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Cha p t e r 7

Counting autofluorescent
proteins in vivo

The formation of protein complexes or clusters in the plasma membrane
is crucial for cell signaling and other biological processes. Therefore, it
is valuable to follow complex formation in vivo. Typically, autofluores-
cent proteins are genetically fused to the proteins of interest to make their
interaction visible. With highly sensitive single-molecule microscopy it is
possible to detect single proteins and protein clusters despite autofluores-
cent cellular background. By measuring the fluorescence intensity of a
diffraction limited spot, the number of proteins in that spot can be deter-
mined. However, the poor photophysical stability of fluorescent proteins
hampers this straightforward approach. Also the presence of noise and
autofluorescent background – unavoidable in live cell recordings – influence
the measurement. Here we present solutions to these problems and show
that the number of proteins in a diffraction limited spot can be determined
in vivo in an accurate and robust way. By quantification of the number of
YFP molecules in diffraction limited spots we confirm that the membrane
anchor of human H-ras heterogeneously distributes in the plasma mem-
brane. Our description of the single YFP intensity distribution therefore
provides an accurate approach for quantitative in vivo investigations of
protein cluster formations.
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7.1 Introduction

A prominent example for the importance of protein complex formation
is found in plasma membrane located signaling cascades. Here receptor
molecules such as the Toll-like-receptor 3 (212) or the epidermal growth
factor receptor (213) form dimers upon binding to their respective ligands.
In addition to the formation of true dimers or oligomers, also protein clus-
ters and lipid domains lead to heterogeneities in the spatial distribution of
specific proteins in the plasma membrane and are known to have an effect
on the dynamics of the reactions they are involved in. The small GTPase
H-ras has been shown to confine to such small membrane domains upon its
activation (131). Clearly, the demand for the determination of cluster for-
mations with sufficient temporal resolution in the context of living cells is
high. Quite a number of techniques have been addressed to this problem,
namely bioluminescence resonance energy transfer (214), bimolecular flu-
orescence complementation (215), number and brightness mapping (216),
image correlation spectroscopy (217), confocal laser scanning microscopy
with fast scanning (218) and photon counting histograms (219). These
techniques all measure ensembles of molecules, making assumptions about
their collective behavior including thermal equilibrium and spatial homo-
geneity. The validity of such assumptions, which are potentially violated
in the context of a living cell, is difficult to prove. Furthermore, many of
these techniques require exact knowledge about experimental parameters,
like e.g. the point spread function of the microscope, which the results
might sensitively depend on.

Single-molecule experiments, on the other hand, mostly depend on
universal properties of fluorescent tags and inherently possess the aspired
sensitivity. It was shown in vitro that the number of molecules can be de-
termined from the intensity of attached fluorophores (121). Both, the use
of fluorescent proteins, which exhibit complex photophysics (109), and the
presence of high noise make this type of analysis more challenging in the in
vivo context. In a recent study Ulbrich et al. demonstrated that molecule
numbers can be assessed in vivo from the bleaching steps of autofluores-
cent proteins (106). This method requires the selection of intensity trajec-
tories that show the expected step-wise decrease of fluorescence. Another
approach, introduced by Cognet et al. (107), is to collect all emitted pho-
tons until photobleaching, such that fluorescence intermittency is averaged
out. This method essentially uses photon counting histograms (141) to de-
termine the underlying distribution of molecule numbers. Here we report
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on the adaptation of this single-molecule method, which was demonstrated
in vitro (107, 121), to autofluorescent proteins in living cells. We put the
approach taken intuitively by Cognet et al. on firm theoretical grounds
using semi-classical Mandel theory (220). Our theoretical result allows us
to choose experimental parameters for a faithful measurement of single-
molecule intensity distributions. Furthermore, we address the problems
arising from an autofluorescent background, which are especially severe
in living cells. In particular, the probability to detect a fluorophore in a
noisy background depends on the intensity of the fluorophore and there-
fore modulates measured intensity distributions. We quantify this detec-
tion probability and its influence on intensity measurements. We verified
our theoretical predictions by measuring the integrated intensities of sin-
gle YFP molecules in living cells under experimental conditions where the
molecules bleach within the illumination time. We show that the resulting
distributions can be described by a simple one-parameter model, which
allows for the quantification of molecule numbers by established methods
(121).

Finally, we apply our method to the membrane distribution of the
H-Ras membrane anchor. While measurements at low spatial densities of
the protein yield a strictly monomeric distribution, only slight increases in
H-Ras density cause evident increases of the dimeric fraction. Assuming
a random spatial distribution of H-Ras, such a density dependent effect
would be expected only at much higher concentrations. We therefore
have to assume a non-random distribution of H-ras. Hence, we are able to
confirm the results of an earlier study (150) that this membrane anchor
clusters on length scales below the width of the point spread function
(≈ 200nm), exclusively by using information from measurements of single
molecule intensities.

Taken together, our method to accurately and quantitatively describe
the intensity distribution of YFP-fusion proteins in vivo is suited, to char-
acterize the spatial distribution of membrane proteins based on membrane
heterogeneities or domain formations on the length scale of or below the
diffraction limit. While inherently the method is not able to report the
exact size of such domains, it makes up for this lack of spatial resolu-
tion by providing temporal resolution. With our method, the status of
domain presence can in principle be monitored many times in the course
of a biological reaction, such as a signaling event. In the same way, the
presence or formation of true protein complexes (i.e. dimers, trimers or
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higher multimers) would lead to intensity distributions, from which our
method could extract the stoichiometry and its changes. However, as our
results show, membrane heterogeneity has to be taken into account when
true complex formation is to be measured.

7.2 Materials and Methods

7.2.1 DNA constructs

The protocol for the preparation of the DNA constructs was previously
described in detail in (150). The DNA sequence encoding the 10 C-
terminal amino acids of human H-Ras (GCMSCKCVLS), which includes
the CAAX motif, was inserted in frame at the C-terminus of the enhanced
yellow-fluorescent protein (EYFP, S65G/S72A/T203Y) coding sequence
using two complementary synthetic oligonucleotides (Isogen Bioscience,
Maarssen, The Netherlands). The integrity of the reading frame of the re-
sulting EYFP-C10HRas construct was verified by sequence analysis. For
expression in mammalian cells, the complete coding sequence of EYFP-
C10HRas was cloned into the pcDNA3.1 vector (Invitrogen, Groningen,
The Netherlands).

7.2.2 Cell culture

For all experiments a Chinese Hamster Ovary (CHO) cell line (clone D3)
was used. Cells were cultured in DMEM:F12 1:1 medium supplemented
with streptomycin (100μg/ml), penicillin (100U/ml) and 10% new born
calf serum in a 7% CO2 humidified atmosphere at 37◦C. Cells were used
for 25−30 passages and were transferred every 4 days. For microscopy cells
were cultured on cover glass slides (Assistent, Karl Hecht KG, Sondheim
Germany) and transfected with 250ng DNA and 3μl FUGENE HD (Roche
Molecular Biochemicals, Indianapolis, USA) per glass slide (1h incubation
time). For a convenient expression level cells were used 3 − 4 days after
transfection.

7.2.3 Single-molecule microscopy

The experimental setup for single-molecule imaging has been described
in detail previously (150). Briefly, the microscope (Axiovert 100; Zeiss,
Oberkochen Germany) was equipped with a 100x oil-immersion objective
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(NA=1.4,Zeiss, Oberkochen, Germany). The samples were illuminated
for T = 50ms by an Ar+ laser (Spectra Physics, Mountain View, CA,
USA) at a wavelength of 514nm. The illumination intensity was set to
3 ± 0.3 kW/cm2. A circular diaphragm was introduced in the back focal
plane of the tube lens to confine the illumination area. This results in a flat
laser illumination profile. An appropriate filter combination (DCLP530,
ET550/50m, Chroma Technology, Brattleboro,USA) permitted the detec-
tion of individual fluorophores by a liquid nitrogen cooled slow-scan CCD
camera system (Princeton Instruments, Trenton, NY, USA). The total
detection efficiency of the imaging optics was ηo = 0.12. The time be-
tween consecutive images (time lag, Δt) was set to 254ms. Typically,
4000-8000 images were obtained per cell. For the observation of the in-
tensity of individual EYFP-CAAX molecules, CHO cells adhered to glass
slides were mounted onto the microscope and kept in phosphate buffered
saline (PBS: 150mM NaCl, 10mM Na2HPO4/NaH2PO4, pH 7.4) at 37◦C.
The focus of the microscope was set to the ventral surface membrane
of individual cells (depth of focus ≈ 1μm). The density of fluorescent
proteins on the plasma membrane of selected transfected cells was less
than 1μm−2 to permit imaging of individual fluorophores. According to
(110) the bleaching time τbl for the used laser intensity Iill = 3kW/cm2

is 10.4ms. The probability that a single EYFP bleaches within the illu-
mination/integration time T = 50ms is therefore pbl > 99% (110). In
other words, a single EYFP is bleached within the illumination time. The
bleaching rate kbl = 1/τbl is well separated from 1/T (kbl ≈ 0.2T−1) and
therefore the simplified model described below (see Eq. 7.1) is applica-
ble. The expected photon emission rate expected from results in (110) is
F = 775 photons/ms. Therefore, N = ηoτblF = 967 photons are expected
to be detected during the average lifetime τbl of the fluorophore, where
the detection efficiency is ηo = 0.12.

7.2.4 Image analysis

At first, the autofluorescent background is subtracted from the raw im-
ages. The background subtracted images are subsequently filtered with
a Gaussian whose width corresponds to the width of the point spread
function (PSF) of the microscope. This procedure optimizes the signal to
noise ratio. The positions of the pixels whose value after filtering exceeds
a certain multiple of the noise are used as initial values for the fitting of
a 2D Gaussian in the unfiltered image. From this fit, position, width and
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integrated intensity of the single molecule signal are determined. More
details can be found in the supplements (Sec. 7.B).

7.3 Results and Discussion

If several fluorescent molecules are colocalized on a length scale of �

200nm, their fluorescence signal will be a single diffraction limited spot in
a widefield microscope. In the following we will refer to a certain number
of molecules in a diffraction limited spot as monomer, dimer, trimer, ...
irrespective of the origin of colocalization: the molecules might e.g. be
part of a stable complex or transiently reside in the same nanoscopic do-
main. Although the molecules cannot be resolved, it is possible to infer
their number from the integrated fluorescence signal. Since the number
of molecules cannot be calculated from a single signal (due to noise), it
is is necessary to analyze distributions of fluorescence intensities of many
diffraction limited spots. To first approximation, the total fluorescence
signal integrated over the diffraction limited spot should be linearly pro-
portional to the number of molecules. In experiments this simple relation-
ship does not hold due to the complex photophysics of fluorescent tags and
the data analysis process, as detailed in the subsequent sections.

7.3.1 Blinking and bleaching of fluorescent proteins

YFP and other autofluorescent proteins are popular tags for biomolecules
in vivo because of their ease of use and the guaranteed 1:1 labeling ratio.
Unfortunately, fluorescent proteins exhibit complex photophysics: they
are known to blink, i.e. switch transiently between fluorescent and non-
fluorescent states, and bleach fairly quickly. This poor photostability can
make it difficult to infer molecule numbers from the fluorescence signal.
We illustrate the photophysics of a fluorescent protein with a 3-state model
derived in Sec. 7.C.1, see inset to Fig. 7.1A. In this model the fluorophore
switches between ’on’ and ’off’ with a rate k and bleaches with a rate kbl

from the ’on’ states. Only in the ’on’ state the protein emits photons with
a mean rate Ī. It cannot return to a fluorescent state once it is bleached.
Fig. 7.1 shows the number of photons emitted by a single fluorophore
during illumination time T calculated from the 3-state model. In Fig. 7.1A
the influence of blinking is illustrated. Since the photon emission rate
in the ’on’ state is set to Ī = 100/T the mean of the distribution is
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Figure 7.1
Photophysical model for blinking behavior of YFP. Inset panel A: Schematic represen-
tation of the model. The fluorophore switches between ’on’ and ’off’ with a rate k and
bleaches with a rate kbl from the ’on’ states. Only in the ’on’ state the protein emits
photons with a mean rate Ī. Once bleached it cannot return to a fluorescent state. A)
Influence of blinking for negligible bleaching. Relative frequency of numbers of photons
emitted by a single fluorophore during illumination time T . The bleaching rate kbl is in
all cases kbl = (10000T )−1, the rate of photon emission in the ’on’ state is f = 100/T .
The blinking rate k is k → ∞ (solid black line, limit given by Poisson distribution),
k = (0.3333T )−1 (dashed black line) ,k = (0.1T )−1 (dotted black line), k = (0.01T )−1

(solid grey line) , k = (0.002T )−1 (dashed grey line). B) Influence of bleaching for
fixed blinking rate. Relative frequency of numbers of photons emitted by a single fluo-
rophore during illumination time T . The blinking rate k is in all cases k = (0.01T )−1,
the rate of photon emission in the ’on’ state is f = 100/T . The bleaching rate kbl is
kbl = (104T )−1 (solid black line),kbl = (2T )−1 (dashed black line) ,kbl = T−1 (dot-
ted black line) , kbl = (0.5T )−1 (solid grey line), kbl = (0.25T )−1 (dashed grey line),
kbl = (0.1T )−1 (dotted grey line).

approximately 50, at least for high blinking rates. Clearly, the width of
the distribution increases with decreasing blinking rate. Note that even
for infinitely fast blinking the distribution has a finite width. This minimal
width is due to the fact that photon emission is a stochastic process. The
variance of the Poisson distribution, which describes this process, is equal
to the mean (here: 50), so the minimal width (standard deviation) is

√
50.

For very slow blinking, the mean shifts to the right (dashed grey line in
Fig. 7.1), if the fluorophore is initially ’on’. Both effects make it difficult
to distinguish the monomer with mean intensity 50 from the dimer, which
would have a mean intensity of 100. As with blinking, bleaching strongly
distorts the intensity distributions, (Fig. 7.1B). While for small bleaching
rates the distribution shows a clear local maximum (black solid line in



124 Counting autofluorescent proteins in vivo

Fig. 7.1B), the distribution follows an exponential decay for fast bleaching
(black dotted grey line in Fig. 7.1B).

7.3.2 Robust intensity distributions

For both blinking and bleaching the shape of the distributions changes
the most with varying k and kbl when the time scales for blinking (1/k)
and bleaching (1/kbl) are comparable to the illumination time T .

Since both k and kbl sensitively depend on many experimental param-
eters (illumination intensity, local pH, ...) the observed variability in the
intensity distributions prevents a robust assessment of molecule numbers.
Along the lines of ideas developed by Cognet et al. (107), we therefore
propose to use long illumination times T such that T � 1/k � 1/kbl.

In that case the intensity distribution assumes a very simple form,
which is independent of the value of k. In Sec. 7.C.1 we show that for
large T the distribution of the number n of photons detected during time
T is

p(n; N) =
1

N

(
1 +

1

N

)−(n+1)

(7.1)

where N is the mean number of photons detected. N = ηdηoĪk−1
bl where ηd

and ηo are the quantum yield of the detector and the detection efficiency
of the imaging optics, respectively. This intensity distribution is not influ-
enced by blinking and depends on kbl in a defined way, making it a good
starting point for the measurement of molecule intensities. Below we show
that the intensities of single YFP molecules follow this distribution if T is
sufficiently large.

The distribution of the intensity of a dimer (i.e. two fluorophores in
a diffraction limited spot) p2(n; N) is obtained from the convolution of
Eq. 7.1 with itself (121):

p2(n; N) =
∞∑

n′=0

p(n− n′)p(n′) =
n + 1

(1 + N)2

(
1 +

1

N

)−n

(7.2)

Continued convolution with p(n; N)) (Eq. 7.1) gives the distribution for
higher multimers, like e.g. a trimer

p3(n; N) =
∞∑

n′=0

p(n− n′)p2(n
′) =

(n + 1) ((n/2) + 1)

(1 + N)3

(
1 +

1

N

)−n

(7.3)
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In Fig. 7.2 the intensity distributions for a monomer, dimer and trimer
with the same mean number of detected photons N (per fluorophore) are
compared.
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Figure 7.2
Intensity distribution p(n; N))
for the monomer (solid line) given
by Eq. 7.1 and for the dimer
(dashed line) and trimer (dotted
line) obtained from convolution
of p(n; N)) with itself. The mean
number of detected photons is
N = 100 in all cases.

In principle one could use the distributions derived so far to fit a
measured intensity distribution and determine the fraction of monomers,
dimers, etc. However, experimental factors modulate the measured inten-
sity distributions as detailed in the subsequent section.

7.3.3 Detection probability

In the preceding section we showed that the intensity distribution of a
single fluorophore follows an exponential decay for long illumination times
T (Eq. 7.1), which means that a significant fraction of the molecules has
a very small intensity. However, such dim molecules cannot be detected
due to the presence of noise. This experimental noise, which originates
from photon counting statistics, the detection apparatus and background
autofluorescence of the cell, is unavoidable. To increase the signal to
noise ratio (SNR) the acquired image is filtered with a Gaussian of width
w, which should equal the width of the present signals, as prescribed
by optimal filtering theory (see Sec. 7.B). Still, even after filtering, a
threshold has to be defined to distinguish noise from a real single-molecule
signal: only those pixels that exceed the noise by a threshold factor t (i.e.
SNR > t) are considered to be part of potential single-molecule signals.
If the threshold factor t is chosen too large, few single molecules will be
detected, if it is too small, however, noise will be falsely identified as
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single-molecule signals.
To quantify the influence of thresholding on intensity distributions we

derived in Sec. 7.B the probability to detect a single molecule signal of
width w and integrated intensity A at a noise level σ and threshold t

pmax
det (A; σ, w, t) =

1

2

(
1 + erf

(
A√

8πσw
− t√

2

))
(7.4)

where t is the threshold imposed on the SNR after filtering the image
with a Gaussian filter of width w. Fig. 7.3A and Fig. 7.3B show very
good agreement between this theoretical result and simulated data. The
slight systematic underestimation of the simulated detection probability
is probably due to the fact that only the maximum (i.e. brightest pixel) of
a single-molecule signal is considered in the model (Sec. 7.B). This pixel
has the highest chance to be detected (i.e. to exceed the threshold) in the
presence of noise. Other, adjacent pixels, which belong to the same single-
molecule signal and by definition are less bright, also slightly contribute
to the detection probability of the whole signal. Their contribution has
been neglected in the derived model.

With the help of Eq. 7.4 we can now theoretically determine the shape
of measured intensity distributions. Measured intensity distributions are
products of the distribution of the emitted intensities (Eq. 7.1) and the
detection probability (Eq. 7.4). An example for such a distribution is
given in Fig. 7.3C. Since the detection probability goes to 0 for small
intensities, measured intensity distributions always have a peak at finite
intensities, despite the fact that the underlying distribution of emitted
intensities is maximal for small intensities. In Sec. 7.3.4 we will show
that experimentally determined intensity distributions indeed have the
predicted shape shown in Fig. 7.3C.

To find the optimal value for the threshold t we have to balance the
number of rejected single-molecule signals, which increases with t, with
the number of false positives (i.e. noise accepted as signal), which de-
creases with t. To predict the number of false positives we calculated the
probability pfalse(t) to falsely detect a single molecule in a pixel with only
noise at threshold t (see also Sec. 7.B).

pfalse(t) =
1

2

(
1 + erf

(
− t√

2

))
(7.5)

In an image with M pixels roughly M · pfalse(t) noise peaks are falsely
detected as single molecules signals, if the pixels can be considered in-
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Figure 7.3
A) Detection probability determined from simulations for a threshold t of 5 (black solid
circles),6 (black open circles), 7 (grey solid circles) and 8 (grey open circles) respectively
at noise level σ = 20 and signal width w = 0.7pxl. The lines give the detection
probability predicted by Eq. 7.4 for a threshold t of 5 (black solid line),6 (black dashed
line), 7 (grey solid line) and 8 (grey dashed line). B) Detection probability determined
from simulations for noise levels σ of 20 (black solid circles), 25 (black open circles),
30 (grey solid circles) and 35 (grey open circles) respectively at a threshold t of 5 and
signal width w = 0.7pxl. The lines give the detection probability predicted by Eq. 7.4
for a noise level σ of 20 (black solid line), 25 (black dashed line),30 (grey solid line)
and 35 (grey dashed line) C) Complete intensity distribution for a single fluorophore
(monomer) given by Eq. 7.46. This distribution is calculated as the product of the
monomer distribution (Eq. 7.1) and the detection probability (Eq. 7.4) and subsequent
normalization to 1. The assumed parameters are: number of detected photons N = 100,
noise level σ = 10, threshold t = 5, signal width w = 0.7pxl.

dependent. We define ε as the maximal allowed ratio of false positives
(M · pfalse(t)) to all detected signals Nsignals : Mpfalse(t) < εNsignals. This
definition leads to an upper limit for t: t >

√
2 erf−1 (1− 2ε(Nsignals/M))

For example with ε = 0.01, M = 502 and typically Nsignals = 10 we get
t � 4. Since the total number of detected signals depends on Nsignals and
will decrease with t, t should not be chosen too large to avoid loss of data.
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7.3.4 Experimental validation

To verify our theoretical derivations we performed single-molecule fluores-
cence experiments on EYFP molecules in living CHO cells. EYFP was
tagged to the membrane anchor of H-Ras, which resulted in a membrane
localization of the EYFP and thereby greatly facilitated the measure-
ments. We measured the intensities of ≈ 23000 single-molecule signals for
an illumination time of T = 50ms. We estimated from earlier experiments
(see Sec. 7.2) that an illumination time of 50ms is several times bigger
than the bleaching time expected at the illumination intensities used. To
ensure that there was only one EYFP in each diffraction limited spot the
signal density was kept very low (ρ < 0.2μm−2). Fig. 7.4A shows the
obtained intensity distributions. As expected from theory (Eq. 7.1) the
distribution approximately follows an exponential decay. The measured
mean number of photons of N = 837± 3 is roughly in agreement with the
value expected from earlier results on EYFP (see Sec. 7.2), which was 967.
The single molecule signals were obtained with a threshold factor of t = 3
which minimizes the influence of the detection probability on the inten-
sity distribution. However, only signal intensities above 1000 photons were
used, which roughly corresponds to a threshold of t = 15. Hence, the num-
ber of false positives due to noise is minimized. To show that thresholding
influences intensity distributions in the way we derived above, we present
in Fig. 7.4B several intensity distributions based on the same raw data,
which differ by the threshold factor t. In principle, these distributions
should be the product of the distribution of emitted photons (Eq. 7.1),
with the mean number of photons N determined above, see Fig. 7.4A),
and the detection probability at a certain threshold factor t and noise level
σ. This product is given in Eq. 7.46. The noise level σ is not constant in
our experiments but varies between images and, more strongly, between
different cells. Therefore the detection probability has to be determined as
the average over all acquired images using the noise levels in those images

p̄max
det (A; w, t) =

1

Nimages

Nimages∑
i

pmax
det (A; σi, w, t) (7.6)

where σi is the noise level in image i and Nimages is the number of acquired
images.
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Figure 7.4
Intensity distribution of single EYFPs on the membrane of living CHO cells. A) Ex-
perimental intensity distribution of the intensities of 22615 single-molecule fluorescence
signals (solid circles). A one-parameter fit of Eq. 7.1 (solid line) to the experimental
intensity distribution for single EYFPs gives N = 837 ± 3 photons. The width w of
the single molecule signals was restricted to the interval 0.64− 0.81 pixel, the width of
the Gaussian filter was r = 0.72 pxl, pxl = 220nm. The threshold factor was t = 3
and only signals with an intensity bigger than 1000 photons were used. B) Influence of
thresholding on the shape of the intensity distributions. The raw data is the same as
in panel A, but the threshold factor t is varied. t = 5, 10, 15, 20, 25, 30 from i) to vi)
respectively. The experimental data (solid circles) is compared to the full theoretical
distribution Eq. 7.46 (solid line). The mean number of detected photons N was de-
termined above from a restricted data set (see panel A), the detection probability was
calculated by integration over the noise levels found in the raw images.)
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The noise levels were estimated as described in Sec. 7.B. The resulting
detection probability p̄max

det (A; w, t) is then multiplied with the distribution
of emitted intensities (Eq. 7.1) to get the full theoretical description of the
measured intensity distributions (solid lines in Fig. 7.4B). The measured
distributions nicely follow the theoretical expressions determined in this
way.

7.3.5 Clustering due to membrane heterogeneity

The measurements presented in the previous section were performed at
low signal densities (< 0.2μm−2) to ensure that there was only one single
YFP molecule per diffraction limited spot. In subsequent measurements
at increased signal densities we observed that the intensity distributions
are shifted to higher intensities, see Fig. 7.5. This shift is due to the
presence of several molecules in one diffraction limited spot (multimers).
To quantify the amounts of monomers, dimers and higher multimers we
compare the intensity distributions at various densities of single molecule
signals to the intensity distribution of the monomer(121). For simplicity
we assume here that only monomers and dimers are present and describe
the measured distributions as a weighted sum of the intensity distribution
of a monomer p(n; N) and a dimer p2(n; N)

ptotal(n) = αp(n; N) + (1− α)p2(n; N). (7.7)

p(n; N) and p2(n; N) were presented in Sec. 7.3.2 (see Sec. 7.C.1 for the
derivation). N , the average number of detected photons, is determined
from the monomer distribution as described in the previous section which
leaves the fraction of monomers α as a free fit parameter. Fig. 7.5 shows
an example for a fit of this model to experimental data. We find that
α decreases quickly with increasing signal density, see inset of Fig. 7.5.
Strikingly, there are many more dimers than expected for a uniform dis-
tribution of molecules at such low densities (< 1μm−2, see the model
derived in Sec. 7.C.1). In fact, this is in agreement with earlier results on
the used construct (150) where a certain fraction of the molecules were
shown to exhibit confined diffusion in ≈ 200nm domains. Consequently,
one would expect colocalization of molecules even at low densities. This
result has important implications. On the one hand intensity can be used
as a readout for membrane heterogeneity. On the other hand, this result
shows that membrane heterogeneity has to be taken into account when
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Figure 7.5
Influence of membrane heterogeneity on the intensity distribution of EYFP in the mem-
brane of living CHO cells. The solid circles give the intensity distribution at low signal
densities (< 0.2μm−2), already shown in Fig. 7.4. The solid line is the corresponding
theoretically expected distribution obtained as detailed above. This distribution is com-
pared to one taken at a signal density of 0.25μm−2 (open circles). The threshold factor
is t = 3 for both distributions. The visible shift to higher intensities with increased
signal densities is due to the presence of multimers (i.e. several molecules colocalized in
a diffraction limited spot). A fit to Eq. 7.7 (dashed line) gives that at this density the
fraction of monomers is α = 0.14. Inset: Fraction of monomers versus density of single
molecule signals (solid circles). The error was determined as standard deviation calcu-
lated from all data sets used in a certain bin. The open circles show the theoretically
expected monomer fraction for a uniform distribution of molecules, see Eq. 7.49.

true complex formation (in contrast to mere colocalization) is to be mea-
sured.

7.3.6 Limitations and errors

The method presented here requires long illumination times T . Mobile
molecules in living cells can be observed only for a limited time, which
sets an upper boundary for T . In our experiments this did not present
a severe limitation but it might be e.g. for molecules which diffuse more
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quickly.

Secondly, the diffusion of molecules during illumination broadens the
observed single-molecule signals and might render fitting the signals diffi-
cult, especially if signal density is high. To quantify the influence of diffu-
sion we estimate the expected signal width and the broadening caused by
diffusion. For a single YFP with emission maximum at λ = 527nm and a
numerical aperture of the microscope objective of NA = 1.4 we would ex-
pect the full width half maximum of a signal to be ≈ 2 ·λ/(2NA) = 376nm
which corresponds to a signal width of wPSF = 160nm. The signal width
is defined as the width of a gaussian which is fit the point spread function
(PSF) of the microscope, see Sec. 7.B. Additionally, the movement of
the molecule in the period before bleaching leads to a broadening of the
peak. With a bleaching time of τbl = 10.4ms (see Sec. 7.2) and a dif-
fusion coefficient of roughly D = 0.8μm2/s (150), the total signal width
is, according to (221), w =

√
(wPSF)2 + Dτbl = 178nm. This broadening

effect is small and does not hamper the applicability of the method in
our experiments. In general, the signal width puts an upper limit on the
density of signals: two molecules which come closer to each other than
wPSF cannot be resolved.

In addition to long illumination times T our method also requires that
the bleaching time scale is much longer than time scale of any blinking (see
Sec. 7.C.1). In our experiments blinking is obviously fast enough because
we observe the exponential decay predicted for well separated time scales.
Different fluorophores might have blinking rates which are comparable to
the bleaching rate. Such molecules cannot be used with our method.

We estimated the error for the measurement of the monomer fraction
in Sec. 7.3.5 with the help of simulations. In particular, we assume that
the mean number of emitted photons N is known and randomly gener-
ate Nsignals signals with intensities drawn from the distribution Eq. 7.7.
The randomly drawn intensities are binned in equally sized bins and the
resulting distribution is normalized. This distribution is fit with Eq. 7.7
with α as the only free fit parameter. The whole procedure is repeated
100 times for each set of parameters and the error is determined as the
standard deviation Δα over the 100 values obtained for α. Fig. 7.6 com-
pares the influence of the experimental parameters on the relative error
of α determined by these simulations. Fig. 7.6A shows that Δα approx-
imately scales like ∝ 1/sqrtNsignals, which means that the accuracy can
always be increased by measuring more signals. As expected the relative
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error of α increases with decreasing α. In Fig. 7.6B we show that Δα
scales approximately like ∝ 1/α. If the bin size is sufficiently small, Δα is
independent of the mean number of emitted photons N , see Fig. 7.6C. If
the the bin size is too large, all signals will fall in one (or a few bin), which
makes fitting of the distribution impossible. Conversely, Δα is indepen-
dent of the bin size, see Fig. 7.6C, unless the mean number of emitted
photons N is small. In that case the bin size has to be chosen sufficiently
small. The relative error we expect for the parameters of the experiment
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Figure 7.6
Accuracy of the measurement of the monomer fraction α determined from simulations.
A) Dependence of the relative error of α (solid circles) on the number of detected signals
Nsignals. A linear fit to the data in the log-log graph (solid line) has a slope of −0.49.
The bin size is 200, N = 500, α = 0.5. B) Dependence of the relative error of α (solid
circles) on α. A linear fit to the data in the log-log graph (solid line) has a slope of
−0.89. The bin size is 200, N = 500, Nsignals = 5000. C) Dependence of the relative
error of α on the mean number of emitted photons N . Solid circles correspond to
simulations with a bin size of 200, the open circles to simulations with a bin size of
20. Nsignals = 5000, α = 0.5 D) Dependence of the relative error of α on the bin size
b. The solid circles correspond to simulations with Nsignals = 5000 and N = 500, the
open circles to simulations with Nsignals = 500 and N = 500 and the solid squares to
simulations with Nsignals = 500 and N = 20

presented above (N = 837, bin size 200, Nsignals ≈ 20000) ranges from
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0.08 for α = 0.1 to 0.01 for α = 1. The errors we observe in experiments
are much larger, see inset of Fig. 7.5. The reason for that is twofold: Our
simulations do not account for biological variability which is probably
considerable. Secondly, we combined data sets with different signal den-
sities in bins with a bin size of 0.02μm−2, see inset of Fig. 7.5. Since the
monomer fraction is decreasing quickly with signal density, heterogeneity
within a bin contributes significantly to the reported error.

7.4 Conclusion

We have shown that, despite the many challenges presented by living cells,
single-molecule intensities can be measured in a robust way. We have
put such measurements on firm mathematical and analytical grounds. In
particular, we have analyzed and minimized the influence of noise and the
noise related thresholding procedure. We have shown experimentally that
using long illumination times overcomes the problems arising from single-
molecule blinking and bleaching. The resulting intensity distributions are
well described by a simple, quantitative model. Finally, we have quantified
the amount of clustering of a certain membrane protein due to membrane
heterogeneity. We hope that our work paves the way for accurate in vivo
measurements of protein complex and cluster formation. In particular,
since our method is based on imaging, it should allow for the construction
of cell-wide stoichiometry maps.
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7.A Image processing and analysis

7.A.1 Definitions

The image taken by the CCD camera s(x, y) is composed of the following
contributions

s(x, y) =
∑

i

Gi(x, y) + B(x, y) + n0(x, y) (7.8)

where Gi are the single-molecule signals at positions (xi, yi), B is the
autofluorescent backgroundand, n0(x, y) is a constant Gaussian noise (e.g.
read-out noise).

Since the signal is obtained by counting single-photons, the probability
for a certain signal Gi(x, y) coming from a single molecule is given by a
Poisson distribution with mean gi(x, y)

p(Gi(x, y)) =
gi(x, y)Gi(x,y)

Gi(x, y)!
· exp [−gi(x, y)] (7.9)

where gi(x, y) is the point spread function (PSF) of the microscope cen-
tered at molecule position (xi, yi). The PSF, which is ideally given by a
2D Airy-function, is most commonly approximated by a 2D Gaussian

gi(x, y) =
A

2πw2
· exp

[
(x− xi)

2 + (y − yi)
2

2w2

]
(7.10)

Correspondingly the contribution of the background is given by

p(B(x, y)) =
b(x, y)B(x,y)

B(x, y)!
· exp [−b(x, y)] (7.11)

where b(x, y) is given by the product of the laser profile and the autoflu-
orescence coming from the cell.

The constant noise contribution n0(x, y) is assumed to be a normal
distribution with mean 0 and standard deviation σ0.

7.A.2 Autofluorescent background subtraction

We assume that b(x, y) only fluctuates weakly on the length scale of the
signal width w at the time scale of the time lag between frames Δt. There-
fore, a low pass Fourier filtering of single images or a sliding minimum of an
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image stack gives approximately b(x, y) (see below). After subtraction of
b(x, y) the background is approximately flat. We further assume that the
influence of the background is so weak that the remaining shot-noise can
be described by a normal distribution with standard deviation

√
b(x, y).

These simplifications lead to the following estimation of the signal

s(x, y) =
∑

i

Gi(x, y) + n(x, y) (7.12)

where n(x, y) is distributed normally with mean 0 and standard deviation
σ(x, y) =

√
σ2

0 + b(x, y). Since we assumed that b(x, y) is approximately

constant on the length scale w, we can also write σ =
√

σ2
0 + b where b is

the background averaged over the whole image.
i) Sliding minimum filter Since experimental parameters are chosen

such that single molecule signals only appear in a single frame (single
molecules are bleached during integration time T ) and the autofluorescent
background bleaches slowly, a sliding minimum filter can be applied. In
the time trace of each pixel the value of a pixel at a certain time t is
exchanged for the local minimum (in time). The local minimum is defined
as the minimal pixel value in a time window of width τ around t. By
using a sliding minimum instead of a sliding mean, the intensity of single-
molecule signals remains unchanged. The remaining noise, however, is
biased towards positive values.

ii) High pass FFT filter Since the width of single molecule signals is
smaller than typical length scales of autofluorescent structures, the back-
ground can be diminished by high pas Fourier filtering. As described in
the following, the filter does not change positions or intensities of single
molecule signals, if applied correctly. It is less effective than the sliding
minimum filter but causes no bias in the remaining noise.

For the FFT filter we can estimate the influence of the filtering on the
signal intensities. As already mentioned, the PSF of the microscope is
approximated by a Gaussian

gi(x, y) =
A

2πw2
· exp

[
(x− x̂i)

2 + (y − ŷi)
2

2w2

]
(7.13)

The Fourier transform results in a modified gaussian

gi(kx, ky) = e−
(2πw)2(k2

x+k2
y)

2 e−i2π(x̂ikx+ŷiky) (7.14)
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Note that the information about the width of the signal is reflected in the
amplitude, and the information about the position is reflected in the phase.
By changing the amplitude only, the positions are preserved. Therefore

h(kx, ky) = e−
(2πv)2(k2

x+k2
y)

2 ⇒ g̃(k) = gi(kx, ky) · h(kx, ky) (7.15)

Inverse Fourier transform yields

ĝi(x, y) =
A

2π(v2 + w2)
· exp

[
(x− x̂i)

2 + (y − ŷi)
2

2(v2 + w2)

]
(7.16)

The filtered image is subsequently subtracted from the original image.
f(x, y) = gi(x, y)− ĝi(x, y) If v � w then the form of the signal is hardly
distorted. Since the width of the PSF depends approximately quadrat-
ically on the z-position (w(z) = w0(1 + cz2)), filtering is more effective
for out of focus light For z �= 0 the PSF and ĝi(x, y) (the filtered PSF)
differ less (since w(z) > w(0)), which results in a reduction of out of focus
signal.

As an estimate for the change in intensity due to filtering the relative
signal height after filtering is calculated

height of filtered signal

original signal height
=

1
w2 − 1

w2+v2

1
w2

= 1−
(

1 +
( v

w

)2
)−1

(7.17)

If v is too small, signal height and intensity decrease too much. For
v = 5w the height is still 96% of the original signal height, so v > 5w is a
reasonable limit. If v is too big, however, the filtering effect will be small.

The different filters are compared in Fig. 7.7.
It is evident from Fig. 7.7 that the sliding minimum filter increases

the signal to background ratio most. However, background estimation
methods should be compared as well in terms of noise, offset and signal
width.

Fig. 7.8 shows that the FFT filter results in an offset that is symmet-
rically distributed around 0, the sliding minimum filter, however, causes
a systematic shift in offset.

Also in terms of noise the sliding minimum filter is superior, which is
shown in Fig. 7.9. Images filtered with the FFT method show a system-
atically higher noise level.

Furthermore, a difference in width of the found signals is evident in
Fig. 7.10. The maximum at 1.7pixel corresponds to the signal from single
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Figure 7.7
From left to right: raw image, image filtered with high pass FFT filter (v = 5pxl),
image stack filtered with sliding minimum filter (window size: 2 frames)
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Offset distribution. Solid line:
FFT filter, Dashed line: slid-
ing minimum, threshold t = 5

molecules, see Sec. 7.3.6 the additional maximum around 1pxl is due to
noise that is falsely identified as a single molecule (see 7.B). The FFT
filter clearly results in less false positive detections.

Although the sliding minimum filter gives a better signal to back-
ground ratio and less noise we chose to employ in the following only the
FFT filter. It outperforms the other method in terms of offset and false
positive detections.

7.B Detection probability

After background subtraction the image is filtered with an appropriate
filter to optimize the signal to noise ratio (SNR). According to optimal
filtering theory (142), the filter should be identical to the signal. Therefore
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Signal width distribution.
Solid line: FFT filter, Dashed
line: sliding minimum,
threshold t = 5

we filter with a Gaussian of width r. The resulting SNR is

SNR =
Ar

σ
√

π(r2 + w2)
(7.18)

where Ã = A/(2π(r2+w2)) is the maximum of the signal (= signal height)
after filtering and σ̃ = (σ/2

√
πr) is the noise level after filtering. The noise

distribution is still normal (with mean 0 and standard deviation σ̃). For
the optimal choice r = w

SNRmax =
A

σ
√

πw
(7.19)

. Notice that σ has the units [counts/pixel] so that the SNR is dimen-
sionless. In order to distinguish between noise and signal, a threshold t
is introduced. Only those pixels in the filtered image whose brightness
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I(x, y) exceeds the (filtered) noise level by a factor t are treated as poten-
tial molecule positions.

I(x, y) > t · σ

2
√

πr
≡ tσ̃ (7.20)

Fig. 7.11 illustrates the thresholding procedure. Subimages of the unfil-

A B C

Figure 7.11
Thresholding procedure A) Raw image of single EYFP-CAAX molecules on the mem-
brane of a living CHO cell. The noise is approximately σ = 26. The linear grey scale
ranges from 0 counts (black) to 1002 counts (white). B) Image after background sub-
traction and filtering (i.e. correlation) with gaussian of width 0.7pxl, pxl = 220nm.
The linear grey scale ranges from 0 counts (black) to 1473 counts (white). C) Binary
image after thresholding. White pixels correspond to pixels whose value exceeds the
threshold at threshold factor t = 10.

tered image around the pixels which were identified as potential molecule
positions are then fit with the sum of a Gaussian and a constant offset
g(x, y) + off.

We define the detection probability pdet(σ, A) as the probability that
for a given noise level σ a pixel with brightness Ã exceeds the threshold
described, so

pdet(σ, A) =

∫ ∞

tσ̃
da

1

2πσ̃
exp

[
−(a− (Ã + off))2

2σ̃2

]
(7.21)

Integration gives

pdet(σ, A) =
1

2

(
1 + erf

(
1√
2

(
Ã + off

σ̃
− t

)))
(7.22)

=
1

2

(
1 + erf

(
1√
2

(
A + off ′

σ
· r√

π(r2 + w2)
− t

)))
(7.23)
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with the error function

erf(x) =
2√
π

∫ x

0
dy exp(−y2) (7.24)

and off ′ = off ·2π(r2+w2). For a given σ, A and w the detection probability
is maximal for the choice r = w, i.e. when the SNR is maximal. If we
assume off 	 A

pmax
det (σ, A) =

1

2

(
1 + erf

(
A√

8πσw
− t√

2

))
(7.25)

Obviously the integrated signal intensity A should be as big as possible
and noise level σ and signal width w should be as small as possible to
maximize the detection probability. The threshold parameter t should be
as small as possible to detect as many molecules as possible. However, with
decreasing t the probability pfalse(σ) that a noise peak is falsely detected
as a signal is growing. In complete analogy to the above derivation the
probability pfalse(σ) is

pfalse(t) =
1

2

(
1 + erf

(
− t√

2

))
(7.26)

In an image with M pixels roughly M · pfalse(t) noise peaks are falsely
detected as signals. As shown in Fig. 7.12 this is a good estimation for
a filter width of r = 0.7pxl. For wider Gaussian filters the theoretical
formula overestimate the number of false positives. In this case, the pixels
are not independent any more, so there are fewer false positive detections
than expected. Also for small thresholds t, theory and simulation differ.
Here the number of false detections becomes so high, that they overlap and
cannot be distinguished anymore. In any case the theoretical expression
Eq. 7.26 is an upper bound for the number of false positives. It can
therefore be used to safely estimate the threshold t required for a certain
maximal number of false positives.

7.C Intensity distribution

7.C.1 Mandel theory

According to the semi-classical theory by Mandel (220) which is used also
in Photon Counting Histograms (PCH) (141) the probability to find n
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Number of signals detected in an
image with only noise, image size
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level σ = 50, filter width r =
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photons at time t with an integration/illumination time T and detector
quantum yield ηd is:

p(n, t, T ) =

∫ ∞

0

(ηdW (t))n e−ηdW (t)

n!
pinc(W (t), T )dW (t) (7.27)

W (t) = ηo

∫ T+t

t

∫
A

I(r, t)dAdt (7.28)

W (t) is the number of incident photons falling on the detector given a
photon emission rate I(r, t), a detection efficiency of the imaging optics
ηo and a detector area A. pinc(W (t), T ) is the probability distribution of
the number of incident photons W (t) at time t given an illumination time
T .

Here integration is performed not over the whole detector (which would
be the whole CCD chip) but over the area on the chip that is covered by
a single-molecule signal so that

W (t) = ηo

∫ T+t

t
Ism(t)dt (7.29)

where Ism(t) is the photon emission rate coming from a single molecule.
T is assumed to be so long that W (t) is independent of the time of mea-
surement t: W (t) ≡ W . Note that this is the opposite of the limit used
in PCH (141) where very short integration/illumination times T are used
so that the intensity fluctuations govern the counting statistics. For long
enough illumination times T the probability distribution pinc(W, T ) can
be obtained from the probability pfluor(ton, T ) that a molecule is ”on”, i.e.
emitting photons, for a period ton during the integration time T . If Ī is
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the average number of photons emitted during periods when the molecule
is ”on”, pinc(W, T ) is

pinc(W, T ) =
ηo

Ī
pfluor

(
ton =

W

Ī
, T

)
(7.30)

The distribution of the ”on” times, pfluor(ton, T ), depends on the pho-
tophysics of the molecule. In the following two paragraphs a model for
pfluor(ton, T ) that includes blinking and bleaching is derived.

7.C.2 2-state model

The 2-state model with a fluorescent ”on” and a non-fluorescent ”off”
state was discussed in (222). In this model the molecule can switch re-
versibly between the ”on” state and the ”off” state but it never bleaches.
The corresponding probability distribution for the times ton in the ”on”
state pfluor(ton, T ) is the sum of contributions from 4 different kinds of
fluorescence traces. 1. A molecule that starts in the ”on” state can stay
”on” during the whole illumination time T (ton = T ). The probability for
such a trace is pon(0) exp(−koffT ) where pon(0) is the probability that the
molecule is initially ”on” and koff is the rate for switching from ”on” to
”off”. 2. A molecule that starts in the ”off” state can stay ”off” during
the whole illumination time T (ton = 0) . The probability for such a trace
is poff(0) exp(−konT ) where poff(0) is the probability that the molecule is
initially ”off” and kon is the rate for switching from ”off” to ”on”. Since
a molecule can either be ”on” or ”off” initially, pon(0) + poff(0) = 1 must
hold. 3. A molecule that starts in the ”on” state can switch between ”on”
and ”off”. The probability density for those fluorescence traces is

podd(ton, T ) = koff exp (−koffton − kontoff)

× I0

(
2
√

koffkontontoff

)
(7.31)

for an odd number of switches and

peven(ton, T ) =

√
koffkon

ton

toff
exp (−koffton − kontoff)

× I1

(
2
√

koffkontontoff

)
(7.32)

for an even number of switches. toff = T − ton and I0 and I1 are modified
Bessel-functions of the first kind of order 0 and 1 respectively, see (222).
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The total probability for traces which start in the ”on” state and switch
between ”on” and ”off” is pon(0) (podd(ton, T ) + peven(ton, T )). 4. The
probability density for a molecule which starts in the ”off” state and
switches between ”off” and ”on” are analogous: kon is interchanged with
koff and ton is interchanged with toff. The total probability density for the
”on” times ton is the sum of all 4 contributions

p(ton, T ) = pon(0)

× exp(−koffT )δ(T − ton) + poff(0) exp(−konT )δ(ton) + Θ(ton)Θ(T − ton)

× exp(−koffton − kontoff)
[
(pon(0)koff + poff(0)kon)I0

(
2
√

koffkontontoff

)
+(pon(0)

√
ton/toff + poff(0)

√
toff/ton)

√
koffkonI1

(
2
√

koffkontontoff

)]

7.C.3 3-state model

We generalize the above model presented in the previous section to a
3-state model in which the fluorophore can bleach from the ”on” state
to a bleached state with rate kbl, see Inset to Fig. 7.1A. In this model
the probability distribution pfluor(ton, T ) is again given by the sum of 4
contributions. 1. A molecule starts in the ”on” state and stays ”on” during
the whole illumination time T (ton = T ). The probability for such traces
is now pon(0) exp(−(koff + kbl)T ). 2. The probability that the molecule
starts in the ”off” state and stays ”off” during T (ton = 0) is as above:
poff(0) exp(−konT ). 3. The contribution of traces that are switching and
end in the ”on” or ”off” state without bleaching during the illumination
time T is the same as contribution 3 of the 2-state model except for an
additional factor exp(−kblton). 4. A molecule can start in the ”on” or
”off” state and after several switching events the fluorescence trace is
ended by a final bleaching event from the ”on” state. The probability
that a molecule is initially ”on” and stays ”on” until it bleaches at time
ton is pon(0)kbl exp(−(kbl + koff)ton). If the molecule switches, it has to
switch an even number of times if it is initially ”on” and an odd number of
times if it is initially ”off” to end the fluorescence trace in the ”on” state
before bleaching. The corresponding probabilities are pon(0)peven(ton, t

′)
and poff(0)podd(ton, t

′) where t′ is the point in time when the bleaching
event takes place. t′ lies between ton (then the molecule is continuously
”on” until it bleaches) and T (then ton is spread over the illumination time
T ), see Fig. 7.13.
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Figure 7.13
Illustration of fluorescence traces contributing to
the probability distribution pfluor(ton, T ). In all
three cases the ”on” time is identical while the time
point of bleaching t′ is varied. In the top most
trace the time of bleaching t′ is identical to ton,
the molecule has to be continuously in the ”on”
state until bleaching. In the middle trace the ”on”
time is spread over the time until bleaching due
to intermittent periods in the ”off” state. In the
bottom trace the molecule bleaches exactly at the
end of the illumination period. The ”on” time is
spread over the whole illumination period T .

To properly account for all possible traces one has to integrate t′ over
all allowed values ton < t′ < T . Finally, the probability for a bleaching
event after an ”on” time of ton is kbl exp(−kblton). In summary, the con-
tribution of switching traces which are ended by a final bleaching event
is:

pon(0)kbl exp(−(kbl + koff)ton)

+ kbl exp(−kblton)

∫ T

ton

dt′(pon(0)peven(ton, t
′) + poff(0)podd(ton, t

′))

(7.33)

Adding the contributions from the 4 different kinds of fluorescence traces
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results in

p(ton, T ) = pon(0) exp(−(koff + kbl)T )δ(T − ton)

+ poff(0) exp(−konT )δ(ton) + Θ(ton)Θ(T − ton)
[
kbl exp(−kblton)

×
(

pon(0) exp(−koffton) +

∫ T

ton

dt′(pon(0)peven(ton; t
′) + poff(0)podd(ton; t

′))

)
+ exp(−kblton) exp(−koffton − kontoff)

×
[
(pon(0)koff + poff(0)kon)I0

(
2
√

koffkontontoff

)
+(pon(0)

√
ton/toff + poff(0)

√
toff/ton)

√
koffkonI1

(
2
√

koffkontontoff

)]]

We simplify this model by assuming that ”on” and ”off” rates are equal
(kon = koff = k) and that the molecule is initially always in the ”on” state
(pon(0) = 1, poff(0) = 0).

If we use the probability distribution pfluor(ton, T ) for the 3-state model
(Eq. 7.34) to calculate the distribution of incident photons pinc(W, T )
(Eq. 7.30) and insert pinc(W, T ) in Mandel’s theory (Eq. 7.27) we obtain
the probability distribution p(n, T ) for the number of photons detected
during illumination time T . This distribution was used to illustrate the
influence of blinking and bleaching in Sec. 7.3.1.

7.C.4 Robust intensity distributions

If the illumination time T is so big that bleaching is fast on the time scale
set by T (kbl > 1/T ), the molecule bleaches within the illumination time
T . If, additionally, blinking is faster than bleaching k > kbl, the molecule
switches frequently between the ”on” and ”off” state during 1/kbl and
kbl is the only relevant rate. Under these conditions we can significantly
simplify Eq. 7.34 to

pfluor(ton) = kbl exp (−kblton) (7.34)

⇒ pinc(W ) =
kbl

ηoĪ
exp

(
−kblW

ηoĪ

)
(7.35)
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If we insert this distribution into Mandel’s formula Eq. 7.27 we get:

p(n, T ) ≡ p(n) =

∫ ∞

0

(ηdW )n e−ηdW

n!
· kbl

ηoĪ
exp

(
−kblW

ηoĪ

)
dW (7.36)

=
kbl

ηoĪ

ηn
d

n!

∫ ∞

0
Wne−ηW dW with η = ηd +

kbl

ηoĪ
(7.37)

=
kbl

ηoĪ
ηn

d η−(n+1) =
1

1 + ηdηoĪk−1
bl

(
1 +

1

ηdηoĪ
k−1

bl

)−n

(7.38)

By introducing N = ηdηoĪk−1
bl we can write this distribution for the num-

ber of detected photons n as

p(n; N) =
1

N

(
1 +

1

N

)−(n+1)

(7.39)

where N is the average number of photons detected N =
∑∞

n=0 n p(n).

In order to estimate the range of parameters in which the simplified
model is valid, we compare it to the full model Eq. 7.34. Fig. 7.14 shows
that the model works best, if kbl is well separated from the blinking rates
k and 1/T . As mentioned in Sec. 7.2 and Sec. 7.3.6, this is indeed the case
for the used experimental parameters.

The distribution of the intensity of a dimer (i.e. two fluorophores in
a diffraction limited spot) p2(n; N) is obtained from the convolution of
Eq. 7.39 with itself (121):

p2(n; N) =
∞∑

n′=0

p(n− n′)p(n′) (7.40)

=
1

(1 + N)2

∞∑
n′=0

(
1 +

1

N

)−(n−n′)

Θ(n− n′)

(
1 +

1

N

)−n′

(7.41)

=
1

(1 + N)2

(
1 +

1

N

)−n n∑
n′=0

=
n + 1

(1 + N)2

(
1 +

1

N

)−n

(7.42)

Continued convolution with p(n; N)) (Eq. 7.39) gives the distribution for
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Figure 7.14
Comparison of the general model based on Eq. 7.34 to the simplified model Eq. 7.39 for
long illumination times T . The open symbols correspond to the intensities calculated
using the general model based on Eq. 7.34 with bleaching rate kbl = (0.05T )−1 (open
circles), kbl = (0.1T )−1 (open squares), kbl = (0.2T )−1 (open circles). The switching
rate is k = (0.01T )−1 for all distributions. The lines correspond to intensities given by
Eq. 7.39 with the same values for kbl: kbl = (0.05T )−1 (black solid line), kbl = (0.1T )−1

(black dashed line), kbl = (0.2T )−1 (grey solid line)

higher multimers, like e.g. a trimer

p3(n; N) =
∞∑

n′=0

p(n− n′)p2(n
′) (7.43)

=
1

(1 + N)3

(
1 +

1

N

)−n n∑
n′=0

(n′ + 1) (7.44)

=
(n + 1) ((n/2) + 1)

(1 + N)3

(
1 +

1

N

)−n

(7.45)

In Fig. 7.2 the intensity distributions for a monomer, dimer and trimer
with the same average number of detected photons N (per fluorophore)
are compared.

7.C.5 Complete intensity distribution

By combination of the simplified model for the number of emitted photons
Eq. 7.39 with the detection probability Eq. 7.25 a complete description of
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experimental intensity distributions is obtained:

p(n, N) =
C

2

(
1 + erf

(
1√
2

(
n + off ′

2
√

πσw
− t

)))
1

N

(
1 +

1

N

)−(n+1)

(7.46)
Since the signal width w is a property of the optics and the fluorophore
and σ, the noise level, can be estimated from the data, N , the mean
number of photons detected during the integration time, is the only free
parameter. C is determined by normalization

∑
n p(n, N) = 1. C also

gives the ratio between the number of actually detected single-molecule
signals and the total number of single-molecule signals present: C =
#(detected signals)/#(all signals). Fig. 7.3C shows an example of the
distribution for typical experimental values. Note that single-molecule
intensity distributions have an intrinsic asymmetry due to the influence
of the detection probability. As suggested in (223) there might be other
experimental factors that can lead to asymmetric intensity distributions.

7.D Overlapping single-molecule signals

When two single-molecule signals are closer together than the diffraction
limit 2 ·w (= 2× signal width), they cannot be resolved anymore. Conse-
quently, a dimer is observed. For a homogeneous distribution of molecules
with surface density ρ, on average ρπw2 molecules are found in a circle of
radius w. Those molecules would be observed as a single signal. Assum-
ing a Poisson process for the positions of the molecules, the probability to
observe an n-mer pcluster(n, w) at a signal width w is therefore:

pcluster(n, w) = C
(ρπw2)ne−ρπw2

n!
(7.47)

where C is determined by normalization:
∑∞

n=1 pcluster(n, w) = 1, so

pcluster(n, w) =
(ρπw2)ne−ρπw2(
1− e−ρπw2

)
n!

(7.48)

ρ is given by Nmol/AROI where Nmol is the number of molecules in the
region of interest (ROI) with area AROI. Note that this model is only
valid if the density is far below the percolation limit.
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The relation between the number of molecules Nmol and the number
Nsignals of observed signals is given by

Nsignals = Nmol

(
∞∑

n=1

npcluster(n, w)

)−1

(7.49)

Fig. 7.15 shows the ratio of observed signals to the number of molecules
Nsignals/Nmol for a typical experimental value of w = 0.7 pxl, pxl = 220nm.
Here, n-mers up to n = 50 are considered. For comparison, if only
monomers and dimers are admitted (dashed line in Fig. 7.15), the amount
of overlap is underestimated. For ρ < 0.25/pxl2 both curves coincide,
which means that for low densities, signals consist exclusively of monomers
and dimers. In that regime, the ratio Nsignals/Nmol decreases linearly
with density ρ. The monomer fraction α used in Sec. 7.3.5 is defined as
pcluster(1, w)/Nsignals.
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Figure 7.15
Nsignals/Nmol for w =
0.7pxl, pxl = 220nm.
Solid line: n-mers up
to n=50 are considered
, dashed line: only
monomers and dimers
are considered


