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Plant defense gene regulation 

 

Plants possess elaborate mechanisms to defend themselves against attack by 

pathogens and pests. During evolution different defense strategies have 

evolved against biotrophic and necrotrophic pathogens and insect attack. While 

defense against necrotrophic pathogens and insect attack involves a signaling 

pathway characterized by the plant hormone jasmonic acid (Howe, 2004), 

defense against biotrophic pathogens commonly involves a signal transduction 

pathway mediated by the plant compound salicylic acid (SA) (Dong, 1998). 

Both signaling pathways affect each other through extensive cross-talk 

occurring at different levels, while additional modulation of the defense 

response is brought about by the effects of a third signal transduction cascade 

triggered by ethylene (ET) (Koornneef and Pieterse, 2008; Leon-Reyes et al., 

2009; Reymond and Farmer, 1998; Spoel and Dong, 2008). 

For the defense response launched after attack by biotrophic pathogens 

genetic data from Arabidopsis have led to a signal-transduction model in which 

SA plays a central role. Tissue colonization and pathogen proliferation are 

caused by pathogen effectors, also known as avirulence (Avr) proteins, which 

are targeted to the host tissues to promote pathogen virulence (Jones and 

Dangl, 2006). In incompatible plant–pathogen interactions these effectors are 

recognized by specific R gene-encoded receptors. Basal defense or innate 

immunity has significant overlap with R gene-mediated resistance responses, 

including production of SA and expression of SA-regulated defense genes 

(Tsuda et al., 2008). In this case, pathogen-associated molecular patterns 

(PAMPs), such as conserved fragments of bacterial flagellin or elongation factor 

Tu, function as elicitors that are recognized by specific LRR receptor kinases 

(Kunze et al., 2004; Mackey and Mcfall, 2006; Turner et al., 2002; Zhao et al., 

2005), which subsequently transduce the signal through MAPK cascades, 
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ultimately leading to the establishment of immunity (Asai et al., 2002; Chinchilla 

et al., 2007). 

In Arabidopsis, the biosynthesis of pathogen-induced SA depends on 

isochorismate synthase (ICS), the product of the ICS1 gene that converts part of 

the ubiquitous chorismate into isochorismate. Isochorismate is an intermediate 

in the synthesis of phylloquinone (vitamin K1), which is an essential component 

of the plant’s photosynthetic machinery (Verberne et al., 2007; Wildermuth et al., 

2001). In non-infected cells SA is present only at very low concentrations, but 

upon pathogen attack its level increases rapidly. Apparently, after attack 

isochorismate is channeled away from phylloquinone synthesis toward 

synthesis of SA. Also bacteria synthesize SA from isochorismate in a single-step 

reaction involving the enzyme isochorismate pyruvate-lyase (IPL) (Gaille et al., 

2002). However, no such activity has yet been found in plants. 

Genetic evidence has indicated that upstream of ICS1, several more 

genes are necessary to mount the defense response. Genes involved in the 

earliest steps of the signal-transduction pathway upstream of SA, that is, 

PHYTOALEXIN DEFICIENT4 (PAD4) and ENHANCED DISEASE 

SUSCEPTIBILITY1 (EDS1) encode proteins with similarity to lipases. EDS1 is 

probably activated upon elicitor recognition by R gene-encoded cytoplasmic 

LRR receptors (Wirthmueller et al., 2007). How exactly this activation is linked 

to induction of SA biosynthesis is not known. Possibly, hetero-dimerization of 

EDS1 and PAD4 and their nuclear localization may be important for subsequent 

steps in the signaling pathway (Feys et al., 2001). Situated downstream of EDS1 

is EDS5 (Rogers and Ausubel, 1997). Pathogen infection strongly induces the 

accumulation of the EDS5 transcript in an EDS1- and PAD4-dependent manner. 

The increase in EDS5 mRNA precedes SA accumulation, supporting a role for 

EDS5 in this process. eds5 mutant plants are unable to accumulate high levels of 

SA (Nawrath and Métraux, 1999). Furthermore, EDS5 gene expression is also 
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induced by treatment with exogenous SA, indicating a positive feedback loop 

for enhanced SA production during the defense response (Nawrath et al., 2002).  

The increase in SA induces a state of enhanced defensive capacity, both locally, 

in the infected tissues as well as systemically in distal non-infected tissues. This 

last type of defense is known as systemic acquired resistance (SAR). SAR 

primes distal tissues for defense against secondary infections conferring broad-

spectrum resistance to subsequent pathogen infection (Ross, 1961; Conrath et al., 

2006). Methyl SA (MeSA) was identified as a mobile signal that is critical for the 

development of SAR in tobacco. SA produced at the primary infection site is 

converted by a SA methyltransferase (SAMT) to MeSA and loaded into the 

vascular system for transport to distant plant tissues. Upon arrival in these 

systemic tissues, MeSA is converted back to active SA by the esterase SA-

binding protein 2 (SABP2), which triggers defense gene expression in these 

tissues (Park et al., 2007). However, a number of other compounds and proteins 

that may function as systemic signals for SAR have recently been put forward 

and as of yet, there is still no definite answer as to which (combination) of these 

molecules is the systemic signal. (Dempsey and Klessig, 2012).  

One of the effects triggered by SA is the elicitation of an imbalance in 

the redox state of the cell, which results in reduction of specific disulfide 

bridges in the ankyrin-repeat protein NONEXPRESSOR OF PR GENES1 

(NPR1). NPR1 plays a central role in defense responses and is required for the 

establishment of SAR and the expression of SA-dependent defense genes. NPR1 

exists in the cytoplasm as a multimeric complex. Reduction results in release of 

NPR1 monomers and their subsequent translocation into the nucleus, where 

they interact with TGA transcription factors and activate defense gene 

expression (Kinkema et al., 2000; Mou et al., 2003). NPR1 contains an ankyrin-

repeat domain, which facilitates protein–protein interactions (Cao et al., 1997). 

Moreover, it harbors a BTB domain, which might be ubiquitinylated by an E3 
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ubiquitin ligase complex and targeted for degradation by the proteasome. Upon 

initiation of PR gene transcription by the TGA–NPR1 complex NPR1 is 

phosphorylated, possibly by a factor of the basal transcription machinery, and 

becomes inactive. Phosphorylation results in enhanced affinity for CUL3 to 

which it is bound via interaction with the SA-receptors NPR3 or NPR4 and 

consequently rapid degradation by the proteasome. This clears the promoter to 

reinitiate transcription, resulting in a pulse-wise activation of gene expression 

as long as nuclear NPR1 is available (Spoel et al., 2009; Fu et al., 2012). An 

alternative mechanism for NPR1’s mode of action has been put forward by Wu 

et al. (2012), who found that NPR1 itself is the SA receptor. Binding of SA would 

result in a conformational change resulting in exposure of the activation 

domain and subsequent activation of gene expression. These results indicate 

that NPR1 acts as a co-activator that is recruited to the promoter by interaction 

with TGA transcription factors (Rochon et al., 2006). However, it is possible that 

NPR1 is only necessary if a functional SUPPRESSOR OF NPR1 (SNI1; Li et al., 

1999) allele is present. SNI1 is an armadillo repeat protein that may form a 

scaffold for interaction with proteins that modulate transcription (Mosher et al., 

2006), leading to transcriptional repression.  

The defense response brought about by biotrophic pathogen attack 

ultimately leads to the local and systemic expression of genes encoding, 

amongst others, specific defense proteins with anti-microbial activities, 

collectively named pathogenesis-related, or PR proteins. PR proteins are 

conserved throughout the plant kingdom. The antimicrobial function of several 

classes of PR-proteins derives from their enzymatic activity as e.g. beta-1,3-

glucanases (PR-2) or chitinases (PR-3), able to degrade fungal and oomycete 

cell-walls and thus preventing fungal growth. Although for the PR-1 proteins 

no specific anti-pathogen activity is known, the proteins and the induced 

expression of their genes are generally used as markers for SAR (Glazebrook, 
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2005; Grant and Lamb, 2006). As a model gene for SA-induced defense gene 

expression, the regulation of PR-1 gene expression has been studied since more 

than two decades. These studies have indicated two types of DNA-binding 

proteins as important transcription factors involved in PR-1 gene expression: 

TGA proteins and WRKY proteins.  

TGA transcription factors 

TGA proteins are members of the bZIP transcription factors, which are 

characterized by their basic leucine zipper (bZIP) domain (Jakoby et al., 2002). 

This is a bipartite region enriched in basic amino acid residues that are in direct 

contact with the DNA and involved in DNA binding. In close proximity of this 

region is a leucine zipper region consisting of regularly spaced leucine residues. 

This region is important for the homo- and heterodimerization of the bZIP 

proteins (Schindler et al., 1992). 

The first TGA factor to be identified was the tobacco protein TGA1a, 

which binds to activation sequence-1 (as-1). This element, which is 

characterized by two TGACG motifs in a tandem arrangement, was first 

identified in the 35S promoter of cauliflower mosaic virus (CaMV) (Katagiri et 

al., 1989). When acting independently of other enhancers, this element confers 

SA- and auxin-dependent expression in leaves (Qin et al., 1994; Xiang et al., 

1996) and constitutive expression in roots (Benfey et al., 1990). With the 

discovery of TGA factors interacting with NPR1, which has a central role in SA-

regulated gene expression (see above), the importance of TGA factors in SA-

regulated gene expression and their role in development of SAR were 

established (Després et al., 2003; Zhang et al., 1999). The Arabidopsis TGA 

family of transcription factors harbors 10 members of which six (TGAs 1 to 6), 

have been shown to be involved in defense responses against pathogen attack 

(Kesarwani et al., 2007; Zhang et al., 2003).  
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The Arabidopsis PR-1 and the tobacco PR-1a promoters, which are studied as 

model systems to understand SA-induced transcriptional regulation, each 

contain an as-1-like element in a region of the promoter that is important for 

SA-inducible gene expression (Lebel et al., 1998; Strompen et al., 1998). In 

Arabidopsis, linker-scanning analysis revealed that one of the TGACG motifs is 

a positive regulatory element (LS7), whereas the other functions as a 

constitutive negative element (LS5) for induced expression (Lebel et al., 1998). 

TGA2 and TGA3 were found to bind to the PR-1 promoter in vivo (Johnson et 

al., 2003; Rochon et al., 2006), with TGA3 acting as a transcriptional activator of 

PR-1 expression, whereas TGA2 represses expression in the non-induced state. 

Conflicting data concerning the mechanism of action of the TGA/NPR1 

complex have been reported. Based on studies involving chromatin 

immunoprecipitation analysis (Johnson et al., 2003), electrophoretic mobility 

shift assays (Després et al., 2000) and transgenic plants expressing the C-

terminal domain of TGA2 as a fusion with the DNA-binding domain of the 

yeast transcriptional activator protein Gal4 (Fan and Dong, 2002), it was first 

hypothesized that NPR1 serves to facilitate binding of TGA factors at the 

promoter. Later, it was found that at least TGA2 binds constitutively to the PR-1 

promoter and that yet unknown factors already recruit NPR1 to the promoter in 

the non-induced state. NPR1 interacts with TGA factors only under inducing 

conditions to form an enhanceosome, a protein complex that binds DNA in the 

enhancer region of the gene (Rochon et al., 2006). 

Although it is generally accepted that TGA factors are crucial for the 

regulation of many SA-dependent processes, the importance of the different 

members of the TGA family is controversial. First, it was reported that TGA2, 

TGA5, and TGA6 are redundant and essential activators of PR-1 expression 

(Zhang et al., 2003). Later, other studies documented that PR-1 expression is 

only delayed in the tga2 tga5 tga6 triple mutant (Blanco et al., 2009), and that 
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additional mutation of TGA3 is necessary to get a more stringent knockout 

phenotype (Kesarwani et al., 2007). TGA1 and TGA4 are essential for SA-

dependent basal resistance (Kesarwani et al., 2007). Disulfide bridges of 

Arabidopsis TGA1 are reduced after a SA-mediated redox change, which 

allows interaction with NPR1, while also S-nitrosylation of specific Cys-

residues of TGA1 and NPR1 has been demonstrated to be important for TGA1-

NPR1 interaction DNA-binding (Després et al., 2003; Lindermayr et al., 2010). 

However, more information is needed to unravel the in vivo function of TGA1 

and TGA4 with respect to the regulation of SA-inducible genes (Pape et al., 

2010; Shearer et al., 2012). Recently, it was found that tobacco NtWRKY12, a 

WRKY transcription factor required for high-level expression of PR-1a, 

specifically interacts in vitro and in vivo with tobacco TGA2.2 (Van Verk et al., 

2011a). 

  

WRKY transcription factors 

WRKY proteins are characterized by a stretch of the amino acids tryptophan 

(W), arginine (R), lysine (K), and tyrosine (Y), followed by a typical zinc-finger 

domain. They constitute a large class of DNA-binding proteins in plants (Zhang 

and Wang, 2005). In Arabidopsis, more than 70 WRKY genes have been 

identified. The first WRKY-cDNA clone was characterized from sweet potato 

(Ishiguro and Nakamura, 1994), and their description as a class of transcription 

factors followed soon afterwards (Eulgem et al., 2000). Many WRKY proteins 

have specific binding affinity for the consensus W-box motif TTGAC (T/C). In 

parsley it was shown that clustering of W-boxes is important for a strong 

transcriptional response (Eulgem et al., 1999; Rushton et al., 1996). Based on 

their domain structure, WRKY proteins can be divided into three major groups. 

Proteins with two WRKY domains belong to group I. WRKY proteins 

containing one WRKY domain belongs to groups II or III, depending on the 
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type of zinc-finger motif (Eulgem et al., 2000). The importance of WRKY factors 

for SA-mediated gene expression was first shown for the Arabidopsis SAR 

marker gene PR-1, in which a W-box motif conferred a strong negative effect on 

gene expression (Lebel et al., 1998). W-box motifs are overrepresented in the 

promoters of Arabidopsis genes that are co-regulated with PR-1. Yet, TGA 

transcription factor-binding as-1 elements occur at statistically expected 

frequencies in these promoters (Rowland and Jones, 2001). 

Besides the consensus W-box, WRKY factors have been identified to 

bind to other motifs. Recently, tobacco NtWRKY12 was identified as a WRKY 

protein with a variant WRKYGKK amino acid sequence in the WRKY domain 

instead of the WRKYGQK sequence of the majority of WRKY proteins (Van 

Verk et al., 2008). NtWRKY12 is involved in transcriptional activation of the PR-

1a promoter and binds to WK-boxes, TTTTCCAC, in this promoter, while it is 

unable to bind to the consensus W-box (Van Verk et al., 2008). A WRKY protein 

from barley (SUSIBA) was found to bind to SURE, a sugar-responsive cis 

element in the promoter of the ISOAMYLASE1 (ISO1) gene (Sun et al., 2003). 

The authors did not further delineate the binding site of SUSIBA in SURE, 

although the presence of the sequence TTTTCCA in this element suggests that it 

could be a WK-like sequence. 

WRKY proteins have been found as transcriptional activators at the end 

of the PAMP signaling cascade involved in the response of Arabidopsis to the 

flagellin fragment flg22. In this case, signal transduction via the MAPK cascade 

MEKK1–MKK4/MKK5 –MPK3/MPK6 leads to the activation of downstream 

WRKY22 and WRKY29. These WRKY factors are suggested to amplify their 

expression levels via multiple WRKY binding sites in their own promoters, 

thereby creating a positive feedback loop. The induced expression of these 

WRKY factors would then allow induction of resistance to both bacterial and 

fungal pathogens (Asai et al., 2002). Activation of the WRKY factors could 
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possibly occur via targeted degradation of bound suppressors, as has been 

found for the activation of WRKY33. Another Arabidopsis MAPK cascade 

(MEKK1–MEK1/MKK2–MAPK4), induced by challenge inoculation with 

Pseudomonas syringae or treatment with flg22 leads to phosphorylation of MAP 

kinase substrate 1 (MKS1), through which WRKY33 and possibly WRKY25 are 

bound to MAPK4. Upon phosphory- lation of MKS1, WRKY33 is released in the 

nucleus to initiate positive regulation of JA-induced defense genes and negative 

regulation of SA-related defense genes. Also other WRKYs, like WRKY11 and 

WRKY17, act as negative regulators of basal resistance responses. Moreover, 

overexpression of the flagellin-inducible WRKY41 abolishes the inducibility of 

PDF1.2 by MeJA. In all these cases the mechanisms underlying these 

antagonistic effects are as yet unknown (Andreasson et al., 2005; Brodersen et 

al., 2006; Higashi et al., 2008; Journot-Catalino et al., 2006; Qiu et al., 2008). 

Activation of the MAPK pathway by flagellin leads to increased levels 

of SA, which is strongly dependent on the pathogen-inducible ICS1. Activation 

of ICS1 gene expression is likely to occur via WRKY transcription factors. 

WRKY28 is rapidly induced to very high levels upon flg22 treatment (Navarro 

et al., 2004). Van Verk et al. (2011b) have found that transient overexpression of 

WRKY28 in Arabidopsis protoplasts leads to induction of a GLUCURONIDASE 

(GUS) reporter gene under control of the 1 kb ICS1 upstream promoter region, 

as well as elevated levels of endogenous ICS1 mRNA. This points at a link 

between PAMP signaling and SA biosynthesis. From evaluation of microarray 

data it appears that WRKY28 is the only WRKY protein of which the expression 

is suppressed by both JA and ET. The 1 kb ICS1 promoter lacks a consensus W-

box, but WRKY28 was found to bind to two W-box-like sequences in the ICS1 

promoter (Van Verk et al., 2011b). AVRPPHB SUSCEPTIBLE 3 (PBS3), of which 

the pathogen-induced expression is highly correlated with ICS1, is acting 

downstream of SA. Accumulation of SA-glucoside and expression of PR-1 are 
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drastically reduced in the pbs3 mutant (Nobuta et al., 2007). By a similar 

approach as described above, it was found that the 1 kb PBS3 promoter directs 

reporter gene expression in Arabidopsis protoplasts upon transient expression 

of WRKY46 (Van Verk et al., 2011b). WRKY46 is a transcription factor that is 

rapidly induced downstream of avirulence effectors. These results suggest an 

involvement of WKRY46 in the signaling cascade of avirulence effector 

recognition and the subsequent accumulation of SA (He et al., 2006; Van Verk et 

al., 2011b). 

The important function of NPR1 in defense pathways is evident by the 

requirement of this cofactor for the development of SAR and PR gene 

expression. Eight WRKY genes (AtWRKY18, -38, -53, -54, -58, -59, -66, and -70) 

have been identified as direct targets of NPR1 (Spoel et al., 2009; Wang et al., 

2006). Most of the encoded WRKYs play a role in the expression of PR genes 

and in SAR. Negative regulators are WRKY58, having a direct negative effect 

on SAR, and WRKYs 38 and 62, which through protein-protein interaction 

interfere with the function of histone deacetylase 19, which is required for PR 

gene expression (Kim et al., 2008). WRKY62 also acts in the cross-talk between 

SA and JA signaling by repressing downstream JA targets such as LOX2 and 

VSP2 (Mao et al., 2007). Both WRKY18 and WRKY53 are positive regulators of 

PR-gene expression and SAR. Functional WRKY18 is required for full induction 

of SAR and is linked to the activation of PR-1 (Wang et al., 2006). WRKY18, 

WRKY40 and WRKY60 play partly redundant roles in regulating disease 

resistance. These three WRKY proteins can interact physically and functionally 

in their responses to different microbial pathogens. While WRKY18 enhances 

resistance against P. syringae, co-expression of WRKY40 or WRKY60 renders 

plants more susceptible to this pathogen (Xu et al., 2006). WRKY70 and its 

functional homolog WRKY54 have dual roles in SA-mediated gene expression 

and resistance. Upon high accumulation of SA, WRKY54/70 act as negative 
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regulators of SA biosynthesis, possibly by direct negative regulation of ICS1. 

Besides this negative role, they activate other SA-regulated genes (Kalde et al., 

2003; Wang et al., 2006). WRKY70 also acts as a key regulator between the SA 

and JA defense pathways by inducing SA-dependent responses and repressing 

JA-dependent responses, such as expression of VSP, LOX, and PDF1.2. WRKY70 

expression is repressed by the JA-signaling regulator COI1 to overcome the 

negative effect of SA on JA signaling (Li et al., 2004, 2006). 

Tobacco NtWRKY12 activates PR-1a gene expression via the WK-box in 

its promoter. Mutation of this box has a far more severe effect on PR-1a gene 

expression than mutation of the nearby as-1 element, implying that TGAs are 

not the predominant activators of PR-1a expression (Van Verk et al., 2008). This 

is supported by the finding that in npr1-1 mutant protoplasts NtWRKY12-

induced PR-1a expression is still fully operative (Van Verk et al., 2011a). 

NtWRKY12 gene expression is induced upon PAMP elicitation and tobacco 

mosaic virus infection. It is arguable that NtWRKY12 expression requires 

NPR1-dependent activation via TGAs, which would lend support for an 

indirect rather than a direct role of NPR1 in PR-1a expression. 

As many WRKY transcription factors can bind similar cis elements, the 

question arises how the different WRKYs can specifically activate or suppress 

their respective target genes. Possibly, fine-tuning of specific gene regulation 

involves interactions between different transcription factors binding to 

proximal binding sites at the promoter. In previous studies of our group it was 

found that NtWRKY12 can specifically interact with tobacco TGA2.2 both in 

vitro and in vivo (Van Verk et al., 2011a), suggesting a role of TGA2.2 in PR-1a 

expression as a recruiter of NtWRKY12 to the promoter or to stabilize its 

binding. Studies on the mechanisms underlying Arabidopsis PR-1 gene 

expression have identified a number of elements in the promoter that are 

involved in the induction of gene expression. Several of these sequence 
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elements are similar to binding sites for WRKY transcription factors, but 

knowledge of which of Arabidopsis’ 74 WRKYs bind to these putative binding 

sites is still lacking. This thesis deals with the identification of possible WRKY 

candidates. 

Thesis Outline 

Chapter 2 describes the results of a transactivation screening in Arabidopsis 

protoplasts of a large number of WRKYs, which resulted in the identification of 

AtWRKY50 as a potent activator of the PR-1 promoter. The C-terminal half of 

AtWRKY50, containing the conserved DNA-binding domain appeared to bind 

at two positions in the promoter that were situated in close proximity to the 

binding sites of TGA transcription factors. The sequences of these binding sites 

differed considerably from the sequence of the W-box, the consensus-binding 

site of WRKY proteins.  

In Chapter 3, AtWRKY50 was found to interact with TGA proteins 2 and 5 in 

yeast cells and also in Arabidopsis protoplasts where the interaction was found 

to occur in the nuclei. Furthermore, using electrophoretic mobility shift assays it 

was established that the two transcription factors were able to bind 

simultaneously to the promoter and that TGA2 and TGA5 predominantly 

bound to one of the two binding sites in the promoter that were previously 

proposed. Although transactivation experiments in Arabidopsis protoplasts 

derived from wild type, npr1-1 and tga256 mutant plants indicated that 

AtWRKY50 alone was able to induce expression of a PR-1::β-glucuronidase 

(GUS) reporter gene independent of TGAs or NPR1, co-expression of 

AtWRKY50 and TGA2 or TGA5 synergistically enhanced PR-1 expression to 

high levels. 

Chapter 4 describes results on AtWRKY28, which show that this WRKY factor 

also binds to the PR-1 promoter. One of its binding sites was found to be the W-
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box overlapping with the binding site of AtWRKY50, while the other binding 

site was a W-box previously identified to be important for SA-induced PR-1 

expression. Transactivation assays in protoplasts proved that both W-boxes 

were important for full AtWRKY28-mediated expression of the PR-1::GUS 

reporter gene. 

Chapter 5 deals with a study of transgenic plants that overexpressed 

AtWRKY50 and AtWRKY28 or in which the AtWRKY50 and AtWRKY51 genes 

were knocked out. The plants did not have constitutive enhanced levels of PR-1 

mRNA, although PR-1 mRNA accumulated to higher and lower levels, 

respectively, after treatment of the plants with SA. However, there was no 

clear-cut effect on resistance against infection with the biotrophic bacterial 

pathogen Pseudomonas syringae or with the necrotrophic fungal pathogen 

Botrytis cinerea.  

Chapter 6 describes the effect of overexpression of several WRKY genes on the 

Arabidopsis metabolome. Transgenic plants were generated in which the 

coding sequence of the respective WRKY genes was fused to the Cauliflower 

mosaic virus 35S promoter. Constitutive expression of several WRKYs had 

effects on the accumulation of metabolites as determined from multivariate 

analyses of 1H NMR spectroscopy data. Especially AtWRKY50 overexpressing 

plants accumulated higher levels of sinapic acid derivatives, suggesting that 

this transcription factor could be involved in stress-induced modifications of 

lignin.  
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