of three consecutive, maximally
concurrent steps such that for every 1 <i<k:
(N Transition ¢; inserts (in m(x;) auto-concurrent occurrences) N-m(x;) tokens into
x. In the same step, transition c;4, inserts (in m(x;) auto-concurrent occurrences)
M-m(x;,1) tokens into x"},;. Simultaneously, transitions e’; and e",; empty x’ and x";;; of
any residual tokens left from the previous cycle.
1. Next, transition d; (in M-m(x;.1) auto-concurrent occurrences) empties x",; and
leaves in x'; the difference a; = N-m(x;) -M-m(x;.1).

wli

Figure 5.2. (A) The main part of the construction for the solution (note that e”, is introduced for later use
when one might want to remove or add tokens to the x/s from ‘outside’; in the standard (consistent)
situation it is never activated as after phase Il, place x”i,; is empty); and (B) the subnet N;,pase enforcing the
three phases.
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. - o,
1. In the third step, the occurrences of transition t; transfer j; = {—’J tokens
M+ N

from x; to X;,q.
Proposition 3. Each cycle results in transferring f; tokens from x; to x;,;.

Note that in this implementation with the control net Njyh.., neighbouring
pairs are either all involved in calculations (step | and Il of the cycle) or tokens are
transferred between neighbours (step Ill). During the whole operation of the
adjustment process (except for the transfer phase), the token numbers in the places x;,
representing the cells, are unchanged and they can be accessed for reading by other
transitions (and thus influence neighbouring cells). In other words, calculations are
orthogonal to the basic operation of the net (the gradient formation). As an example, let
us consider the case when p = 1/2 , k = 4 and K = 100. Then executing the constructed
net in a maximally concurrent manner leads to the following sequence of markings on
the x; after each cycle and eventually to a stable marking:

X1 100 67 67 60 60 57 57 56 56 55 55 54
Xz 0 33 22 29 25 28 26 27 26 27 26 27
X3 0 0 11 8 12 10 12 12 13 12 13 13
Xa 0 0 0 3 3 5 5 5 5 6 6 6

The next example shows what happens if we start from a (non-initial) consistent
marking (again p =1/2):

X1 200 167 156
Xz 50 67 67
X3 0 16 22
Xa 0 0 5

The construction works without any problems, if we start with a consistent
marking. In case 0 > a; for some i, then transition t; is not executed, but the transitions
ti.; and t;,; may still be executed and lead to an adjustment of the marking causing t; to
become active in the next cycle. A further observation is that adding (or removing)
tokens at some point, will trigger a re-adjustment process which tries to re-establish the
correct ratios between the markings of adjacent places x;. This process is unpredictable,
but to deal with that case we have included transition e",; which in the standard
(consistent) situation is never activated since then, after phase 2, place x";,1 is empty.

An important characteristics of the proposed solution is that it is purely local
and does not assume anything about the number of tokens which may appear in the x/'s
nor the length of the chain. In other words, it is truly generic. What’s more it also works
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if M and N are different for different pairs of neighbouring places, i.e., if rather than a
uniform gradient ratio p there is a ratio p; for each pair of neighbours x; and x;,;.

Another feature of our solution is the maximal concurrency semantics intended
to reflect the idea of morphogens (simultaneously) moving from cell to neighbouring
cell whenever that is possible. The preliminary sequential semantics model we
developed (but not reproduced here) is more complicated as it also needs inhibitor arcs
which test for absence of tokens (to decide whether or not tokens should still be
shifted). Moreover, one needs to decide that x; either receives or sends tokens at each
stage. In a step model it can both receive and send. Also, with the maximal concurrency
semantics, the number of states of the model is dramatically reduced. The auxiliary net
N3pnese is used to partly sequentialise the behaviour in order to separate the pre-
processing phases from the actual shifting phase. This net could also have been made
local to the main construction of the net in Figure 5.2A, with different copies of it
assigned to different localities. This would have given the additional possibility of
controlling the degree of synchronisation between different parts of the gradient model
by using a locally maximal step semantics.

Finally, we would like to point out that the activator arcs in our implementation
are used only to control the calculation and can actually be avoided in case there would
be a limit on the number of tokens in each place x; at any time. (Then the activator arcs
can be eliminated basically by having separate copies of N34 for each 1 <<k, transfer
around sufficiently many tokens in a bundle, and replace activator arcs by self-loops).
This assumption corresponds to having (or knowing) some capacity bound on the
concentration levels of morphogens in a cell and so may be biologically sound.

5.5 CONCLUSION

Starting from gradient formation in the AP axis development in the model organism
Xenopus laevis, we have presented a novel approach to using Petri nets in
developmental biology by focusing on the cellular rather than subcellular levels and
abstracting from concrete proteins and genes. This has led to a parameterised Petri net
model for the general process of gradient formation through diffusion and endocytosis.

Assumptions regarding gradient formation have been formulated based on
essential features of this process as reported in the literature. These assumptions
underlie the precise requirements given that should be satisfied by an abstract Petri net
model of gradient formation. A crucial point here is the consistency that is maintained
during the execution of the model. Hence the realization of the gradient is faithfully
reflected. Moreover the close relationship between biological process and evolution of
the formal model makes it possible to apply existing Petri net techniques to analyse
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what happens during gradient formation. In particular cause-effect relations should be
properly reflected in the process semantics of the modelling Petri net (Kleijn and
Koutny, 2007; Kleijn and Koutny, 2008).

Another main contribution of this approach is its generic nature, leading to a
model that is scalable and applicable to a plethora of specific gradients. Also scalability
is a consequence of the faithful reflection of the biological process. Since the final token
(morphogen) distribution is not directly computed from the initial amount of
morphogen and the length of the chain of cells, but rather simulates the communication
between neighbouring cells, the length plays no role in the occurrence of the steps. The
model as presented here represents a one-morphogen system without relying on
guantitative data, but exact values could be assigned to ratio and individual tokens.
Moreover, it provides a basis for simulation of simultaneous gradient formation
(different morphogens with different experimental initial markings) and for
inhibiting/activating interactions between them. Simulation with actual biological data
to validate the model should be a next step; the elaborated model presented in chapter
6 illustrates this. In addition, we will focus our attention on the extension of this still
rather basic model to more dimensions, e.g., rather than having just a single line of cells,
we consider the spread of morphogens from a source throughout a tissue plane or
volume.

In (Bonzanni et al., 2009; Krepska et al., 2008), Petri nets are used to model
developmental processes in a way similar to our approach when it comes to the semi-
qualitative use of tokens and the use of maximal concurrency. In these papers however,
the focus is on subcellular levels. Petri net places are used to represent genes and gene
products, where in our approach cells, as basic units in a tissue, are modelled by places.
Having cells as basic units should prove to be a useful intermediate position convenient
for ‘zooming in and out’ between subcellular and tissue level. It is our aim to model
more subprocesses of the AP axis formation. For instance the different molecular
processes underlying diffusion and endocytosis could be modelled in subnets, allowing
the user to compare the different effects of these mechanisms. Also the degradation of
morphogens could be modelled by a subnet, making the entire process more explicit. In
the next chapter a step in that direction is taken, by modelling production, transport
and degradation explicitly in the net, by means of parameters derived from an equation
based model; a further future development would be to faithfully model the events
underlying these subprocesses and thereby have the parameter values arise out of the
workings of the subnets, as opposed to providing them to the main as as external
information.
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